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I 

摘要 

本文探讨了构建可动球面四杆机构网格的可行性，分析了折纸图案的刚性可

折叠性，提出了一种构建厚板折纸的新型运动学模型。 

首先对单个球面四杆机构的运动学特性进行了分析。我们利用对称特性将四

个相同的球面四杆机构组成了三种可动装配体，分别为旋转对称、面对称和双重

对称。结合球面四杆机构运动学，归纳出这些装配体的协调条件。当机构的几何

参数改变时，运动学的输入输出特性也会相应地改变。我们选择其中的 16 种特

殊的传递关系来更改调整之前装配体的协调条件。基于新的协调条件，可以构建

出由四个不同的球面四杆机构组成的可动装配体，这些装配体的运动一直保持协

调。 

刚性折纸是折纸艺术的一个分支。刚性折纸图案在折叠过程中，纸片仅沿着

折痕旋转，不发生弯曲和拉伸。将纸片比作杆件，折痕比作旋转铰链，刚性折纸

图案可以等效为一类特殊的球面机构网格。基于刚性折纸和球面机构网格这种关

联性，可以参照可动球面机构网格来设计新的刚性折纸图案，但是需要添加更多

的几何条件来保证折纸图案中的纸片为平面。将这些可动球面机构装配体进行几

何拓展后得到的机构网格可以用来设计更大尺寸的折纸图案。本文不仅提出了构

建可动球面四杆机构装配体的方式，还利用球面四杆机构装配体的运动协调性来

设计刚性折纸图案。 

通过将球面四杆机构装配体映射到平面上来获得刚性折纸图案后，对于每条

折痕有山折法和谷折法两类折叠方式。除了几何设计参数，山谷折痕的排布方式

也会影响折纸图案的刚性可折叠性。本文提出了一种运动学方法来分析刚性可折

叠性和探讨 double-corrugated 图案的刚性几何拓展形式。通过将这些刚性折纸图

案多层叠加，可以获得相应的 3D 超材料。一个基本单元的刚性折展运动能够引

起整个超材料的刚性运动。由于基本单元的运动特性，所获得的超材料能够在两

个方向上具有负泊松比，并且折纸图案的折叠运动特性会影响超材料的结构力学

特性。仅仅通过更改山谷线的排布就可以调整负泊松比材料的折展特性。为了体

现本文方法的普遍性，本文对 square-twist 图案及其对应的超材料也进行了讨论。 

折纸图案通常被用于构造零厚度的薄板结构。但是在实际的工程应用中，材
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料厚度是不能被忽略的。目前已有多种方法被提出，主要通过调整折痕及折痕周

边区域来解决这类问题，所用的运动学模型仍然为球面机构。本文提出了一类全

新且具有普遍适用性的机构综合方法来解决厚板折纸问题。使用本文方法构造的

厚板折纸模型与零厚度折纸具有相同的运动路径。该方法能够有效地将四折痕、

五折痕、六折痕的单顶点和多顶点折纸图案构造为厚板模型，便于折纸技术在实

际工程应用中使用。 

 

关键词：球面四杆机构，刚性折纸，山谷线排布，负泊松比，超材料，过约束

机构，厚板折纸 

 

 

  



 

III 

ABSTRACT 

In this thesis, we explore the possibilities of constructing mobile networks of 

spherical 4R linkages, present the analysis of rigid origami patterns, and propose a 

kinematic synthesis for rigid origami of thick panels.  

This thesis is to analyse the kinematic properties of spherical 4R linkage firstly. 

According to the symmetrical characters, we build three types of mobile assemblies of 

four identical spherical 4R linkages, i.e., the rotational symmetric type, the plane 

symmetric type and the two-fold symmetric type. Combined with the kinematic of 

spherical 4R linkage, the compatible conditions of these mobile assemblies are 

proposed. As the geometric parameters of the linkage are changed, the input-output 

relationships between the kinematic variables changes accordingly, we choose sixteen 

special alternative relationships to modify the compatible conditions of the assemblies. 

According to the new compatible conditions, the mobile assemblies of four different 

spherical 4R linkages are derived while the kinematic compatibility is always kept.  

Furthermore, rigid origami is a subset of origami and there is no exception for rigid 

origami where the sheet can neither be bent nor stretched except rotation about creases. 

With the paper treated as links and the creases as joints, thus the rigid origami pattern 

is a kind of network of spherical linkages. In order to get new rigid origami patterns by 

referring to mobile assemblies of spherical linkages, the further geometric condition 

should be added to make sure that the paper facets are flat. The tessellation of these 

assemblies gives larger scale origami patterns. This thesis not only provides the 

solutions for the mobile assemblies of spherical 4R linkages, but also shows the 

feasibility to design rigid origami patterns by studying the kinematic compatibility 

condition of spherical 4R linkage assemblies. 

When projecting the mobile assembly of four spherical 4R linkages on the flat plane 

to get rigid origami patterns, there are two possibilities for the folding creases, the 

mountain fold and the valley fold. Besides geometric design parameters, the mountain-

valley fold assignments also affect the rigidity of flat foldable origami patterns. This 

thesis proposes a kinematic method to analyze rigidity and explores different rigid 

tessellations of the double corrugated patterns. By stacking a number of those 

tessellation patterns layer by layer, as a result, some types of 3D metamaterial are 

generated. When the single unit in the metamaterial folds and extends following the 
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rigid motion, there will be a large deformation on the metamaterial. And due to the 

kinematic property of the single unit, the whole metamaterial exhibits negative 

Poisson's ratios in two directions. And the kinematics of the pattern's folding dominates 

the metamaterial's structural mechanics. Metamaterials with negative Poisson’s ratios 

are invented whose deformation during the folding can be greatly changed by different 

mountain-valley assignments. The square-twist pattern and its metamaterials are also 

discussed to show the generalization of this method. 

Origami patterns are commonly created for a zero-thickness sheet. To apply them 

for real engineering applications where thickness cannot be disregarded, various 

methods were suggested, almost all of which involve tampering with idealised fold lines 

and their surrounds whereas the fundamental kinematic model where folding is treated 

as spherical linkages remains unchanged. This thesis establishes a novel and 

comprehensive kinematic synthesis for rigid origami of thick panels that is capable of 

reproducing motions kinematically equivalent to that of zero-thickness origami. The 

approach, proven to be effective for single and multiple vertex origami consisting of 

four, five and six creases, can be readily applied to engineering practices involving 

folding of thick panels. 

 

KEY WORDS: Spherical 4R linkage, Rigid origami, Mountain-valley assignment, 

Metamaterial, Overconstrained linkage, Thick origami 
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Chapter 1 Introduction 

1 

Chapter 1  Introduction 

1.1 Background and Significance  

Deployable structures are structures that have the ability to transform themselves 

from a small closed or folded configuration to a much larger or deployed configuration, 

so that they have a compact form for, e.g., transportation or storage, but can then expand 

for their final use[1]. Simple examples include umbrellas or tents, but more highly 

engineered deployable structures are used in inhospitable environments. A good 

example is the use of booms, solar arrays and antennas on spacecraft, metamaterial of 

absorbing energy. Thus, architectural engineers, mechanical scientists and many 

researchers in different fields are working on it. 

Many mechanical engineers have invented large number of novel mechanism to 

constitute a network, then to achieve the deployable structures, such as network of 

angulated scissor-like beam pairs, Bennett linkages, Bricard linkages, etc. These 

structures are based on planar mechanism and spatial mechanism. However, spherical 

mechanism is rarely used in discovering new structures. As the names imply, a spherical 

mechanism is a mechanical system in which the bodies move in a way that the 

trajectories of points in the system lie on concentric spheres. The rotational axes of 

hinged joints that connect the bodies in the system pass through the center of these 

spheres. The spherical 4R linkage is a kind of spherical mechanism which has 4 revolute 

joints in this system. It has only one-DOF. For instance, Hooke's universal joint is a 

spherical 4R linkage. The single spherical 4R linkage is widely used in manufacturing 

industry, network of spherical 4R linkages is hard to constructed because this is a 

overconstrained system. 

On the other hand, origami is the traditional art of paper folding, which started in 

the 17th century AD and was popularized in the mid-1900s. Ori means "folding", and 

gami means "paper". Generally, the paper has deformation or bend during the folding 

process. However, there is a special kind of origami, Rigid Origami, which has a 

quadrilateral mesh surface. Every facets of it is rigid and only rotate around the crease, 

such as Miura-ori and eggbox patterns. This deployable structures without relying on 

flexible materials can be built from rigid or thick material, very useful in the field of 

packaging, such as satellite antenna, solar panel, shelters. Because of rigid origami’s 

characteristics, we can treat the vertex with four fold lines as a spherical 4R linkage, the 

paper creases act as joints and paper panels act as linkages. We can use mechanism 

theories to analyze rigid origami problems and the rigid origami patterns offer us 

examples of spherical 4R linkages’ network. So, the rigid origami patterns are actually 

the network of spherical 4R linkages in the view of mechanism engineers, such as 

Miura-ori, eggbox patterns, etc.  
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Research in the field of deployable structures focuses on the construction of planar 

mechanisms. As the space techniques develop rapidly, the deployable structures in 

satellites require larger deploy-fold ratios and complex shapes to achievement more 

functions. Furthermore, in order to make it easy to control the folding process of 

deployable structures, its corresponding mechanisms should be one degree of freedom 

(DOF).  

The planar mechanisms have limits to satisfy all these requirements. As spherical 

linkages and overconstrained spatial linkages have the characters of one-DOF and 

spatial shapes, they have the application potentials for these fields, but it is a big 

challenge to propose the compatible conditions of tilling these linkages to constituting 

large mobile structures. Referring to the mobile networks of spherical linkages, new 

rigid origami patterns and their folding processes can be obtained, and more origami-

based metamaterials will be proposed. In return, the known rigid origami patterns give 

inspirations for building mobile networks and deployable structures. Origami patterns 

are commonly created for a zero-thickness sheet, for real engineering applications 

where thickness cannot be disregarded, new kinematic model of origami need to be 

proposed. 

1.2 Review of Previous Work 

1.2.1 Linkages and Kinematic Notations 

The mechanisms to be discussed here are formed from a succession of rigid parts 

coupled end to end to form a single closed chain. This single closed chain is called a 

linkage, the individual component of it is called link. The connection of two adjacent 

links is a joint. It includes spherical joints, planar joints, cylindrical joints, screw joints, 

revolute joints, prismatic joints. Our attention is the system constituted only by revolute 

joints. This joint allows one-DOF rotation about its axis.  

An approach to the problem of rationalizing kinematics into a science by means of 

a symbolic language was proposed by Denavit and Hartenberg in 1966[2]. The 

coordinate systems, geometrical parameters and variables related to the links connected 

by revolute joint are shown in Fig. 1-1. Here, ai(i+1) is the shortest distance between axes 

zi and zi+1, also referred as length of link i(i+1). Ri is the distance from link (i-1)i to 

link i(i+1) positively about zi, also referred as offset of joint i. And 
i  is the revolute 

variable of the linkage, which is the angle of rotation from xi-1 to xi positively about zi.  
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Figure 1-1 Coordinate systems, parameters and variables for two adjacent links connected by 

revolute joints. 

 

 In this method, they pointed out that for a closed loop in a linkage, the necessary 

and sufficient mobility condition is the product of the transform matrices equals the unit 

matrix, i.e., 

12 23 34 1 4n T T T T I  (1-1) 

where ( 1)i iT  is the transfer matrix between the system of link (i-1)i to the system of 

link i(i+1), if i+1 > n, i+1 is replaced by 1. 

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)
( 1)

( 1) ( 1)

cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

i i i i i i i i i i

i i i i i i i i i i
i i

i i i i i

a

a

R

     
     

 

  

  


 

 
  
 
 
 

T  (1-2) 

Note that the transfer matrix between the system of link i(i+1) and the system of 

link (i-1)i is the inverse of ( 1)i iT  . That is 

1
( 1) ( 1)i i i i


 T T  (1-3) 

The mobility m of a system composed of n links with p joints can be determined 

by Kutzbach mobility criterion[3], 

6( 1)m n p f     (1-4) 

where, f  is the sum of kinematic variables in the mechanism. For an n-link closed 

loop linkage with revolute joints, p n , and the kinematic variable f n , then 

Eqn. (1-1) can be simplified, 

6m n   (1-5) 
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Obviously, if the closed loop with revolute joints is mobile, i.e., 0m  , the number of 

links n must be greater than 6. According to this criterion, we can not find an available 

with less than seven links.  

However, Eqn. (1-4) is not a necessary condition because it considers only the 

topology of the assembly. There are many mobile linkages without this criterion 

because of special geometry conditions[4]. These linkages are called overconstrained 

linkages, e.g. Bennett linkage, Myard linkage, Bricard linkage, etc. These 

overconstrained linkages only have one-DOF[5, 6]. 

1.2.2 Deployable Structure Constituting by Revolute Hinges 

Deployable structures have the characteristic of transforming themselves from a 

small configuration to large scale shape as we need. These magic structures' ability 

attracts many engineers and scientists to devote themselves to invent new ones in 

different researching areas, especially in the application such as antenna reflectors and 

solar arrays on spacecraft, retractable roofs, etc[7]. 

The deployable structures can be classified by rigid and flexible assemblies[8]. The 

rigid assemblies are the ones in which rigid elements are assembled via rigid joints. 

Flexible assemblies may or may not include rigid parts or subassemblies. Several types 

of flexible assemblies exist: cable-strut assemblies, tensegrity structures[9], inflatable 

systems[10]. The large structures require high rigidity, so we prefer the rigid assemblies 

and put our attention on the network constituted by revolute hinges. 

1.2.2.1 Planer Linkages and Their Networks 

A simple, plate foldable structure can be made from two sets of parallel, straight 

rods connected by pivots, or scissor hinges. A scissor hinge is a revolute joint whose 

axis is perpendicular to the plane of the structure. The Hoberman’s invention of the 

simple angulated element in Fig. 1-2(a), consisting of a pair of identical angulated rods 

connected together by a scissor hinge, extends this type of structure. The angle   

follows 2 arctan EF AF   . It is obvious that   becomes a constant because the 

length of EF and AC does not varies in a scissor hinge. So, the assembly is still mobile 

if we assemble the scissor hinges in the circumferential direction to achieve an radially 

retractable plate structure showing in Fig. 1-2(b)[11-13]. 

Based on Hoberman’s general scissor joint, You and Pellegrino had discovered a 

family of mobile assemblies[14, 15]. The shape of the assembly is not necessary to be a 

circle. We can use the scissor joint to get more shapes as we need. Consisting a series 

of scissor joints can also make a planar closed loop which is made of a serious of loop 

parallelograms. Whether the number of intersecting scissor-like pairs is even or odd, 

the assembly is mobile if it is satisfied with the conditions in [15]. 
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Figure 1-2 Plate foldable structure, (a) basic component of scissor hinge with a constant angle of 

embrace, (b) a model of retractable structure. 

 

  The deployable structures based on scissor joints have two-dimension shapes. 

The two-dimensional solutions are easily extended to three-dimensional solution onto 

a surface with the required shape, see Fig. 1-3(a). During this process each angulated 

element becomes curved out of its plane, all hinges of scissors must be parallel to the 

direction of projection in order to maintain the same freedom as in the two-dimensional 

structure[16]. 

Another way to creating three-dimension shape by using scissor joints is to use 

more interconnected plate structures[17]. We consider two such identical plate structures 

positioned above one another, which are to be rigidly connected. Note that the bottom 

layer of the top structure is connected to the top layer of the bottom structure, as the 

adjacent structures have the identical motions. The model is shown in Fig. 1-3(b). 

In the past, deployable structural mechanisms made from pantographic elements of 

straight struts could form only certain shapes because of restrictions imposed by 

geometric compatibility conditions, which prohibit the concepts from being used in 

applications such as antenna reflectors where nodes of the structure usually lie on a 

parabolic surface. Considering a parallelogram element made of two pairs of struts with 

a pivot in the middle, a model with curved profile is made by You[18].  
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Figure 1-3 Three-dimension shape structure based on scissor joints, (a) two configurations of a 

two-dimensional foldable structure, projected onto a curved surface, (b) expandable spherical 

structure. 

 

1.2.2.2 Overconstrained Linkages and Their Networks 

The planer 4R linkage is the most common 4R loops, the rotation axes of this 

linkage are all parallel. Spherical 4R linkage is a kind of four-bar linkage in which all 

the links are connected by rotation joints. The joint axes intersect at a single point and 

the links move on concentric spheres [19]. A model of this linkage is shown below and 

it has four design parameters, 12 , 23 , 34 , 41 . The conditions of this linkage are 

12 23 34 41

1 2 3 4

0,

0.

a a a a

R R R R

   

   
 (1-6) 
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Figure 1-4 A spherical 4R linkage. 

 

Besides of these planer and spherical linkages, the 4R closed loop linkages are 

usually not mobile. The Bennett linkage is the only one exception and shown in Fig. 1-

5 [20]. Its geometric conditions in the DH coordinate systems are, 

12 34

23 41

,

,

a a a

a a b

 

 
 (1-7a) 

12 34

23 41

,

,

  
  

 

 
 (1-7b) 

0( 1,2,3,4)iR i   (1-7c) 

In order to have mobility, the lengths and twists of this linkage should satisfy the 

condition 

sin sin

a b

 
  (1-7d) 

The kinematics of this linkage are [21] 

1 3

2 4

23 12

1 2

23 12

2 ,

2 ,

sin
2tan tan .

2 2 sin
2

  
  

 
 

 

 

 


 


 (1-8) 

 Connecting two similar Bennett linkages together with only revolute joints has 

been achieved[21, 22]. The assembly has only one-DOF and has been verified. Further, 

the network of Bennett linkages is used to form large structural mechanisms and 
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possible to achieve the highest expansion ratio[23-25]. Regular polygonal linkages and 

regular polyhedral linkages can also be constructed by assemblies of Bennett loops[26]. 

The Bennett linkage even can be used in nanoscale geometries for programmable 

motion of DNA origami mechanisms[27]. 

 

 

Figure 1-5 Bennett linkage. 

 

Some spatial 5R linages are proposed by Myard and Goldberg [28, 29]. All these 

linkages are based on Bennett linkage. By connecting two Bennett linkages together 

and taking out the common links, the remaining composite loop is the overconstrained 

5R linkage. Myard linkage is a plane-symmetric 5R linkage constituted by this 

technique in Fig. 1-6(a) and its geometric conditions are 

23 45

51 12

34 12

,
2
,

2 ,

 

  
  

 

 
 

 (1-9a) 

34 12 51 23 45

5112

12 51

0, , ,

sinsin

a a a a a

a a


  


 (1-9b) 

0 ( 1,2,3,4,5)iR i   (1-9c) 

According to the process of constituting the 5R linkages, Myard linkage can be treated 

as the connection of two Bennett linkages a and b, some limits of geometric conditions 

can be ignored, an extended Myard linkage is obtained and shown in Fig. 1-6(b)[30]. Its 

geometric conditions are,  
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12 34 23 41

12 34 23 41

, ,

, ,

sin sin
,

m m m m m m

m m m m m m

m m

m m

a a a a a b

a b

     

 

   

   



 (1-10) 

Where m = a or b. 

Liu and Chen have presented a way to build deployable assemblies using the Myard 

linkage[31]. A family of mobile assemblies of Myard linkages with one-DOF has been 

developed. These assemblies can be used as large scale deployable structures which 

deploy to a planar configuration and fold to a compact bundle[32]. 

 

 

Figure 1-6 Original Myard linkage and extended Myard linkage, (a) Myard linkage, (b) extended 

Myard linkage. 

 

The first spatial 6R overconstrained linkage is the Sarrus linkage [33]. This linkage 

has two limbs, each limb has three parallel joints. Connect two spherical 4R linkages or 

one spherical 4R linkage and one planer 4R linkages, remove the common joints, give 

the Bennett 6R hybrid linkage [34]. Combining Bennett linkages produces the Goldberg 

6R linkages [28]. In the process of finding deployable polyhedrons, Bricard proposed six 

distinct types of mobile 6R linkages [35-37]. The geometric conditions of these six cases 

are as follows. 

(i) the line-symmetric case,  

12 45 23 56 34 61

12 45 23 56 34 61

1 4 2 5 3 6

, , ,

, , ,

, , ,

a a a a a a

R R R R R R

     
  
  
  

 (1-11a) 

(ii) the plane-symmetric case,  
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12 61 23 56 34 45

12 61 23 56 34 45

1 4 2 6 3 5

, , ,

, , ,

0, 0, ,

a a a a a a

R R R R R R

        
  

     
    

 (1-11b) 

(iii) the trihedral case,  
2 2 2 2 2 2
12 34 56 23 45 61

12 34 56 23 45 61

,

3
, ,

2 2
0 ( 1, 2, ,6),i

a a a a a a

R i

      

    

     

  

 (1-11c) 

(iv) the line-symmetric octahedral case,  

12 23 34 45 56 61

1 4 2 5 3 6

,

0,

a a a a a a

R R R R R R

    

     
 (1-11d) 

(v) the plane-symmetric octahedral case and  

12 23 34 45 56 61

34 12
2 1 3 1 4 1

12 34 12 34

61 45
5 1 6

45 61 45 61

0,

sin sin
, , ,

sin( ) sin( )

sin sin
, ,

sin( ) sin( )

a a a a a a

R R R R R R

R R R

 
   

 
   

     

      
 

   
 

 (1-11e) 

(vi) the doubly collapsible octahedral case.  

