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ABSTRACT

In this thesis, we explore the possibilities of constructing mobile networks of
spherical 4R linkages, present the analysis of rigid origami patterns, and propose a

kinematic synthesis for rigid origami of thick panels.

This thesis is to analyse the kinematic properties of spherical 4R linkage firstly.
According to the symmetrical characters, we build three types of mobile assemblies of
four identical spherical 4R linkages, i.e., the rotational symmetric type, the plane
symmetric type and the two-fold symmetric type. Combined with the kinematic of
spherical 4R linkage, the compatible conditions of these mobile assemblies are
proposed. As the geometric parameters of the linkage are changed, the input-output
relationships between the kinematic variables changes accordingly, we choose sixteen
special alternative relationships to modify the compatible conditions of the assemblies.
According to the new compatible conditions, the mobile assemblies of four different

spherical 4R linkages are derived while the kinematic compatibility is always kept.

Furthermore, rigid origami is a subset of origami and there is no exception for rigid
origami where the sheet can neither be bent nor stretched except rotation about creases.
With the paper treated as links and the creases as joints, thus the rigid origami pattern
is a kind of network of spherical linkages. In order to get new rigid origami patterns by
referring to mobile assemblies of spherical linkages, the further geometric condition
should be added to make sure that the paper facets are flat. The tessellation of these
assemblies gives larger scale origami patterns. This thesis not only provides the
solutions for the mobile assemblies of spherical 4R linkages, but also shows the
feasibility to design rigid origami patterns by studying the kinematic compatibility
condition of spherical 4R linkage assemblies.

When projecting the mobile assembly of four spherical 4R linkages on the flat plane
to get rigid origami patterns, there are two possibilities for the folding creases, the
mountain fold and the valley fold. Besides geometric design parameters, the mountain-
valley fold assignments also affect the rigidity of flat foldable origami patterns. This
thesis proposes a kinematic method to analyze rigidity and explores different rigid
tessellations of the double corrugated patterns. By stacking a number of those
tessellation patterns layer by layer, as a result, some types of 3D metamaterial are

generated. When the single unit in the metamaterial folds and extends following the

1
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rigid motion, there will be a large deformation on the metamaterial. And due to the
kinematic property of the single unit, the whole metamaterial exhibits negative
Poisson's ratios in two directions. And the kinematics of the pattern's folding dominates
the metamaterial's structural mechanics. Metamaterials with negative Poisson’s ratios
are invented whose deformation during the folding can be greatly changed by different
mountain-valley assignments. The square-twist pattern and its metamaterials are also

discussed to show the generalization of this method.

Origami patterns are commonly created for a zero-thickness sheet. To apply them
for real engineering applications where thickness cannot be disregarded, various
methods were suggested, almost all of which involve tampering with idealised fold lines
and their surrounds whereas the fundamental kinematic model where folding is treated
as spherical linkages remains unchanged. This thesis establishes a novel and
comprehensive kinematic synthesis for rigid origami of thick panels that is capable of
reproducing motions kinematically equivalent to that of zero-thickness origami. The
approach, proven to be effective for single and multiple vertex origami consisting of
four, five and six creases, can be readily applied to engineering practices involving

folding of thick panels.

KEY WORDS: Spherical 4R linkage, Rigid origami, Mountain-valley assignment,

Metamaterial, Overconstrained linkage, Thick origami
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Chapter 1 Introduction

Chapter 1 Introduction
1.1 Background and Significance

Deployable structures are structures that have the ability to transform themselves
from a small closed or folded configuration to a much larger or deployed configuration,
so that they have a compact form for, e.g., transportation or storage, but can then expand
for their final use!'. Simple examples include umbrellas or tents, but more highly
engineered deployable structures are used in inhospitable environments. A good
example is the use of booms, solar arrays and antennas on spacecraft, metamaterial of
absorbing energy. Thus, architectural engineers, mechanical scientists and many
researchers in different fields are working on it.

Many mechanical engineers have invented large number of novel mechanism to
constitute a network, then to achieve the deployable structures, such as network of
angulated scissor-like beam pairs, Bennett linkages, Bricard linkages, etc. These
structures are based on planar mechanism and spatial mechanism. However, spherical
mechanism is rarely used in discovering new structures. As the names imply, a spherical
mechanism is a mechanical system in which the bodies move in a way that the
trajectories of points in the system lie on concentric spheres. The rotational axes of
hinged joints that connect the bodies in the system pass through the center of these
spheres. The spherical 4R linkage is a kind of spherical mechanism which has 4 revolute
joints in this system. It has only one-DOF. For instance, Hooke's universal joint is a
spherical 4R linkage. The single spherical 4R linkage is widely used in manufacturing
industry, network of spherical 4R linkages is hard to constructed because this is a

overconstrained system.

On the other hand, origami is the traditional art of paper folding, which started in
the 17" century AD and was popularized in the mid-1900s. Ori means "folding", and
gami means "paper". Generally, the paper has deformation or bend during the folding
process. However, there is a special kind of origami, Rigid Origami, which has a
quadrilateral mesh surface. Every facets of it is rigid and only rotate around the crease,
such as Miura-ori and eggbox patterns. This deployable structures without relying on
flexible materials can be built from rigid or thick material, very useful in the field of
packaging, such as satellite antenna, solar panel, shelters. Because of rigid origami’s
characteristics, we can treat the vertex with four fold lines as a spherical 4R linkage, the
paper creases act as joints and paper panels act as linkages. We can use mechanism
theories to analyze rigid origami problems and the rigid origami patterns offer us
examples of spherical 4R linkages’ network. So, the rigid origami patterns are actually
the network of spherical 4R linkages in the view of mechanism engineers, such as
Miura-ori, eggbox patterns, etc.



Doctoral Thesis of Tianjin University

Research in the field of deployable structures focuses on the construction of planar
mechanisms. As the space techniques develop rapidly, the deployable structures in
satellites require larger deploy-fold ratios and complex shapes to achievement more
functions. Furthermore, in order to make it easy to control the folding process of
deployable structures, its corresponding mechanisms should be one degree of freedom
(DOF).

The planar mechanisms have limits to satisfy all these requirements. As spherical
linkages and overconstrained spatial linkages have the characters of one-DOF and
spatial shapes, they have the application potentials for these fields, but it is a big
challenge to propose the compatible conditions of tilling these linkages to constituting
large mobile structures. Referring to the mobile networks of spherical linkages, new
rigid origami patterns and their folding processes can be obtained, and more origami-
based metamaterials will be proposed. In return, the known rigid origami patterns give
inspirations for building mobile networks and deployable structures. Origami patterns
are commonly created for a zero-thickness sheet, for real engineering applications
where thickness cannot be disregarded, new kinematic model of origami need to be
proposed.

1.2 Review of Previous Work

1.2.1 Linkages and Kinematic Notations

The mechanisms to be discussed here are formed from a succession of rigid parts
coupled end to end to form a single closed chain. This single closed chain is called a
linkage, the individual component of it is called link. The connection of two adjacent
links is a joint. It includes spherical joints, planar joints, cylindrical joints, screw joints,
revolute joints, prismatic joints. Our attention is the system constituted only by revolute
joints. This joint allows one-DOF rotation about its axis.

An approach to the problem of rationalizing kinematics into a science by means of
a symbolic language was proposed by Denavit and Hartenberg in 1966[2. The
coordinate systems, geometrical parameters and variables related to the links connected
by revolute joint are shown in Fig. 1-1. Here, a;;+1) is the shortest distance between axes
z; and z;+1, also referred as length of link i(i+1). R; is the distance from link (i-1)i to
link i(i+1) positively about z;, also referred as offset of joint i. And ) is the revolute

variable of the linkage, which is the angle of rotation from x;.; to x; positively about z;.
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A

Figure 1-1 Coordinate systems, parameters and variables for two adjacent links connected by
revolute joints.

In this method, they pointed out that for a closed loop in a linkage, the necessary
and sufficient mobility condition is the product of the transform matrices equals the unit

matrix, i.e.,

T,T,T,..T, =1, (1-1)

where T is the transfer matrix between the system of link (i-1)i to the system of

i(i+1)
link i(i+1), if i+1 > n, i+1 is replaced by 1.

cos, —cosq,,,,sinf, sing,,, sin6,  a,,, coso,

i(i+1 i(i+1
_|sin@  cosq,,, cos6, —sing,,,, cost, a,,sinb
i(i+) 0 . R (1‘2)
SN, COS & ;) i
0 0 0 1

Note that the transfer matrix between the system of link i(i+1) and the system of

link (i-1)i is the inverse of T, . That is

T(i+1)i = Ti(i+1)_l (1-3)

The mobility m of a system composed of n links with p joints can be determined
by Kutzbach mobility criterion!,

m=6(n-p-D+3 f (1-4)

where, Z f 1s the sum of kinematic variables in the mechanism. For an n-link closed
loop linkage with revolute joints, p=n, and the kinematic variable Z f=n, then

Eqn. (1-1) can be simplified,
m=n—=6 (1-5)
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Obviously, if the closed loop with revolute joints is mobile, i.e., m >0, the number of
links #» must be greater than 6. According to this criterion, we can not find an available

with less than seven links.

However, Eqn. (1-4) is not a necessary condition because it considers only the
topology of the assembly. There are many mobile linkages without this criterion
because of special geometry conditions!*l. These linkages are called overconstrained
linkages, e.g. Bennett linkage, Myard linkage, Bricard linkage, etc. These
overconstrained linkages only have one-DOF[> ],

1.2.2 Deployable Structure Constituting by Revolute Hinges

Deployable structures have the characteristic of transforming themselves from a
small configuration to large scale shape as we need. These magic structures' ability
attracts many engineers and scientists to devote themselves to invent new ones in
different researching areas, especially in the application such as antenna reflectors and
solar arrays on spacecraft, retractable roofs, etcl’.

The deployable structures can be classified by rigid and flexible assemblies!®!. The
rigid assemblies are the ones in which rigid elements are assembled via rigid joints.
Flexible assemblies may or may not include rigid parts or subassemblies. Several types
of flexible assemblies exist: cable-strut assemblies, tensegrity structures!®), inflatable
systems!!%), The large structures require high rigidity, so we prefer the rigid assemblies
and put our attention on the network constituted by revolute hinges.

1.2.2.1 Planer Linkages and Their Networks

A simple, plate foldable structure can be made from two sets of parallel, straight
rods connected by pivots, or scissor hinges. A scissor hinge is a revolute joint whose
axis is perpendicular to the plane of the structure. The Hoberman’s invention of the
simple angulated element in Fig. 1-2(a), consisting of a pair of identical angulated rods
connected together by a scissor hinge, extends this type of structure. The angle «

follows « = 2arctan EF/ AF . It is obvious that o becomes a constant because the

length of EF and AC does not varies in a scissor hinge. So, the assembly is still mobile
if we assemble the scissor hinges in the circumferential direction to achieve an radially
retractable plate structure showing in Fig. 1-2(b)!!-13],

Based on Hoberman’s general scissor joint, You and Pellegrino had discovered a

14.15] The shape of the assembly is not necessary to be a

family of mobile assemblies!
circle. We can use the scissor joint to get more shapes as we need. Consisting a series
of scissor joints can also make a planar closed loop which is made of a serious of loop
parallelograms. Whether the number of intersecting scissor-like pairs is even or odd,

the assembly is mobile if it is satisfied with the conditions in 1],
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Figure 1-2 Plate foldable structure, (a) basic component of scissor hinge with a constant angle of

embrace, (b) a model of retractable structure.

The deployable structures based on scissor joints have two-dimension shapes.
The two-dimensional solutions are easily extended to three-dimensional solution onto
a surface with the required shape, see Fig. 1-3(a). During this process each angulated
element becomes curved out of its plane, all hinges of scissors must be parallel to the
direction of projection in order to maintain the same freedom as in the two-dimensional

structurel 6],

Another way to creating three-dimension shape by using scissor joints is to use
more interconnected plate structures!!’l. We consider two such identical plate structures
positioned above one another, which are to be rigidly connected. Note that the bottom
layer of the top structure is connected to the top layer of the bottom structure, as the
adjacent structures have the identical motions. The model is shown in Fig. 1-3(b).

In the past, deployable structural mechanisms made from pantographic elements of
straight struts could form only certain shapes because of restrictions imposed by
geometric compatibility conditions, which prohibit the concepts from being used in
applications such as antenna reflectors where nodes of the structure usually lie on a
parabolic surface. Considering a parallelogram element made of two pairs of struts with
a pivot in the middle, a model with curved profile is made by Youl'®!.

5
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Figure 1-3 Three-dimension shape structure based on scissor joints, (a) two configurations of a

two-dimensional foldable structure, projected onto a curved surface, (b) expandable spherical
structure.

1.2.2.2 Overconstrained Linkages and Their Networks

The planer 4R linkage is the most common 4R loops, the rotation axes of this
linkage are all parallel. Spherical 4R linkage is a kind of four-bar linkage in which all
the links are connected by rotation joints. The joint axes intersect at a single point and
the links move on concentric spheres !'°]. A model of this linkage is shown below and

it has four design parameters, «,,, @,;, @;,, Q, . The conditions of this linkage are

Ay =y =y, = a,, =0,

1-6
R =R =R =R, =0. (1-6)
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Figure 1-4 A spherical 4R linkage.

Besides of these planer and spherical linkages, the 4R closed loop linkages are
usually not mobile. The Bennett linkage is the only one exception and shown in Fig. 1-
5 29 Tts geometric conditions in the DH coordinate systems are,

a, =04y =4,

(1-7a)
ay =a, =b,
a, =0, =0, (1-7b)
Ay =0y = f,
R =0(i=12,3,4) (1-7¢)

In order to have mobility, the lengths and twists of this linkage should satisfy the

condition

sina _sinf3 (17d)

a b

The kinematics of this linkage are [*!]

0+6, =2r,

6,+06,=2r,

tan—L-tan 2 =— 2
2 2 n % ;alz

Connecting two similar Bennett linkages together with only revolute joints has
been achieved(?"> 2%l The assembly has only one-DOF and has been verified. Further,
the network of Bennett linkages is used to form large structural mechanisms and

7
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possible to achieve the highest expansion ratio>*2*], Regular polygonal linkages and
regular polyhedral linkages can also be constructed by assemblies of Bennett loops!?®!,
The Bennett linkage even can be used in nanoscale geometries for programmable

motion of DNA origami mechanisms!?”),

Figure 1-5 Bennett linkage.

Some spatial 5R linages are proposed by Myard and Goldberg 2% 21, All these
linkages are based on Bennett linkage. By connecting two Bennett linkages together
and taking out the common links, the remaining composite loop is the overconstrained
SR linkage. Myard linkage is a plane-symmetric SR linkage constituted by this
technique in Fig. 1-6(a) and its geometric conditions are

T
Oy3 = 0ys = Ea
1-9a
U5 =TT — Ay, ( )
Q3 =7 =20,
ay, =0,a, =as;,a,, = a,,
sing,, sinay, (1-9b)
a, ds,
R =0 (i=12,3,4,5) (1-9¢)

According to the process of constituting the SR linkages, Myard linkage can be treated
as the connection of two Bennett linkages a and b, some limits of geometric conditions
can be ignored, an extended Myard linkage is obtained and shown in Fig. 1-6(b)!*%). Its
geometric conditions are,
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m _ .om _ .m _m _ _m __ Jm
ay, =ay =a",ay; =a, =b",
’n_ m_ m m_ ’n_ m

O =0 = ,(123—0(41—ﬂ ’ (1_10)

sing” _ sin §"
a” b

Where m =a or b.

Liu and Chen have presented a way to build deployable assemblies using the Myard
linkage!®!). A family of mobile assemblies of Myard linkages with one-DOF has been
developed. These assemblies can be used as large scale deployable structures which
deploy to a planar configuration and fold to a compact bundle!*?!,

Figure 1-6 Original Myard linkage and extended Myard linkage, (a) Myard linkage, (b) extended
Myard linkage.

The first spatial 6R overconstrained linkage is the Sarrus linkage 33!, This linkage
has two limbs, each limb has three parallel joints. Connect two spherical 4R linkages or
one spherical 4R linkage and one planer 4R linkages, remove the common joints, give
the Bennett 6R hybrid linkage [*¥1. Combining Bennett linkages produces the Goldberg
6R linkages 2%, In the process of finding deployable polyhedrons, Bricard proposed six
distinct types of mobile 6R linkages 337, The geometric conditions of these six cases
are as follows.

(1) the line-symmetric case,
Qp = Qys,Qy3 = Q56,03 = Ay
Ay = Qs Ay = O, Uy = Ay (1-11a)
R =R,,R, =R;,R; =R,

(i) the plane-symmetric case,
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Qy =g yy = s Ayq = Ays,
Oy + 0y =T, 0y T Usg = T0,005, + 0y = 7T, (1-11b)
R =R, =0,R,=R,=0,R, =R,

(i11) the trihedral case,
2 2 2 2 2 2
a, Ty, +as, =ay +a,+4ag,
T 3

Oy =0y =0y :E’azs =05 = Qg :77 (1-11¢)

R =0 (i=12,-,6),

(iv) the line-symmetric octahedral case,
A, =0y =0y =0y = A, = A,
12 23 34 45 56 61 (l-lld)
R+R, =R, +R.=R,+R, =0,

(v) the plane-symmetric octahedral case and
Ay =0y, = Ay = Ay5 = dsg = ag, =0,
sina sina
R=——*—R,RR=——"——"R,R,=-R,
sin(a,, +a,,) sin(a,, +a,,) (1-11e)

sin o, sina;

1’R6:

T sin(a,s + o) sin(a,s + o) ,

(vi) the doubly collapsible octahedral case.
o
1737 s 2 Yy g = U
By using the combinations or derivatives of these six basic Bricard linkages, the
other linkages are proposed. The Schatz linkage discovered and patented by Schatz is
used for the Turbula machine and is derived from a special trihedral Bricard linkage!*®!,
Three-fold symmetric Bricard linkage has three planes of symmetry and is a particular
type of the plane-symmetric case. As the linkage can be folded completely to a bundle
and expanded to a planar equilateral triangle, this particular feature makes the three-
fold symmetric Bricard linkage a good choice as the basic mechanism for the
construction of deployable structures as shown in Fig. 1-78%. One-DOF single-loop
mechanisms with two operation modes can be proposed by combining two

overconstrained linkages!“".,

10
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Figure 1-7 Model of a network of three-fold Bricard linkages.

1.2.3 Origami

In order to fold a large scale membrane into a smaller size one, the traditional art,
origami, is a suitable technology for this application. The origami pattern can be folded
by human hands, robot!*!l, memory alloy actuator*?), even cells!*}!. Rigid origami is a
special branch of origami which is concerned with folding structures using flat rigid
sheets joined by hinges. Besides of facet origami, origami is also used to fold a
patterned cylinder to achieve the deployable structures. The cylinders are classified by
two rigid assemblies and flexible assemblies. The panels of these rigid assembly
cylinders are rigid without deformation.

The facet origami and cube origami are both widely applied in the area of
packaging!*!l, such space antennas!*> 461 solar panel arrays!*’l, energy absorbing!*3: 41,
sandwich structures!®"], folded shell®'->3], sunshield for space telescopes>¥, etc.

1.2.3.1 Facet Origami Pattern

The surfaces constituted by quadrilaterals are our interests. Origami is a
mathematical process giving a flat piece of paper appropriate folds and vertexes joining
several folds, which results in a polyhedral surface. Koryo Miura [*3 has studied a cured
surface by means of the fundamental magnitudes of the first order and the consequent
Christoffel symbols and Gaussian curvature.

In rigid origami, the transformation of a piece of paper does not include any
extensional deformation during the folding process, so the Gaussian curvature K is zero
which is the conditions of rigid origami.

Thomas Hull ¢ has showed a more simpler method to judge a pattern which is
rigid or nonrigid. The preliminary judgment can be completed by it. Creases are
classified by two types, mountain crease and valley crease. As Maekawa and Justin's
theory says, in an origami pattern, mountain crease is convex and its number is M,
valley crease is convex and its number is V. The relationship between M and V" should
satisfies,

M-V =42 (1-12)

11
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For a flat-foldability pattern, As Kawasaki and Justin's theory tells, let v be a vertex
of degree 2n in an origami crease pattern and let «,,..., @,, be the consecutive angles

between the creases. Then the creases adjacent to v will fold flat if and only if

a—a,+a;——a,, =0 (1-13)

Origami is an art of folding paper. It has gained popularity among scientists and
engineers recently as the origami technique can be utilised to create shape-changing
structures. Rigid origami is a restricted form of origami where any deformation of the
paper (or panel) is prohibited except their rotation about the creases, such as Miura-ori
pattern which is from unfolding tree leaves!®”). Rigidness judgement of origami patterns
are necessary for the application of this technology. Diagram method and numerical
method which can choose the rigid foldable patterns are proposed by Watanabe and
Kawaguchi %, Tachi pointed out that a rigidly foldable origami pattern can be

1. The quaternions and dual

generalized to find a valid three-dimensional state |
quaternions are used to modelling rigid origami [*’l. By treating the paper as links and
the creases as the joints, kinematics theories can be used to analyse the rigidity and the

s [61,62

folding motion of origami pattern 1. The Bar and hinges models are also used to

analyse origamil®*!,

1.2.3.2 Cylinders by Rigid Origami

Some folding patterns in cylindrical shells has been developed by Nojima [%4. By
his method, a pattern in cylindrical shell is been built according to the given spiral

651 also design several origami patterns to fold one

configurations. Wang and Chen !
piece of flat paper into closed patterned cylinder. The patterned cylinder formed by their
method is a static structure without further flat foldability same as the Nojima's. This
kind of cylinders can be used to design the deployable mast in the space engineering.
As this is a static structure, the mobility is based on the material's flexibility. A model
made by Guest is shown Fig. 1-8(a) [®’l. By covering the origami cylinder by Ecoflex
as shown in Fig. 1-8(b), the composite structures are used as pneumatic actuators and

they are inexpensive, simple to fabricate, light in weight and easy to actuate [*7),

When the structure is made by shape memory alloy foil, a self-deployable origami
stent grafts with the biomedical application has been obtained [%®. This deployable
structures will be more useful for minimum invasive surgery, such as vascular surgery
using an endoscope. The experiment is shown in Fig. 1-9. This cylinder is from rigid
origami. Unlike Guest's model, the plane of this structure has no deformation and is
rigid. However, its degree of freedom is more than one.

12
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Figure 1-8 Origami cylinder structure, (a) folding of triangulated cylinders, (b) origami cylinder
actuator.

() N B s s s s~ 21N ’

as

Figure 1-9 Origami tent, (a) design of the cylinder, (b) self-deployment of the tent.

13
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Comparing with the flexible foldable cylinders or the multi-DOF cylinders, rigid
foldable cylinders with only one-DOF has better controllability. We can accurately
control the processing of their deploying or folding because their facets have no
deformation and the control algorithm is simple as they have only one-DOF. Because
of the overconstrained conditions, not many cylinders are found. A kind of one-DOF
cylindrical deployable structures with rigid quadrilateral panels is proposed by Tachi
and is shown in Fig. 1-10(a) > 7 The cross sections of Tachi's cylinders are
parallelograms or zonogons. Liu and Chen have found some novel patterns and Tachi's
is the special case of their "', The cross section of Chen's basic cylinder is kite in Fig.
1-10(b). The axis of Chen's tubes can be a straight line, i.e., the cylinder or not. Another
star-polyhedron cylinder with a synchronized motion "% 73 is in Fig. 1-10(c). All these
cylinders have three characteristics, flat-foldable, rigid-foldable and one-DOF. The
shape flattens into a compact 2D configuration, each element does not deform
throughout the transformation, and the mechanisms have exactly one degree of freedom.

Figure 1-10 Rigid-foldable cylindrical structures.

1.2.3.3 Thick Origami

When the origami vertex has to be flat-foldable, the intersection problem can not
be avoided. There are many thick folding techniques proposed. By shifting hinges out
of plane of the origami pattern, the material thickness will be accommodated. The
method is shown in Fig. 1-11(a) 4. The method is only suitable for the simple zig-zag

14
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pattern. The kinematics of thick origami model is different from its corresponded zig-
zag origami pattern. The offset panel technique is shown in Fig. 1-11(b) "), The hinges
of thick model and the origami pattern creases have the same position. The thick panels
are out panel of the origami facets. The thick model and the origami pattern have the
same folding process. Volume trimming is another method to avoid the material
intersection in the folding process of the thick model 781, A kind of volume trimming
method is shown in Fig. 1-11(c).

These methods though often result in surfaces that are either not entirely flat or
with openings to accommodate thickness. There are only two exceptions. One is a
technique introduced by Hoberman to fold the Miura-ori "7l in Fig. 1-12(a), and the
other by De Temmerman for the diamond origami pattern 78! Fig. 1-12(b). In both of
them, all of the folding lines do not meet at a point, and thus, the vertices no longer
exist. This indicates that their folding cannot be simply treated as the motion of
spherical linkage assemblies.

(a)

Figure 1-11 Current methods for thick panel origami based on zero-thickness model, (a) hinge
shift method, (b) panel offset method, (¢) volume trimming method.

15



Doctoral Thesis of Tianjin University

Figure 1-12 Thick panel model, (a) thick panel model of miura-ori pattern, (b) thick panel model
of diamond pattern.

1.2.3.4 Origami Application

Origami has probably the widest application potential in engineering structures
ranging from solar panels, space antenna reflectors, air craft wings to robots. This
technique also gives inspiration for designing new metamaterials!’*-8!1,

Space missions require ultra-low-mass and large space plateforms or structures,
such as antenna and solar panel arrays. Koryo Miura presents a new concept of packing
and deployment of large membranes in space by using origami technique %21, A solar
panels arrays based on Miura-ori pattern has been launched and tested in orbit as shown
in Fig. 1-13 B3] Origami-type structures have large fold-deploy ratios. A deployable
solar array for space application with a ratio of deployed-to-stowed diameter of 9.2m is
designed in 84, This model is demonstrated in hardware as a 1/20™ scale prototype.

Origami can fold paper into complex 3D shapes, this technique helps to use this 2-
D fabrication method to build 3D robotic systems. A self-folding robot with embedded
electronics is designed in Fig. 1-14(a) 351, A similar self-folding robot is controlled by
an alternating external magnetic field as shown in Fig. 1-14(b), it can walk, swim and
degrade 361, Besides design new patterns, some traditional patterns are also useful for
building robot systems. E.g., the famous waterbomb pattern has been used to design
parallel robot®”], worm-like robots[®® 8, the floating equipment of aerial vehicles ],
or the deformable wheel of a robot P!,
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Figure 1-14 Origami robot, (a)electric drive robot, (b) magnetic drive robot.
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By stacking many layers of the famous Miura-ori pattern, a metamaterial is
proposed in Fig. 1-15 [°?], This metamaterial provides negative Poisson’s ratio for both
in-plane and out-of-plane deformations, and is used as the core for blast-resistant
sandwich beams [°*). The Poisson’s ratio and the bending stiffness of the miura-ori
pattern are also analysed in . By adding defects in the original miura-ori pattern
structure, this mechanical metamaterial can be reprogrammable [*>. Besides the
periodic Miura-ori pattern, a non-periodic Ron Resch pattern has unusually strong load
bearing capability which can attribute to build mechanical metamaterials ). The rigid
origami tubes also can be used as the basic units to construct metamaterials 71,

(1901 the single vertexes in

Besides of to design metamaterials, the square-twist pattern
[101

miura-ori pattern [1°!) and waterbomb pattern [!%? can be used to multistability structures.

Figure 1-15 Miura-folded metamaterial.

1.3 Aim and Scope

This thesis is to explore the possibility of constructing mobile mechanism using
spherical 4R linkages and use mechanism theory to analyse rigid origami problems.

In this process, we first analyse the kinematics of spherical 4R linkage and build
three cases of mobile network of four spherical 4R linkages, i.e., two-fold symmetric
case, symmetric case and rotational symmetric case, then we generalize the conditions
of these mobile networks. According to the relationship between spherical linkages and
rigid origami, we use the kinematic compatible conditions to present the effect of
mountain-valley fold assignments on the rigidity of flat foldable origami patterns.
Finally, we propose a novel and comprehensive kinematic synthesis for rigid origami
of thick panels.

18
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1.4 Outline of Thesis

This thesis consists five chapters.

Chapter 1 presents a brief review of existing works. It includes the mechanism
theory for analyzing the linkages, the compatible condition for closed loop linkages and
the deployable structures constituting by revolute hinges. As origami is a special
technique for design deployable structures, its definition and applications are also
introduced in this chapter.