12 23 34 45 56 61

1 3 5 2 4 6

0,

0.

a a a a a a

R R R R R R

     

     
 (1-11f) 

By using the combinations or derivatives of these six basic Bricard linkages, the 

other linkages are proposed. The Schatz linkage discovered and patented by Schatz is 

used for the Turbula machine and is derived from a special trihedral Bricard linkage[38]. 

Three-fold symmetric Bricard linkage has three planes of symmetry and is a particular 

type of the plane-symmetric case. As the linkage can be folded completely to a bundle 

and expanded to a planar equilateral triangle, this particular feature makes the three-

fold symmetric Bricard linkage a good choice as the basic mechanism for the 

construction of deployable structures as shown in Fig. 1-7[39]. One-DOF single-loop 

mechanisms with two operation modes can be proposed by combining two 

overconstrained linkages[40]. 
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Figure 1-7 Model of a network of three-fold Bricard linkages. 

 

1.2.3 Origami 

In order to fold a large scale membrane into a smaller size one, the traditional art, 

origami, is a suitable technology for this application. The origami pattern can be folded 

by human hands, robot[41], memory alloy actuator[42], even cells[43]. Rigid origami is a 

special branch of origami which is concerned with folding structures using flat rigid 

sheets joined by hinges. Besides of facet origami, origami is also used to fold a 

patterned cylinder to achieve the deployable structures. The cylinders are classified by 

two rigid assemblies and flexible assemblies. The panels of these rigid assembly 

cylinders are rigid without deformation. 

 The facet origami and cube origami are both widely applied in the area of 

packaging[44], such space antennas[45, 46], solar panel arrays[47], energy absorbing[48, 49], 

sandwich structures[50], folded shell[51-53], sunshield for space telescopes[54], etc. 

1.2.3.1 Facet Origami Pattern 

 The surfaces constituted by quadrilaterals are our interests. Origami is a 

mathematical process giving a flat piece of paper appropriate folds and vertexes joining 

several folds, which results in a polyhedral surface. Koryo Miura [55] has studied a cured 

surface by means of the fundamental magnitudes of the first order and the consequent 

Christoffel symbols and Gaussian curvature.  

 In rigid origami, the transformation of a piece of paper does not include any 

extensional deformation during the folding process, so the Gaussian curvature K is zero 

which is the conditions of rigid origami. 

 Thomas Hull [56] has showed a more simpler method to judge a pattern which is 

rigid or nonrigid. The preliminary judgment can be completed by it. Creases are 

classified by two types, mountain crease and valley crease. As Maekawa and Justin's 

theory says, in an origami pattern, mountain crease is convex and its number is M, 

valley crease is convex and its number is V. The relationship between M and V should 

satisfies, 

2M V    (1-12) 
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 For a flat-foldability pattern, As Kawasaki and Justin's theory tells, let v be a vertex 

of degree 2n in an origami crease pattern and let 1 2, , n   be the consecutive angles 

between the creases. Then the creases adjacent to v will fold flat if and only if 

1 2 3 2 0n         (1-13) 

 Origami is an art of folding paper. It has gained popularity among scientists and 

engineers recently as the origami technique can be utilised to create shape-changing 

structures. Rigid origami is a restricted form of origami where any deformation of the 

paper (or panel) is prohibited except their rotation about the creases, such as Miura-ori 

pattern which is from unfolding tree leaves[57]. Rigidness judgement of origami patterns 

are necessary for the application of this technology. Diagram method and numerical 

method which can choose the rigid foldable patterns are proposed by Watanabe and 

Kawaguchi [58]. Tachi pointed out that a rigidly foldable origami pattern can be 

generalized to find a valid three-dimensional state [59]. The quaternions and dual 

quaternions are used to modelling rigid origami [60]. By treating the paper as links and 

the creases as the joints, kinematics theories can be used to analyse the rigidity and the 

folding motion of origami patterns [61, 62]. The Bar and hinges models are also used to 

analyse origami[63]. 

1.2.3.2 Cylinders by Rigid Origami 

 Some folding patterns in cylindrical shells has been developed by Nojima [64]. By 

his method, a pattern in cylindrical shell is been built according to the given spiral 

configurations. Wang and Chen [65] also design several origami patterns to fold one 

piece of flat paper into closed patterned cylinder. The patterned cylinder formed by their 

method is a static structure without further flat foldability same as the Nojima's. This 

kind of cylinders can be used to design the deployable mast in the space engineering. 

As this is a static structure, the mobility is based on the material's flexibility. A model 

made by Guest is shown Fig. 1-8(a) [66]. By covering the origami cylinder by Ecoflex 

as shown in Fig. 1-8(b), the composite structures are used as pneumatic actuators and 

they are inexpensive, simple to fabricate, light in weight and easy to actuate [67]. 

When the structure is made by shape memory alloy foil, a self-deployable origami 

stent grafts with the biomedical application has been obtained [68]. This deployable 

structures will be more useful for minimum invasive surgery, such as vascular surgery 

using an endoscope. The experiment is shown in Fig. 1-9. This cylinder is from rigid 

origami. Unlike Guest's model, the plane of this structure has no deformation and is 

rigid. However, its degree of freedom is more than one. 
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Figure 1-8 Origami cylinder structure, (a) folding of triangulated cylinders, (b) origami cylinder 

actuator. 

 

 

Figure 1-9 Origami tent, (a) design of the cylinder, (b) self-deployment of the tent. 
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 Comparing with the flexible foldable cylinders or the multi-DOF cylinders, rigid 

foldable cylinders with only one-DOF has better controllability. We can accurately 

control the processing of their deploying or folding because their facets have no 

deformation and the control algorithm is simple as they have only one-DOF. Because 

of the overconstrained conditions, not many cylinders are found. A kind of one-DOF 

cylindrical deployable structures with rigid quadrilateral panels is proposed by Tachi 

and is shown in Fig. 1-10(a) [69, 70]. The cross sections of Tachi's cylinders are 

parallelograms or zonogons. Liu and Chen have found some novel patterns and Tachi's 

is the special case of their [71]. The cross section of Chen's basic cylinder is kite in Fig. 

1-10(b). The axis of Chen's tubes can be a straight line, i.e., the cylinder or not. Another 

star-polyhedron cylinder with a synchronized motion [72, 73] is in Fig. 1-10(c). All these 

cylinders have three characteristics, flat-foldable, rigid-foldable and one-DOF. The 

shape flattens into a compact 2D configuration, each element does not deform 

throughout the transformation, and the mechanisms have exactly one degree of freedom.  

 

 

Figure 1-10 Rigid-foldable cylindrical structures. 

 

1.2.3.3 Thick Origami 

When the origami vertex has to be flat-foldable, the intersection problem can not 

be avoided. There are many thick folding techniques proposed. By shifting hinges out 

of plane of the origami pattern, the material thickness will be accommodated. The 

method is shown in Fig. 1-11(a) [74]. The method is only suitable for the simple zig-zag 
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pattern. The kinematics of thick origami model is different from its corresponded zig-

zag origami pattern. The offset panel technique is shown in Fig. 1-11(b) [75]. The hinges 

of thick model and the origami pattern creases have the same position. The thick panels 

are out panel of the origami facets. The thick model and the origami pattern have the 

same folding process. Volume trimming is another method to avoid the material 

intersection in the folding process of the thick model [76]. A kind of volume trimming 

method is shown in Fig. 1-11(c). 

These methods though often result in surfaces that are either not entirely flat or 

with openings to accommodate thickness. There are only two exceptions. One is a 

technique introduced by Hoberman to fold the Miura-ori [77] in Fig. 1-12(a), and the 

other by De Temmerman for the diamond origami pattern [78] Fig. 1-12(b). In both of 

them, all of the folding lines do not meet at a point, and thus, the vertices no longer 

exist. This indicates that their folding cannot be simply treated as the motion of 

spherical linkage assemblies. 

 

 

 

Figure 1-11 Current methods for thick panel origami based on zero-thickness model, (a) hinge 

shift method, (b) panel offset method, (c) volume trimming method. 
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Figure 1-12 Thick panel model, (a) thick panel model of miura-ori pattern, (b) thick panel model 

of diamond pattern. 

 

1.2.3.4 Origami Application 

Origami has probably the widest application potential in engineering structures 

ranging from solar panels, space antenna reflectors, air craft wings to robots. This 

technique also gives inspiration for designing new metamaterials[79-81]. 

Space missions require ultra-low-mass and large space plateforms or structures, 

such as antenna and solar panel arrays. Koryo Miura presents a new concept of packing 

and deployment of large membranes in space by using origami technique [82]. A solar 

panels arrays based on Miura-ori pattern has been launched and tested in orbit as shown 

in Fig. 1-13 [83]. Origami-type structures have large fold-deploy ratios. A deployable 

solar array for space application with a ratio of deployed-to-stowed diameter of 9.2m is 

designed in [84]. This model is demonstrated in hardware as a 1/20th scale prototype. 

Origami can fold paper into complex 3D shapes, this technique helps to use this 2-

D fabrication method to build 3D robotic systems. A self-folding robot with embedded 

electronics is designed in Fig. 1-14(a) [85]. A similar self-folding robot is controlled by 

an alternating external magnetic field as shown in Fig. 1-14(b), it can walk, swim and 

degrade [86]. Besides design new patterns, some traditional patterns are also useful for 

building robot systems. E.g., the famous waterbomb pattern has been used to design 

parallel robot[87], worm-like robots[88, 89], the floating equipment of aerial vehicles [90], 

or the deformable wheel of a robot [91]. 
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Figure 1-13 Miura-ori solar panel arrays. 

 

 

Figure 1-14 Origami robot, (a)electric drive robot, (b) magnetic drive robot. 
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By stacking many layers of the famous Miura-ori pattern, a metamaterial is 

proposed in Fig. 1-15 [92]. This metamaterial provides negative Poisson’s ratio for both 

in-plane and out-of-plane deformations, and is used as the core for blast-resistant 

sandwich beams [93]. The Poisson’s ratio and the bending stiffness of the miura-ori 

pattern are also analysed in [94]. By adding defects in the original miura-ori pattern 

structure, this mechanical metamaterial can be reprogrammable [95]. Besides the 

periodic Miura-ori pattern, a non-periodic Ron Resch pattern has unusually strong load 

bearing capability which can attribute to build mechanical metamaterials [96]. The rigid 

origami tubes also can be used as the basic units to construct metamaterials [97-99]. 

Besides of to design metamaterials, the square-twist pattern [100], the single vertexes in 

miura-ori pattern [101] and waterbomb pattern [102] can be used to multistability structures. 

 

Figure 1-15 Miura-folded metamaterial. 

 

1.3 Aim and Scope 

This thesis is to explore the possibility of constructing mobile mechanism using 

spherical 4R linkages and use mechanism theory to analyse rigid origami problems. 

In this process, we first analyse the kinematics of spherical 4R linkage and build 

three cases of mobile network of four spherical 4R linkages, i.e., two-fold symmetric 

case, symmetric case and rotational symmetric case, then we generalize the conditions 

of these mobile networks. According to the relationship between spherical linkages and 

rigid origami, we use the kinematic compatible conditions to present the effect of 

mountain-valley fold assignments on the rigidity of flat foldable origami patterns. 

Finally, we propose a novel and comprehensive kinematic synthesis for rigid origami 

of thick panels. 
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1.4 Outline of Thesis 

This thesis consists five chapters. 

Chapter 1 presents a brief review of existing works. It includes the mechanism 

theory for analyzing the linkages, the compatible condition for closed loop linkages and 

the deployable structures constituting by revolute hinges. As origami is a special 

technique for design deployable structures, its definition and applications are also 

introduced in this chapter. 

Chapter 2 is aiming to develop a family of mobile assemblies with spherical 4R 

linkages and form the corresponding rigid origami patterns. The kinematics of spherical 

4R linkage will be studied firstly. It is followed by the one-DOF mobile assemblies of 

four identical or different spherical 4R linkages. Based on these mobile assemblies, their 

corresponding rigid origami patterns are proposed.  

Chapter 3 proposes a kinematic method to study the effect of mountain-valley fold 

assignments on the rigidity of flat foldable origami patterns. Here the double corrugated 

pattern is taken as the study case firstly. Based on the kinematic models of spherical 4R 

linkage (S4R) assemblies, the analysis on the rigidity of its basic units is conducted. 

Then the tessellations of the double corrugated patterns and their metamaterials are 

explored. The square-twist pattern and its metamaterials are also discussed to show the 

generalization of this method. 

Chapter 4 describes the construction process of thick panel origami models for 

four-crease origami vertex by using Bennett linkage, five-crease origami vertex by 

using Myard linkage, and six-crease origami vertex by using Bricard linkage. The 

kinematic equivalent of the thick panels model and origami vertex has been proved. 

Thick panel models for multi-vertex patterns by this technique are also presented in this 

chapter. 

Chapter 5 makes a conclude of this whole thesis and shows the future research 

works. 
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Chapter 2 Network of Spherical 4R Linkages 

2.1 Introduction 

A spherical 4R linkage has four revolute axes which must intersect in a single point 

to provide one degree-of-freedom (one-DOF) rotational movement. The trajectories of 

these links lie on concentric spheres as shown in Fig. 1-4. Due to its one-DOF mobility, 

the spherical 4R linkage has been used as basic element to construct other mechanisms, 

such as Hooke’s linkage or universal joint, double Hooke’s linkage [103], Bennett hybrid 

6R linkage[34], and so on. Most of the previous research focused on the single spherical 

4R linkage or the combination of two such linkages. Recent research attempted on the 

mobile assemblies of spherical 4R linkages, which could involve unlimited number of 

identical or similar spherical 4R linkages. 

In this chapter, we are aiming to develop a family of mobile assemblies with 

spherical 4R linkages and form the corresponding rigid origami patterns. The layout of 

this chapter is as follows. Firstly, the kinematics of spherical 4R linkage will be studied 

in section 2.2. Section 2.3 derives the one-DOF mobile assemblies of four identical 

spherical 4R linkages. In section 2.4, by considering the kinematic characteristics of 

spherical 4R linkages, the assemblies of four different spherical 4R linkages are 

proposed. Based on the assemblies in section 2.3 and 2.4, section 2.5 is devoted to 

design corresponding rigid origami patterns. The conclusions and discussion in section 

2.6 end this chapter. 

2.2 The Kinematics of Spherical 4R Linkage 

For spherical linkages, the distances between adjacent links are zero because the 

axes of revolute joints meet at a point, and thus Eqn. (1-1) reduces to 

12 23 1 3n   Q Q Q I  (2-1) 

where 

( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

cos sin 0

cos sin cos cos sin

sin sin sin cos cos

i i

i i i i i i i i i i

i i i i i i i i

 
    
    

   

  

 
     
    

Q . 

There is 
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( 1) ( 1)
1

( 1) ( 1) ( 1) ( 1)

( 1) ( 1)

cos cos sin sin sin

sin cos cos sin cos

0 sin cos

i i i i i i i

i i i i i i i i i i i

i i i i

    
    

 

 


   

 

   
      
  

Q Q  (2-2) 

Eqns. (1-1) and (2-1) have been used to obtain closure equations in all of the subsequent 

derivations. 

 For spherical 4R linkage, Eqn. (2-1) can also be written as 

12 23 14 43Q Q Q Q  (2-3) 

because of Eqn. (2-2), which amounts to a total of nine equations. Note that the 

kinematic twists (angles) under DH notation can be made to be identical to their 

respective sector angles for any the spherical linkage. The relationships between 

kinematic variables 
i  and 

1i   (i=1, 2, 3, 4) can be obtained, 

23 41 12 1 41 12 23 2

12 23 41 1 2 23 41 1 2

34 12 23 41

cos sin sin cos cos sin sin cos

cos sin sin cos cos sin sin sin sin

cos cos cos cos 0;

       
        
   

      
        
    

 (2-4a) 

34 12 23 2 12 23 34 3

23 12 34 2 3 12 34 2 3

41 12 23 34

cos sin sin cos cos sin sin cos

cos sin sin cos cos sin sin sin sin

cos cos cos cos 0;

       
        
   

      
        
    

 (2-4b) 

41 23 34 3 23 34 41 4

34 23 41 3 4 23 41 3 4

12 23 34 41

cos sin sin cos cos sin sin cos

cos sin sin cos cos sin sin sin sin

cos cos cos cos 0;

       
        
   

      
        
    

 (2-4c) 

12 34 41 4 34 41 12 1

41 12 34 4 1 12 34 4 1

23 12 34 41

cos sin sin cos cos sin sin cos

cos sin sin cos cos sin sin sin sin

cos cos cos cos 0;

       
        
   

      
        
    

 (2-4d) 

which can be represented as 

( 1)( 2) ( 1) ( 1)

( 1) ( 1) ( 1)( 2) 1

( 1) ( 1)( 2) ( 1) 1

( 1)( 2) ( 1) 1

( 2)( 3) (

cos sin sin cos

cos sin sin cos

cos sin sin cos cos

sin sin sin sin

cos cos

i i i i i i i

i i i i i i i

i i i i i i i i

i i i i i i

i i i

   

   

    

   

 

   

    

    

   

 

  

   

    

   

  1) ( 1)( 2) ( 1)cos cos 0.i i i i i      

 (2-5) 

And later, we will use 1 ( 1) ( )i i i if    to present this relationship in the analysis of 

mobile assemblies. 
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 By changing the link twists ij  , into ij  , ij   , ij    , or ij  , there are 

256( 4 4 4 4     ) variations on the geometric parameters for each spherical 4R 

linkage. 

 Similarly, for each kinematic variables 
i  , there are four variations, i.e., 

i  , 

i  , 
i    and 

i . If the basic relationship between two adjust joints' kinematic 

variables is 
1. .i iv s   , there are totally 16( 4 4  ) types of different relationship Ri  

by combining the four variations in a single kinematic variables, as shown in table 2-1. 

 

Table 2-1. Relationships between 
i  and 

1i 
 

Types Relationships 

1R
 

1. .i iv s  

 
2R  1. . ( )i iv s   

 
3R  

   

1. . ( )i iv s    
 

4R
 

1. .i iv s  
 

5R

 
1( ) . .i iv s   
 

6R

 
1( ) . . ( )i iv s     

 
7R

 
1( ) . . ( )i iv s      

 
8R

 
1( ) . .i iv s    
 

9R

 
1. .i iv s   
 

10R

 
1. . ( )i iv s     

 

11R
 

1. . ( )i iv s    
 

12R
 

1. .i iv s  
 

13R

 
1( ) . .i iv s     
 

14R
 

1( ) . . ( )i iv s       
 

15R

 
1( ) . . ( )i iv s      

 
16R

 
1( ) . .i iv s    
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For example, taking the spherical 4R linkage with the geometric parameters 12 , 

23 , 34  or 41  as the basic geometric condition, a variant spherical 4R linkage can 

be obtained, when  

12 12 23 23 34 34 41 41, , ,                   (2-6) 

 By substituting (2-6) into (2-4), we can get  

23 41 12 1

41 12 23 2

12 23 41 1 2

23 41 1 2

34 12 23 41

cos( ) sin sin cos

cos sin sin( ) cos

cos sin( ) sin cos cos

sin( ) sin sin sin

cos( ) cos cos( ) cos 0;

    
    
     
    
     

   
    
      

     

      

 (2-7a) 

34 12 23 2

12 23 34 3

23 12 34 2 3

12 34 2 3

41 12 23 34

cos( ) sin sin( ) cos

cos sin( ) sin( ) cos

cos( ) sin sin( ) cos cos

sin sin( ) sin sin

cos cos cos( ) cos( ) 0;

     
     
      
    
     

    
     
       

     

      

 (2-7b) 

41 23 34 3

23 34 41 4

34 23 41 3 4

23 41 3 4

12 23 34 41

cos sin( ) sin( ) cos

cos( ) sin( ) sin cos

cos( ) sin( ) sin cos cos

sin( ) sin sin sin

cos cos( ) cos( ) cos 0;

     
     
      
    
     

    
     
       

     

      

 (2-7c) 

12 34 41 4

34 41 12 1

41 12 34 4 1

12 34 4 1

23 12 34 41

cos sin( ) sin cos

cos( ) sin sin cos

cos sin sin( ) cos cos

sin sin( ) sin sin

cos( ) cos cos( ) cos 0;

    
    
     
    
     

   
    
      

     

      

 (2-7d) 

Comparing the basic and variant spherical 4R linkages, with the same input, i.e., 

1 1    (2-8) 

According to Eqns. (2-4) and (2-7), the output is 

2 2

3 3

4 4

,

,

.

  
 
  

   
  
  

 (2-9) 
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 By considering Eqns. (2-8) and (2-9), these two sets of relationships among 

revolute variables are shown in Fig. 2-1. It is shown that the relationship between 
i  

and 
1i   is central symmetric, i.e., 

( 1) ( 1) 1( ) ( )i i i i i i if f          (2-10) 

which reveals that the geometric parameters for Ri   and ( 8)R i   in table 2-1 are 

exactly the same. So we only consider 1R  to 8R  in the later analysis.  