Chapter 2 is aiming to develop a family of mobile assemblies with spherical 4R
linkages and form the corresponding rigid origami patterns. The kinematics of spherical
4R linkage will be studied firstly. It is followed by the one-DOF mobile assemblies of
four identical or different spherical 4R linkages. Based on these mobile assemblies, their
corresponding rigid origami patterns are proposed.

Chapter 3 proposes a kinematic method to study the effect of mountain-valley fold
assignments on the rigidity of flat foldable origami patterns. Here the double corrugated
pattern is taken as the study case firstly. Based on the kinematic models of spherical 4R
linkage (S4R) assemblies, the analysis on the rigidity of its basic units is conducted.
Then the tessellations of the double corrugated patterns and their metamaterials are
explored. The square-twist pattern and its metamaterials are also discussed to show the
generalization of this method.

Chapter 4 describes the construction process of thick panel origami models for
four-crease origami vertex by using Bennett linkage, five-crease origami vertex by
using Myard linkage, and six-crease origami vertex by using Bricard linkage. The
kinematic equivalent of the thick panels model and origami vertex has been proved.
Thick panel models for multi-vertex patterns by this technique are also presented in this
chapter.

Chapter 5 makes a conclude of this whole thesis and shows the future research
works.

19
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Chapter 2 Network of Spherical 4R Linkages

2.1 Introduction

A spherical 4R linkage has four revolute axes which must intersect in a single point
to provide one degree-of-freedom (one-DOF) rotational movement. The trajectories of
these links lie on concentric spheres as shown in Fig. 1-4. Due to its one-DOF mobility,
the spherical 4R linkage has been used as basic element to construct other mechanisms,
such as Hooke’s linkage or universal joint, double Hooke’s linkage %!, Bennett hybrid
6R linkage!*¥, and so on. Most of the previous research focused on the single spherical
4R linkage or the combination of two such linkages. Recent research attempted on the
mobile assemblies of spherical 4R linkages, which could involve unlimited number of
identical or similar spherical 4R linkages.

In this chapter, we are aiming to develop a family of mobile assemblies with
spherical 4R linkages and form the corresponding rigid origami patterns. The layout of
this chapter is as follows. Firstly, the kinematics of spherical 4R linkage will be studied
in section 2.2. Section 2.3 derives the one-DOF mobile assemblies of four identical
spherical 4R linkages. In section 2.4, by considering the kinematic characteristics of
spherical 4R linkages, the assemblies of four different spherical 4R linkages are
proposed. Based on the assemblies in section 2.3 and 2.4, section 2.5 is devoted to
design corresponding rigid origami patterns. The conclusions and discussion in section
2.6 end this chapter.

2.2 The Kinematics of Spherical 4R Linkage

For spherical linkages, the distances between adjacent links are zero because the
axes of revolute joints meet at a point, and thus Eqn. (1-1) reduces to

Q.,Q,-Q, =1, (2-1)
where
cos 6, sin 6, 0
Qjrty =| —COS Ay, -SING, COSEy(;,) COSH,  sing,,
sing,;,,,-sinf,  —sina,,,,-cos6, cosq,,,,
There is
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cos, —cosq,,, -sinf,  sing,,, -siné,
_ 71 _ . .
Q(i+1)i - Qi(i+1) =| s 01 COs &;;,y) " COS 61 —SIma;;, ;) - COS Hz
0 sina .., CoS &y,

(2-2)

Eqns. (1-1) and (2-1) have been used to obtain closure equations in all of the subsequent

derivations.

For spherical 4R linkage, Eqn. (2-1) can also be written as
Q,Q, =0Q.,Q,

(2-3)

because of Eqn. (2-2), which amounts to a total of nine equations. Note that the
kinematic twists (angles) under DH notation can be made to be identical to their
respective sector angles for any the spherical linkage. The relationships between
kinematic variables ¢ and @, (i=l,2, 3, 4) can be obtained,

cosa,, -sina,, -sine,, -cos b, + cos o, -sina,, -sin ,, - cos 6,

+cosq,, -sina,, -sina,, -cos g, -cosd, —sina,, -sina,, -sin g, -sin 6,

+c0sa,, —Cosa, - COSQ,, - cosa,, =0;

cos a,, -Sina,, -sina,, - cos &, +cos &, -sin a,, -sin a;,, - cos b,

+cosa,, -sina, -sina,, -cos g, -cos @, —sina, -sina,, -sin b, -sin G,

+C0Sa,, —COSQ, - COS Ay, -Cosay, = 0;

cosa,, -sina,, -sina;, -cos @; +cosa,, -sina;, -sina,, - cos 6,

+C0S &y, -Sina,, -sina,, -cos &, -cos 6, —sina,; -sina,, -sin g, -sin G,

+COS &), —COS &, - COS Ay, - cOs ;= 0;

cosa,, -sina,, -sina,, -cos, +cosa;, -sina,, -sina,, -cos 6,

+cosa,, -sina,, -sina,, -cos @, -cos & —sinq,, -sina, -sin G, -sin 6,

+cosa,, —cosa,, -cosa, -cosa,, =0;

which can be represented as

COS ;1) ig2) "SM Ay, ~SIN

+COS ;) *SIN Q1) *SIN A 1,112, " €OS O,

+008 ., *Sin g, -sina,

(i+1)(i+2)

—=SINQ;, )4, SIN, ), -SING, -SIN G,

(-1 €080, -cos 6,

-cos 0,
i+l
i+1

i+1

+CoS OC(I-+2)(I-+3) —COS ai(i+1) -COS a(i+1)(z‘+2) -COS a(i_l)i =0.

And later, we will use 4

mobile assemblies.
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i = fien(6,) to present this relationship in the analysis of
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By changing the link twists o, into «,;, 7-a,, -7+a,, Or ~a

s there are
y

jo
256( =4x4x4x4 ) variations on the geometric parameters for each spherical 4R
linkage.

Similarly, for each kinematic variables @, there are four variations, ie., 6,
-6, —r+0 and —@. Ifthe basic relationship between two adjust joints' kinematic
variables is @, v.s. 8,,, there are totally 16(=4x4) types of different relationship Ri

by combining the four variations in a single kinematic variables, as shown in table 2-1.

Table 2-1. Relationships between ¢, and @,

Types Relationships
Rl 6, vs. 0.,
R2 g vs. (7-6,,)
R3 0, vs. (-7 +6,,)
R4 0, vs. =0,
RS (7=6) v.s. 0,
R6 (7=6) vs. (1=06,,)
R7 (7=6) vs. (-7 +06,,)
R8 (t=6) v.s. -6,
R9 -6, vs. -0,
R10 =0, vs. (-7+0,,)
R11 =6, vs. (7-6,,)
R12 =0, vs. 0,
R13 (—7+6) vs. -0,
R14 (~7+6) vs. (-r+6,,)
R15 (-7+6) vs. (1-6,,)
R16 (-7+6) vs. 0,
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For example, taking the spherical 4R linkage with the geometric parameters ¢,
a,,, Q;, or a, asthe basic geometric condition, a variant spherical 4R linkage can
be obtained, when

/ ! ! !
Ay =y Apy =TT =03y Ozy =TT =0y, Ay =0y, (2-6)

By substituting (2-6) into (2-4), we can get
cos(7 —a,;)-sina,, -sing,, -cos g
+cosa,, -sing,, -sin(z —a,; ) - cos b,
: : !’ !
+cosa,, -sin(r —a,;)-sina,, -cos 8, -cos G, (2-7a)
—sin(zr —a,,)-sing,, -siné/ -sin G,

+cos(r —a,,)—cosa,, -cos(m —a,;)-cosa,, =0;

cos(7 —ay,) -sina, -sin(z — ;) - cos 6,

+cosa, -Sin(z —a,,) -sin(z — a,, ) - cos 6;

+c08(7 — ) -sina,, -Sin(r — a,, ) -cos &, -cos & (2-7b)
—sing,, -sin(z —a;,)-siné, -sin G,

+cosa,, —cosa,, -Cos(T — ) -cos(r —ay,) =0;

cosa,, -Sin(z —a,;)-sin(z —a,,)-cos b,

+cos(m —a,,) -sin(r —ay,) -sina,, - cos b,

+cos(m—a,,)-sin(r —a,,)-sina,, -cos &; - cos 6, (2-7¢)
—sin(z —a,;)-sina,, -sin b -sin 6,

+cosa,, —cos(7 —a,;)-cos(w —ay,)-cosa,, =0;

cosa,, -sin(z —a;,)-sina,, -cos b,
+cos(r—a,,)-sinq,, -sina,, -cos g/
: : ! !
+cosa,, -sina,, -Sin(z —a;, ) -cos G, -cos b, (2-7d)
—sina,, -sin(r —a,,) -sin b, -sin f/

+cos(r—a,,)—cosa,, -cos(m —ay,)-cosa,, =0;

Comparing the basic and variant spherical 4R linkages, with the same input, i.e.,

0=0, (2-8)

According to Eqns. (2-4) and (2-7), the output is

6, =—m+0,,
0, =-0,, (2-9)
0,=7-0,.
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By considering Eqns. (2-8) and (2-9), these two sets of relationships among
revolute variables are shown in Fig. 2-1. It is shown that the relationship between 9

and 0., is central symmetric, i.e.,

fi(i+1)(_9i) = _fi(i+1)(9i) = _9i+1 (2-10)

which reveals that the geometric parameters for Ri and R(i+8) in table 2-1 are
exactly the same. So we only consider Rl to R8 in the later analysis.
We use R1 and R9 as the example to explain that the geometric parameters for Ri
and R(i+8) are exactly same. We put points (6°,6°,) and (-6/,-6.,) into (2-5),
obtain
COS Q;,1)112) " SIN Ay, -SINQ, ) COS 0’

. . 0
+C0S Oy, SN Q) *SIN A1, COS O

+COS 1,y *SIN 1100 SNy, - COS O, - COS O, (2-11a)
—siN Q10 -SIN G, -SIN G -SIN G,
TCOS & j1)i43) ~ COS Q) “ COS A 41y142)  COS iy = 0.

COS Ol 1y142) "SI Qi_py; SNy - cos(=)

+COS ), SN Q) SN,y cos(~6,)

+COS &1,y *SIN Qg SNy, - cos(~6)")-cos(-4.,) (2-11b)

. . . 0 . 0
—SIN Q1)) SNy, - SIN(=G) - sin(=F,,

+C0S Q19143 ~COS Q1) *COS Q1,119 COS &y, = 0.

After simplifying Eqn. (2-11b), we can see that Eqns. (2-11a) and (2-11b) are same,
which means R1 and R9 have the same link twist angles ¢, .

The variations of the kinematic relationships and their corresponding geometric
parameters are listed in Table Al of appendix, which can be used to vary the rotation

transmission between 6, and 6,, when geometric parameters are changed. For each

Ri, there are 16 corresponding solutions as listed in the appendix. All rest variant
linkages offer rather complicated changes in kinematic variables and are not considered
in this chapter.
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Figure 2-1 Relationship among the revolute variables of spherical 4R linkages.
(solid line: ¢, = 72/9, @,y =27/9, o, =47/9, o, =27/3.

dashline: o, =7/9, sy =77/9, a3, =57/9, a, =27/3 ")

By using Eqn. (2-6), the basic spherical 4R linkage is changed to a variant type and
the rotation transmission loop is also changed. The closed loop of rotation transmission
in the basic spherical 4R linkage is,

(6,)— (‘92)_’(03)_’(04)

T ‘ (2-12)
And that in the variant spherical 4R linkage is
(67)— (0;)—~(65)—~(6;)
‘ ’ ’ ) (2-13a)

T |
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i.e.,
(6,)—> (—n+0,)> (-0, )>(-x+6,)

T |

(2-13b)

2.3 One-DOF Mobile Assemblies of Four Identical Spherical 4R
Linkages

In order to construct one-DOF mobile assemblies with a tessellation of unlimited
number of spherical 4R linkages, a closed loop of four spherical 4R linkages is
considered first. The connection between two spherical 4R linkages is constructed
through the aligned revolute joint. For example, two spherical 4R linkages are
connected in Fig. 2-2. Link 12 of linkage A and link 14 of linkage B are connected
rigidly into one body. So are the link 14 of linkage A and link 12 of linkage B. As a
result, the joint a1 of linkage A and joint b; of linkage B are aligned into one revolute

joint with the same motion, i.e., 0 = 91” .

Figure 2-2 Assembly of two spherical 4R linkages.

To start from the simplest situation, we can set that the four spherical 4R linkages
are identical, i.e., the geometric parameters of the linkages satisfy
a b c d
U =0y =0y =0y =y,
a b c d
Oyy = Q3 = Oy = Q3 = Uy,
a _ b _ ¢ _ _d __ (2-14)
Ay =0y = Oy = 03y = Ay,
a b c d
Ay =0y = Ay = Ay = Oy,
As connection between two joints shown in Fig. 2-2, the joints with the same
subscript are assembled. For example, the rotation of joint a> of linkage A and joint b,

of linkage B are exactly the same after assembling. So the same as the joint b; of linkage
B and the joint ¢; of linkage C, joint ¢, of linkage C and joint d> of linkage D, joint d,
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of linkage D and joint a; of linkage A. Then, a closed loop of spherical 4R linkages A,
B, C and D is obtained. This is an assembly strategy corresponding to Pathl in Fig. 2-
3. Other three types of available assemblies are also shown in it.

Figure 2-3 Assemblies of four spherical 4R linkages.

The corresponding graph representations of these four assemblies are shown in Fig.
2-4. The nodes in the graph represent the joints connecting the ends of the links. The
straight lines are the axes of the joints intersecting at the dark points. The distributions
of the four spherical 4R linkages in the assemblies are shown in Fig. 2-4. The
distributions of spherical 4R linkages A and D, B and C are symmetric about the
horizontal direction in Fig. 2-4 (b). The distributions of A and B are symmetric with D
and C about the vertical direction in Fig. 2-4 (c). Because of having the same symmetric
characteristics, Path2 and Path3 are the same in fact. In summary, there are only three
assemblies available, i.e., Path1, Path3 and Path4 in Fig. 2-4.

In Fig. 2-4(a), the distribution of spherical 4R linkages C and D are the mirror of A
and B, B and C are the mirror of A and D, so we name it twofold-symmetric case. In
Fig. 2-4(c), the distribution of spherical 4R linkages C and D is the mirror of A and B
so we call it symmetric case. In Fig. 2-4(d), the distribution of four joints of each
linkages is center clockwise about the sphere center, so we name it rotational case.
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(c) (d)
Figure 2-4 Graph representation of the assemblies.

(a) Path1: Twofold-symmetric case; (b) Path2: similar as Path3; (c¢) Path3: Symmetric case; (d)
Path4: Rotational case.

Referring to Fig. 2-4 (a), an assembly of four spherical 4R linkages is shown in Fig.
2-5. The joints a; and by, b1 and ci, ¢2 and db, di and a; are respectively connected
collinearly with the same motion. The DH notation systems' property causes that
rotation angles and kinematic variables are not simply the same all the time. E.g., the
rotation angles of joints a; and b in Fig. 2-5 are equal, but 9¢ = -7 . After connecting,

we have

eza = _021)3 elb = _ch, 02C = _sza Hld = _Hla' (2'15)

In order to keep this assembly one-DOF, the kinematical compatibility conditions
must be set up. If taking ¢¢ as input, the rotational motion transfers through the

collinear joints, and back to ¢¢ at last. The transmission loop is
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(67 )05 )=—(67 )~ (67 )=—(6; )~ (65 )=—(6)~(6")

! d | e
( 01;1 ):_( 01 )
Then, the transmission loop of rotation case can be represented as
I A L L2 00))) = -0 (2-17)

Considering four linkages A, B, C and D are identical, Eqn. (2-17) is simplified as
Jo (/o (£2(0)) =-6, (2-18)

which can exist with considering Eqn. (2-10), i.e., the kinematic compatibility condition
of twofold-symmetric case is satisfied.

Figure 2-5 Twofold-symmetric case of four identical spherical 4R linkages' assembly.

(ar, =27/9, @y, =37/9, a, =137/18, @y, = 57/9)

30



Chapter 2 Network of Spherical 4R Linkages

Referring to Fig. 2-4(c), an assembly of four spherical 4R linkages is shown in Fig.
2-6. Joints a; and by, b3z and c¢3, ¢ and d», di and a; are respectively collinear and

connected. The connection conditions for kinematics are

0; =0, 0, =-0;, 0, =0;, 0/ =-0. (2-19)
Similar as rotation case, the new transmission loop is
(67 )>(0;)=(60, )~ )=—(065)~>(65)=(6)~(6")

T | (2-20)
( 91a :_( ‘91{1)

which can be represented as

L (5 (S5 (f5(60)0) = -6y (2-21)

The identical conditions of the linkages A, B, C and D simplify (2-21) and give
f21 (f32 (_f23 (f12 (‘91 ) = _01 . (2-22)

Then, modify it and we can see this equation is proved with Eqn. (2-10). In other words,
the assembly of symmetric case is mobile.

Figure 2-6 Symmetric case of four identical spherical 4R linkages' assembly.

(a, =27/9, a,, =37/9, a,, =137/18, a,, =57/9)
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Referring to Fig. 2-4(d), an assembly of four spherical 4R linkages is shown in Fig.
2-7. The joints a> and by, b3 and c3, c4 and ds, di and a; are respectively collinear. For
this assembly, we have

0r =00, 00 =07, 00 =07, 0° =0 (2-23)

The transmission loop is

(O )—~(05)=(6,)>(0;)=(65)~(6;)=(6)~>(g")

r d | @20
(67)=06")
Then, the transmission loop is represented as
T (U (f3(6)) = 6 (2-25)
Simplified by the identical conditions of linkages A, B, C and D, then gives
Ju(fa (s (f2(6)) = 6 (2-26)

which can obviously exist. Thus, the compatibility condition of rotation case is satisfied,
1.e., this assembly is mobile with one DOF.

Figure 2-7 Rotation case of four identical spherical 4R linkages' assembly.

(e, =27/9, @y, =37/9, a, =137/18, @y, = 57/9)
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2.4 The One-DOF Mobile Assemblies of Four Different Spherical 4R
Linkages

We have analysed three mobile assemblies of four identical spherical 4R linkages
in section 2.3. Their kinematic compatibility conditions are about the joints' rotation
transmissions such as Eqns. (2-16), (2-20) and (2-24). If we keep the kinematic
compatibility conditions, we can use different spherical 4R linkages to reconstitute the
networks.

In Fig. 2-5, the spherical 4R linkages B and C's original kinematic relationships are
6, v.s. 6, belongingto R1. We use R16,i.e.—7z+6, v.s. 6,, to replace them in B and C.

According to Table 2-1, the corresponding rotation transmission path is

(6)=>( 605 )=—(6) )> (-7+6) )=—(-7m+0 ) > ( 05 )=—(65 )~ (6)
i | (2-27)
(6)=—(6")

Comparing with Eqn. (2-16), this rotation transmission is changed in the middle process,
but the compatibility conditions g/ = —g* are still kept, so this assembly is mobile.

In order to achieve this path, we vary the link twists according to Table Al. For
each relationship Rj, there are 16 solutions. One suitable solution for Eqn. (2-27) is

a __ b __ c _ d _
A =y O = Oy A =0y, Oy = Gy,
a __ b _ c _ d _
Ay = O3, Uyy = Uy, Uyy = Uy, Oy3 = s,

(2-28)

a __ b _ _ c _ _ d _
Uy = Qg U3y =TT =y, A3y =TT = U3y, Ay = Ay,

a _ b _ c o d _
Oy = Qs Oy =TT =0y Oy =TT =0, 0y = Oy

and the corresponding assembly is shown in Fig. 2-8.

We use the linkage D as the reference and change the parameters of the other three
linkages. This is an example of generalizing the symmetric case to variant symmetric
case. Two R16 are respectively used in linkage B and C to get a new assembly. It is

actually one representation of 7. in Table 2-2. Other Ri also can be used to obtain
new transmission paths. According to the new paths, more mobile assemblies are
achieved.

If two variant relationships are used, 6(= C, x2) kinds of new path are obtained
and shown in Table 2-2. For three variant relationships used, the number of new path is
9(= C; x Cy) as shown in Table 2-2. So the sum of the new transmission loops is 15.

Some solutions found by Satchel [61] are also belonged to this case. Such method

is also suitable for symmetric case and rotational case.
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Figure 2-8 A kind of variant two-fold symmetric case.

Table 2-2. Variant relations for two-fold symmetric case

Transmission types method
tF R2-R2
e R3-R3
£* R4—R4
;" R5-RS5
2* R12-R12
12" R16-R16
$* R2-R6-R2
L R2-R7-R3
L" R2-R8- R4
" R3-R13-R4
" R3-R14-R3
" R3-RI15-R2
LF R4-R9—-R4
" R4-R10-R3
- R4—-R11-R2
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If we use R4 for linkage A and R12 for linkage B to alter the symmetric case's
rotation transmission Eqn. (2-20), a new transmission path is obtained.

(07 )>(-0; )=(-0;, )~ (6, )=—(6; )~ (05 )=(6])~(6")
| (2-29)

T (07 )=—(6")

According to Table A1, one solution of the geometric parameters for spherical 4R
linkages to constitute a network is
a _ b _ c _ d _
U =0, =TT =0, G =0, O =),
a _ b _ c _ d _
a23_a23_7r—a23’ a23_a23’ a23_a23’ 2 30
a _ b _ _ c _ d _ ( - )
Oy =y =TT = Uy, O3y = U3y, O3y = Uy,

a _ b __ _ c _ d __
a41 _a4l =7 6141’ a41 _a4l’ a4l _a4l'

This variant assembly of symmetric case is shown in Fig. 2-9. Similarly, using 16 kinds
of variant relationships can give us more solutions. All variant relationships are listed
in Table 2-4.

Table 2-3. Variant relations for symmetric case

Transmission types method
tF R2-R2
* R3-R3
* R4—R4
;" R2- RS
2" R3-R16
12" R4-R12
£F R2—-R6-R2
5* R2-R7-R3
£f R2—R8—R4
tf R3—-RI15—-R2
e R3-R14-R3
£f R3-R13— R4
A R4—-RI1-R2
" R4—-R10-R3
- R4—R9— R4

Figure 2-9 A kind of variant symmetric case.
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For rotational case, the variant relationships used are R3 for linkage A and R16 for
linkage B, i.e., 8 v.s. -z +6,,-7+86, v.s. 6,. The transmission path is changed to

(67 )>(—m+6; )=(-m+6) )~ (0;)=(65 )~ (6;)=(0])~(6")
| (2-30)

T C6)=( 8")

Referring to Table A1, a group of geometric parameters of the four spherical 4R linkages
is
a __ b _ c _ . d _
O =00 =TT =0y, 0y =0y =0y,
a __ b _ c _ . d __
a23_ﬂ_a23’a23_a23’a23_a23_a23’ (2 31)
a __ b _ c _ . d __ -
Oy =TT = Qs Oy = Oy, Oy = Oy = Uy,
a _ b _ c _ ,d _
Ay = Oy, Ay =TT =0y, Ay = Oy =y,
The assembly is shown in Fig. 2-10. Similarly, using 16 kinds of variant relationships
can give us more solutions. All variant relationships are listed in Table 2-5.

This section has presented three available types of mobile assemblies with four
different spherical 4R linkages. These mobile assemblies are referring to the assemblies
of four identical spherical 4R linkages in section 2.3. Variant relationships of links'
kinematic variants, Ri in table 2-1, are used to alter the rotation transmission path, then
we achieve the path according to Table 2-2. Finally, networks of four different spherical
4R linkages are built.

Figure 2-10 A kind of variant rotation case.
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Table 2-4. Variant relations for rotation case

Transmission types method
1" R2-R5
5" R3-R16
Lr R4—-R12
$* R2-R6—-R5
5" R2-R7-RI16
L* R2-R8—RI2
" R3-RI3-RI12
" R3-R14-R16
" R3-RI5-RS5
o R4-R9-RI12
" R4-RI10—R16
5" R4—RI1-R5

9

2.5 The Corresponding Rigid Origami Patterns

Rigid origami is an overconstrained system which is immobile generally. The
analysis of its mobility relies on an equivalent mechanism with that the paper creases
act as joints and paper panels act as links. The vertex with four creases can be treated
as a spherical 4R linkage. Thus, the origami pattern in Fig. 2-11 can correspond to the
network in Fig. 2-7. For example, the creases AE; and AE; correspond to joints a4 and
a3 respectively. The crease AB is the combination of the coaxial joints a2 and b2. By
this way, all the creases have the one-to-one relationships with the joints of spherical
4R linkages' network. If the corresponding assembly of spherical 4R linkages meets the
compatibility conditions, the origami pattern is rigid.

In the process of designing rigid origami pattern inspired from mobile assemblies,
some extra conditions should be added. For origami, the panel ABCD in Fig. 2-11
should be a planar quadrilateral obeying

a b c d _
ay+oy,+ay, +ay, =2rx (2-32)

If the pattern is flat-deployable, i.e., we can fold this pattern from a flat paper, the

conditions are
k k k ko
o, tay, oy, +a,, =2,

2-33
0< ai]ki <. (2-33)
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Figure 2-11 Crease pattern inspired by rotation case.

Combining Eqns. (2-13), (2-32) and (2-33), we obtain the conditions for this kind
of origami pattern. An example is

The paper model is

a _ b _ ¢ _ _d _
0‘12—0‘12—0512—“12—”/2’
a _ b _ ¢ _ _d _

Ay = Uy = Uy = Uy _7”/1& )34
a _ b _ ¢ _ _d _ /3 (- )
Qs =03y =0y =03, =73,

a _ b _ ¢ _ _d __
Ay =04 =0y = Ay _7”/9-

Figure 2-12 An origami pattern inspired by rotation case.

The networks of spherical 4R linkages based on variant relationships can also be

used to design new origami patterns. For example, we modify the assembly in Fig. 2-7
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and use R4 for vertex A, R9 for vertex B, R12 for vertex C. The transmission path is
(67 )~ (=0;)=(-0;)~ (=0))=(=05) > (05 )=( 6 )~ (")

T i (2-35)
a — d
( 01 )_( 01 )
Considering with table 2-2, one solution is
a _ _ b _ c _ _ d _
Qp =T =0, Oy =0, 0y =TT —0,,0, =Q),
a _ b _ c _ d _
Qpy =T =03, Uy = U3, Oy = T = W3, Byy = U3,
(2-36)

a _ b _ ¢ _ d _
Ohy =T =04y 03y = O3y, Oyy =TT — Oy, O3y = U3y

a __ b _ c _ d —
Cpy =T = Oy, Oy = Oy, Oy =TT =0y, Oy = Oy,

Considering with Eqns. (2-32) and (2-33), the conditions for this kind of origami pattern
are,

a, +o, oy, ta, =2r,

(2-37)
O+ 0, =TT,0,, +ay, =T,
An example of this pattern is shown in Fig. 2-13 and the parameters are,
al,=al,=4rx/9, a), =a’, =571/9,
a’. =at, =77/18, a’. = a. =117/18,
23 23 / 23 23 / (2-38)

a

— bo_ d _
ay, = ay, =57/9, ay, = a;, =47/9,

al,=a;, =117/18, a) =af, =77/18.

Figure 2-13 Rigid origami pattern from a kind of variant rotation case.

Similar as the proceeding of designing rigid origami patterns of Fig. 2-12 and Fig.
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2-13 relying on rotation case and variant type, all mobile networks of identical or
different four spherical 4R linkages mentioned in sections 2.3 and 2.4 can be used to
design origami patterns in the same way. In order to make the structure to be one DOF,
the nonadjacent creases should not be collinear, i.e., the orthogonal creases can not
exit!>],

Rigid origami is a special case of Kokotsakis meshes. The Kokotsakis meshes
satisfy that the plane ABCD is flat and every angle of each vertex is less than 7. By
using the varied transmission loops of the mobile assemblies of spherical 4R linkages,
we can get the geometrical conditions of their corresponding Kokotsakis meshes in the
Appendix table A2-A4. If very vertex of Kokotsakis mesh is flat, this mesh is a kind of
rigid origami pattern. Referring to the tables, only one new rigid origami pattern is

found and shown in Fig. 2-13.