We use R1 and R9 as the example to explain that the geometric parameters for Ri  

and ( 8)R i  are exactly same. We put points 0 0
1( , )i i    and 0 0

1( , )i i     into (2-5), 

obtain 

0
( 1)( 2) ( 1) ( 1)

0
( 1) ( 1) ( 1)( 2) 1

0 0
( 1) ( 1)( 2) ( 1) 1

0 0
( 1)( 2) ( 1) 1

( 2)( 3)

cos sin sin cos

cos sin sin cos

cos sin sin cos cos

sin sin sin sin

cos

i i i i i i i

i i i i i i i

i i i i i i i i i

i i i i i i

i i

   

   

    

   



   

    

    

   

 

  

   

    

   

 ( 1) ( 1)( 2) ( 1)cos cos cos 0.i i i i i i        

 (2-11a) 

0
( 1)( 2) ( 1) ( 1)

0
( 1) ( 1) ( 1)( 2) 1

0 0
( 1) ( 1)( 2) ( 1) 1

0
( 1)( 2) ( 1) 1

cos sin sin cos( )

cos sin sin cos( )

cos sin sin cos( ) cos( )

sin sin sin( ) sin(

i i i i i i i

i i i i i i i

i i i i i i i i

i i i i i i

   

   

    

   

   

    

    

   

   

    

      

      0

( 2)( 3) ( 1) ( 1)( 2) ( 1)

)

cos cos cos cos 0.i i i i i i i i            

 (2-11b) 

After simplifying Eqn. (2-11b), we can see that Eqns. (2-11a) and (2-11b) are same, 

which means R1 and R9 have the same link twist angles ij . 

The variations of the kinematic relationships and their corresponding geometric 

parameters are listed in Table A1 of appendix, which can be used to vary the rotation 

transmission between i  and 1i   when geometric parameters are changed. For each 

Ri  , there are 16 corresponding solutions as listed in the appendix. All rest variant 

linkages offer rather complicated changes in kinematic variables and are not considered 

in this chapter. 
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Figure 2-1 Relationship among the revolute variables of spherical 4R linkages. 

(solid line: 
12 23 34 419, 2 9, 4 9, 2 3           , 

dash line: 
12 23 34 419, 7 9, 5 9, 2 3              .) 

 

By using Eqn. (2-6), the basic spherical 4R linkage is changed to a variant type and 

the rotation transmission loop is also changed. The closed loop of rotation transmission 

in the basic spherical 4R linkage is, 

 (2-12) 

And that in the variant spherical 4R linkage is 

 (2-13a) 
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i.e., 

 (2-13b) 

2.3 One-DOF Mobile Assemblies of Four Identical Spherical 4R 

Linkages 

In order to construct one-DOF mobile assemblies with a tessellation of unlimited 

number of spherical 4R linkages, a closed loop of four spherical 4R linkages is 

considered first. The connection between two spherical 4R linkages is constructed 

through the aligned revolute joint. For example, two spherical 4R linkages are 

connected in Fig. 2-2. Link 12 of linkage A and link 14 of linkage B are connected 

rigidly into one body. So are the link 14 of linkage A and link 12 of linkage B. As a 

result, the joint a1 of linkage A and joint b1 of linkage B are aligned into one revolute 

joint with the same motion, i.e., 
1 1
a b  . 

 

 

Figure 2-2 Assembly of two spherical 4R linkages. 

 

 To start from the simplest situation, we can set that the four spherical 4R linkages 

are identical, i.e., the geometric parameters of the linkages satisfy 

12 12 12 12 12

23 23 23 23 23

34 34 34 34 34

41 41 41 41 41

,

,

,

.

a b c d

a b c d

a b c d

a b c d

    

    

    

    

   

   

   

   

 (2-14) 

 As connection between two joints shown in Fig. 2-2, the joints with the same 

subscript are assembled. For example, the rotation of joint a2 of linkage A and joint b2 

of linkage B are exactly the same after assembling. So the same as the joint b1 of linkage 

B and the joint c1 of linkage C, joint c2 of linkage C and joint d2 of linkage D, joint d1 
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of linkage D and joint a1 of linkage A. Then, a closed loop of spherical 4R linkages A, 

B, C and D is obtained. This is an assembly strategy corresponding to Path1 in Fig. 2-

3. Other three types of available assemblies are also shown in it. 

 

 

Figure 2-3 Assemblies of four spherical 4R linkages. 

 

 The corresponding graph representations of these four assemblies are shown in Fig. 

2-4. The nodes in the graph represent the joints connecting the ends of the links. The 

straight lines are the axes of the joints intersecting at the dark points. The distributions 

of the four spherical 4R linkages in the assemblies are shown in Fig. 2-4. The 

distributions of spherical 4R linkages A and D, B and C are symmetric about the 

horizontal direction in Fig. 2-4 (b). The distributions of A and B are symmetric with D 

and C about the vertical direction in Fig. 2-4 (c). Because of having the same symmetric 

characteristics, Path2 and Path3 are the same in fact. In summary, there are only three 

assemblies available, i.e., Path1, Path3 and Path4 in Fig. 2-4. 

 In Fig. 2-4(a), the distribution of spherical 4R linkages C and D are the mirror of A 

and B, B and C are the mirror of A and D, so we name it twofold-symmetric case. In 

Fig. 2-4(c), the distribution of spherical 4R linkages C and D is the mirror of A and B 

so we call it symmetric case. In Fig. 2-4(d), the distribution of four joints of each 

linkages is center clockwise about the sphere center, so we name it rotational case. 
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                 (a)                               (b) 

      

                 (c)                               (d) 

Figure 2-4 Graph representation of the assemblies. 

(a) Path1: Twofold-symmetric case; (b) Path2: similar as Path3; (c) Path3: Symmetric case; (d) 

Path4: Rotational case. 

 

Referring to Fig. 2-4 (a), an assembly of four spherical 4R linkages is shown in Fig. 

2-5. The joints a2 and b2, b1 and c1, c2 and d2, d1 and a1 are respectively connected 

collinearly with the same motion. The DH notation systems' property causes that 

rotation angles and kinematic variables are not simply the same all the time. E.g., the 

rotation angles of joints a2 and b2 in Fig. 2-5 are equal, but 
2 2
a b   . After connecting, 

we have 

2 2 1 1 2 2 1 1, , , .a b b c c d d a                (2-15) 

In order to keep this assembly one-DOF, the kinematical compatibility conditions 

must be set up. If taking 
1
a   as input, the rotational motion transfers through the 

collinear joints, and back to 
1
a  at last. The transmission loop is 
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 (2-16) 

Then, the transmission loop of rotation case can be represented as 

21 12 21 12 1 1( ( ( ( ))))D C B A a af f f f        (2-17) 

Considering four linkages A, B, C and D are identical, Eqn. (2-17) is simplified as 

21 12 21 12 1 1( ( ( ( ))))f f f f        (2-18) 

which can exist with considering Eqn. (2-10), i.e., the kinematic compatibility condition 

of twofold-symmetric case is satisfied. 

 

 

Figure 2-5 Twofold-symmetric case of four identical spherical 4R linkages' assembly. 

12 23 34 34( 2 9, 3 9, 13 18, 5 9)            

 

 

 



Chapter 2 Network of Spherical 4R Linkages 

31 

 Referring to Fig. 2-4(c), an assembly of four spherical 4R linkages is shown in Fig. 

2-6. Joints a2 and b2, b3 and c3, c2 and d2, d1 and a1 are respectively collinear and 

connected. The connection conditions for kinematics are 

2 2 3 3 2 2 1 1, , , .a b b c c d d a              (2-19) 

Similar as rotation case, the new transmission loop is 

 (2-20) 

which can be represented as 

21 32 23 12 1 1( ( ( ( )))) .D C B A a af f f f      (2-21) 

The identical conditions of the linkages A, B, C and D simplify (2-21) and give 

21 32 23 12 1 1( ( ( ( )))) .f f f f      (2-22) 

Then, modify it and we can see this equation is proved with Eqn. (2-10). In other words, 

the assembly of symmetric case is mobile. 

 

 

Figure 2-6 Symmetric case of four identical spherical 4R linkages' assembly. 

12 23 34 34( 2 9, 3 9, 13 18, 5 9)            
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Referring to Fig. 2-4(d), an assembly of four spherical 4R linkages is shown in Fig. 

2-7. The joints a2 and b2, b3 and c3, c4 and d4, d1 and a1 are respectively collinear. For 

this assembly, we have 

2 2 3 3 4 4 1 1, , , .a b b c c d d a            (2-23) 

The transmission loop is 

 (2-24) 

Then, the transmission loop is represented as 

41 34 23 12 1 1( ( ( ( ))))D C B A a af f f f    (2-25) 

Simplified by the identical conditions of linkages A, B, C and D, then gives 

41 34 23 12 1 1( ( ( ( ))))f f f f    (2-26) 

which can obviously exist. Thus, the compatibility condition of rotation case is satisfied, 

i.e., this assembly is mobile with one DOF. 

 

 

Figure 2-7 Rotation case of four identical spherical 4R linkages' assembly. 

12 23 34 34( 2 9, 3 9, 13 18, 5 9)            
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2.4 The One-DOF Mobile Assemblies of Four Different Spherical 4R 

Linkages 

We have analysed three mobile assemblies of four identical spherical 4R linkages 

in section 2.3. Their kinematic compatibility conditions are about the joints' rotation 

transmissions such as Eqns. (2-16), (2-20) and (2-24). If we keep the kinematic 

compatibility conditions, we can use different spherical 4R linkages to reconstitute the 

networks. 

In Fig. 2-5, the spherical 4R linkages B and C's original kinematic relationships are 

1 2. .v s   belonging to R1. We use R16, i.e.
1 2. .v s    , to replace them in B and C. 

According to Table 2-1, the corresponding rotation transmission path is  

 (2-27) 

Comparing with Eqn. (2-16), this rotation transmission is changed in the middle process, 

but the compatibility conditions 
1 1
d a    are still kept, so this assembly is mobile. 

In order to achieve this path, we vary the link twists according to Table A1. For 

each relationship Ri , there are 16 solutions. One suitable solution for Eqn. (2-27) is 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,

, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

       

       

         

         

   

   

     

     

 (2-28) 

and the corresponding assembly is shown in Fig. 2-8. 

We use the linkage D as the reference and change the parameters of the other three 

linkages. This is an example of generalizing the symmetric case to variant symmetric 

case. Two R16 are respectively used in linkage B and C to get a new assembly. It is 

actually one representation of 2
6

Rt  in Table 2-2. Other Ri  also can be used to obtain 

new transmission paths. According to the new paths, more mobile assemblies are 

achieved. 

If two variant relationships are used, 6( 1
3 2C  ) kinds of new path are obtained 

and shown in Table 2-2. For three variant relationships used, the number of new path is 

9( 1 1
3 3C C  ) as shown in Table 2-2. So the sum of the new transmission loops is 15. 

Some solutions found by Satchel [61] are also belonged to this case. Such method 

is also suitable for symmetric case and rotational case. 
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Figure 2-8 A kind of variant two-fold symmetric case. 

 

Table 2-2. Variant relations for two-fold symmetric case 

Transmission types method 
2
1

Rt  2 2R R  

2
2

Rt  3 3R R  

2
3

Rt  4 4R R  

2
4

Rt  5 5R R  

2
5

Rt  12 12R R  

2
6

Rt  16 16R R  

3
1

Rt  2 6 2R R R   

3
2

Rt  2 7 3R R R   

3
3

Rt  2 8 4R R R   

3
4

Rt  3 13 4R R R   
3
5

Rt  3 14 3R R R   
3
6

Rt  3 15 2R R R   
3
7

Rt  4 9 4R R R   
3
8

Rt  4 10 3R R R   
3
9

Rt  4 11 2R R R   
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If we use R4 for linkage A and R12 for linkage B to alter the symmetric case's 

rotation transmission Eqn. (2-20), a new transmission path is obtained. 

 (2-29) 

According to Table A1, one solution of the geometric parameters for spherical 4R 

linkages to constitute a network is 

12 12 12 12 12 12 12

23 23 23 23 23 23 23

34 34 34 34 34 34 34

41 41 41 41 41 41 41

, , ,

, , ,

, , ,

, , .

a b c d

a b c d

a b c d

a b c d

       

       

       

       

    

    

    

    

 (2-30) 

This variant assembly of symmetric case is shown in Fig. 2-9. Similarly, using 16 kinds 

of variant relationships can give us more solutions. All variant relationships are listed 

in Table 2-4. 

 

Figure 2-9 A kind of variant symmetric case. 

 

Table 2-3. Variant relations for symmetric case 

Transmission types method 

2
1

Rt  2 2R R  

2
2

Rt  3 3R R  

2
3

Rt  4 4R R  

2
4

Rt  2 5R R  

2
5

Rt  3 16R R  

2
6

Rt  4 12R R  

3
1

Rt  2 6 2R R R   

3
2

Rt  2 7 3R R R   

3
3

Rt  2 8 4R R R   

3
4

Rt  3 15 2R R R   

3
5

Rt  3 14 3R R R   

3
6

Rt  3 13 4R R R   

3
7

Rt  4 11 2R R R   

3
8

Rt  4 10 3R R R   

3
9

Rt  4 9 4R R R   
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For rotational case, the variant relationships used are R3 for linkage A and R16 for 

linkage B, i.e., 
1 2. .v s    ,

2 3. .v s    . The transmission path is changed to 

 (2-30) 

Referring to Table A1, a group of geometric parameters of the four spherical 4R linkages 

is 

12 12 12 12 12 12 12

23 23 23 23 23 23 23

34 34 34 34 34 34 34

41 41 41 41 41 41 41

, , ,

, , ,

, , ,

, , .

a b c d

a b c d

a b c d

a b c d

       

       

       

       

    

    

    

    

 (2-31) 

The assembly is shown in Fig. 2-10. Similarly, using 16 kinds of variant relationships 

can give us more solutions. All variant relationships are listed in Table 2-5. 

This section has presented three available types of mobile assemblies with four 

different spherical 4R linkages. These mobile assemblies are referring to the assemblies 

of four identical spherical 4R linkages in section 2.3. Variant relationships of links' 

kinematic variants, Ri in table 2-1, are used to alter the rotation transmission path, then 

we achieve the path according to Table 2-2. Finally, networks of four different spherical 

4R linkages are built. 

 

Figure 2-10 A kind of variant rotation case. 
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Table 2-4. Variant relations for rotation case 

Transmission types method 
2
1

Rt  2 5R R  

2
2

Rt  3 16R R  

2
3

Rt  4 12R R  
3
1

Rt  2 6 5R R R   

3
2

Rt  2 7 16R R R   

3
3

Rt  2 8 12R R R   

3
4

Rt  3 13 12R R R   

3
5

Rt  3 14 16R R R   

3
6

Rt  3 15 5R R R   

3
7

Rt  4 9 12R R R   

3
8

Rt  4 10 16R R R   

3
9

Rt  4 11 5R R R   

  

2.5 The Corresponding Rigid Origami Patterns 

Rigid origami is an overconstrained system which is immobile generally. The 

analysis of its mobility relies on an equivalent mechanism with that the paper creases 

act as joints and paper panels act as links. The vertex with four creases can be treated 

as a spherical 4R linkage. Thus, the origami pattern in Fig. 2-11 can correspond to the 

network in Fig. 2-7. For example, the creases AE1 and AE2 correspond to joints a4 and 

a3 respectively. The crease AB is the combination of the coaxial joints a2 and b2. By 

this way, all the creases have the one-to-one relationships with the joints of spherical 

4R linkages' network. If the corresponding assembly of spherical 4R linkages meets the 

compatibility conditions, the origami pattern is rigid. 

In the process of designing rigid origami pattern inspired from mobile assemblies, 

some extra conditions should be added. For origami, the panel ABCD in Fig. 2-11 

should be a planar quadrilateral obeying  

12 23 34 41 2a b c d         (2-32) 

If the pattern is flat-deployable, i.e., we can fold this pattern from a flat paper, the 

conditions are 

12 23 34 41 2 ,

0 .

k k k k

k
ij

    

 

   

 
 (2-33) 
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Figure 2-11 Crease pattern inspired by rotation case. 

 

 Combining Eqns. (2-13), (2-32) and (2-33), we obtain the conditions for this kind 

of origami pattern. An example is 

12 12 12 12

23 23 23 23

34 34 34 34

41 41 41 41

2,

7 18,

3,

7 9.

a b c d

a b c d

a b c d

a b c d

    

    

    

    

   

   

   

   

 (2-34) 

The paper model is 

 

 

Figure 2-12 An origami pattern inspired by rotation case. 

 

 The networks of spherical 4R linkages based on variant relationships can also be 

used to design new origami patterns. For example, we modify the assembly in Fig. 2-7 
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and use R4 for vertex A, R9 for vertex B, R12 for vertex C. The transmission path is 

 (2-35) 

Considering with table 2-2, one solution is 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

, , , ,

, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

         

         

         

         

     

     

     

     

 (2-36) 

Considering with Eqns. (2-32) and (2-33), the conditions for this kind of origami pattern 

are, 

12 23 34 41

12 34 23 41

2 ,

, .

    
     

   

   
 (2-37) 

An example of this pattern is shown in Fig. 2-13 and the parameters are, 

12 12 12 12

23 23 23 23

34 34 34 34

41 41 41 41

4 9, 5 9,

7 18, 11 18,

5 9, 4 9,

11 18, 7 18.

a c b d

a c b d

a c b d

a c b d

     

     

     

     

   

   

   

   

 (2-38) 

 

Figure 2-13 Rigid origami pattern from a kind of variant rotation case. 

 

Similar as the proceeding of designing rigid origami patterns of Fig. 2-12 and Fig. 
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2-13 relying on rotation case and variant type, all mobile networks of identical or 

different four spherical 4R linkages mentioned in sections 2.3 and 2.4 can be used to 

design origami patterns in the same way. In order to make the structure to be one DOF, 

the nonadjacent creases should not be collinear, i.e., the orthogonal creases can not 

exit[55].  

Rigid origami is a special case of Kokotsakis meshes. The Kokotsakis meshes 

satisfy that the plane ABCD is flat and every angle of each vertex is less than  . By 

using the varied transmission loops of the mobile assemblies of spherical 4R linkages, 

we can get the geometrical conditions of their corresponding Kokotsakis meshes in the 

Appendix table A2-A4. If very vertex of Kokotsakis mesh is flat, this mesh is a kind of 

rigid origami pattern. Referring to the tables, only one new rigid origami pattern is 

found and shown in Fig. 2-13. 

2.6 Conclusion 

In this chapter, we establish three basic mobile assemblies of four identical 

spherical 4R linkages. Kinematics is used to prove the mobility and the compatibility 

conditions have been presented. Based on the research of a single spherical 4R linkage's 

kinematics, we propose 16 variations of relationships Ri   in Table 2-1 to alter the 

rotation transmission paths of the basic assemblies. According to table A1 in appendix, 

we find suitable parameters of spherical 4R linkages to meet the new transmission paths. 

Finally, we achieve to constitute the mobile assemblies of four different spherical 4R 

linkages. 

 The relationship between network of spherical 4R linkages and rigid origami makes 

it possible to use the mobile assemblies of spherical 4R linkages to design origami 

patterns. By combining the kinematic compatibility conditions of mobile assemblies 

and geometrical conditions of origami patterns, we get the conditions for rigid origami 

patterns. Two examples of this method have be shown in section 2.5.  

 The theory we have proposed in the chapter can give us large number of mobile 

assemblies of spherical 4R linkages. We modify the rotation transmission path firstly, 

find suitable spherical 4R linkages to meet it, then a network of spherical 4R linkages 

has been constituted. To the inverse process, we can use it to judge the mobility of 

assemblies and rigidity of origami patterns. For an assembly of spherical 4R linkages, 

we firstly check which Ri  the linkages respectively belong to according to table A1 

in appendix, then we use Table 2-1 to get the rotation transmission path. If the path can 

be closed, this assembly is mobile and its corresponding origami pattern is rigid.  
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Chapter 3 Rigid Foldability Origami Pattern and 

Metamaterials 

3.1 Introduction 

Flat foldability and rigidity are two specific and independent characteristics of 

origami pattern, both of which are decided or affected not only by the geometric angles 

of the crease pattern, but also by the assignment of mountain (convex) and valley 

(concave) fold lines on the creases[104, 105]. Hull developed recursive functions to count 

the number of valid mountain and valley assignments for a single vertex pattern [56]. Yet, 

for multi-vertex patterns, such as the square-twist pattern [106, 107], there are a number of 

arguments on its foldability and rigidity [100].  

This chapter proposes a kinematic method to study the effect of mountain-valley fold 

assignments on the rigidity of flat foldable origami patterns in this chapter. In section 

3.2, the double corrugated pattern is taken as the study case as it has more complicated 

mountain-valley fold assignments than Miura-ori, square-twist, or other periodic 

origami patterns. All the possible mountain-valley assignments for the basic units in the 

pattern are presented with the flat foldability condition. The analysis on the rigidity is 

conducted based on the kinematic models of spherical 4R linkage (S4R) assemblies. 

Subsequently, the tessellations of the double corrugated patterns and their 

metamaterials are explored. In section 3.3, to demonstrate the generalization of this 

method, the square-twist pattern and its metamaterials are also discussed. The 

conclusions in section 3.4 end this chapter. 

3.2 Double corrugated pattern 

For a typical four-fold vertex such as vertex A in Fig. 3-1(a), four creases divide 

the sheet into four portions, with sector angles  ,  ,   and  , respectively, and 

the sum of these angles equals 2 . To be flat foldable—the folded origami can be 

pressed flat eventually —          must be satisfied[59]. At the same time, 

the mountain and valley assignment must be considered for the flat-foldability 

condition, which requires, first, the difference between the numbers of mountain and 

valley creases should be 2 according to Maekawa-Justin theory [108], and second, the 

two creases forming the minimum sector angle should have different mountain-valley 

parity while the other two are of the same one referring to the Big-Little-Big Angle 

theorem[56].  