2.6 Conclusion

In this chapter, we establish three basic mobile assemblies of four identical
spherical 4R linkages. Kinematics is used to prove the mobility and the compatibility
conditions have been presented. Based on the research of a single spherical 4R linkage's
kinematics, we propose 16 variations of relationships Ri in Table 2-1 to alter the
rotation transmission paths of the basic assemblies. According to table Al in appendix,
we find suitable parameters of spherical 4R linkages to meet the new transmission paths.
Finally, we achieve to constitute the mobile assemblies of four different spherical 4R
linkages.

The relationship between network of spherical 4R linkages and rigid origami makes
it possible to use the mobile assemblies of spherical 4R linkages to design origami
patterns. By combining the kinematic compatibility conditions of mobile assemblies
and geometrical conditions of origami patterns, we get the conditions for rigid origami

patterns. Two examples of this method have be shown in section 2.5.

The theory we have proposed in the chapter can give us large number of mobile
assemblies of spherical 4R linkages. We modify the rotation transmission path firstly,
find suitable spherical 4R linkages to meet it, then a network of spherical 4R linkages
has been constituted. To the inverse process, we can use it to judge the mobility of
assemblies and rigidity of origami patterns. For an assembly of spherical 4R linkages,
we firstly check which Ri the linkages respectively belong to according to table Al
in appendix, then we use Table 2-1 to get the rotation transmission path. If the path can
be closed, this assembly is mobile and its corresponding origami pattern is rigid.
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Chapter 3 Rigid Foldability Origami Pattern and

Metamaterials

3.1 Introduction

Flat foldability and rigidity are two specific and independent characteristics of
origami pattern, both of which are decided or affected not only by the geometric angles
of the crease pattern, but also by the assignment of mountain (convex) and valley
(concave) fold lines on the creases!!** 1), Hull developed recursive functions to count
the number of valid mountain and valley assignments for a single vertex pattern [, Yet,

106, 107

for multi-vertex patterns, such as the square-twist pattern ! 1, there are a number of

arguments on its foldability and rigidity [1°0,

This chapter proposes a kinematic method to study the effect of mountain-valley fold
assignments on the rigidity of flat foldable origami patterns in this chapter. In section
3.2, the double corrugated pattern is taken as the study case as it has more complicated
mountain-valley fold assignments than Miura-ori, square-twist, or other periodic
origami patterns. All the possible mountain-valley assignments for the basic units in the
pattern are presented with the flat foldability condition. The analysis on the rigidity is
conducted based on the kinematic models of spherical 4R linkage (S4R) assemblies.
Subsequently, the tessellations of the double corrugated patterns and their
metamaterials are explored. In section 3.3, to demonstrate the generalization of this
method, the square-twist pattern and its metamaterials are also discussed. The
conclusions in section 3.4 end this chapter.

3.2 Double corrugated pattern

For a typical four-fold vertex such as vertex A in Fig. 3-1(a), four creases divide
the sheet into four portions, with sector angles «, £, 7 and §, respectively, and

the sum of these angles equals 2, . To be flat foldable—the folded origami can be
pressed flat eventually — o +y =+ =7 must be satisfied®. At the same time,

the mountain and valley assignment must be considered for the flat-foldability
condition, which requires, first, the difference between the numbers of mountain and

1981 "and second, the

valley creases should be 2 according to Maekawa-Justin theory !
two creases forming the minimum sector angle should have different mountain-valley
parity while the other two are of the same one referring to the Big-Little-Big Angle

theorem0®l,

The double corrugated pattern in Fig. 3-1(a) consists two types of vertices with the
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same set of four sector angles, and in vertices A, C,E, «, B, 7 and §aresetinthe

counter-clockwise order, while in vertices B, D, F, they are set in the clockwise order.
There are two different quadrilaterals in the general double corrugated pattern, which
can be considered as two basic units, P with vertices A, B, C, D and Q with vertices A,
B, E, F. Here y is taken as the minimum angle among the four sector angles.
According to the above flat-foldability condition, all possible mountain and valley folds
can be assigned to each unit. Notice that mountain and valley folds are relative to each
other depending on viewing them from the top or bottom of the paper. After removing
such repeating ones, there are ten distinct assignments for the P unit in Fig. 3-1(b) and
six for the Q unit in Fig. 3-1(c).
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Figure 3-1 Double corrugated pattern and its basic unit patterns, (a) double corrugated pattern (b)
mountain-valley assignments of unit P, (c) mountain-valley assignments of unit Q.
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3.2.1 Kinematics of Origami Vertex for Double Corrugated Pattern

As mentioned above that there are two types of vertices in the double corrugated
pattern with sector angles «, £, 7 and § setting counter-clockwise or clockwise.

Kinematics, respectively they have to be considered as two different spherical 4R
linkages by taking the paper panels as rigid links and the creases as revolute joints as
shown in Figs. 3-2(a) and 3-2(b), named as types I and II, respectively. Hence, vertices
A, C, E are modelled as type I linkage and B, D, F as type II.

The vertical angles are complementary in each vertexes of the double corrugated

pattern. According to this character, we assume ¢, + a,,=7,@,, + @, =7 in spherical

4R linkage. Replacing (2-5) by the trigonometric functions,

i HHI
t, = tanE,z‘l.+1 = tanT,

. 2t, 1-¢ . 2t, 1-¢
sin g, =—=,cos g, = —=,sin 6, = —=—,cos g, = —L.
1+ 1+t

i i i+l i+l

A simple equation is obtained

2 TSIy Esinay,,, (3-1)

0.1 Sln(a(Hl)(HZ) + ai(Hl))

tan

The compatible condition of spherical 4R linkage is

1 92 03
tan— tan— tan— tan—
2 2 2

=1 3-2
0, G2

6.
-2 tan— tan—* tan—
2 2

tan

So, we have two solutions for this spherical 4R linkage

17 . Ot
tan —=2 sm%

2
[7) . O ta, [7) 7 2,
-2 sin—2—"12 tagp 3 sin—2—"12
2 2 2

2 )
tan = sin

(3-3a)
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o a,.,—a o a,.+a
tanE1 cos 212 tan?2 cos%
0. a.+a,’ 0. A — 0y
tan ?2 cos 212 tan =3 cos 212 5 12
o a,,—a o a,.+a (3-3b)
tan ?3 cos 2 —~12 5 2 tan ?“ cos 2 —~12 5 12
0, a,.+a.,’ 0 A —
tan—* cos—2—12 tan—+ cos—2 12
2 2 2 2

For the linkage type I, we have ¢, =a and «,, = 3, so Eqn. (3-3) is simplified as,

tanﬁ cosﬂ;a tan% COSM

tanéz’2 _cos'BJra’tan@:_cosﬂ;a’

tan%_cos’g;a tan%‘_cosﬁ+a (3-42)
tan —* _COS'Berajtnil_cosﬂ_ ’

tan —- sin'B;a tanez2 sin'B;
tanzz_sinﬂ;a,tan%:sinﬂ; ,

tang_sinﬂ;a tan%‘ ) sinﬂ;‘a (3-4b)
tan%_sinﬁ;a,t Zl_ sinﬂ;a.

0, . 0—a 0, . o+«
tan — sin tan—= sin
2 _ _ 2
0, . o+a’ 6, . o-a’
tan —= sin tan— sin 5
(3-5a)
. 0— o . 0+«
tan—  sin tan —+ sin
_ 2 _ 2
. o+a’ . o—a’
tan—*  sin 2 tan o sin o-a
2 2
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0, o—«a o, o+a
tan — coS tan —= cos ;
0,  o+a’.__ 0, __o-a’
tan —= cos tan — CcoS >
3-5b
. - o, o+a (3-56)
tan CcoS tan— cos
_ 2 2
, S+a’, 6 S—a’
tan— cos tan— cos
2 2 2

Here, @ 1is the bilateral angle on the crease. In general, —7 <6 <7z . Yet, in

origami, the paper cannot physically penetrate through each other. So for the mountain
fold, 0<6,, <x and for the valley fold, —7<g, <0. Generally, the spherical 4R

linkage is one degree of freedom, i.e., one input angle can decide the rest three as the
output. There are two sets of equations in the kinematic input-output relationship of
type I linkage, which correspond to two different input-output curves, types I; and I» as
shown in Fig. 3-2(a). A close look reveals that they present the motion paths of type I

linkage with different mountain-valley assignments. As » is the minimum angle

among the four sector angles, the creases of 4, and ¢, must be different. In type I,
6, 6,,and @, are of the same crease while @, is the opposite. When 4, 6,, and
@, are mountain folds and g, is valley fold, the folding path is the solid line in the
first quadrant with 4, 6, both positive. Certainly, the four creases in this type I
linkage can be all reversed with g, 4,,and @, valley folds and ¢, mountain fold,
and then the folding path is still on the solid line but in the third quadrant with 6, 6,
both negative. Similarly, in type b, 6§, 6,,and @, are of the same crease while g,

is the opposite, and the folding path is the dash line. In the same manner, the curves in
Fig 2b can be interpreted for the type II; and II, linkages, where the curves are the
relationship between @, and ¢, whose signs are always positive.
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If an object appears identical after a rotation of 180°, then it is said to have a two-
fold rotational symmetry. Mathematically, this means that for a curve y = f(x) to be

two-fold rotational symmetric, the necessary and sufficient condition is that for any
arbitrary point (x,,y,) on the curve which satisfies y, = f(x,), the rotation of it

by 180°, which is (—x,,—y,), is also on the same curve and therefore —y, = f(-x,)

holds. All the curves in Fig. 3-2 are two-fold rotational symmetric. In order to prove
this, we assume that an arbitrary point (6,6, ,) is on the curve. According to Eqn. (3-

1), we have

0. SIN(A ;. pyieay F Diian)) 0.
tan i+l _ : (i+1)(i+2) . i(i+1) . tan_l, (3_6)
2 =SIng, ), TSN,

Adding a negative sign on both sides of Eqn. (3-6)

o, SIN(&;1)12) T Xiiany) Z
—tan - = (D02 D (~tan ?l)’ (3-7)

=SIN ;g4 TSN

Since — tanﬂ =tan —~, — tan% = tani, Eqn. (3-7) can be rewritten as
2 2

-0, _ Sm(a(m)(nz) + ai(Hl)) -0,

tan tan—+, (3-8)

2 —SIN Q40 TSN,

Comparing Eqn. (3-8) and Eqn. (3-1), we can see that (—6,—6,,,) is also on the curves,

and therefore the curves in Fig. 3-2 drawn from Eqn. (3-1) are two-fold rotational
symmetric.

The definition of four-fold rotational symmetry is that an object repeats itself after
90° of rotation. Mathematically, this means that a curve y= f(x) of four-fold

rotational symmetry, requires that for any arbitrary point (x,,y,) on the curve which
satisfies y, = f(x,), therotationofitby90° whichis (y,,—x,),1s also on the same
curve and therefore —x, = f(y,) holds. Combing two curves of Fig. 3-2 into one

figure gives some four-fold rotational symmetric curves. For example, the curve of type
I, about g &6, and the curve of type II; about @, & 6, in Fig. 3-3(a), the curve of

type I, about 9 & @, and the curve of type Il about g, &6, in Fig. 3-3(b), the curve
of type I about 9, &, and the curve of type II; about 6, &6, in Fig. 3-3(c), the
curve of type I, about @, & &, and the curve of type II; about 6, & 8, in Fig. 3-3(d),

are all four-fold rotation symmetric. We use Fig. 3-3(a) as an example to prove this
conclude. According to Eqn. (3-4a), the function of dark solid curve in Fig. 3-3(a) are
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tan@ cos ,b’;a
eum = ﬁ"'a b (3'93)
tan =+ cos T

According to Eqn. (3-5a), the function of gray solid curve in Fig. 3-3(a) are

0[)1 b 5 - a
tan 7 Sin 5
0 - os+a’ (3-9b)
tan —24  sin
2 2

Assuming that an arbitrary point (6,,6)) is on the solid dark curve in Fig. 3-3(a).
According to Eqn. (3-9a), we have

cosﬁ;a 0
tan— =———% —tan—*, -1
2 p-a 2 (3-10)
cos———
Substituting S+ & = x into Eqn. (3-10)
. 0—«
sin 5
B = -
tan ~Sia tan > (3-11)
sin——

. 0. 0
Since —tan—* = tan

, Eqn. (3-11) can be rewritten as

2 . o-a 2 (3-12)

Comparing Eqn. (3-9b) and Eqn. (3-12), it can be found that point (6 ,-6,) falls on
the gray solid curve.

Assuming that an arbitrary point (6,,6)) is on the solid gray curve in Fig. 3-3(a).
According to Eqn. (3-9b), we have

sin
o
tan—r=— 2 tanx

5o e (3-13)

sin
Substituting A+ = x into Eqn. (3-13)
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0 cos 5 0
—tan—+ =———%=—tan—>, (3-14)

Since —tani =tan 0, , Eqn. (3-11) can be rewritten as
2 2

_9 cosﬂ+a

tan —= =— 2 tamﬂ (3-15)
2 B-a 2
cos———

Comparing Eqn. (3-9a) and Eqn. (3-15), it can be found that point (6,,-6,) falls on
the dark solid curve.
So that points (6#,,6,) and (6,,-6,) are both on the curve in Fig. 3-3(a),

therefore the curve is four-fold rotational symmetric. By the same method, we can prove
that Fig. 3-3(b-c) are also four-fold rotational symmetric.

TN —Typel; : 6, & 65 i L ---Typebh
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v /
£ NG i ; 1 : i
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. I ¢
=T I | I =T I I i
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! i Qi \ 0, 2 2
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Y N j ; ;
0()1”0' N Tt S 0{)11}0‘ o 'T"T”"f‘*;';:' e
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gin 91n
(c) (d

Figure 3-3 Combing curves from Fig. 3-2.
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3.2.2 Rigidness of Unit P and Q

Once all the units in the whole double corrugated pattern are with the mountain—
valley assignments among these sixteen types in Fig. 3-1, it is certain that the whole
pattern is flat foldable. Then the next question is whether it is rigid foldable. To answer
this one, we have to figure out whether the units are rigid first. As each unit consists of
four vertices, and each vertex is of four creases which form a spherical 4R linkage, the
question on the rigidity of the units is transferred to analysis on the mobility of a closed
loop of four spherical 4R linkages.