The double corrugated pattern in Fig. 3-1(a) consists two types of vertices with the 
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same set of four sector angles, and in vertices A, C, E,  ,  ,   and  are set in the 

counter-clockwise order, while in vertices B, D, F, they are set in the clockwise order. 

There are two different quadrilaterals in the general double corrugated pattern, which 

can be considered as two basic units, P with vertices A, B, C, D and Q with vertices A, 

B, E, F. Here    is taken as the minimum angle among the four sector angles. 

According to the above flat-foldability condition, all possible mountain and valley folds 

can be assigned to each unit. Notice that mountain and valley folds are relative to each 

other depending on viewing them from the top or bottom of the paper. After removing 

such repeating ones, there are ten distinct assignments for the P unit in Fig. 3-1(b) and 

six for the Q unit in Fig. 3-1(c). 
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Figure 3-1 Double corrugated pattern and its basic unit patterns, (a) double corrugated pattern (b) 

mountain-valley assignments of unit P, (c) mountain-valley assignments of unit Q. 
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3.2.1 Kinematics of Origami Vertex for Double Corrugated Pattern 

As mentioned above that there are two types of vertices in the double corrugated 

pattern with sector angles  ,  ,   and   setting counter-clockwise or clockwise. 

Kinematics, respectively they have to be considered as two different spherical 4R 

linkages by taking the paper panels as rigid links and the creases as revolute joints as 

shown in Figs. 3-2(a) and 3-2(b), named as types I and II, respectively. Hence, vertices 

A, C, E are modelled as type I linkage and B, D, F as type II.  

The vertical angles are complementary in each vertexes of the double corrugated 

pattern. According to this character, we assume 
12 34 23 41= , =        in spherical 

4R linkage. Replacing (2-5) by the trigonometric functions, 

1
1

2 2
1 1

1 12 2 2 2
1 1

tan , tan ,
2 2

2 1 2 1
sin ,cos ,sin ,cos .

1 1 1 1

i i
i i

i i i i
i i i i

i i i i

t t

t t t t

t t t t

 

   




 
 

 

 

 
   

   

 

A simple equation is obtained 

( 1)( 2) ( 1)

1 ( 1)( 2) ( 1)

tan sin sin2
sin( )tan

2

i

i i i i

i i i i i


 

  
  

   

 



 (3-1) 

The compatible condition of spherical 4R linkage is 

31 2 4

2 3 4 1

tan tan tan tan
2 2 2 2 1

tan tan tantan
2 2 22

  

        (3-2) 

So, we have two solutions for this spherical 4R linkage 

23 12 23 121 2

2 23 12 3 23 12

3 23 12 23 124

4 23 12 1 23 12

tan sin tan sin
2 2 2 2, ,

tan sin tan sin
2 2 2 2

tan sin tan sin
2 2 2 2, ,

tan tansin sin
2 22 2

    

     

    

     

 

  
 

 

  
 

 (3-3a) 
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23 12 23 121 2

2 23 12 3 23 12

3 23 12 23 124

4 23 12 1 23 12

tan cos tan cos
2 2 2 2, ,

tan cos tan cos
2 2 2 2

tan cos tan cos
2 2 2 2, .

tan tancos cos
2 22 2

    

     

    

     

 

   
 

 

 
 

 (3-3b) 

For the linkage type I, we have 
12   and 

23  , so Eqn. (3-3) is simplified as, 

1 2

2 3

3 4

4 1

tan cos tan cos
2 2 2 2, ,

cos costan tan
2 22 2

tan cos tan cos
2 2 2 2, ,

cos costan tan
2 22 2

    

     

    

     

 

   
 

 

 
 

 (3-4a) 

1 2

2 3

3 4

4 1

tan sin tan sin
2 2 2 2, ,

sin sintan tan
2 22 2

tan sin tan sin
2 2 2 2, .

sin sintan tan
2 22 2

    

     

    

     

 

  
 

 

  
 

 (3-4b) 

For the linkage type II, we have 
12   and 

23  , so Eqn. (3-3) is simplified as, 

1 2

2 3

3 4

4 1

tan sin tan sin
2 2 2 2, ,

sin sintan tan
2 22 2

tan sin tan sin
2 2 2 2, ,

sin sintan tan
2 22 2

    

     

    

     

 

  
 

 

  
 

 (3-5a) 
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1 2

2 3

3 4

4 1

tan cos tan cos
2 2 2 2, ,

cos costan tan
2 22 2

tan cos tan cos
2 2 2 2, .

cos costan tan
2 22 2

    

     

    

     

 

   
 

 

 
 

 (3-5b) 

Here, 
i   is the bilateral angle on the crease. In general, 

i      . Yet, in 

origami, the paper cannot physically penetrate through each other. So for the mountain 

fold, 0 M     and for the valley fold, 0V     . Generally, the spherical 4R 

linkage is one degree of freedom, i.e., one input angle can decide the rest three as the 

output. There are two sets of equations in the kinematic input-output relationship of 

type I linkage, which correspond to two different input-output curves, types I1 and I2 as 

shown in Fig. 3-2(a). A close look reveals that they present the motion paths of type I 

linkage with different mountain-valley assignments. As    is the minimum angle 

among the four sector angles, the creases of 
3  and 

4  must be different. In type I1, 

1 , 
2 , and 

3  are of the same crease while 
4 is the opposite. When 

1 , 
2 , and 

3  are mountain folds and 
4  is valley fold, the folding path is the solid line in the 

first quadrant with 
1  , 

2   both positive. Certainly, the four creases in this type I1 

linkage can be all reversed with 
1 , 

2 , and 
3  valley folds and 

4  mountain fold, 

and then the folding path is still on the solid line but in the third quadrant with 
1 , 

2  

both negative. Similarly, in type I2, 1 , 
2 , and 

4  are of the same crease while 
3  

is the opposite, and the folding path is the dash line. In the same manner, the curves in 

Fig 2b can be interpreted for the type II1 and II2 linkages, where the curves are the 

relationship between 
3  and 

4  whose signs are always positive.  
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Figure 3-2 Spherical 4R linkage and its kinematics curves, (a) Type I of spherical 4R linkage and 

its kinematics, (b) Type II of spherical 4R linkage and its kinematics.  

 ( 3 2
, , ,

4 3 4 3

          .) 
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If an object appears identical after a rotation of 180o, then it is said to have a two-

fold rotational symmetry. Mathematically, this means that for a curve ( )y f x  to be 

two-fold rotational symmetric, the necessary and sufficient condition is that for any 

arbitrary point 
0 0( , )x y  on the curve which satisfies 

0 0( )y f x ,  the rotation of it 

by 180o, which is 
0 0( , )x y  , is also on the same curve and therefore 

0 0( )y f x    

holds. All the curves in Fig. 3-2 are two-fold rotational symmetric. In order to prove 

this, we assume that an arbitrary point 
1( , )i i    is on the curve. According to Eqn. (3-

1), we have  

( 1)( 2) ( 1)1

( 1)( 2) ( 1)

sin( )
tan tan ,

2 sin sin 2
i i i ii i

i i i i

  
 

  

  


 
 

 (3-6) 

Adding a negative sign on both sides of Eqn. (3-6)  

( 1)( 2) ( 1)1

( 1)( 2) ( 1)

sin( )
tan ( tan ),

2 sin sin 2
i i i ii i

i i i i

  
 

  

  


  

 
 (3-7) 

Since 1 1tan tan , tan tan ,
2 2 2 2

i i i i     
     Eqn. (3-7) can be rewritten as 

( 1)( 2) ( 1)1

( 1)( 2) ( 1)

sin( )
tan tan ,

2 sin sin 2
i i i ii i

i i i i

  
 

  

  

 

 

 (3-8) 

Comparing Eqn. (3-8) and Eqn. (3-1), we can see that 
1( , )i i     is also on the curves, 

and therefore the curves in Fig. 3-2 drawn from Eqn. (3-1) are two-fold rotational 

symmetric. 

 The definition of four-fold rotational symmetry is that an object repeats itself after 

90o of rotation. Mathematically, this means that a curve ( )y f x   of four-fold 

rotational symmetry, requires that for any arbitrary point 
0 0( , )x y  on the curve which 

satisfies 
0 0( )y f x ,  the rotation of it by 90o, which is 

0 0( , )y x , is also on the same 

curve and therefore 
0 0( )x f y    holds. Combing two curves of Fig. 3-2 into one 

figure gives some four-fold rotational symmetric curves. For example, the curve of type 

I1 about 
1 2&   and the curve of type II1 about 

3 4&   in Fig. 3-3(a), the curve of 

type I2 about 
1 2&   and the curve of type II2 about 

3 4&   in Fig. 3-3(b), the curve 

of type I1 about 
2 3&   and the curve of type II1 about 

2 3&   in Fig. 3-3(c), the 

curve of type I2 about 
2 3&   and the curve of type II2 about 

2 3&   in Fig. 3-3(d), 

are all four-fold rotation symmetric. We use Fig. 3-3(a) as an example to prove this 

conclude. According to Eqn. (3-4a), the function of dark solid curve in Fig. 3-3(a) are 
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tan cos
2 2 ,

costan
22

in

out

  

  



 


 (3-9a) 

According to Eqn. (3-5a), the function of gray solid curve in Fig. 3-3(a) are 

tan sin
2 2 ,

sintan
22

in

out

  

  






 (3-9b) 

Assuming that an arbitrary point ( , )x y   is on the solid dark curve in Fig. 3-3(a). 

According to Eqn. (3-9a), we have 

cos
2tan tan ,

2 2cos
2

y x

 
 

 



 


 (3-10) 

Substituting     into Eqn. (3-10) 

sin
2 tan tan ,

2 2sin
2

y x

 
 

 



 


 (3-11) 

Since tan tan
2 2

x x 
  , Eqn. (3-11) can be rewritten as 

sin
2 tan tan ,

2 2sin
2

yx

 


 







 (3-12) 

Comparing Eqn. (3-9b) and Eqn. (3-12), it can be found that point ( , )y x   falls on 

the gray solid curve. 

Assuming that an arbitrary point ( , )x y   is on the solid gray curve in Fig. 3-3(a). 

According to Eqn. (3-9b), we have 

sin
2tan tan ,

2 2sin
2

y x

 
 

 






 (3-13) 

Substituting     into Eqn. (3-13) 
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cos
2 tan tan ,

2 2cos
2

y x

 
 

 



  


 (3-14) 

Since tan tan
2 2

x x 
  , Eqn. (3-11) can be rewritten as 

cos
2  tan tan ,

2 2cos
2

yx

 


 




 


 (3-15) 

Comparing Eqn. (3-9a) and Eqn. (3-15), it can be found that point ( , )y x   falls on 

the dark solid curve. 

 So that points ( , )x y    and ( , )y x    are both on the curve in Fig. 3-3(a), 

therefore the curve is four-fold rotational symmetric. By the same method, we can prove 

that Fig. 3-3(b-c) are also four-fold rotational symmetric. 

 

 

Figure 3-3 Combing curves from Fig. 3-2. 
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3.2.2 Rigidness of Unit P and Q 

Once all the units in the whole double corrugated pattern are with the mountain–

valley assignments among these sixteen types in Fig. 3-1, it is certain that the whole 

pattern is flat foldable. Then the next question is whether it is rigid foldable. To answer 

this one, we have to figure out whether the units are rigid first. As each unit consists of 

four vertices, and each vertex is of four creases which form a spherical 4R linkage, the 

question on the rigidity of the units is transferred to analysis on the mobility of a closed 

loop of four spherical 4R linkages. 

3.2.1.1 The Rigidity of Unit P 

Considering one pattern unit with four vertices, each of which consists of four 

creases, every adjacent two vertices share one common crease. In the rigid origami, the 

common crease has identical bilateral angle for the vertices on the two ends. Thus, in 

the kinematic model of this pattern unit, a closed loop of four spherical 4R linkages, as 

the one in Fig. 3-4 for unit P, should have 

2 3 4 1 2 3 4 1, , , .a b b c c d d a            (3-16) 

The kinematic compatibility condition of the closed loop of four spherical 4R 

linkages, A, B, C, D in Fig. 3-4 is represented as 

 (3-17) 

where 
1 2
a a   means in linkage A, 

1
a  is the rotation angle of joint a1 and is treated 

as the input, 
2
a  is the rotation angle of joint a2 and is treated as the output, etc. As 

known that the spherical 4R linkage is one degree of freedom, the motion transferred 

from 
1
a  to 

4
d  is surely one degree of freedom. But the close condition that 

4 1
d a   

is an extra compatibility condition and will not satisfied automatically to get rigid 

foldability for a pattern unit.  

 

Figure 3-4 Network of spherical 4R linkages for P pattern. 
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In the closed loop in Fig. 3-4, linkages A and C are type I in Fig. 3-2(a) and B, D 

are type II in Fig. 3-2(b). So we can use their motion curves to analyze the rigidity of 

the pattern unit. Take unit P1 in Fig. 3-1(b) as an example. From the mountain-valley 

assignments of each vertices, we can find their corresponding motion curves in Fig. 2. 

In vertex A, 
1
a , 

2
a , 

4
a  are mountain folds and 

3
a  is valley, so its curve is the first 

quadrant path of type I1. The motion curves of vertices B, C, D are the fourth quadrant 

path of type I2, the third quadrant path of type I1, and the second quadrant path of type 

I2, respectively. Combining these four curves together, the completed motion path of 

pattern unit P1 is formed as Fig. 3-4(a). Using the input-output path in Eqn. (3-17), we 

can allocate the instant configurations of linkages A, B, C, D. On the paths, points A, 

B, C, and D represent the configurations of four spherical 4R linkages in the closed loop 

and  ’s are the input/output sector angles. Taking 
1
a  as the initial input of the four-

linkage loop and 
4
d   as the final output, if the compatibility condition, 

4 1
d a   

marked as the red arch is met. The compatibility condition, 
4 1
d a  , is satisfied as 

shown in Fig. 3-4(a) to 3-4(d), then the pattern units P1-P4 are rigid with one degree of 

freedom. Otherwise, as shown in Fig. 3-5(a) to 3-5(f), then the units P5-P10 are non-

rigid.  

 

Figure 3-5 The rotation transmission of rigid types of unit P. 
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Figure 3-6 The rotation transmission of nonrigid types of unit P. 

 

The curves in Fig. 3-5(b) and 3-5(c) can be treated as the combination of Fig 3-5(a) 

and 3-5(d). Referring to Fig. 3-3, we can see that the curves in Fig. 3-5 are all four-fold 

rotational symmetric. Due to the four-fold symmetric property of the motion curves, 

4 1
d a   is met at all configurations on the motion paths of P1-P4 to guarantee the 

rigidity of the units, i.e., the kinematic compatibility condition Eqn. (3-16) is met at all 
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configurations on the motion paths of P1-P4.  

Therefore, it can be found that in P1, all four vertices are in identical configuration 

but different orientations. And the same property also applies to unit P4. In P3, vertices 

A, B and C, D form two pairs of identical configurations. According to this four-fold 

rotational symmetric character, we have 

1 4

1 4

,

,

a b

c d

 

 

 

 
 (3-18) 

If we assume 
2 3 4 1 2 3, ,a b b c c d        , the following relationship can be worked 

out from Eqn. (3-18), 

4 1
d a   (3-19) 

So the compatible conditions Eqn. (3-16) is satisfied, P1, P3, and P4 are rigid. 

 While in P2, vertices A, D and B, C forms two pairs of identical configurations, 

4 1
d a   and 

4 1
b c   are obtained. According to the four-fold rotational symmetric 

character, we have 

3 2

3 2

,

,

d a

b c

 

 

 

 
 (3-20) 

If we assume 
4 1 2 3 4 1, , ,b c c d d a         the following equation can be obtained 

from Eqn. (3-20) 

2 3
c d   (3-21) 

So the compatible conditions Eqn. (3-16) is satisfied, P2 is rigid. 

 For the curves in Fig. 3-6, the four-fold rotational symmetric character does not 

exist, so Eqn. (3-16) is not satisfied at all configurations on the motion paths. Therefore, 

P5-P10 are not rigid patterns. 

3.2.1.2 The Rigidity of Unit Q 

As in the case of unit P, the vertices of unit Q can also be modelled as spherical 4R 

linkages with sector angles   ,   ,    and    setting counter-clockwise or 

clockwise, in which vertices A and E are of type I in Fig. 3-2(a), and vertices B and F 

are of type II in Fig. 3-2(b).  

With each vertex being modelled as a spherical 4R linkage, the whole unit forms a 

closed loop of four spherical 4R linkages which is shown in Fig. 3-7. And the judgment 

on the rigidity of the unit is equivalent to the analysis on the compatibility condition of 

the closed loop of spherical 4R linkages. Kinematically, a closed loop of spherical 4R 
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linkages should satisfy the following geometric conditions 

3 2 3 2 3 2 3 2, , , .f e e b b a a f            (3-22) 

The kinematic compatibility condition of this closed loop of four spherical 4R linkages, 

F, E, B, A in Fig. 3-7 is represented as 

 (3-23) 

 

Figure 3-7 Network of spherical 4R linkages for Q pattern. 

 

In this network, linkages A and E are type I, linkages B and F are type II in Fig. 3-

2. Similar as the analysis of unit P, their motion curves are used to analyze the rigidity 

of the pattern unit. We take unit Q1 in Fig. 3-1(c) as an example. From the mountain 

valley assignments of each vertices, we can find their corresponding motion curves with 

Fig. 3-2. Combining these four curves together, the completed motion path of pattern 

unit Q1 is formed as Fig. 3-8(a). Using the input-output path in Eqn. (3-23), we can 

allocate the instant configurations of linkages F, E, B, A. Taking 
2
f  as the initial input 

of the four-linkage loop and 
3
a   as the final output, the compatibility condition is 

2 3
f a  .  

The curves in Fig. 3-8(c) and 3-8(d) can be treated as the combination of Fig 3-8(a) 

and 3-8(b). Referring to Fig. 3-3, we can see that the curves in Fig. 3-8(a) to Fig. 3-8(d) 

are all four-fold rotational symmetric. Due to the four-fold symmetric property of the 
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motion curves, the kinematic compatibility condition Eqn. (3-22) is met at all 

configurations on the motion paths of Q1-Q4. Then the pattern unit Q1-Q4 is rigid with 

close transmission loop as shown in Figs. 3-8(a) to Fig. 3-8(d), the unit Q5-Q6 is non-

rigid as shown in Fig. 3-8(e) and Fig. 3-8(f). The demonstration is the same as unit P 

and introduced in the previous section. 

 

 

Figure 3-8 (a)-(f) are the transmission loops of the six Q pattern。 
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3.2.3 Tessellation of Double Corrugated Pattern ant Its Metamaterials 

The general periodic origami pattern is formed through the tessellating identical or 

different pattern units. The double corrugated pattern originally referred to in art and 

mathematics, Fig. 3-9(a), is formed with units P2 and Q1, both of which are rigid, and 

therefore the whole pattern is rigid as well with one degree of freedom. If one of the 

units in the pattern is non-rigid, the whole pattern will be non-rigid, see Fig. 3-9(b). 

Once different rigid units, P1-P4 and Q1-Q4, are mixed together, we can create many 

varieties of the double corrugated pattern, one of which is shown in Fig. 3-9(c). 

Therefore, rigid and non-rigid origami patterns based on identical geometric design 

parameters can be easily obtained just by altering assignments of mountain-valley 

creases. 

For example, two P1 patterns and P2 patterns are used to complete the distribution 

of Mountain and Valley creases in Fig. 3-9(b) and 3-9(c). The directions of P2 patterns 

in Fig. 3(a) and (b) are different. After giving the M-V distribution of these four P 

patterns, the whole M-V distribution of the tessellation are decided, the other five unit 

patterns are derived and labeled by gray color. As P6 and Q6 are nonrigid pattern, so 

the tessellation in Fig. 3(b) is nonrigid. 

Furthermore, we can stack a number of double corrugated patterns layer by layer 

to construct origami-based metamaterials. The four models shown in Fig. 3-10 are 

based on various patterns different from each other only in mountain-valley 

assignments, but with the same number of identical-sized layers. The patterns on the 

layers of each metamaterial have either identical or the reverse mountain-valley 

assignments to meet the mobile compatibility between layers. So once all the patterns 

forming the metamaterials are rigid, the metamaterials are capable of repeating-

performed large deformation by folding and unfolding, which is a desired property.   

is the folding angle marked on the pattern. When the metamaterials have the same  , 

their states are different as shown in Fig. 3-10. 
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Figure 3-9 Various tessellations of units P and Q. 
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Figure 3-10 Tessellations and their corresponding metamaterials, (a) Metamaterial 1, (b) 

Metamaterial 2, (c) Metamaterial 3, (d) Metamaterial 4. 
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The four metamaterials presented in Fig. 3-10 are formed by three basic elements 

as shown in Fig. 3-11. In order to show more details, the view angle of element 3 rotates 

about 30   along the Z axis with respect to element 1 and element 2 which have 

identical view angle. In the photos of these elements, the black solid lines are mountain 

creases and blue dash lines are valley creases. Specifically, the metamaterial in Fig. 3-

10(a) is constructed by element 1, the one in Fig. 3-10(b) by element 2, the one in Fig. 

3-10(c) by element 1 and element 2, and the one in Fig. 3-10(d) by element 3. Since all 

the three basic elements are One-DOF, we use   which is the dihedral angle of crease 

2 2A B   in Fig. 3-11 as the input of these structures. Besides, all the creases in the 

elements are chosen to have identical length l for simplicity of calculation.  

For element 1 in Fig. 3-11(a), its width at any given input angle   can be 

calculated as follows  

1 2 3

1 2 3 1 2 3
1 3 1 2

cos cos cos sin sin cos

2 sin 2 sin
2 2

A A A

A A A A A A
W A A A A l

          
 

      
 (3-24a) 

The height of element 1 can be obtained as 

1 2 3
2 2

1 2 3

2

2 2 2 2 2

cos cos cos
cos

sin sin

sin

sin

A A A
B PB

A A A

PB l

H B B PB B PB

 




    
 

 
    

 (3-24b) 

The length of element 1 can be obtained as 

   

2 2 2 2

2

2 2

2 2 2 2

2
2 2

2

1 2 3
2 2 2 2 2

2 2 2 2 2 2 2

cos

cos

arctan

2
2 cos

PB PB B PB

PA l

A B PB PA

PB
PA B

PA

A A A
C A B PA B

L A C A B C A B


   

 
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 (3-24c) 

For element 2 in Fig. 3-11(b), since 
iC (i = 1,2,3) is the reflection of 

iC  about 

plane 
1 2 1 2B B D D , the height of this element is twice of 

2 2B B , and the length is twice 

of 
2 2A C . With any input angle  , the width of element 2 are   
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1 2 3

1 2 3 1 2 3
1 3 1 2

cos cos cos sin sin cos

2 sin 2 sin
2 2

A A A

A A A A A A
W A A A A l

          
 

      
 (3-25a) 

The height of element 2 can be obtained as 

1 2 3
2 2

1 2 3

2

2 2 2 2 2

2 2

cos cos cos
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sin sin

sin

sin
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 

 
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 

 (3-25b) 

The length of element 2 can be obtained as 
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
   

 

  


 

    

        

 (3-25c) 

For element 3 in Fig. 3-11(c), 
3A , 3B , 3C  are respectively the reflections of 

3A ,

3B ,
3C  about plane 

2 4 2 4A A B B . And therefore the height of this element is twice of 

4 4B B , and the length is twice of 
5 3B B . Denoting   as the dihedral angle of crease 

4 5B B , the geometric relationship between   and   is[109]  

tan
22arctan( cos )

2cos
2


   


 


 (3-26) 

Then the length of element 3 can be obtained as  

5 5 5

5 5 5 5 5 5
5 5 5 5

cos cos cos sin sin cos

2 sin 2 sin
2 2

A B C

A B C A B C
L A C A B l

         
 

      
 (3-27a) 

The height of element 3 can be obtained as 
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 (3-27b) 

The width of element 3 can be obtained as 
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 (3-27c) 
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Figure 3-11 Geometrical calculation models and physical folding processes of the three basic 

element, (a) Element 1, (b) Element 2, (c) Element 3. 
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With Eqns. (3-24), (3-25) and (3-27), the dimensions of the four materials 

assembled by the basic elements can be obtained with respect to the dihedral angle  . 

And the in-plane and out-of-plane Poisson’s ratios[92] can be respectively derived as 

,

.

L
in

W

H
out

W

dL
L

dW
W
dH
H

dW
W







   

   

 (3-28) 

According to (3-24), (3-25) (3-27) and (3-28), both the dimension of metamaterial 

and their Poisson’s ratios vs. the folding angle   are shown in Fig. 3-12, in which 

configuration II is with the maximum height. During the folding between 0 and 
II , 

the metamaterial exhibits a negative Poisson’s ratio in 3D, while between 
II  and  , 

it has a negative in-plane Poisson’s ratio and a positive out-of-plane one. It can be found 

that metamaterials in Figs. 3-12(a) to 3-12(c) reach maximum height at the same folding 

angle, and 
II   of the one in Fig. 3-12(d) is much larger than other three, i.e., this 

metamaterial has a large range of 3D negative Poisson’s ratio. The maximum heights 

of metamaterials in Figs. 3-12(b) to 3-12(d) are the same and double that in Fig. 3-12(a). 

The dimension variation curves in Figs. 3-12(b) to 3-12(c)are identical even though 

they are from different patterns with different deformation details. 
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Figure 3-12 Dimensions and Poisson’s ratio, (a) Metamaterial 1, (b) Metamaterial 2, (c) 

Metamaterial 3, (d) Metamaterial 4. 
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3.3 Square-twist Pattern 

A simple example of square-twist pattern is shown in Fig.3-13. In this pattern, a 

square twists and stays in the middle, the other creases are horizontal or vertical.  Each 

vertex has the same geometric parameters, which are 

12 12 23 23

34 34 41 41

12 12 23 23

34 34 41 41

, ,
2

, ,
2

, ,
2

, ,
2

a c a c

a c a c

b d b d

b d b d

    

    

    

    

   

   

   

   

 (3-29a) 

, .
2

       (3-29b) 

If 
2

    is added to the geometric conditions of the unit Q pattern in section 3.1, 

the square-twist pattern is obtained, which means that the square-twist pattern is a 

special case of unit Q pattern. 

 

 

Figure 3-13 Square-twist pattern. 

 

According to the Big-Little-Big Angle theorem and Maekawa-Justin theory, after 

removing such repeating ones, there are four distinct assignments for the square-twist 
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pattern in Fig. 3-14, labeled by T1-T4. 

 

 

Figure 3-14 Different mountain-valley fold assignments for square-twist pattern. 

 

3.3.1 Rigidness of Square-twist Pattern 

As square-twist pattern is special case of unit Q, the compatible condition Eqn. (3-

23) is also suitable for square-twist pattern. The kinematics of each vertex is analysed 

firstly. According to   , spherical 4R linkages type I1 and type II2, type I2 and type 

II1 are the same. So the relationships of 
2 3&    in F and B are the same as the 

relationships in E and A. The kinematics is shown in Fig. 3-15. 

According to the kinematic compatibility condition Eqn. (3-23), the four 

corresponding rotation transmission routes are presented in Fig. 3-16. Taking 
2
f  as 

the initial input of the four-linkage loop and 
3
a  as the final output, the compatibility 

condition is 
2 3
f a  . Due to the four-fold symmetric property of the motion curves, 

the kinematic compatibility condition Eqn. (3-22) is met at all configurations on the 

motion paths of T1 and T2. Then the pattern unit T1 and T2 is rigid with close 

transmission loop as shown in Figs. 3-16(a) and (b), the unit T3 and T4 is non-rigid as 

shown in Figs. 3-6(c) and (d).  
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Figure 3-15 Kinematics of spherical 4R linkage in square-twist pattern ( 5

6

  ). 

 

 

Figure 3-16 The kinematic curves of square twist pattern. (a) T1, (b) T2, (c) T3, (d) T4. 
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3.3.2 Tessellations of Square-twist Pattern and Its Metamaterials 

By repeating the square-twist pattern of Fig. 3-14 in a reflection symmetric manner, 

we get the corresponding tessellations in in-plane manner and show them in Fig. 3-17. 

As T1 and T2 are rigid origami pattern, only the tessellation in Fig. 3-17(a) and (b) are 

rigid. 

 

 

Figure 3-17 Tessellations of square twist pattern. (a) T1, (b) T2, (c) T3, (d) T4. 

 

The rectangle panels in T1 are all parallel to each other, this character also happens 

in the tessellation of Fig. 3-17(a) and helps to build metamaterials. The overall 

mechanical behavior of the metamaterial should be linearly related to the square-twist 

origami unit due to the rigid-foldable characteristics of this origami pattern. Therefore, 

the Poisson’s ratio of the metamaterial can be obtained by study the square-twist 

origami unit, see Fig. 3-18. The dimensions L, S, H of this unit are the function of the 

folding configuration parameters,   and   (both changing from 0 to   during the 

folding of the pattern).  

2 (cos sin cos ),

2 (cos sin cos ),

sin (sin sin ),

L c a

S b a

H a

  
  

  

     
     
   

 (3-30) 
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Figure 3-18 Tessellation of T1. 

 

Because the pattern is kinematically one degree of freedom,   and   are not 

independent, but related by the kinematic relationship of the spherical 4R linkage on 

this vertex as  

cos cos cos cos sin sin sin 0               (3-31) 

The in-plane Poisson’s ratios can be derived as  
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2 (cos sin cos )

sin (cos sin sin sin cos )

sin (cos sin sin cos sin )
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dL
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L L dS
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b a
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

  
  

     
     

    

   
 

   
    


    

 (3-32a) 

The out-of-plane Poisson’s ratios can be derived as 
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 (3-32b) 

In order to show the influence of  , we assume that a=b=c. According to (3-32), 

the in-plane and out-of-plane Poisson’s ratios vs. the folding angle   are shown in Fig. 

3-19. The in-plane Poisson’s ratios are always negative in Fig. 3-19(a). When the height 

of the metamaterial reaches the maximum value in the folding process, then the out-of-

plane Poisson’s ratios become negative, so the metamaterial exhibits a negative 

Poisson’s ratio in 3D. By making    bigger, the in-plane Poisson’s ratio changes 

rapidly but the out-of-plane Poisson’s ratio changes gently. As   has such effect on 

the Poisson’s ratios, we can modify it to make the metamaterial has better performance 

in the practical applications. 
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Figure 3-19 Poisson’s ration, (a) in-plane Poisson’s ratio, (b) out-of-plane Poisson’s ratio. 
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As we mentioned early, the rectangle panels in the pattern are all parallel to each 

other to make the folding in a flat profile. Thus we can stack a number of such structures 

layer by layer in the reflection symmetric manner, see Fig. 3-20(a), to eventually form 

a metamaterial. Once the geometric parameters in all units are the same, the motion of 

the whole metamaterial will be compatible with one degree of freedom, i.e., the pattern 

is rigid.  In such a way, we have obtained a metamaterial with square-twist rigid 

origami pattern, whose physical model made from paper is shown in Fig. 3-20(b). 

 

 

Figure 3-20 Metamaterial and its construction method, (a) construction method of metamaterial 

for T1 tessellation, (b) metamaterial based on T1.  

 

3.4 Conclusion 

We investigated the rigid foldability of origami patterns when different mountain-

valley assignments are applied with a kinematic method. Under the condition of flat 

foldability, mountain and valley folds can be assigned to the creases of origami patterns 

or their basic units. The kinematics of closed loop of spherical linkages can be applied 

to analyze the rigidity of the patterns. Metamaterials from the stacks of double 

corrugated patterns have been proposed with many varieties when changing the 

mountain-valley assignments. Following the folding of the rigid origami patterns, the 

metamaterials exhibit negative Poisson’s ratio and different mountain-valley 

assignments can affect the deformation property of origami metamaterials largely. To 

demonstrate the generalization of this method, the square-twist pattern is also discussed. 
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A metamaterial based on square-twist pattern is proposed and its Poisson’s ratios are 

anaylsed. By choosing the suitable folding state, the metamaterial can exhibit Poisson’s 

ratio in 3D direction. 
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Chapter 4 Origami of Thick Panels 

4.1 Introduction 

 Origami patterns, including the rigid origami patterns where flat inflexible sheets 

are joined by creases, are primarily created for zero-thickness sheets. In order to apply 

them to fold structures such as roofs, solar panels and space mirrors, where thickness 

cannot be disregarded, various methods have been suggested. However, they generally 

involve adding materials to or offsetting panels away from the idealised sheet without 

altering the kinematic model used to simulate folding. In this chapter, we develop a 

comprehensive kinematic synthesis for rigid origami of thick panels that differs from 

the existing kinematic model but is capable of reproducing motions identical to that of 

zero-thickness origami. The approach, proven to be effective for typical origami, can 

be readily applied to fold real engineering structures. 

 The layout of this chapter is as follows. Section 4.2 describes the construction 

process of thick panel origami models for four-crease origami vertex by using Bennett 

linkage. The kinematic equivalent of the thick panels model and origami vertex has 

been proved. Section 4.3 presents the technique of using Myard linkages to constitute 

the thick panel models for five-crease origami patterns. The Bricard linkages are used 

for thick panel models for six-crease origami patterns in section 4.4. The conclusion in 

section 4.5 ends this chapter. 

4.2 Four-crease Origami Pattern and Its Thick Model 

A single vertex of origami pattern of zero-thickness panel is shown in Fig. 4-1. The 

pattern is flat foldable. The mountain and valley creases are denoted by thick solid and 

dash lines, respectively. The creases divide the sheet into four portions with sector 

angles. The dihedral angles between adjacent panels are shown when the sheet is 

partially folded. 

 

Figure 4-1 A single vertex of four-crease rigid origami pattern. 
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The fact that the crease corresponding to 
1  is a valley crease and that to 

2 , 
3 , 

4  are mountain creases, leads to 
1 0     and 

2 3 40 , ,     . So Eqn. (3-3a) 

is used for this vertex. 

1 1 2

3 2 3

tan tan tan
2 2 2 = 1,

tantan tan
22 2

  

      (4-1a) 

32 2

4 3 4

tan tan tan
2 2 2 1,

tan tantan
2 22

 

      (4-1b) 

This yields 

1 3 ,    (4-2a) 

2 4 ,   (4-2b) 

Referring to Eqn. (3-3a) also gives 

23 121

2 23 12

tan sin
2 2 ,

tan sin
2 2

 

  



 


 (4-2c) 

Hence, these three equations in Eqn. (4-2) are the closure equations of this spherical 4R 

linkage. 

 The corresponding thick origami model is shown in Fig. 4-2. Thick origami model 

with four creases that do not meet at a point. The dihedral angles are marked along each 

joint axis. The rigid sheet is divided into four portions with the sector angles 

12 23 34 41,  ,   and Be Be Be Be       , which are the same as those in the zero-thickness sheet, 

i.e., 

12 12 23 23 34 34 41 41,  ,  , .Be Be Be Be                (4-3) 

Adapting 
34 41 and Be Be       for sector angles is required by the Denavit and 

Hartenberg notation. 

 For the thick panel, the fold lines connecting each adjacent panels are placed on 

either top or bottom surfaces of each panel, resulting in none zero distances between 

the axes of the neighbouring revolute joints. To enable rigid folding, this assembly must 

be a 4R Bennett linkage, the only known spatial 4R linkage.  

 The Bennett linkage is an overconstrained spatial linkage whose geometrical 
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parameters must satisfy Eqn. (1-7), i.e., 

12 34 23 41,  Be Be Be Bea a a a   (4-4a) 

12 34 23 41,  Be Be Be Be      (4-4b) 

12 12

23 23

sin

sin

Be Be

Be Be

a

a




  (4-4c) 

Referring to Eqn. (1-8), the closure equations for the Bennett linkage are  

1 3 2 ,  Be Be     (4-5a) 

2 4 2 ,Be Be     (4-5b) 

12 23

1 2

12 23

sin
2tan tan

2 2
sin

2

Be Be

Be Be

Be Be

 
 

 



 


 (4-5c) 

Hence, the thick rigid panel can be folded only with a set of fold lines arranged in such 

a way that meet the conditions given in Eqn. (4-4), whose motion can be illustrated by 

the closure equations given by Eqn. (4-5). Next, we shall prove that the motion of the 

thick panel is equivalent to that of the zero-thickness rigid sheet. 

In origami, the dihedral angles are commonly used to describe the folding process. 

In the spherical 4R linkage, Fig. 4-1, the relationships between kinematic variables i  

and dihedral angle i  are 

1 1 2 2 3 3 4 4,  ,  ,                     (4-6) 

Substituting Eqn. (4-6) into the closure equations (4-2) of the spherical linkage 

yields 

1 3   (4-7a) 

2 4   (4-7b) 

And 

23 122

1 12 23

tan sin
2 2

tan sin
2 2

 

  






 (4-7c) 

Similarly for the Bennett linkage, Fig. 4-2, the relationships between kinematic 
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variables Be  and dihedral angle Be  are 

1 1 2 2 3 3 4 4,  ,  2 ,  Be Be Be Be Be Be Be Be                  (4-8) 

and thus its closure equations (4-5) become 

1 3
Be Be   (4-9a) 

2 4
Be Be   (4-9b) 

And 

23 122

1 12 23

tan sin
2 2

tan sin
2 2

Be BeBe

Be Be Be

 

  






 (4-9c) 

 

Figure 4-2 Thick origami model for four-crease origami vertex. 
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It is clear that Eqn. (4-9), the closure equations for the thick panel origami, match 

exactly Eqn. (4-7), the closure equations for the zero-thickness sheet should satisfy that 

the sheet is partitioned in the same way described by Eqn. (4-3). We therefore conclude 

that the two linkages are kinematically equivalent. The relationships between the 

dihedral angles of the panels 1
Be  and 2

Be , is identical to that between the dihedral 

angles 1  and 2  of the spherical 4R linkage throughout the entire folding process, 

see Fig. 4-3. Curves a – c are relationships between dihedral angles 1  and 2  in 

zero-thickness rigid origami for three sets of sector angles, respectively. They overlap 

with those between 1
Be  and 2

Be  for their thick panel counterparts, respectively. 

 

Figure 4-3 Kinematics of origami vertex and its thick panel model, (a) relationships between 

dihedral angles for four-crease single vertex origami, (b) zero-thickness model and its 

corresponding thick panel model. 

 

The above method to syntheses single vertex four-crease thick panel origami can 

be extended to multiple vertex origami. Take the square-twist pattern as an example in 

Fig. 4-4. We apply the Bennett linkage to each of the “vertices” A, B, C and D, 
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preserving the section angle of each panel. The corresponding fold lines around each 

vertex are denoted by a’s, b’s, c’s and d’s. And then we merge the fold lines which are 

shared by two adjacent Bennett linkages. For instance, the fold line a4 of linkage A and 

fold line b1 of linkage B are combined into one fold line. This is possible because there 

is rotational symmetry in the square-twist pattern shown here, leading to the exact same 

amount of rotation for the combined fold lines. For other four crease multi-vertex 

patterns, one has to prove that this combination is possible for each of them. 

 

 

Figure 4-4 Thick panel models of square twist pattern, (a) Solidworks model for the square-twist 

pattern with thick panels, (b) zero-thickness model of square twist pattern and its corresponding 

thick panel model. 
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4.3 Five-crease Origami Pattern and Its Thick Model 

A specific single vertex of origami pattern of zero-thickness panel is shown in Fig. 

4-5 in which 

51 12 23 45 34 12,   and 2
2

            (4-10) 

The mountain and valley creases are denoted by solid and dash lines, respectively. The 

creases divide the sheet into five portions with sector angles  ’s. z’s represent the axes 

of creases.  ’s are dihedral angles. 

 

 

Figure 4-5 A specific symmetric single vertex five-crease origami pattern. 

 

This is a 5R spherical linkage. In general it has two degrees of freedom. If the 

symmetry is preserved during folding, i.e., 

4 3 5 2,        (4-11) 

Similar as (2-3), the closure equation of spherical 5R linkage can be written as  

12 23 34 15 54Q Q Q Q Q  (4-12) 

We note it as 
5

12 23 34

5
15 54

,

,

S R
L

S R
R





Q Q Q Q

Q Q Q
 (4-13) 
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 All elements of the matrices of Eqn. (4-12) are given in the Appendix. From 
5 5(3,3) (3,3)S R S R

L RQ Q  and 5 5(2,1) (2,1)S R S R
L RQ Q , we can have 

12 12 2 12 12 3

12 12 2 3 12 2

cos(2 ) sin cos sin(2 ) cos cos

sin(2 ) sin sin sin sin cos

     

     

    

      
 (4-14a) 

3 2 1 12 1 2

12 1 3 12 3 2 12 3

cos (cos sin cos cos sin )

sin cos sin cos cos sin sin sin

     

       

    

        
 (4-14b) 

Then, we use the following trigonometric transforms to simplify them, 

31 2
1 2 3tan , tan , tan ,

2 2 2
t t t

 
    (4-15) 

From Eqn. (4-14a), we can get 
2 2

2 2 3 3
2 2

2 3

4 sin cos ( cos ( ) 2 sin cos ( ) )
0

(( ) 1) (( ) 1)

t t t t

t t

              


  
 (4-16) 

By simplifying it, we have 

3

2

sin 1

cos

t

t




 
  (4-17) 

As the creases corresponding to 
2   and 

3   are both valley, 
2t   and 

3t   have the 

same signs, we have 

3

2

sin 1

cos

t

t




 
  (4-18) 

Substituting (4-15) and (4-18) into (4-14b), eliminate 5
3
S Rt , we have 

1 2

3

0,
H H

H


  (4-18) 

In which 
2

1 2

2 2
2 2 12 1 2 12 1 2 12 12

2 2 2
12 1 2 1 2 12

2 2 2 2 2
3 1 2 12 12 12 2 2

2(( ) 1),

2 cos 2 ( ) cos 2 sin cos

2sin ( ) ( ) cos ,

(( ) 1) (( ) 1) (sin 1) (sin sin ( ) ( ) 1) .