3.2.1.1 The Rigidity of Unit P

Considering one pattern unit with four vertices, each of which consists of four
creases, every adjacent two vertices share one common crease. In the rigid origami, the
common crease has identical bilateral angle for the vertices on the two ends. Thus, in
the kinematic model of this pattern unit, a closed loop of four spherical 4R linkages, as
the one in Fig. 3-4 for unit P, should have

0f =0°.,0" =07,0: =0¢,0! =0 (3-16)

The kinematic compatibility condition of the closed loop of four spherical 4R
linkages, A, B, C, D in Fig. 3-4 is represented as

a a_ pb b _ pC c _ pd d
T Qlazgj |

where 0" — 6 means in linkage A, oy is the rotation angle of joint a; and is treated
as the input, g; is the rotation angle of joint a; and is treated as the output, etc. As

known that the spherical 4R linkage is one degree of freedom, the motion transferred
from o to ef is surely one degree of freedom. But the close condition that ej =0

is an extra compatibility condition and will not satisfied automatically to get rigid
foldability for a pattern unit.

Figure 3-4 Network of spherical 4R linkages for P pattern.
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In the closed loop in Fig. 3-4, linkages A and C are type I in Fig. 3-2(a) and B, D
are type II in Fig. 3-2(b). So we can use their motion curves to analyze the rigidity of
the pattern unit. Take unit P1 in Fig. 3-1(b) as an example. From the mountain-valley
assignments of each vertices, we can find their corresponding motion curves in Fig. 2.

Invertex A, ¢, ¢y, 6 are mountainfoldsand ¢; isvalley,so its curve is the first

quadrant path of type I;. The motion curves of vertices B, C, D are the fourth quadrant
path of type I, the third quadrant path of type I, and the second quadrant path of type
I, respectively. Combining these four curves together, the completed motion path of
pattern unit P1 is formed as Fig. 3-4(a). Using the input-output path in Eqn. (3-17), we
can allocate the instant configurations of linkages A, B, C, D. On the paths, points A,
B, C, and D represent the configurations of four spherical 4R linkages in the closed loop
and @ ’s are the input/output sector angles. Taking ¢ as the initial input of the four-

linkage loop and ¢/ as the final output, if the compatibility condition, g = 6°
marked as the red arch is met. The compatibility condition, ef =0, 1s satisfied as

shown in Fig. 3-4(a) to 3-4(d), then the pattern units P1-P4 are rigid with one degree of
freedom. Otherwise, as shown in Fig. 3-5(a) to 3-5(f), then the units P5-P10 are non-
rigid.

(a) (b)
Vi1 7 . 7T
o’ AB},05)
/2 /2
0(,",0 0 901410 B
-2 -1t/2)
=7l i i i =]
- -7/2 0 /2 T
9i11 (P 1 )
(c) (d)
7
9‘1 II
nd d 4
D
/2 (93’04 ) : / /2
00“10 r //J — A(H 9 ) 9()”[0 o
ey 10 94 &y : B(O26.)
/ C6r.05) , |
-7k i i i - i i i
-T -7/2 0 /2 Vi3 - -1t/2 0 /2 T
0;, (P3) 0, (P4)

Figure 3-5 The rotation transmission of rigid types of unit P.
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Figure 3-6 The rotation transmission of nonrigid types of unit P.

The curves in Fig. 3-5(b) and 3-5(c) can be treated as the combination of Fig 3-5(a)
and 3-5(d). Referring to Fig. 3-3, we can see that the curves in Fig. 3-5 are all four-fold
rotational symmetric. Due to the four-fold symmetric property of the motion curves,
0] =07 is met at all configurations on the motion paths of P1-P4 to guarantee the

rigidity of the units, i.e., the kinematic compatibility condition Eqn. (3-16) is met at all
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configurations on the motion paths of P1-P4.

Therefore, it can be found that in P1, all four vertices are in identical configuration
but different orientations. And the same property also applies to unit P4. In P3, vertices
A, B and C, D form two pairs of identical configurations. According to this four-fold

rotational symmetric character, we have
a _ b
‘91 - _94 ’

3-18
oo (3-18)

If we assume 0 = 4931’, Hf =0:,0; = 493" , the following relationship can be worked
out from Eqn. (3-18),
o; =0 (3-19)

So the compatible conditions Eqn. (3-16) is satisfied, P1, P3, and P4 are rigid.
While in P2, vertices A, D and B, C forms two pairs of identical configurations,
Hf =0 and Qf =0 are obtained. According to the four-fold rotational symmetric
character, we have
o =-6;,

3-20
oo (3-20)

If we assume 49: =0°,0; = 93",9;’ = 91“,the following equation can be obtained
from Eqn. (3-20)
0; = 0; (3-21)

So the compatible conditions Eqn. (3-16) is satisfied, P2 is rigid.

For the curves in Fig. 3-6, the four-fold rotational symmetric character does not
exist, so Eqn. (3-16) is not satisfied at all configurations on the motion paths. Therefore,
P5-P10 are not rigid patterns.

3.2.1.2 The Rigidity of Unit Q

As in the case of unit P, the vertices of unit Q can also be modelled as spherical 4R
linkages with sector angles «, B, 7 and § setting counter-clockwise or
clockwise, in which vertices A and E are of type I in Fig. 3-2(a), and vertices B and F
are of type Il in Fig. 3-2(b).

With each vertex being modelled as a spherical 4R linkage, the whole unit forms a
closed loop of four spherical 4R linkages which is shown in Fig. 3-7. And the judgment
on the rigidity of the unit is equivalent to the analysis on the compatibility condition of
the closed loop of spherical 4R linkages. Kinematically, a closed loop of spherical 4R
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linkages should satisty the following geometric conditions

0] =6:,0; =0.,00 =06;,0; =0/ . (3-22)

The kinematic compatibility condition of this closed loop of four spherical 4R linkages,
F, E, B, Ain Fig. 3-7 is represented as
0] >0, = 05~ 65 = 0,~ 0] = 05~ 6]
4 f _ pa (3-23)
6, =0,

2

Figure 3-7 Network of spherical 4R linkages for Q pattern.

In this network, linkages A and E are type I, linkages B and F are type II in Fig. 3-
2. Similar as the analysis of unit P, their motion curves are used to analyze the rigidity
of the pattern unit. We take unit Q1 in Fig. 3-1(c) as an example. From the mountain
valley assignments of each vertices, we can find their corresponding motion curves with
Fig. 3-2. Combining these four curves together, the completed motion path of pattern
unit Q1 is formed as Fig. 3-8(a). Using the input-output path in Eqn. (3-23), we can
allocate the instant configurations of linkages F, E, B, A. Taking ¢/ as the initial input

of the four-linkage loop and ¢; as the final output, the compatibility condition is
0] =05 .
The curves in Fig. 3-8(c) and 3-8(d) can be treated as the combination of Fig 3-8(a)

and 3-8(b). Referring to Fig. 3-3, we can see that the curves in Fig. 3-8(a) to Fig. 3-8(d)
are all four-fold rotational symmetric. Due to the four-fold symmetric property of the
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motion curves, the kinematic compatibility condition Eqn. (3-22) is met at all
configurations on the motion paths of Q1-Q4. Then the pattern unit Q1-Q4 is rigid with
close transmission loop as shown in Figs. 3-8(a) to Fig. 3-8(d), the unit Q5-Q6 is non-
rigid as shown in Fig. 3-8(e) and Fig. 3-8(f). The demonstration is the same as unit P
and introduced in the previous section.
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Figure 3-8 (a)-(f) are the transmission loops of the six Q pattern,
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3.2.3 Tessellation of Double Corrugated Pattern ant Its Metamaterials

The general periodic origami pattern is formed through the tessellating identical or
different pattern units. The double corrugated pattern originally referred to in art and
mathematics, Fig. 3-9(a), is formed with units P2 and Q1, both of which are rigid, and
therefore the whole pattern is rigid as well with one degree of freedom. If one of the
units in the pattern is non-rigid, the whole pattern will be non-rigid, see Fig. 3-9(b).
Once different rigid units, P1-P4 and Q1-Q4, are mixed together, we can create many
varieties of the double corrugated pattern, one of which is shown in Fig. 3-9(c).
Therefore, rigid and non-rigid origami patterns based on identical geometric design
parameters can be easily obtained just by altering assignments of mountain-valley

creasces.

For example, two P1 patterns and P2 patterns are used to complete the distribution
of Mountain and Valley creases in Fig. 3-9(b) and 3-9(c). The directions of P2 patterns
in Fig. 3(a) and (b) are different. After giving the M-V distribution of these four P
patterns, the whole M-V distribution of the tessellation are decided, the other five unit
patterns are derived and labeled by gray color. As P6 and Q6 are nonrigid pattern, so
the tessellation in Fig. 3(b) is nonrigid.

Furthermore, we can stack a number of double corrugated patterns layer by layer
to construct origami-based metamaterials. The four models shown in Fig. 3-10 are
based on various patterns different from each other only in mountain-valley
assignments, but with the same number of identical-sized layers. The patterns on the
layers of each metamaterial have either identical or the reverse mountain-valley
assignments to meet the mobile compatibility between layers. So once all the patterns
forming the metamaterials are rigid, the metamaterials are capable of repeating-
performed large deformation by folding and unfolding, which is a desired property. ¢

is the folding angle marked on the pattern. When the metamaterials have the same ¢,

their states are different as shown in Fig. 3-10.
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Figure 3-9 Various tessellations of units P and Q.
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Figure 3-10 Tessellations and their corresponding metamaterials, (a) Metamaterial 1, (b)

Metamaterial 2, (c) Metamaterial 3, (d) Metamaterial 4.
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The four metamaterials presented in Fig. 3-10 are formed by three basic elements
as shown in Fig. 3-11. In order to show more details, the view angle of element 3 rotates
about 30° along the Z axis with respect to element 1 and element 2 which have
identical view angle. In the photos of these elements, the black solid lines are mountain
creases and blue dash lines are valley creases. Specifically, the metamaterial in Fig. 3-
10(a) is constructed by element 1, the one in Fig. 3-10(b) by element 2, the one in Fig.
3-10(c) by element 1 and element 2, and the one in Fig. 3-10(d) by element 3. Since all
the three basic elements are One-DOF, we use ¢ which is the dihedral angle of crease
A,B, in Fig. 3-11 as the input of these structures. Besides, all the creases in the
elements are chosen to have identical length 1 for simplicity of calculation.

For element 1 in Fig. 3-11(a), its width at any given input angle ¢ can be
calculated as follows

cos LA, A, A, =—cos f-cosa +sin f-sina - cos @

LA A, A, LA AA, (3-24a)

W=A4A4,=2-4A4,-sin =2-[-sin

The height of element 1 can be obtained as
—cosa —cos f3-cos LA A, 4,
sin B -sin ZA 4, 4,

PB, =1-sinf
H =B,B, =PB, -sin /B,PB,

cos ZB,PB; =

(3-24b)

The length of element 1 can be obtained as
PB) = PB, -cos ZB,PB,
PA, =1-cos 8

4,B, =\(PB,) +(P4,)’
ZPA,B, = arctan iBz (3-24¢)
2

ZA A, A,

Z£C,A,B, = ZPA,B, -
L=4,C,=2-4,B,-cos LC,A4,B;
For element 2 in Fig. 3-11(b), since C/ (i =1,2,3) is the reflection of C, about

plane B B,D,D,, the height of this element is twice of B, B}, and the length is twice

of 4,C,. With any input angle ¢, the width of element 2 are
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cos LA A,A; =—cos B-cosa +sin B-sina -cos @

L 4,4, 4, LA A A, (3-25a)

W=44,=2-4A4, sin =2-/-sin

The height of element 2 can be obtained as
—cosa —cos f3-cos LA A, A,

cos ZB,PB; = : :
sin B -sin ZA 4,4,
PB, =1[-sin (3-25b)
B,B) = PB, -sin /B, PB,
H=2-B,B;

The length of element 2 can be obtained as
PB; = PB, -cos Z/B,PB,
PA, =1-cos

A,B, = \[(PB) +(P4,)

ZPA,B; = arctan B,
PA,

LA A, A,
2

(3-25¢)

ZC,A,B, = ZPA,B, -
L=AFE,=2-4,C,=4-4,B, -cos LC,4,B,

For element 3 in Fig. 3-11(c), 4;,B;,C; are respectively the reflections of 4,,
B,,C, about plane 4 A4,B,B,. And therefore the height of this element is twice of

B,B,, and the length is twice of B.B;. Denoting ¢ as the dihedral angle of crease

B, B, , the geometric relationship between ¢ and g is109l

p
tan —
+
2 -cos'B d

) (3-26)
COS L - 2

6 =2 arctan(

Then the length of element 3 can be obtained as
cos ZA,B,C, = cos f-cosa +sin -sina -cos @

ZABC, . ZAB.C, (3-27a)

L=A,C;=2-A,B; -sin =2-[-sin

The height of element 3 can be obtained as
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—cos B +cosa -cos LA, B,C;

cos ZB,PB; = : :
sina -sin LA;B,C;
PB,=1[-sina (3-27b)
B,B, = PB, -sin ZB,PB,
H=2-B,B,

The width of element 3 can be obtained as
PB, =—[-cosa
PB, = PB, -cos ZB,PB,

BB, = \(PB,)’ +(PB,)’
ZPB,B; = arctan iB“ (3-27¢)

5

/BB.B, =

%_ZPB B'
5 504

W =BB,=2-B.B,=4-B,B,-cos ZB,B,B,

62



Chapter 3 Rigid Foldability Origami Pattern and Metamaterials

Figure 3-11 Geometrical calculation models and physical folding processes of the three basic
element, (a) Element 1, (b) Element 2, (c) Element 3.
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With Eqns. (3-24), (3-25) and (3-27), the dimensions of the four materials
assembled by the basic elements can be obtained with respect to the dihedral angle ¢ .

And the in-plane and out-of-plane Poisson’s ratios®?! can be respectively derived as

dL
ZVH (3-28)
V. —E—Z = —ﬁ.
w

According to (3-24), (3-25) (3-27) and (3-28), both the dimension of metamaterial
and their Poisson’s ratios vs. the folding angle ¢ are shown in Fig. 3-12, in which

configuration II is with the maximum height. During the folding between 0 and ¢, ,
the metamaterial exhibits a negative Poisson’s ratio in 3D, while between ¢ and 7,

it has a negative in-plane Poisson’s ratio and a positive out-of-plane one. It can be found
that metamaterials in Figs. 3-12(a) to 3-12(c) reach maximum height at the same folding
angle, and ¢, of the one in Fig. 3-12(d) is much larger than other three, i.e., this

metamaterial has a large range of 3D negative Poisson’s ratio. The maximum heights
of metamaterials in Figs. 3-12(b) to 3-12(d) are the same and double that in Fig. 3-12(a).
The dimension variation curves in Figs. 3-12(b) to 3-12(c)are identical even though
they are from different patterns with different deformation details.
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Figure 3-12 Dimensions and Poisson’s ratio, (a) Metamaterial 1, (b) Metamaterial 2, (c)
Metamaterial 3, (d) Metamaterial 4.
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3.3 Square-twist Pattern

A simple example of square-twist pattern is shown in Fig.3-13. In this pattern, a
square twists and stays in the middle, the other creases are horizontal or vertical. Each

vertex has the same geometric parameters, which are

a C a c 72-
A =0 =00y = Uy _59
a c a c ﬂ.
A3y =0y = ),04 =0y, :59
(3-29a)
b d b a7
A =0 = 0,0, = Uy :5:
b d b da_ T
O3y =y = Y,0 =0y =,
2
T
a+}/=ﬂ',7<3. (3-29b)
If p=¢5= Z is added to the geometric conditions of the unit Q pattern in section 3.1,
2

the square-twist pattern is obtained, which means that the square-twist pattern is a

special case of unit Q pattern.

fi

a, = 7

5 &

a, E €
a €
A

a b, b,

b, Blo e,
b,

Figure 3-13 Square-twist pattern.

According to the Big-Little-Big Angle theorem and Maekawa-Justin theory, after
removing such repeating ones, there are four distinct assignments for the square-twist
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pattern in Fig. 3-14, labeled by T1-T4.

Figure 3-14 Different mountain-valley fold assignments for square-twist pattern.

3.3.1 Rigidness of Square-twist Pattern

As square-twist pattern is special case of unit Q, the compatible condition Eqn. (3-
23) is also suitable for square-twist pattern. The kinematics of each vertex is analysed
firstly. According to 3 =&, spherical 4R linkages type I; and type I, type I and type

II; are the same. So the relationships of 6, &, in F and B are the same as the
relationships in E and A. The kinematics is shown in Fig. 3-15.

According to the kinematic compatibility condition Eqn. (3-23), the four
corresponding rotation transmission routes are presented in Fig. 3-16. Taking ¢/ as

the initial input of the four-linkage loop and ¢; as the final output, the compatibility
condition is @/ = ;. Due to the four-fold symmetric property of the motion curves,

the kinematic compatibility condition Eqn. (3-22) is met at all configurations on the
motion paths of T1 and T2. Then the pattern unit T1 and T2 is rigid with close
transmission loop as shown in Figs. 3-16(a) and (b), the unit T3 and T4 is non-rigid as
shown in Figs. 3-6(c) and (d).
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Figure 3-16 The kinematic curves of square twist pattern. (a) T1, (b) T2, (¢) T3, (d) T4.
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3.3.2 Tessellations of Square-twist Pattern and Its Metamaterials

By repeating the square-twist pattern of Fig. 3-14 in a reflection symmetric manner,
we get the corresponding tessellations in in-plane manner and show them in Fig. 3-17.

As T1 and T2 are rigid origami pattern, only the tessellation in Fig. 3-17(a) and (b) are
rigid.

Figure 3-17 Tessellations of square twist pattern. (a) T1, (b) T2, (¢) T3, (d) T4.

The rectangle panels in T1 are all parallel to each other, this character also happens
in the tessellation of Fig. 3-17(a) and helps to build metamaterials. The overall
mechanical behavior of the metamaterial should be linearly related to the square-twist
origami unit due to the rigid-foldable characteristics of this origami pattern. Therefore,
the Poisson’s ratio of the metamaterial can be obtained by study the square-twist
origami unit, see Fig. 3-18. The dimensions L, S, H of this unit are the function of the
folding configuration parameters, @ and ¢ (both changing from 0to 7 during the

folding of the pattern).

L=2-c+a-(cosa+sina-cosb),
§S=2-b+a-(cosa+sina-cosg), (3-30)
H =a-sina -(sin € +sin ¢),
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Figure 3-18 Tessellation of T1.

Because the pattern is kinematically one degree of freedom, @ and ¢ are not

independent, but related by the kinematic relationship of the spherical 4R linkage on
this vertex as

—cosa-cos@+cosa-cosp—sing-sin@-sinp =0 (3-31)

The in-plane Poisson’s ratios can be derived as

dL
,o—_ds__S dL
L L dS
S
__2b+a-(cosa +sina-cos ) (3-32a)

2c+a-(cosa+sina-cosd)
sin@-(cosa -sin@+sina -sin & -cos @)
sin@-(cosa -sin@ —sin a - cos 8 - sin @)

The out-of-plane Poisson’s ratios can be derived as

70



Chapter 3 Rigid Foldability Origami Pattern and Metamaterials

dH
y o —_dL __L dH
" H  H dL
L
=_20+a-(cosoz+sin05-cos€) (3-32b)

a-sina - (sin @+ sin @)

cosa -sinf —sina -cos @ -sin @

cos@+cos@- : - -
cosa-sin@+sina -sin @-cos @

—sind

In order to show the influence of ¢, we assume that a=b=c. According to (3-32),
the in-plane and out-of-plane Poisson’s ratios vs. the folding angle @ are shown in Fig.
3-19. The in-plane Poisson’s ratios are always negative in Fig. 3-19(a). When the height
of the metamaterial reaches the maximum value in the folding process, then the out-of-
plane Poisson’s ratios become negative, so the metamaterial exhibits a negative
Poisson’s ratio in 3D. By making o bigger, the in-plane Poisson’s ratio changes
rapidly but the out-of-plane Poisson’s ratio changes gently. As ¢ has such effect on
the Poisson’s ratios, we can modify it to make the metamaterial has better performance
in the practical applications.
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As we mentioned early, the rectangle panels in the pattern are all parallel to each
other to make the folding in a flat profile. Thus we can stack a number of such structures
layer by layer in the reflection symmetric manner, see Fig. 3-20(a), to eventually form
a metamaterial. Once the geometric parameters in all units are the same, the motion of
the whole metamaterial will be compatible with one degree of freedom, i.e., the pattern
is rigid. In such a way, we have obtained a metamaterial with square-twist rigid
origami pattern, whose physical model made from paper is shown in Fig. 3-20(b).

Figure 3-20 Metamaterial and its construction method, (a) construction method of metamaterial

for T1 tessellation, (b) metamaterial based on T1.

3.4 Conclusion

We investigated the rigid foldability of origami patterns when different mountain-
valley assignments are applied with a kinematic method. Under the condition of flat
foldability, mountain and valley folds can be assigned to the creases of origami patterns
or their basic units. The kinematics of closed loop of spherical linkages can be applied
to analyze the rigidity of the patterns. Metamaterials from the stacks of double
corrugated patterns have been proposed with many varieties when changing the
mountain-valley assignments. Following the folding of the rigid origami patterns, the
metamaterials exhibit negative Poisson’s ratio and different mountain-valley
assignments can affect the deformation property of origami metamaterials largely. To
demonstrate the generalization of this method, the square-twist pattern is also discussed.
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A metamaterial based on square-twist pattern is proposed and its Poisson’s ratios are
anaylsed. By choosing the suitable folding state, the metamaterial can exhibit Poisson’s

ratio in 3D direction.
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Chapter 4 Origami of Thick Panels

4.1 Introduction

Origami patterns, including the rigid origami patterns where flat inflexible sheets
are joined by creases, are primarily created for zero-thickness sheets. In order to apply
them to fold structures such as roofs, solar panels and space mirrors, where thickness
cannot be disregarded, various methods have been suggested. However, they generally
involve adding materials to or offsetting panels away from the idealised sheet without
altering the kinematic model used to simulate folding. In this chapter, we develop a
comprehensive kinematic synthesis for rigid origami of thick panels that differs from
the existing kinematic model but is capable of reproducing motions identical to that of
zero-thickness origami. The approach, proven to be effective for typical origami, can
be readily applied to fold real engineering structures.

The layout of this chapter is as follows. Section 4.2 describes the construction
process of thick panel origami models for four-crease origami vertex by using Bennett
linkage. The kinematic equivalent of the thick panels model and origami vertex has
been proved. Section 4.3 presents the technique of using Myard linkages to constitute
the thick panel models for five-crease origami patterns. The Bricard linkages are used
for thick panel models for six-crease origami patterns in section 4.4. The conclusion in
section 4.5 ends this chapter.

4.2 Four-crease Origami Pattern and Its Thick Model

A single vertex of origami pattern of zero-thickness panel is shown in Fig. 4-1. The
pattern is flat foldable. The mountain and valley creases are denoted by thick solid and
dash lines, respectively. The creases divide the sheet into four portions with sector
angles. The dihedral angles between adjacent panels are shown when the sheet is
partially folded.

Z3

2T

Figure 4-1 A single vertex of four-crease rigid origami pattern.
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The fact that the crease corresponding to ¢, is a valley crease and thatto 6,, 6,,
6, are mountain creases, leadsto —7 <6 <0 and 0<86,,0,,0, <x.So Eqn. (3-3a)

is used for this vertex.

61 91 92
tan 5 tan 5 tan ?
0" 6 6 b (4-1a)
tan— tan—2 tan—
2 2
tan '922 tan 022 tan 0;3
0." 0. 0 " (4-1b)
tan—+ tan—> tan—+
2 2 2
This yields
0, =-0;, (4-2a)
6,=0,, (4-2b)
Referring to Eqn. (3-3a) also gives
tani1 sin %
=- 5 (4-2c¢)
tan L) sin 2 % T
2 2

Hence, these three equations in Eqn. (4-2) are the closure equations of this spherical 4R
linkage.

The corresponding thick origami model is shown in Fig. 4-2. Thick origami model
with four creases that do not meet at a point. The dihedral angles are marked along each
joint axis. The rigid sheet is divided into four portions with the sector angles
af;", aff, T— aﬁf and 7 — aff , which are the same as those in the zero-thickness sheet,
ie.,

Be __ Be __ Be __ Be __
Ay =y Oy =Qoyy T =03y =00y, T =04 =0y (4-3)

Adapting ;;_a;jf and ﬁ—aff for sector angles is required by the Denavit and

Hartenberg notation.

For the thick panel, the fold lines connecting each adjacent panels are placed on
either top or bottom surfaces of each panel, resulting in none zero distances between
the axes of the neighbouring revolute joints. To enable rigid folding, this assembly must
be a 4R Bennett linkage, the only known spatial 4R linkage.

The Bennett linkage is an overconstrained spatial linkage whose geometrical
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parameters must satisfy Eqn. (1-7), i.e.,

Be __ _Be Be __ _Be

Gy =0y, Ay =y (4-4a)
Be _ _ Be Be _ _ Be

alZ - a34 H a23 - a4l (4-4b)

Be : Be
a, sina,

a¥  sina’ (4-40)
Referring to Eqn. (1-8), the closure equations for the Bennett linkage are
0% +0 =2n, (4-5a)
07 +0)° =2r, (4-5b)
Be Be sinW
1 2
tan 5 -tan S - e ;aff (4-5¢)

Hence, the thick rigid panel can be folded only with a set of fold lines arranged in such
a way that meet the conditions given in Eqn. (4-4), whose motion can be illustrated by
the closure equations given by Eqn. (4-5). Next, we shall prove that the motion of the
thick panel is equivalent to that of the zero-thickness rigid sheet.

In origami, the dihedral angles are commonly used to describe the folding process.

In the spherical 4R linkage, Fig. 4-1, the relationships between kinematic variables 6,

1

and dihedral angle @, are
O=p+r, O,=r—¢,, =r—¢,, 0,=71—9, (4-6)

Substituting Eqn. (4-6) into the closure equations (4-2) of the spherical linkage

yields
? =0 (4-7a)
D, =@, (4-7b)
And
z _ 2 (4-7¢)
2 2

Similarly for the Bennett linkage, Fig. 4-2, the relationships between kinematic
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variables g# and dihedral angle 4% are

0 =g, O =gl O =2m g, O =gl @-9)

and thus its closure equations (4-5) become

o =) (4-9a)
P =0, (4-9b)
And
Be Be _ Be
tan % sin %2 5 %
Be = ab’e +aBe (4_90)
tan 2 sin 212 23
2 2
e o \\\\\

Figure 4-2 Thick origami model for four-crease origami vertex.
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It is clear that Eqn. (4-9), the closure equations for the thick panel origami, match
exactly Eqn. (4-7), the closure equations for the zero-thickness sheet should satisfy that
the sheet is partitioned in the same way described by Eqn. (4-3). We therefore conclude
that the two linkages are kinematically equivalent. The relationships between the

dihedral angles of the panels ¢ and ¢/, is identical to that between the dihedral
angles @, and @, of the spherical 4R linkage throughout the entire folding process,
see Fig. 4-3. Curves a — c are relationships between dihedral angles ¢, and @, in
zero-thickness rigid origami for three sets of sector angles, respectively. They overlap

with those between ¢ and @;° for their thick panel counterparts, respectively.

(a) T 1
al:_ﬁ
a.
az3:%
s, 27/3
S
— o :ﬂ
5 C// b: 2718
. a - 5
S a3 o=
b T
. al::Z
0 a3 23« o
¢, or ¢

Figure 4-3 Kinematics of origami vertex and its thick panel model, (a) relationships between
dihedral angles for four-crease single vertex origami, (b) zero-thickness model and its
corresponding thick panel model.

The above method to syntheses single vertex four-crease thick panel origami can
be extended to multiple vertex origami. Take the square-twist pattern as an example in
Fig. 4-4. We apply the Bennett linkage to each of the “vertices” A, B, C and D,
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preserving the section angle of each panel. The corresponding fold lines around each
vertex are denoted by a’s, b’s, ¢’s and d’s. And then we merge the fold lines which are
shared by two adjacent Bennett linkages. For instance, the fold line a4 of linkage A and
fold line b; of linkage B are combined into one fold line. This is possible because there
is rotational symmetry in the square-twist pattern shown here, leading to the exact same
amount of rotation for the combined fold lines. For other four crease multi-vertex
patterns, one has to prove that this combination is possible for each of them.