H t

H t t t t t

t t t t

H t t t t

   

 

  

 

         

     

          

 

From 
2H , we can have the relationship between 

1t  and 
2t . 
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2 2
2 12 1 2 12 1 2 12 12

2 2 2
12 1 2 1 2 12

2 cos 2 ( ) cos 2 sin cos

2sin ( ) ( ) cos 0

t t t t t

t t t t

   

 

        

      
 (4-19) 

Which can be simplified as 

2 2 12 12
2

1 12 12

cos 1 sin
( ) 0

2 1 sin 1 sin

t
t

t

 
 


   

 
 (4-20) 

Besides Eqn. (4-11), considering with (4-15), (4-18) and (4-20), the rest of the closure 

equations can be obtained, which are 

3

12

2 12

tan 1 sin2 ,
cos

tan
2




 


  (4-21a) 

2

2 2 12 12

1 12 12

2 tan cos 1 sin2tan 0
2 1 sin 1 sintan

2


  

  


  
 

 (4-21b) 

The angular variables in the closure equations can be replaced by the corresponding 

dihedral angles commonly used in origami. Noting that  

1 1 2 2 3 3 4 4 5 5,  ,  ,  ,                           (4-22) 

Eqns. (4-11) and (4-21) become 

3 4 2 5, ,      (4-23a) 

32 12

12

1 sin
tan tan

2 cos 2

 



  (4-23b) 

1

12 12

2 2 2 12 12

2 tan cos 1 sin1 2 0
1 sin 1 sintan tan

2 2


 

   


  
 

 (4-23c) 

Now we consider folding a single vertex five crease sheet with finite thickness. 

When it is divided into five panels using the same sector angles as those for zero-

thickness rigid sheet, i.e., 

12 12 23 23 34 34 45 45 51 51, , 2 , , .My My My My My                     (4-24) 

but the fold lines are placed either on top of or at the bottom of the thick panels, we 

obtain a spatial 5R assembly, Fig. 4-6. Thick origami model with five fold lines that do 
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not meet at a point. The dihedral angles are marked along each joint axis. 

Not all the 5R assemblies can have a degree of freedom. The creases arranged using 

Eqn. (4-24) makes it likely to be a Myard linkage. However, unlike the spherical 5R 

linkage, the Myard linkage is overconstrained, meaning that a set of additional specific 

geometrical conditions have to be met to produce a degree of freedom. These conditions 

are 

23 34 12 45 51 12,  2 ,  ,  
2 2

My My My My My My               (4-25a) 

12 51 23 45 34,  ,  0My My My My Mya a a a a    (4-25a) 

and 

2312

12 23

sinsin MyMy

My Mya a


  (4-25a) 

Eqns. (4-25b) and (4-25c) concern with the distances between the neighbouring fold 

lines. 

 If all the conditions given in Eqn. (4-25) are met, the linkage is the Myard linkage 

and it can be folded. The closure equations of this Myard linkage are [30] 

3 4 ,My My    2 5 2My My     (4-26a) 

3 12 2

12

1 sin
tan tan

2 cos 2

My My My

My

  



   (4-26b) 

2 2 12 1 2 12

12 12

2cos 1 sin
tan tan tan 0

2 1 sin 2 2 1 sin

My My My My My

My My

    
 


   

 
 (4-26c) 

The relationships between the kinematic variables and their respective dihedral 

angles are 

1 1 2 2 3 3 4 4 5 52 ,  ,  ,  ,My My My My My My My My My My                      (4-27) 

Substituting them into Eqns. (4-26a to c), a set of equations are obtained 

3 4 2 5, ,My My My My      (4-28a) 

32 12

12

1 sin
tan tan

2 cos 2

MyMy  



  (4-28b) 
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1

12 12

2 2 2 12 12

2 tan cos 1 sin1 2 0
1 sin 1 sin

tan tan
2 2

My

My My


 

   


  
 

 (4-28c) 

Eqns. (4-23) and (4-28) have the same forms except that My ’s and My ’s take 

the places of ’s and ’s, respectively. Fig. 4-7 presents the relationships between a 

pair of dihedral angles with different geometric parameter 
12  ’s, and show the 

spherical 5R linkage and Myard linkage are kinematically equivalent.  

Hence, the spherical 5R linkage and the Myard linkage are kinematically equivalent. 

 

 

Figure 4-6 Thick origami model for four-crease origami vertex. 
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Figure 4-7 Dihedral angles 
1  vs. 

2  ( or 
1
My  vs. 

2
My )  with different 

12   

 

The thick panel assembly will have one DOF if the arrangement of fold lines 

satisfies Eqn. (4-25) because it is now a Myard linkage. Furthermore, the proof in the 

Supplementary Text shows that the motion of this linkage is identical to that of the 

spherical 5R linkage when Eqn. (4-11) is imposed. This folding scheme has been used 

to fold a box. Fig. 4-8 shows the folding sequence of a zero-thickness rigid origami 

with five-crease vertices and its thick panel counterpart based on the Myard linkage. 

The pattern has six five-crease vertices arranged in rotational symmetry. The sector 

angles at each vertex are   ,   , 2  ,    and   . 

 

Figure 4-8 Multiple five-crease vertex origami zero-thickness model and its corresponding thick 

panel model. 
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4.4 Six-crease Origami Pattern and Its Thick Model 

 There are two kinds of six-crease origami patterns introduced in this section, the 

diamond pattern and waterbomb pattern. Only one kind of vertex exists in diamond 

pattern, two kinds of vertices exist in waterbomb pattern. 

4.4.1 Diamond Pattern 

The diamond pattern has a single vertex where six creases meet, Fig. 4-9. The 

angles between adjacent creases satisfy 

12 34 45 61

23 56 12

,

2 .

   
   

  

  
 (4-29) 

in which 
120

4

  . This also ensures that the pattern has flat foldability. The closure 

conditions for this spherical 6R linkage in line and plane symmetry are 

1 4

2 3 5 6

,  
   


  

 (4-30) 

Similar as (2-3), the closure equation of spherical 6R linkage can be written as  

12 23 34 16 65 54Q Q Q Q Q Q  (4-31) 

We note it as 
6

12 23 34

6
16 65 54

,

,

S R
L

S R
R





Q Q Q Q

Q Q Q Q
 (4-32) 

 All elements of the matrices of Eqn. (4-32) are given in the Appendix. From 
6 6(1,3) (1,3)S R S R

L RQ Q , we can have 

2 2
12 12 2 12 2

12 1 1 2 12 2 1

2 2
12 2 12 2 12 2

2 sin (cos cos cos cos )

( cos sin cos sin cos cos sin )

2 sin sin (cos cos cos cos )

    

      

     

    

       

      

 (4-33) 

Then, we use the following trigonometric transforms to simplify them, 

1 2
1 2tan , tan ,

2 2
t t

 
   (4-34) 

From Eqn. (4-33), we can get 
2

12 1 2 1 2 12 2 12
2 2 2

1 2

8 sin ( cos ) (( ) cos 2 1)
0

(( ) 1) (( ) 1)

t t t t t

t t

          


  
 (4-35) 



Doctoral Thesis of Tianjin University 

88 

By simplifying it, we have 

1 12 2cost t    (4-36) 

Besides Eqn. (4-30), considering with (4-34) and (4-36), the rest of the closure 

equations can be obtained, which are 

1 2
12tan cos tan 0

2 2

    (4-37) 

The angular variables to the corresponding dihedral angles are related by 

1 1 2 2 3 3

4 4 5 5 6 6

,  , ,

, ,  ,

        
        
     

     
 (4-38) 

Substituting them into Eqns. (4-30) and (4-37) yields 

1 4

2 3 5 6

,  

,

 
   


  

 (4-39a) 

2 1
12tan cos tan .

2 2

    (4-39b) 

 

 

Figure 4-9 A specific symmetric single vertex six-crease origami pattern. 

 

Apply the same partition angles to divide the thick sheet into six panels, i.e., 

12 12 23 23 34 34

45 45 56 56 61 61

2 ,  ,  ,  

2 ,  2 , .

Br Br Br

Br Br Br

      

       

   

    
 (4-40) 
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and then place revolute joints in-between each adjacent panels, we obtain a 6R assembly 

in Fig. 4-10. Thick origami model with six fold lines that do not meet at a point. The 

dihedral angles are marked along each joint axis. 

To enable the motion of this 6R assembly, it must be a plane symmetric Bricard 

linkage. The geometrical conditions for the Bricard linkage are 

12 34 23 34

12 61 23 56 34 45

2 ,  2 ,

2 ,  2 ,  2 ,

Br Br Br Br

Br Br Br Br Br Br

     

        

   

     
 (4-41a) 

12 61 23 56 34 45,  ,  Br Br Br Br Br Bra a a a a a    (4-41b) 

Moreover, to achieve compact folding, there must be 

12 23 34 .Br Br Bra a a   (4-41c) 

which is obvious by considering the complete packaged configuration. 

 According to the symmetric condition, we have 

2 6

3 5

3 2

,

,

.

Br Br

Br Br

Br Br

 

 

  





 

 (4-42) 

 Referring to Eqn. (1-1), the closure equation of Bricard 6R linkage can be written 

as  

12 23 34 16 65 54T T T T T T  (4-43) 

We note it as 

12 23 34

16 65 54

,

,

Br
L

Br
R





T T T T

T T T T
 (4-44) 

 All elements of the matrices of Eqn. (4-44) are given in the Appendix. From 

(1,1) (1,1)Br Br
L RT T , (1,3) (1,3)Br Br

L RT T  and (1, 4) (1, 4)Br Br
L RT T , we can have 

2 12 1 2 12 12 1

12 12 2 1

2 1 2 12 1 2

12 12 2 4

2
4 2

sin (cos 2 cos sin sin 2 sin sin

cos 2 cos cos sin )

cos (cos cos cos sin sin )

sin 2 sin sin sin

cos (cos

Br Br Br Br Br Br Br

Br Br Br Br

Br Br Br Br Br Br

Br Br Br Br

Br

      

   

     

   

 

      

   

     

   

  2
12 2

2
12 2 2 4 12

cos 2 sin )

2 cos cos sin sin sin

Br Br Br

Br Br Br Br Br

 

    

 

     

 (4-45a) 
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2 2
12 12 2 12 2 12 1

1 2 12 2 1

2 2
12 2 12 2 12 2

2 sin (cos cos cos cos ) (cos sin

cos sin cos cos sin )

2 sin sin (cos cos cos cos )

Br Br Br Br Br Br Br

Br Br Br Br Br

Br Br Br Br Br Br

      

    

     

      

     

      

 (4-45b) 

12 1 23 1 2

2 12 23 12 1 2 12 12 1

12 12 2 1

2 12 23 1 2 12

cos cos cos

sin ( ) (cos 2 cos sin sin 2 sin sin

cos 2 cos cos sin )

cos ( ) (cos cos cos sin

Br Br Br Br Br

Br Br Br Br Br Br Br Br Br

Br Br Br Br

Br Br Br Br Br Br

a a

a a

a a

  

      

   

    

   

        

   

       1 2

23 12 1 2

2 2
12 23 2 12 2 23 2 12

sin )

cos sin sin

( ) (cos cos 2 sin ) cos

Br Br

Br Br Br Br

Br Br Br Br Br Br Br Br

a

a a a a



  

   



   

       

(4-45c) 

Then, we use the following trigonometric transforms to simplify them, 

31 2 4
1 2 3 4tan , tan , tan , tan ,

2 2 2 2

BrBr Br Br
Br Br Br Brt t t t

  
     (4-46) 

Substituting (4-46) into (4-45) gives 

1 4
Br Brt t  (4-47a) 

2 1cosBr Br Brt t    (4-47b) 

Besides Eqn. (4-42), considering with (4-46) and (4-47), the rest of the closure 

equations can be obtained, which are 

1 4 ,Br Br   (4-48a) 

1 2
34cos tan tan 0.

2 2

Br Br
Br      (4-48b) 

Note that the relationships between the angular variables and the corresponding 

dihedral angles of the Bricard linkage are 

1 1 2 2 3 3

4 4 5 5 6 6

2 , , ,

2 , , .

Br Br Br Br Br Br

Br Br Br Br Br Br

       

       

    

    
 (4-49) 

Substituting them into Eqns. (4-42) and (4-48),  

1 4

2 3 5 6

,  

,

Br Br

Br Br Br Br

 

   



  
 (4-50a) 

2 1
12tan cos tan .

2 2

Br Br    (4-50b) 



Chapter 4 Origami of Thick Panels 

91 

Eqns. (4-39) and (4-50) are identical except that Br ’s and Br ’s take the places 

of ’s and ’s, respectively. The Bricard linkage is therefore kinematically equivalent 

to the spherical linkage. The relationships between a pair of dihedral angles are plotted 

in Fig. 4-11. Curves a and b are relationships between dihedral angles 
1  and 

2  in 

zero-thickness rigid origami for three sets of sector angles, respectively. They overlap 

with those between 
1
Br  and 

2
Br  for their thick panel counterparts, respectively. 

 

Figure 4-10 Thick origami model for six-crease origami vertex. 
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Figure 4-11 Relationships between dihedral angles for six-crease single vertex origami.  

 

The kinematic motion of this Bricard linkage again matches that of the spherical 

6R linkage of the zero-thickness model. This enables us to make a thick panel origami 

arch using the diamond pattern. The folding sequence of both zero and non-zero 

thickness models are shown in Fig. 4-12. 

Folding sequence of a zero-thickness origami model of the diamond pattern and its 

thick panel counterpart based on the plane-symmetric Bricard linkage. All the vertices 

are identical. The sector angles around each vertex are   , 2  ,   ,   , 2   

and   . 

 

 

Figure 4-12 Zero-thickness model of Diamond pattern and its corresponding thick panel model. 
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4.4.2 Waterbomb Pattern 

The waterbomb pattern has two types of six-crease vertices: D and W as shown in 

Fig. 4-13.  

 

Figure 4-13 Waterbomb pattern. 

 

Vertex D is a special case of the diamond pattern. Vertex W is enlarged in Figure 

S11. The sector angles between adjacent creases of vertex W satisfy 

12 61 23 34 45 56, .
2 4

             (4-51) 

 

Figure 4-14 Vertex W of the waterbomb pattern. 
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The spherical 6R linkage has, in general, mobility three. To reduce it to mobility 

one, the following constraints are imposed. First, plane symmetry is maintained, so, 

2 6 3 5, ,      (4-52a) 

 Moreover, considering it is connected to the neighbouring vertices D’s, the 

kinematic relationship between 
1  and 

3  (or 
5 ) of vertex W must identical to that 

between 
1  and 

2  of vertex D. The latter is given by Eqn. (4-37). Replacing 
1  and 

2  in Eqn. (4-37) with 
1  and 

3 , respectively, yields 

31 2
tan tan 0

2 2 2


   (4-52b) 

noting that 
12 2

   for vertex W.  

With constraints of Eqn. (4-52), the mobility of this spherical 6R linkage becomes 

one. Using Eqn. (4-31), we found two remaining equations governing the motion of this 

linkage, which are 

2 1tan 2 tan
2 2

 
  (4-52c) 

34 1 1tan 4 tan 3tan
2 2 2

  
   (4-52d) 

Eqn. (4-52) are the complete set of closure equations of the spherical 6R linkage in 

vertex W.  

The relationships between the angular variables and their respective dihedral angles 

are 

1 1 2 2 3 3

4 4 5 5 6 6

,  ,  ,  

,  , .

        
        
     

     
 (4-53) 

Substituting them into Eqn. (4-52) gives 

5 3 6 2,  .      (4-54a) 

2 11
tan tan

2 2 2

 
  (4-54b) 

3 12
tan tan

2 2 2

 
  (4-54c) 
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3 1

4

2 1

tan
2tan

2 4 3tan
2







 (4-54d) 

Now apply the same partition angles to divide the thick panel into six subpanels by 

letting 

12 12 23 23 34 34

45 45 56 56 61 61

,  ,  2 , 

,  2 ,  2

Br Br Br

Br Br Br

      

       

   

    
 (4-55) 

and then place revolute joints in-between each adjacent panels, a 6R assembly is 

obtained, Fig. 4-15. Thick origami model with six fold lines that do not meet at a point. 

The dihedral angles are marked along each joint axis. 

This 6R assembly must be a plane symmetric Bricard linkage to acquire mobility, 

which requires the thicknesses of the subpanels satisfy 

56 23 12 61 34 45,  ,  Br Br Br Br Br Bra a a a a a    (4-56) 

In order to achieve compact folding, the above equations have to be modified to 

56 23 12 61 23 34 45 23,  (1 ) ,  Br Br Br Br Br Br Br Bra a a a a a a a        (4-57) 

in which   is a constant yet to be determined.  

Similar to what we have done with the Bennett and Myard linkages, the closure 

equations for this Bricard linkage can be obtained, which are 

5 3 6 2,Br Br Br Br      (4-58a) 

2 2

1

2 22 2

( 1) tan 1
2tan

2
tan (tan 1)

2 2

Br

Br

Br Br

  
 

   
 

  
 (4-58b) 

3 22( 1)
tan / tan

2 2 2

Br Br 



  (4-58c) 

2 2

4

22 2

( 1) tan 1
2tan

2
tan ( tan 2)

2 2

Br

Br

Br Br

  
   

   


    
 (4-58d) 

These equations can be written in terms of dihedral angles considering that the 

relationships between the angular variables and their respective dihedral angles are 
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1 1 2 2 3 3

4 4 5 5 6 6

,  ,  2 ,  

, 2 ,  

Br Br Br Br Br Br

Br Br Br Br Br Br

       

       

    

    
 (4-59) 

It can be show that, if 

1   (4-60) 

the resultant equations are identical to those of the spherical 6R linkage given by 

Eqn.(4-54) except that Br ’s and Br ’s take the places of  ’s and  ’s, respectively. 

Substituting Equation (4-60) into Equation (4-57), the thickness of subpanels must 

satisfy 

23 34 45 56 12 61 23, 2Br Br Br Br Br Br Bra a a a a a a      (4-61) 

  

 

Figure 4-15 Thick origami model for origami vertex W. 
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Figure 4-16 Zero-thickness model of Waterbomb pattern and its corresponding thick panel model. 

 

When 1   , the thick panel origami of vertex W in the traditional waterbomb 

pattern can still be flat foldable. This is evident by curve c in Fig. 4-17 where 1

2
  . 

Curve a is the relationships between dihedral angles 
1  and 

2  in zero-thickness six-

crease rigid origami for vertex W. Curves b and c are the relationships between dihedral 

angles 
1
Br   and 

2
Br   for the thick panel counterparts based on the Bricard linkage 

with different panel thicknesses. Note that curve b overlaps with curve a, demonstrating 

that the kinematical equivalence of the spherical linkage and the Bricard linkage. 

However in such circumstance, the motion of vertices D and W are not compatible any 

more, i.e., the changes in dihedral angle about fold lines shared by linkages around D 

and W differ during folding process. As a result, the mobility is lost. 

In addition, it should be pointed out that the bifurcation does exist in both zero-

thickness and thick panel origami of the traditional waterbomb patterns due to the fact 

that axes z2 and z6 in both Fig. 4-14 and Fig. 4-15 are co-linear initially when the sheet 

or panel is completely flat. This can be avoid in making 
12 61 2

   , but it is beyond 

the scope of this article. 
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. 

Figure 4-17 Relationships between dihedral angles for vertex W in the waterbomb origami 

pattern. 

 

4.5 Conclusion 

We have developed a comprehensive kinematic model for rigid origami of panels 

with non-zero thickness. This is done by identifying a spatial linkage model that is 

kinematically equivalent to the rigid origami of a zero-thickness sheet. In other words, 

the motion of the spatial linkage mimics that of the spherical linkage commonly used 

to model rigid origami. To achieve this, we identify a spatial linkage that has the angular 

conditions for arrangement of fold lines identical to that of the spherical linkage, and 

then prove analytically that their motions are precisely alike.  

The thick panel counterparts to four-, five- and six-crease vertex origami patterns 

are overconstrained spatial linkages. The number of such linkages is rather limited. It 

is relatively straightforward for four-crease origami patterns as only one spatial 4R 

linkage exists. However, five- and six-crease single vertex patterns commonly comprise 

two or three degrees of freedom, whereas their corresponding spatial overconstrained 

linkages have only one mobility degree of freedom. In these cases, equivalence can 

only be accomplished through reducing the degrees of freedom of the former by 

symmetry or other means. This may be beneficial for practical applications as the 

folding of thick panels can be more easily controlled due to their single degree of 

freedom. Moreover, the synthesis can also be used for origami patterns consisting of a 

mixture of vertices with various creases. Fig. 4-18 shows the folding sequence of a thick 

panel origami based on a pattern with both four- and six-crease vertices. 
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Figure 4-18 A thick panel origami based on a pattern with both four- and six-crease vertices. 
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Chapter 5 Conclusion and Future Works 

5.1 Conclusion 

This thesis presents our work on constructing mobile networks of spherical 4R 

linkages and design rigid origami patterns. Then the kinematic theory is used to judge 

the rigidity of origami patterns and the effect of mountain-valley fold assignments on 

the rigidity is presented. Negative Poisson’s ratio metamaterials based on rigid origami 

patterns are also proposed in this thesis. A novel kinematic synthesis for rigid origami 

of thick panels is established for real engineering applications. In this chapter, we have 

a whole conclusion for the whole thesis. 

(1) Network of four spherical 4R linkages 

Based on the analysis of kinematics of spherical 4R linkage, we propose sixteen 

alternative input-output relationships between the kinematic variables. Then we build 

three types of assemblies of four identical spherical 4R linkages. The topology 

structures of these three types are respectively rotational symmetric, plane symmetric 

and two-fold symmetric. The symmetrical characters make these assemblies compatible 

and mobile.  

Then, the symmetrical compatible conditions are equivalent to the kinematic 

transmission loops, i.e., the geometrical conditions are presented by the kinematic 

theories. We use the sixteen alternative relationships to modify the transmission loops 

and keep closed. According to the new modified transmission loops, the mobile 

assemblies of four different spherical 4R linkages are derived while the kinematic 

compatibility is always kept.  

With the paper treated as links and the creases as joints, new rigid origami patterns 

are obtained by referring to mobile assemblies of spherical 4R linkages with the paper 

flat geometric condition. The theory proposed in this thesis not only provides the 

solutions for the mobile assemblies of spherical 4R linkages, but also shows the 

feasibility to design rigid origami patterns by studying the kinematic compatibility 

condition of spherical 4R linkage assemblies. 

(2) Mountain-valley folds of origami patterns 

The rigid origami patterns should satisfy strict geometrical conditions, e.g., paper 

facets in the double corrugated pattern are all parallelograms. The types of creases, 

mountain fold and valley fold, also have important role in the rigid foldability of 

origami patterns. According to the relationship between spherical linkages and rigid 

origami, the effect of mountain-valley fold assignments on the rigidity of flat foldable 

origami patterns are analysed with a kinematic method. The analysis result gives 

multiple kinds of rigid double corrugated pattern with different mountain-valley fold 
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assignments.  

Metamaterials from the stacks of double corrugated patterns have been proposed 

with many varieties when changing the mountain-valley assignments. Following the 

folding of the rigid origami patterns, the metamaterials exhibit negative Poisson’s ratio 

and different mountain-valley assignments can affect the deformation property of 

origami metamaterials largely. The square-twist pattern and its metamaterials with 

negative Poisson’s ratio are also discussed to show the generalization of this method. 

(3) Origami of thick panels 

The traditional kinematic model for rigid origami is based on spherical linkages, but 

the material thickness can not be accommodated. By shifting hinges out of plane of the 

origami pattern, this problem will be solved. This new comprehensive kinematic model 

for rigid origami of panels with non-zero thickness is based on the spatial linkages.  

The number of such linkages is rather limited. It is relatively straightforward for 

four-crease origami patterns as only one spatial 4R linkage exists. However, five-crease 

and six-crease single vertex patterns commonly comprise two or three degrees of 

freedom, whereas their corresponding spatial overconstrained linkages have only one 

mobility degree of freedom.  

The construction process of thick panel origami models for four-crease origami 

vertex is using Bennett linkage, five-crease origami vertex by using Myard linkage, and 

six-crease origami vertex by using Bricard linkage. This is done by identifying a spatial 

linkage model that is kinematically equivalent to the rigid origami of a zero-thickness 

sheet, i.e., the motion of the spatial linkage mimics that of the spherical linkage 

commonly used to model rigid origami.  

Thick panel models for multi-vertex patterns by this technique is also presented in 

this thesis. Moreover, the synthesis can also be used for origami patterns consisting of 

a mixture of vertices with various creases. A thick panel origami based on a pattern with 

both four- and six-crease vertices are also shown in this thesis. 

5.2 Future Works 

 This thesis systemically presents the theories of using the network of spherical 4R 

linkages and rigid origami for constructing deployable structures and metamaterials. In 

order to improve the performance of the deployable structure, a number of potential 

research areas are outlined as follows.  

(1) The mobile assemblies of spherical 4R linkages are based on the topological 

symmetric. More general method of constructing mobile network of spherical 4R 

linkages will be explored in the future. 

 (2) Referring to the assemblies proposed by our method, a lot of rigid origami 
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patterns with 3 3  quadrilateral mesh can be designed. In the further research, we will 

extend the unit patterns unlimitedly to get large-scale rigid origami patterns by 

tessellation method. 

 (3) The mechanical property of the metamaterials will be analysed in the future and 

find suitable engineering application fields of these metamaterials. 

 (4) Use the thick origami technique to design new solar arrays, antenna of satellites, 

and other deployable structures in the space engineering. 

(5) Finish the force analysis of the origami-inspiration deployable structures and 

optimize the design parameter to achieve better performance, such as larger deploy-fold 

ratios, easier to actuate the structure and better controllable deploying motion. 

 

  



Doctoral Thesis of Tianjin University 

104 

 

 

  



Reference 

105 

Reference 

[1] 邓宗全. 空间折展机构设计 [M]. 哈尔滨：哈尔滨工业大学出版社, 2013. 

[2] Hunt K H. Kinematic geometry of mechanisms [M]. Clarendon Press Oxford, 
1978. 

[3] Mccarthy J M. Introduction to theoretical kinematics [M]. MIT press, 1990. 
[4] You Z, Chen Y. Motion structures [M]. Taylor and Francis, 2011. 
[5] Baker J E. The Bennett, Goldberg and Myard linkages—in perspective [J]. 

Mechanism and Machine Theory, 1979, 14(4): 239-253. 
[6] Gogu G. Mobility of mechanisms: a critical review [J]. Mechanism and 

Machine Theory, 2005, 40(9): 1068-1097. 
[7] Huang H, Deng Z, Bing L. Mobile assemblies of large deployable mechanisms 

[J]. Journal of Space Engineering, 2012, 5(1): 1-14. 
[8] Kiper G, Soylemez E. Deployable space structures; proceedings of the Recent 

Advances in Space Technologies, 2009 RAST'09 4th International Conference 
on, F, 2009 [C]. IEEE. 

[9] Tibert A G, Pellegrino S. Deployable tensegrity reflectors for small satellites [J]. 
Journal of Spacecraft and Rockets, 2002, 39(5): 701-709. 

[10] Schenk M, Viquerat A D, Seffen K A, et al. Review of inflatable booms for 
deployable space structures: packing and rigidization [J]. Journal of Spacecraft 
and Rockets, 2014, 51(3): 762-778. 

[11] Luo Y, Mao D, You Z. On a type of radially retractable plate structures [J]. 
International Journal of Solids and Structures, 2007, 44(10): 3452-3467. 

[12] Buhl T, Jensen F V, Pellegrino S. Shape optimization of cover plates for 
retractable roof structures [J]. Computers & Structures, 2004, 82(15): 1227-
1236. 

[13] Mao D, Luo Y. Analysis and design of a type of retractable roof structure [J]. 
Advances in Structural Engineering, 2008, 11(4): 343-354. 

[14] You Z, Pellegrino S. Foldable bar structures [J]. International Journal of Solids 
and Structures, 1997, 34(15): 1825-1847. 

[15] Mao D, Luo Y, You Z. Planar closed loop double chain linkages [J]. Mechanism 
and Machine Theory, 2009, 44(4): 850-859. 

[16] Kassabian P, You Z, Pellegrino S. Retractable roof structures [J]. Proceedings 
of the Institution of Civil Engineers-Structures and Buildings, 1999, 134(1): 45-
56. 

[17] Jensen F, Pellegrino S. Expandable ‘blob’structures [J]. An Anthology of 
Structural Morphology, 2009, 189. 

[18] You Z. Deployable structure of curved profile for space antennas [J]. Journal of 
Aerospace Engineering, 2000, 13(4): 139-143. 

[19] Chiang C H. Kinematics of spherical mechanisms [M]. Cambridge University 
Press Cambridge, 1988. 

[20] Bennett G. A new mechanism [J]. Engineering, 1903, 76(12): 777-8. 
[21] Chen Y, Baker J. Using a Bennett linkage as a connector between other Bennett 

loops [J]. Proceedings of the Institution of Mechanical Engineers, Part K: 
Journal of Multi-body Dynamics, 2005, 219(2): 177-185. 



Doctoral Thesis of Tianjin University 

106 

[22] Baker J E. A collapsible network of similar pairs of nested Bennett linkages [J]. 
Mechanism and Machine Theory, 2013, 59(4)119-24. 

[23] Chen Y, You Z. Mobile assemblies based on the Bennett linkage [J]. Proceedings 
of the Royal Society A: Mathematical, Physical and Engineering Science, 2005, 
461(2056): 1229-45. 

[24] Chen Y, You Z. On mobile assemblies of Bennett linkages [J]. Proceedings of 
the Royal Society A: Mathematical, Physical and Engineering Science, 2008, 
464(2093): 1275-93. 

[25] Yu Y, Luo Y, Li L. Deployable membrane structure based on the Bennett linkage 
[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of 
Aerospace Engineering, 2007, 221(5): 775-83. 

[26] Kiper G, Soylemez E. Regular polygonal and regular spherical polyhedral 
linkages comprising bennett loops [M]. Computational Kinematics. Springer. 
2009: 249-56. 

[27] Marras A E, Zhou L, Su H, et al. Programmable motion of DNA origami 
mechanisms [J]. Proceedings of the National Academy of Sciences, 2015, 
112(3): 713-718. 

[28] Goldberg M. New five-bar and six-bar linkages in three dimensions [J]. 
Transactions of the ASME, 1943, 65(1): 649-663. 

[29] Myard F. Contribution à la géométrie des systèmes articulés [J]. Bulletin de la 
Société Mathématique de France, 1931, 59:183-210. 

[30] Chen Y, You Z. An extended Myard linkage and its derived 6R linkage [J]. 
Journal of Mechanical Design, 2008, 130(5): 052301. 

[31] Liu S, Chen Y. Myard linkage and its mobile assemblies [J]. Mechanism and 
Machine Theory, 2009, 44(10): 1950-63. 

[32] Qi X Z, Deng Z Q, Ma B Y, et al. Design of Large Deployable Networks 
Constructed by Myard Linkages[J]. Key Engineering Materials, 2011, 486:291-
296. 

[33] Wei G, Dai J S. A Spatial Eight-Bar Linkage and Its Association With the 
Deployable Platonic Mechanisms[J]. Journal of Mechanisms and Robotics, 
2014, 6(2). 

[34] Bennett G T. LXXVII. The parallel motion of Sarrut and some allied 
mechanisms [J]. The London, Edinburgh, and Dublin Philosophical Magazine 
and Journal of Science, 1905, 9(54): 803-810. 

[35] Bricard R. Leçons de cinématique [M]. Gauthier-Villars, 1926. 
[36] Goldberg M. Polyhedral linkages [J]. National Mathematics Magazine, 1942, 

16(7): 323-332. 
[37] Baker J. On the skew network corresponding to Bricard's doubly collapsible 

octahedron [J]. Proceedings of the Institution of Mechanical Engineers, Part C: 
Journal of Mechanical Engineering Science, 2009, 223(5): 1213-1221. 

[38] Lee C, Dai J. Configuration analysis of the Schatz linkage [J]. Proceedings of 
the Institution of Mechanical Engineers, Part C: Journal of Mechanical 
Engineering Science, 2003, 217(7): 779-786. 

[39] Chen Y, You Z. Deployable structures based on the Bricard linkages[C]. 
Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural 
Dynamics & Materials Conference, 2004. 

[40] Kong X, Huang C. Type synthesis of single-DOF single-loop mechanisms with 



Reference 

107 

two operation modes[C]. ASME/IFTOMM International Conference on 
Reconfigurable Mechanisms and Robots. IEEE, 2009:136-141. 

[41] Dai J S, Caldwell D. Origami-based robotic paper-and-board packaging for food 
industry [J]. Trends in Food Science & Technology, 2010, 21(3): 153-157. 

[42] Hawkes E, An B, Benbernou N, et al. Programmable matter by folding [J]. 
Proceedings of the National Academy of Sciences, 2010, 107(28): 12441-12445. 

[43] Kuribayashi K, Onoe H, Takeuchi S. Cell origami: self-folding of three-
dimensional cell-laden microstructures driven by cell traction force [J]. PloS 
One, 2012, 7(12): e51085. 

[44] Hagiwara I. Current trends and issues of origami engineering [M]. System 
Simulation and Scientific Computing. Springer. 2012: 259-268. 

[45] Peraza E A, Hartl D J, Malak R J, et al. Origami-inspired active structures: a 
synthesis and review [J]. Smart Materials and Structures, 2014, 23(9): 094001. 

[46] Turner N, Goodwine B, Sen M. A review of origami applications in mechanical 
engineering [J]. Proceedings of the Institution of Mechanical Engineers, Part C: 
Journal of Mechanical Engineering Science, 2016, 230(14): 2345-2362. 

[47] Tang R, Huang H, Tu H, et al. Origami-enabled deformable silicon solar cells 
[J]. Applied Physics Letters, 2014, 104(8): 083501. 

[48] Ma J, You Z. Energy absorption of thin-walled square tubes with a prefolded 
origami pattern—part I: geometry and numerical simulation [J]. Journal of 
Applied Mechanics, 2014, 81(1): 011003. 

[49] Ma J, You Z. Energy absorption of thin-walled beams with a pre-folded origami 
pattern [J]. Thin-Walled Structures, 2013, 566(4):569-574. 

[50] Gattas J M, You Z. Geometric assembly of rigid-foldable morphing sandwich 
structures [J]. Engineering structures, 2015, 94:149-159. 

[51] Thrall A, Quaglia C. Accordion shelters: A historical review of origami-like 
deployable shelters developed by the US military [J]. Engineering structures, 
2014, 59:686-92. 

[52] Lee T, Gattas J M. Geometric design and construction of structurally stabilized 
accordion shelters [J]. Journal of Mechanisms and Robotics, 2016, 8(3): 031009. 

[53] Mousanezhad D, Kamrava S, Vaziri A. Origami-based Building Blocks for 
Modular Construction of Foldable Structures [J]. Scientific Reports, 2017, 7(1).  

[54] Wilson L, Pellegrino S, Danner R. Origami sunshield concepts for space 
telescopes[C]. Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC 
Structures, Structural Dynamics, and Materials Conference, 2013. 

[55] Miura K. A note on intrinsic geometry of origami [J]. Research of Pattern 
Formation, KTK Scientific Publishers, Tokyo, Japan, 1989, 91-102. 

[56] Hull T. Project origami: activities for exploring mathematics [M]. CRC Press, 
2012. 

[57] Kobayashi H, Kresling B, Vincent J F. The geometry of unfolding tree leaves 
[J]. Proceedings of the Royal Society of London B: Biological Sciences, 1998, 
265(1391): 147-154. 

[58] Watanabe N, Kawaguchi K. The method for judging rigid foldability [J]. 
Origami, 2009, 4:165-174. 

[59] Huffman D A. Curvature and Creases: A Primer on Paper[J]. IEEE Transactions 
on Computers, 1976, C-25(10):1010-1019. 



Doctoral Thesis of Tianjin University 

108 

[60] Wu W, You Z. Modelling rigid origami with quaternions and dual quaternions[J]. 
Proceedings Mathematical Physical & Engineering Sciences, 2010, 
466(2119):2155-2174. 

[61] Dai J S, Jones J R. Mobility in Metamorphic Mechanisms of Foldable/Erectable 
Kinds[J]. Journal of Mechanical Design, 1999, 121(3):375-382. 

[62] Stachel H. A kinematic approach to Kokotsakis meshes [J]. Computer Aided 
Geometric Design, 2010, 27(6): 428-437. 

[63] Filipov E T, Liu K, Tachi T, et al. Bar and hinge models for scalable analysis of 
origami [J]. International Journal of Solids & Structures, 2017,  

[64] Nojina T. Modelling of folding patterns in flat membranes and cylinders by 
origami [J]. JSME International Journal, 2002, 45(1): 364-370. 

[65] Wang K, Chen Y. Folding a patterned cylinder by rigid origami [J]. Origami, 
2011, 5:265-276. 

[66] Pellegrino S. The folding of triangulated cylinders, part I: geometric 
considerations [J]. Journal of Applied Mechanics, 1994, 61(4). 

[67] Martinez R V, Fish C R, Chen X, et al. Elastomeric origami: programmable 
paper elastomer composites as pneumatic actuators [J]. Advanced Functional 
Materials, 2012, 22(7): 1376-1384. 

[68] Kuribayashi K, Tsuchiya K, You Z, et al. Self-deployable origami stent grafts as 
a biomedical application of Ni-rich TiNi shape memory alloy foil [J]. Materials 
Science and Engineering: A, 2006, 419(1): 131-137. 

[69] Tachi T. One-DOF cylindrical deployable structures with rigid quadrilateral 
panels[J]. Symposium of the International Association for Shell and Spatial 
Structures (50th. 2009. Valencia). Evolution and Trends in Design, Analysis and 
Construction of Shell and Spatial Structures : Proceedings, 2010. 

[70] Aleksandrov V A. A new example of a flexible polyhedron [J]. Siberian 
Mathematical Journal, 1995, 36(6): 1049-1057. 

[71] Liu S, Weilin L V, Chen Y, et al. Deployable Prismatic Structures with Rigid 
Origami Patterns[J]. Journal of Mechanisms & Robotics, 2015, 
8(3):V05BT08A037. 

[72] MIURA K, TACHI T. Synthesis of rigid-foldable cylindrical polyhedral [J]. 
Symmetry: Art and Science, International Society for the Interdisciplinary 
Study of Symmetry, Gmuend, 2010.   

[73] Yasuda H, Yein T, Tachi T, et al. Folding behaviour of Tachi-Miura polyhedron 
bellows[J]. Proc Math Phys Eng Sci, 2016, 469(2159):20130351. 

[74] TACHI T. Rigid-foldable thick origami [J]. Origami, 2011, 5:253-264. 
[75] Edmondson B J, Lang R J, Morgan M R, et al. Thick rigidly foldable structures 

realized by an offset panel technique [M] Origami 6. 2015. 
[76] Ku J S, Demaine E D. Folding flat crease patterns with thick materials [J]. 

Journal of Mechanisms and Robotics, 2016, 8(3): 031003. 
[77] Hoberman C S. Reversibly expandable three-dimensional structure: US, 

US4780344[P]. 1988. 
[78] Temmerman D, Niels I A, Mollaert, et al. Design and Analysis of a Foldable 

Mobile Shelter System[J]. International Journal of Space Structures, 2009, 
22(22):161-168. 

[79] Wang Z, Jing L, Yao K, et al. Origami based reconfigurable metamaterials for 



Reference 

109 

tunable chirality [J]. Advanced Materials, 2017, 29(27).  
[80] Zhai Z, Wang Y, Jiang H. Origami-inspired, on-demand deployable and 

collapsible mechanical metamaterials with tunable stiffness [J]. Proceedings of 
the National Academy of Sciences, 2018, 115(9): 2032-2037. 

[81] Boatti E, Vasios N, Bertoldi K. Origami metamaterials for tunable thermal 
expansion [J]. Advanced Materials, 2017, 29(26).  

[82] Miura K. Method of Packaging and Deployment of Large Membranes in 
Space[J]. Institute of Space & Astronautical Science Report, 1985, 618:1-9. 

[83] Natori M C, Katsumata N, Yamakawa H, et al. Conceptual model study using 
origami for membrane space structures[C]. ASME 2013 International Design 
Engineering Technical Conferences and Computers and Information in 
Engineering Conference. 2013:V06BT07A047. 

[84] Zirbel S A, Lang R J, Thomson M W, et al. Accommodating thickness in 
origami-based deployable arrays [J]. Journal of Mechanical Design, 2013, 
135(11): 111005. 

[85] Felton S, Tolley M, Demaine E, et al. A method for building self-folding 
machines [J]. Science, 2014, 345(6197): 644-646. 

[86] Miyashita S, Guitron S, Ludersdorfer M, et al. An untethered miniature origami 
robot that self-folds, walks, swims, and degrades[C]. International Conference 
on Robotics and Automation, 2015: 1490-1496.. 

[87] Zhang K, Fang Y, Fang H, et al. Geometry and constraint analysis of the three-
spherical kinematic chain based parallel mechanism [J]. Journal of Mechanisms 
and Robotics, 2010, 2(3): 031014. 

[88] Onal C D, Wood R J, Rus D. An origami-inspired approach to worm robots [J]. 
IEEE/ASME Transactions on Mechatronics, 2013, 18(2): 430-438. 

[89] Li S, Vogt D M, Rus D, et al. Fluid-driven origami-inspired artificial muscles 
[J]. Proceedings of the National Academy of Sciences of the United States of 
America, 2017, 114(50): 13132. 

[90] Le P, Molina J, Hirai S. Application of Japanese origami ball for floating 
multirotor aerial robot [J]. World Academy of Science, Engineering and 
Technology, International Journal of Mechanical, Aerospace, Industrial, 
Mechatronic and Manufacturing Engineering, 2014, 8(10): 1747-1750. 

[91] Lee D Y, Kim J S, Kim S R, et al. The deformable wheel robot using magic-ball 
origami structure[C]. ASME 2013 International Design Engineering Technical 
Conferences and Computers and Information in Engineering Conference. 
2013:V06BT07A040.. 

[92] Schenk M, Guest S D. Geometry of Miura-folded metamaterials [J]. 
Proceedings of the National Academy of Sciences, 2013, 110(9): 3276-3281. 

[93] Schenk M, Guest S, Mcshane G. Novel stacked folded cores for blast-resistant 
sandwich beams [J]. International Journal of Solids and Structures, 2014, 51(25): 
4196-4214. 

[94] Wei Z Y, Guo Z V, Dudte L, et al. Geometric mechanics of periodic pleated 
origami [J]. Physical Review Letters, 2013, 110(21): 215501. 

[95] Silverberg J L, Evans A A, Mcleod L, et al. Using origami design principles to 
fold reprogrammable mechanical metamaterials [J]. Science, 2014, 345(6197): 
647-650. 

[96] Lv C, Krishnaraju D, Konjevod G, et al. Origami based mechanical 



Doctoral Thesis of Tianjin University 

110 

metamaterials [J]. Scientific Reports, 2014, 4:5979. 
[97] Cheung K C, Tachi T, Calisch S, et al. Origami interleaved tube cellular 

materials [J]. Smart Materials and Structures, 2014, 23(9): 094012. 
[98] Filipov E T, Tachi T, Paulino G H. Origami tubes assembled into stiff, yet 

reconfigurable structures and metamaterials [J]. Proceedings of the National 
Academy of Sciences, 2015, 112(40): 12321-12326. 

[99] Yasuda H, Yang J. Reentrant origami-based metamaterials with negative 
Poisson’s ratio and bistability [J]. Physical Review Letters, 2015, 114(18): 
185502. 

[100] Silverberg J L, Na J, Evans A A, et al. Origami structures with a critical 
transition to bistability arising from hidden degrees of freedom [J]. Nature 
Materials, 2015, 14(4): 389-393. 

[101] Waitukaitis S, Menaut R, Chen B G, et al. Origami multistability: From single 
vertices to metasheets [J]. Physical Review Letters, 2015, 114(5): 055503. 

[102] Hanna B H, Lund J M, Lang R J, et al. Waterbomb base: a symmetric single-
vertex bistable origami mechanism [J]. Smart Materials and Structures, 2014, 
23(9): 094009. 

[103] Mills A. Robert Hooke's ‘universal joint’and its application to sundials and the 
sundial-clock [J]. Notes and Records, 2007, 61(2): 219-36. 

[104] Arkin E M, Bender M A, Demaine E D, et al. When can you fold a map? [J]. 
Computational Geometry, 2004, 29(1): 23-46. 

[105] Huffman D A. Curvature and Creases: A Primer on Paper[J]. IEEE Transactions 
on Computers, 1976, C-25(10):1010-1019.. 

[106] Li W, Mcadams D A. Novel pixelated multicellular representation for origami 
structures that innovates computational design and control[C]. ASME 2013 
International Design Engineering Technical Conferences and Computers and 
Information in Engineering Conference. 2013:V06BT07A041.. 

[107] Saito K, Tsukahara A, Okabe Y. New deployable structures based on an elastic 
origami model [J]. Journal of Mechanical Design, 2015, 137(2): 021402. 

[108] Hull T. On the mathematics of flat origamis [J]. Congressus Numerantium, 1994, 
215-224. 

[109] Evans T A, Lang R J, Magleby S P, et al. Rigidly foldable origami twists [J]. 
Origami, 2015, 6:119-130. 

 

 
  



Appendix 

111 

Appendix 

Table A1. The variations of kinematic relationships and the corresponding geometric parameters 
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Table A2. Geometrical conditions of two-fold symmetric assemblies for Kokotsakis meshes 
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Table A3. Geometrical conditions of symmetric assemblies for Kokotsakis meshes 

Symmetric case 
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Table A3. Geometrical conditions of symmetric assemblies for Kokotsakis meshes  (continued) 

Symmetric case 
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Table A4. Geometrical conditions of rotation assemblies for Kokotsakis meshes 

Rotation case 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

12 23 34 41

2 5

, , , ,

, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

R R

        

        

        

        
    

     

    

    

    
   

 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

12 23 34 41

3 16

, , , ,

, , , ,

, , , ,

, , , .

2

a b c d

a b c d

a b c d

a b c d

R R

        

        

        

        
    

    

    

    

    
   

 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

12 23 34 41

4 12

, , , ,

, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

R R

         

         

         

         
    

     

     

     

     
   

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

12 34 23 41

2 6 5

, , , ,

, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

R R R

         

       

         

         
    

     

   

     

     
   

 

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

12 23 34 41

2 7 16

, , , ,

, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

R R R

         

         

       

         
    

     

     

   

     
   

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

12 34 23 41

2 8 12

, , , ,

, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

R R R

          

        

        

          
    

      

    

    

      
   

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

12 41 23 34

3 15 5

, , , ,

, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

R R R

       

         

         

         
    

   

     

     

     
   

12 12 12 12 12 12 12 12

23 23 23 23 23 23 23 23

34 34 34 34 34 34 34 34

41 41 41 41 41 41 41 41

12 23 34 41

3 14 16

, , , ,

, , , ,

, , , ,

, , , .

a b c d

a b c d

a b c d

a b c d

R R R

         

         

         

       
    

     

     

     

   
   

 

 

 

 



Doctoral Thesis of Tianjin University 

116 

Table A4. Geometrical conditions of rotation assemblies for Kokotsakis meshes (continued) 
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The results the compatible equation of spherical 4R linkage are 
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The results the compatible equation of spherical 5R linkage are 
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中文大摘要 

可展结构具有从一个小尺寸收拢状态展开为大尺寸工作状态的特性。其小尺

寸的非工作状态给运输和存储提供了便利，大尺寸的工作状态又能保证该结构的

功能不会缺失。航空航天技术中的伸展臂、太阳能帆板阵列、卫星的星载天线就

是可展结构的典型使用范例。可展结构同时在吸能材料设计、可展建筑结构、微

创手术器械等领域具有广泛的应用前景。 

一些精巧且实用的机构发明出来后，工程师与科研人员将多个单一机构连接

成网状，进而构造出具有大折展比的可展结构，比如由剪刀机构、Bennett 机构、

Bricard 机构等构成的网状结构。这些结构都是基于平面机构和空间机构，而球

面机构很少被使用。 

球面机构是指构件间用轴线交于一点的转动副相连的机构，构件上各点的运

动轨迹位于同心球面上。球面四杆机构是一种有四个旋转副的球面机构且该机构

只有一个自由度。单个的球面四杆机构在制造业广泛使用，但是过约束特性使其

很难构造出可动的机构网格。 

 随着航天技术的发展，卫星所搭载的可展结构需要更大的折展比和更加复杂

的形状来实现更复杂的功能。同时，为了便于控制结构的展开过程，所使用的机

构尽量只有一个自由度。现阶段对于可展结构的研究主要集中于利用平面机构来

构造出所需的形态，但是平面机构很难完全实现上述需求。球面四杆机构和空间

过约束机构均具有空间构型且单自由度的特性，在大折展比和复杂构型的可展结

构设计领域具有很高的应用潜力。将多个球面机构和空间过约束机构连接起来构

成大尺寸的可展结构是一项极具挑战性的工作。 

艺术也可以给工程师带来灵感，进而被演变为一种新型的技术。折纸是一种

将平面材料折叠成三维形状的传统艺术。现在科学家和工程师对这门艺术产生了

浓厚的兴趣，并参照它开发出构建新型结构的技术。刚性折纸是折纸艺术的一个

分支，这类折纸图案在折叠的过程中，纸面不变形，在折痕处有变形。因此，我

们将纸片类比为刚性板件，折痕类比为旋转铰链，刚性折纸结构可以看作为由旋

转铰链连接的可展板状结构。根据刚性折纸的这种特性，我们可以将每一个刚性

折纸顶点看作为一个球面机构。刚性折纸在工程领域具有很大的应用潜力。从太

阳能帆板，太空反射镜，飞行器机翼到变形机器人，它们的构件都是由刚性材料

制作的，整体结构基本上呈现板状构型，并且需要一定的可动性，刚性折纸技术

均可以满足这些需要，在这些领域具有广泛的应用前景。 

本文第二章主要是对单个球面四杆机构的运动学分析，探讨构建可动球面机

构网格的方法。 

为了能够将球面四杆机构用于构建可展结构，本文首先探讨了构建可动球面
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四杆机构网格的可行性。在球面四杆机构上利用 DH 方法建立坐标系，然后利用

闭环方程求出各个旋转副间的运动关系 1. .i iv s   。 

通过将球面四杆机构中几何参数 ij 更改为 ij 、 ij  、 ij   、 ij ，对

于每一个球面四杆机构有 256( 4 4 4 4    )种组合形式。对于运动参数 i ，我们

只考虑四种基本变化形式 i 、 i  、 i   或者 i 。如果球面四杆机构中相邻

两个铰链间的运动关系为 1. .i iv s   ，通过上述方式更改 ij ，可以获得

1. . ( )i iv s    、 1. . ( )i iv s     、 1. .i iv s   等一共 16 种新的运动关系Ri。当

已知某一种运动关系，比如 1( ) . . ( )i iv s      ，我们也可以通过本文提供的表

格可知如何更改几何参数 ij 来实现这种传递关系。 

为了研究多个球面四杆机构间的连接方式，我们将四个相同的球面四杆机构

连成一个封闭环路。对于相邻的两个球面四杆机构，遵循具有相同下标的铰链连

接在一起的原则。例如，机构 A 的旋转副 a2 与机构 B 的旋转副 b2 相连，机构

B 的旋转副 b1 与机构 C 的旋转副 c1 相连，机构 C 的旋转副 c2 与机构 D 的旋转

副 d2 相连，机构 D 的旋转副 d1 与机构 A 的旋转副 a1 相连，由此就构成一个封

闭环路。本文提出了四种连接方式，其中有一种是重复的，剩下的三种分别命名

为双重对称装配形式、对称装配形式、旋转对称装配形式。结合球面四杆机构运

动学，分别归纳出这三种装配形式的协调条件，即三种闭环传递路径。 

在四个具有相同几何参数的球面四杆机构组成的可动装配体的基础上，我们

使用四个不同的球面四杆机构组建装配体。当球面四杆机构的几何参数改变时，

运动学的输入输出特性会发生变化，装配体的传递路径也会发生相应的改变。基

于对球面四杆机构的运动学分析，对由四个相同球面四杆机构组成的可动装配体

进行调整，利用上文中的 16 种特殊的传递关系来更改调整这些装配体的协调条

件，以此来保证装配体的传递路径最后是封闭的。在获得新的协调条件与传递路

径后，对照球面四杆机构几何参数 ij 与Ri关系，选择更改原始 ij 来实现新的传

递路径，从而可以构建由四个不同的球面四杆机构组成的可动装配体。 

刚性折纸可以等效为一类特殊的球面机构网格，其中的纸片等效为杆件，折

痕等效为铰链。基于刚性折纸和球面机构网格这种关联性，可以参照可动球面机

构网格来设计新的刚性折纸图案，但是需要添加更多的几何条件来保证折纸图案

中的纸片为平面。本文讨论了旋转对称的装配体，在添加纸片为平面的条件后，

由四个相同球面四杆机构组成的装配体可以演变为一种常见的刚性折纸图案。对

于这个旋转对称的装配体，我们使用上文中的 16 种特殊的传递关系来更改调整

该装配体的协调条件，获得新的由四个不同球面四杆机构组成的装配体。此时再

引入纸片为平面的条件，可以获得一种新的刚性折纸图案。球面机构网格不仅可
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以用来探索新的球面四杆机构，也可以分析给定的折纸图案的刚性可折叠性。折

纸图案等效的球面四杆机构装配体如果满足运动协调条件，即若运动传递路径封

闭，该折纸图案就是刚性折纸图案。 

本文第三章主要分析了山谷线的排布形式对折纸图案刚性可折叠性的影响，

并且用刚性折纸图案堆叠出具有负泊松比的超材料。 

折纸图案中的折痕有两类形式，使纸面向上凸的山折痕和使纸面向下凹的谷

折痕。除了几何设计参数，山谷折痕的排布方式也会影响折纸图案的刚性可折叠

性。本文提出了一种运动学方法来分析刚性可折叠性，并阐明山谷线排布方式对

刚性可折叠性的影响。因为 double-corrugated 折纸图案相比于 Miura-ori、square-

twist 等折纸图案更为复杂，本文以 double-corrugated 图案为例重点介绍如何对折

纸图案进行刚性可折叠性的判定，并探讨其刚性几何拓展形式。 

Double-corrugated 折纸图案由两个基本单元组成：P 单元和 Q 单元。每个单

元包含四个折纸顶点。P 单元中的折痕有 10 种山谷线排布形式，Q 单元中的折

痕有 6 种山谷线排布形式。我们将折纸单元等效为球面机构网格后，根据上文中

对球面四杆机构的运动学分析，可以获得折纸图案中相邻折痕间的运动关系曲线。

我们将每个单元的铰链运动传递关系图直接以直线和圆弧标记在运动关系曲线

上，如果能形成一个固定的环路，该单元就是刚性的。指定某条折痕为山线或者

为谷线，就是指定了该折痕所对应铰链的旋转角度 i 的取值范围。因此一个折纸

单元的不同山谷线排布就会造成运动关系曲线图上的角度传递标记不同，有些角

度传递标记可以形成闭环，有些则不能，所以不同的山谷线排布形式会使一个折

纸图案具有不同的刚性可折叠性。在 P 单元中，P1-P4 这四种排布形式具有刚性

可折叠性，P5-P10 这六种为非刚性的。在 Q 单元中，Q1-Q4 这四种排布形式具

有刚性可折叠性，Q5-Q6 这两种为非刚性的。一个 double-corrugated 折纸图案是

由多个 P 单元和 Q 单元排列组合而成，如果其包含的山谷线排布形式只属于 P1-

P4、Q1-Q4 中的一种或多种，那么 double-corrugated 折纸图案整体都是刚性可折

叠的。 

在保证P单元和Q单元均是刚性可折叠的情况下，对于一个double-corrugated

折纸图案，我们可以设计不同的刚性折叠方式。在不改变图案的几何参数设计的

情况下，就可以获得不同的构型。通过将这些刚性折纸图案多层叠加，可以获得

相应的 3D 超材料。本文提出了四种 3D 超材料，它们具有不同的构型，折叠过

程也不相同。但是它们均基于同一个 double-corrugated 图案，仅山谷线的排布形

式不同。这些超材料都是基于刚性可折叠的折纸图案，因此当一个基本单元按照

刚性运动进行折展时，能够引起整个超材料的刚性运动。从完全展开状态到完全

折叠状态的过程中，面内方向上的尺寸一直减小，面外方向的尺寸先增大再减小。

因此在折叠过程的后期阶段，面内与面外方向的泊松比均为负值。由于四种超材
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料的折叠过程不同，因此具有不同的负泊松比特性。本文对这四种材料的泊松比

都进行了计算，并进行了比较分析。 

Square-twist 图案所具有的折痕排布形式共有四种，分别编号为 T1、T2、T3

和 T4。Square-twist 图案实际上是 Q 单元的特例，我们采用相同的方式对其所有

的折痕排布形式进行分析，其中 T1 和 T2 具有刚性可折叠性，T3 和 T4 是非刚

性。将 Square-twist 图案多层堆叠后，可以得到负泊松比的材料，本文对其泊松

比也进行了计算分析。 

本文第四章主要介绍了一种可以构建厚板折纸模型的新型机构综合方法，并

将其与零厚度折纸模型的折叠运动进行了对比分析。 

折纸图案通常被用于构造零厚度的薄板结构。但是在工程实际中，材料厚度

不能忽略。目前已提出多种方法，主要通过调整板件的运动干涉区域来决这类问

题，所用的运动学模型仍然为球面机构。本文提出了一类全新且具有普适性的机

构综合方法来解决厚板折纸问题。使用该方法构造的厚板折纸模型与零厚度折纸

具有相同的运动路径。该方法能够有效地构造四折痕、五折痕、六折痕的单顶点

和多顶点折纸图案的厚板模型，便于折纸技术在实际工程中应用。 

迄今为止，刚性折纸的所有的运动学模型都不考虑纸片厚度，将厚度默认为

零。在折纸图案的每个顶点处，所有的折痕相交于一点，因此等效为旋转铰链的

轴线均相交于一点的球面机构。一个刚性折纸图案的运动学模型就是由许多这样

的球面机构构建的网状结构。各种各样的使用非零厚度板件的刚性折纸技术，仍

然使用这种球面机构网格作为其运动学模型。这些技术通过在零厚度模型的表面

上添加适当的锥形材料，或者保持折痕位置不变，将折纸板件做一定的偏移。这

些技术不能够实现将非零厚度折纸模型完全折叠为平面，或者保持板件的完整性。

但是，这些非零厚度刚性折纸技术中有两个特例，Hoberman 做的 Miura-ori 折纸

图案的板件模型和 De Temmerman 基于 diamond origami 折纸图案的板件模型，

实现了结构的完全折叠且不出现运动干涉现象。这两个模型中，旋转铰链的中心

线并没有交于一点，而是处于一种特殊的空间位置，这也说明它们的运动学模型

并不是球面机构网格。根据这两个特例，我们首先寻找它们所等价的机构运动学

模型，然后将这个运动学模型一般化后，应用到更多的厚板折纸模型中。 

利用球面机构的运动学模型来构建刚性折纸的厚板模型，运动初始状态中所

有铰链轴线位于同一平面，折展过程中会出现运动干涉问题，无法实现完全折叠，

因此所有的折痕不能排布在同一个平面上。基于这个原因，我们将部分折痕排布

在厚板的上方，另一部分折痕排布在下方，按此构建的装配体中的折痕不共面，

并且相邻折痕不交于同一点。由球面机构网格构成的运动学模型最终被我们替换

为铰链处于空间位置的运动学模型。新运动学模型的可动性基于两个条件：运动

学模型中的每一个环路均为机构，该机构可以连续运动。 
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 现在广泛使用的几种折纸图案 miura-ori、square twist、diamond origami 和

waterbomb origami 每个顶点处分别有四条、五条、六条折痕，对应于空间 4R，

5R 和 6R 机构，即 Bennett 机构，Myard 机构和 Bricard 机构。这些机构属于一类

特殊的空间机构，根据 Kutzbach 准则，这类可动机构的自由度值小于 1，被称为

过约束机构。这类机构必须满足特定的几何条件来保证其的可动性。在我们的研

究过程中，首先发现四条、五条和六条折痕的单顶点折纸图案运动学等价的空间

4R、5R 和 6R 空间机构所要满足的几何条件，然后扩展到多顶点的折纸模型，从

而保证厚板模型与零厚度的折纸模型具有相同的折展运动。由于构建的厚板模型

与零厚度模型具有相同的运动学特性，因此根据本文的方法可以直接参照现有的

零厚度模型构建出厚板模型。 

 提出的这种使用空间过约束机构来构建刚性折纸厚板模型具有通用性，并且

实现了厚板折纸模型与零厚度折纸模型的运动等价性，即所使用空间过约束机构

能够匹配球面机构的运动。为了实现运动的匹配，空间过约束机构与球面机构的

角度条件必须相同，通过三维模型和解析法可以完成证明。由于厚板模型与单自

由度的空间过约束机构是一一对应的，可以表明厚板折纸模型都是单自由度的，

具有方便控制结构折展状态的优点。而五条折痕和六条折痕的单顶点图案的零厚

度模型分别具有 2 自由度和 3 自由度，它们所构成的多顶点模型自由度会更多更

复杂，但是当构造出对应的厚板模型后，整个结构的自由度降为 1，使这类折纸

结构更具实用性。 

本文主要展示了我们在构建可动球面四杆机构网格和刚性折纸领域的工作，

主要包括下面三个方面： 

（1）提出构建可动球面机构网格的方法。基于拓扑结构对称性，用四个完全

相同的球面四杆机构构造出可动的球面机构网格，提出了三种装配形式，双重对

称装配方式、对称装配方式和旋转对称装配方式。在球面四杆机构运动学分析的

基础上，将上述装配方式进行拓展，使用几何参数不同的球面四杆机构来实现可

动球面四杆机构网格。根据球面机构网格与刚性折纸间的关系，讨论刚性折纸，

并提出了一种新的刚性折纸图案。 

（2）探讨山谷线排布对折纸图案的刚性可折叠性的影响，以及用刚性折纸图

案构建负泊松比超材料。我们分析了 double-corrugated 折纸图案。将折纸图案的

基本单元等效为球面四杆机构网格后，再利用机构运动学协调条件对折纸图案是

否为刚性进行判定，指出山谷线排布对折纸图案的影响。然后对 double-corrugated

折纸图案采用不同的山谷线排布，得到不同的刚性折叠形式，再将这些折纸图案

多层堆叠后得到具有不同负泊松比的超材料。Square-twist 折纸图案是 double-

corrugated 折纸图案的特例，因此也对其进行了分析。 

（3）提出新型厚板折纸理论。不同于传统理论使用球面机构来分析和利用刚
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性折纸技术构建可展结构，我们用 Bennett 机构、Myard 机构、Bricard 机构等空

间过约束机构来建立厚板折纸模型，解决了传统理论无法避免的板件干涉问题，

使折纸技术更具实用价值。同时，我们也证明了利用新理论构建的厚板模型与传

统模型具有运动学上的等价性，意味着只要符合完全可折叠的刚性折纸图案都可

以使用新理论构造出厚板模型。 

 本文系统地研究了使用球面四杆机构网格和刚性折纸来构建可展结构的理

论，并展示了如何用刚性折纸构建具有负泊松比的超材料。为了挺高可展结构的

性能，本文未来的研究工作还可以通过下列方面进行探索： 

（1）去掉可动球面四杆机构网格的拓扑结构具有对称性这一预设条件，使用

更加一般的方法来构建可动球面四杆机构网格，从而发现更多可行的装配形式。 

（2）利用本文提出的构造可动球面机构网格的方法和球面机构与刚性折纸

间的联系，我们可以构造九宫格状的折纸图案。在以后的工作中，可以利用这些

基础图案在多个方向上几何覆盖，从而得到更大尺寸的折纸图案。 

（3）对负泊松比超材料的力学特性进行分析，探索出更多的工程实际应用。 

（4）利用厚板理论设计出新型太阳能阵列、星载天线等其他太空应用领域所

需的可展结构。 

（5）进行受力分析和优化设计参数，使基于刚性折纸技术的可展结构获得更

高的性能，例如，更大的折展比、结构的展开更易驱动、展开和折叠过程具有更

高的可控性等等。 
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