(a)

Figure 4-4 Thick panel models of square twist pattern, (a) Solidworks model for the square-twist
pattern with thick panels, (b) zero-thickness model of square twist pattern and its corresponding
thick panel model.
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4.3 Five-crease Origami Pattern and Its Thick Model

A specific single vertex of origami pattern of zero-thickness panel is shown in Fig.
4-5 in which

Os5) = Oy Qy3 = Oy :% and a,, =7 —2a, (4-10)
The mountain and valley creases are denoted by solid and dash lines, respectively. The

creases divide the sheet into five portions with sector angles ¢« ’s. z’s represent the axes

of creases. ¢ ’s are dihedral angles.

Figure 4-5 A specific symmetric single vertex five-crease origami pattern.

This is a 5R spherical linkage. In general it has two degrees of freedom. If the
symmetry is preserved during folding, i.e.,

0,=06,, 6,=0, (4-11)

Similar as (2-3), the closure equation of spherical 5R linkage can be written as

Q,,Q,;,Q;, =Q,5Q5, (4-12)

We note it as

S5R
L = Q12Q23Q34’

(4-13)
;SR = Q15Q54’
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All elements of the matrices of Eqn. (4-12) are given in the Appendix. From
Q¥ (3,3)=Q3’*(3,3) and Q¥°*(2,1)=Q3**(2,1), we can have

cos(2a,,)-sine,, -cos @, —sin(2a,,)-cos,, - cos O,

. : : : , (4-14a)
+sin(2a,,)-sina,, -sin 6, -sinf, =—sin¢q,, -cos b,
cosd, -(cosl, -sinf +cosa,,-cosb, -sinéb,)
o SO (4-14b)
—sing,, -cosf, -sinf, =—cosa,, -cosd, -sinf, +sinq,, -sin b,
Then, we use the following trigonometric transforms to simplify them,
6 (2 6.
t, =tan——,¢, = tan—=,¢, = tan =, 4-15
1 2 2 2 3 2 ( )
From Eqn. (4-14a), we can get
4-sina -cosa -(-cosa -(t,)’+2-sina -t,-t, +cosa -(t,)’
(ccosar (1)’ +2:sina 4,1 W)y g
(%) +D-((5)" +1D
By simplifying it, we have
t; —sina *1
= (4-17)
t, cosa

As the creases corresponding to ¢, and ¢, are both valley, ¢, and ¢, have the

same signs, we have

t, -—-sina +1
DR — (4-18)
t cosa
Substituting (4-15) and (4-18) into (4-14b), eliminate ¢;°*, we have
H, -H,
=0, 4-18
i (4-18)

In which
H, =2((t,) =),
H, =2t,-cosa,, —2t, -(t,)" +cos’ a,, -1, —=2-t, -sina,, -cosa,,
+2sinay, -t ()" +1¢, -(t,)" -cos’ a,,
H, =((t,)’+1)-((t,)* +1)-(siney, —1)-(siney, —sine, - (¢,)* +(,)* +1)°.

From H ,» We can have the relationship between 1, and t, -
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2t, -cosa,, —2t, -(t,)’ +cos’ a, -1, —2-t, -sina,, -cosa,,

4-19
+2sina,, 1, -(t,)’ +t, -(t,)* -cos’ a,, =0 (-19)
Which can be simplified as
«,) _ b cosay, ltsina, _ 0 (4-20)

2t l-sing,, l-sing,

Besides Eqn. (4-11), considering with (4-15), (4-18) and (4-20), the rest of the closure
equations can be obtained, which are

= , 4-21
tan o, cosa, (4-21a)
0. 2tan922 cosa l+sina
tan® —2 — 2 2=0 (4-21b)

tanﬁ l-sing,, l-sing,,

The angular variables in the closure equations can be replaced by the corresponding
dihedral angles commonly used in origami. Noting that

O=r-q, =n+0,, O,=n+¢, O,=1+¢,, O, =1+0; (4-22)

Eqns. (4-11) and (4-21) become

Dy =@y Py = Ps (4-23a)

¢, l-sing, )

tan —= = ——=tan— -
2 cosa,, 2 (4-23b)
h
1 2tan 72 cosa, l+sing, 0 (4-230)
— i - = -23c
tan2 P2 tan P2 1-sina, l-sing,,

Now we consider folding a single vertex five crease sheet with finite thickness.
When it is divided into five panels using the same sector angles as those for zero-
thickness rigid sheet, i.e.,

r—al =a,, n—ay =a,,2r—al =a,,,a) =a,, al’ =a,,. (4-24)
but the fold lines are placed either on top of or at the bottom of the thick panels, we
obtain a spatial SR assembly, Fig. 4-6. Thick origami model with five fold lines that do
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not meet at a point. The dihedral angles are marked along each joint axis.

Not all the SR assemblies can have a degree of freedom. The creases arranged using
Eqn. (4-24) makes it likely to be a Myard linkage. However, unlike the spherical 5R
linkage, the Myard linkage is overconstrained, meaning that a set of additional specific
geometrical conditions have to be met to produce a degree of freedom. These conditions

are
My _ My _ My My _ My _ My
Ay =, Oy =20, —T7, Qs =—, 0] =T—0Q, (4-25a)
2 2
My _ My My _ My My _
A,y =ds;, Ayy =dys , Ay =0 (4-253)
and
.M .M
sing, sina,;
My My (4-25a)
a, ays

Eqns. (4-25b) and (4-25¢) concern with the distances between the neighbouring fold

lines.

If all the conditions given in Eqn. (4-25) are met, the linkage is the Myard linkage

and it can be folded. The closure equations of this Myard linkage are *°!

0 =2+ 0, 0 + 0" =21 (4-26a)
an 6"  l-sina) an 0" (4-26b)
2 cosay 2 )
"  2cosal 0" O l+singy
tanz 2 _ 12 1 . tan2—— 2 _ 426
2 1-singy 2 2 l-siney (4-26¢)

The relationships between the kinematic variables and their respective dihedral
angles are

6" =2z-p", 0" =", 0" =w+0", 0" =", 6" =z + " (4-27)

Substituting them into Eqns. (4-26a to ¢), a set of equations are obtained

0" =", 0" =i, (4-282)
My 1 My
tan P2 = T3 % o, P (4-28D)
2 cosa,,
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o
1 2tan 12 cosa,, l+singa,
My W] g 1 s =0 (4-28¢)
an’ 2 an @ 17sina, l-sing,
2

Eqns. (4-23) and (4-28) have the same forms except that ,*’s and p""’s take

the places of o’s and ¢’s, respectively. Fig. 4-7 presents the relationships between a

pair of dihedral angles with different geometric parameter ¢, ’s, and show the

spherical 5R linkage and Myard linkage are kinematically equivalent.
Hence, the spherical 5R linkage and the Myard linkage are kinematically equivalent.

Figure 4-6 Thick origami model for four-crease origami vertex.
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Figure 4-7 Dihedral angles ¢ vs. ¢, (or o' vs. o)) with different ¢,

The thick panel assembly will have one DOF if the arrangement of fold lines
satisfies Eqn. (4-25) because it is now a Myard linkage. Furthermore, the proof in the
Supplementary Text shows that the motion of this linkage is identical to that of the
spherical 5R linkage when Eqn. (4-11) is imposed. This folding scheme has been used
to fold a box. Fig. 4-8 shows the folding sequence of a zero-thickness rigid origami
with five-crease vertices and its thick panel counterpart based on the Myard linkage.
The pattern has six five-crease vertices arranged in rotational symmetry. The sector
angles at each vertex are 7/ 6, 7/ 2,27/ 3, /2 and 7/ 6.

Figure 4-8 Multiple five-crease vertex origami zero-thickness model and its corresponding thick

panel model.

86



Chapter 4 Origami of Thick Panels

4.4 Six-crease Origami Pattern and Its Thick Model

There are two kinds of six-crease origami patterns introduced in this section, the
diamond pattern and waterbomb pattern. Only one kind of vertex exists in diamond
pattern, two kinds of vertices exist in waterbomb pattern.

4.4.1 Diamond Pattern

The diamond pattern has a single vertex where six creases meet, Fig. 4-9. The

angles between adjacent creases satisfy
Oy = Q3 = 0ys = Oy

(4-29)
Oy = Usg = T—20,.

in which (< a,, < 7 This also ensures that the pattern has flat foldability. The closure
4

conditions for this spherical 6R linkage in line and plane symmetry are
‘91 = 04’

0,=6,=0,=0, (4-30)

Similar as (2-3), the closure equation of spherical 6R linkage can be written as

Q,,Q,Q;, =Q,QQs, (4-31)

We note it as

S6R
L - Q12Q23Q34’

4-32
JSQGR = Q16Q65Q54’ ( :

All elements of the matrices of Eqn. (4-32) are given in the Appendix. From
Q3% (1,3) = Q3°*(1,3) , we can have
2-sina,, - (cos” a,, +cos §, —cos’ a,, - cosb,)
(—cosq,, -sinf, +cosb -sinf, +cosa,, -cosb, -sinb, ) (4-33)

_ . . 2 2
=2-sina,, -sinb, -(cos” a;, +cosb, —cos” ,, -cos b,)

Then, we use the following trigonometric transforms to simplify them,
(7 (2
t, =tan——,¢, =tan—=, 4-34
1 2 2 2 ( )
From Eqn. (4-33), we can get

8-sina,, t, -1, - (t, +1,-cosa,,) ((1,)’ ~cos2a, +1)

() +D-((&,)" + 1)

0 (4-35)
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By simplifying it, we have

t, =—cosa,, -, (4-36)

Besides Eqn. (4-30), considering with (4-34) and (4-36), the rest of the closure
equations can be obtained, which are

tan o +cos a,, tan & _ 0 (4-37)
2 2

The angular variables to the corresponding dihedral angles are related by

O=r-¢, 0,=r+¢,, O, =1+¢,

(4-38)
O,=n—@, O=n+¢;, O, =7+,
Substituting them into Eqns. (4-30) and (4-37) yields
D= Pys
Lo (4-392)
D, =P = Qs =P
tan 22 = cos a, tan 2. (4-39b)
2 2

Figure 4-9 A specific symmetric single vertex six-crease origami pattern.

Apply the same partition angles to divide the thick sheet into six panels, i.e.,
Br Br Br
2r—ay, =y, Ay = Ay, Ay = Ay,

(4-40)

Br __ Br __ Br __
272'_0545 =0ys, 272-_0‘56 = Qs O = Oy
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and then place revolute joints in-between each adjacent panels, we obtain a 6R assembly
in Fig. 4-10. Thick origami model with six fold lines that do not meet at a point. The
dihedral angles are marked along each joint axis.

To enable the motion of this 6R assembly, it must be a plane symmetric Bricard
linkage. The geometrical conditions for the Bricard linkage are

Br __ Br Br __ Br
Uy =2 =0y, Oy =7 =20,

. . 4 (4-41a)
al +al =2x, a¥ +al =27, all +al =2x,
Br Br Br Br Br Br
Ay =dgs Ay =Asg 5 A3y = Uys (4-41b)
Moreover, to achieve compact folding, there must be
all +a¥ =al;. (4-41¢)
which is obvious by considering the complete packaged configuration.
According to the symmetric condition, we have
ezBr — eéBr’
oy =07, (4-42)

Br __ Br
6, =rn+06,".

Referring to Eqn. (1-1), the closure equation of Bricard 6R linkage can be written
as

T, T, T, = TTT;, (4-43)

We note it as
Br
TL = T12T23T34a

. (4-44)
Tzf = T16T65T54 >

All elements of the matrices of Eqn. (4-44) are given in the Appendix. From
T/ (1,1) =T, (1,1), T7(1,3)=T;"(1,3) and T/ (1,4) =T; (1,4), we can have

—sin @, - (cos 2a,y -cos 8™ -sin @) —sin 2¢, -sin ;) -sin 6
Br Br Br : Br

+cos2a,, -cosa,, -cosf, -sinf")
—cos @, -(cos O -cos @) —cosa;y -sin&” -sin6,")
: Br : Br : Br : Br (4-453)
=sin2a,, -sina,, -sind," -sin b,

Br 2 nBr Br : 2 nBr
—cos@," -(cos” 8, +cos2q,, -sin” 6,")

+2-cosa,y -cos @) -sin@) -sin @) -sin” o)
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2-sina,) -(cos’ &) —cos @) +cos’ ) -cos6)")-(cos ) -sin O
+cos@” -sin@ +cosa) -cos@) -sin§”) = (4-45b)

: Br Br 2 Br Br 2 _Br Br
—-2-sinq,, -sinf,” -(cos” a,, —cosb,” +cos” a,, -cosb,”)

aly -cos 8" +aZ -cos " -cos 0
—sin®@," -(a;) +ay )-(cos2ay -cos O -sin @) —sin2a;} -sinay -sin 6

+cos2aly -cosa -cos@ -sinO”")

o : (4-45c)
—cos&) -(a +ax)-(cosO” -cos @ —cosaly -sin@” -sinO")
—ay -cosal) -sin@” -sin 6"
=(ay +a)-(cos® 8" +cos2a -sin’ 0 ) —ar -cos O —al)
Then, we use the following trigonometric transforms to simplify them,
Br Br Br Br
t” =tan——,¢) = tan2—, )" = tan=—,¢}" = tan——, (4-46)
1 277 277 2 7 2
Substituting (4-46) into (4-45) gives
=ty (4-47a)
) =—cosa” -t (4-47b)

Besides Eqn. (4-42), considering with (4-46) and (4-47), the rest of the closure
equations can be obtained, which are

0" =" (4-48a)

Br Br

cosayy tan%+ tan% =0. (4-48b)

Note that the relationships between the angular variables and the corresponding
dihedral angles of the Bricard linkage are

elBrzzﬂ_ ¢1 ,HBV ¢2 ’eBr_”+¢3Br’

4-49
0 =2n—¢l, 00 =x+ol, 0F = (4-49)
Substituting them into Eqns. (4-42) and (4-48),
Br Br
o =0, ,

B _ _Br_ _Br_  Br (4-50a)

O, =05 =Qs =@
n (p; =cosq,, - tan (Dé (4-50b)
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Eqns. (4-39) and (4-50) are identical except that ;5 ’s and ¢® ’s take the places

of o’s and ¢’s, respectively. The Bricard linkage is therefore kinematically equivalent
to the spherical linkage. The relationships between a pair of dihedral angles are plotted
in Fig. 4-11. Curves a and b are relationships between dihedral angles ¢, and ¢, in

zero-thickness rigid origami for three sets of sector angles, respectively. They overlap
with those between ¢ and @7 for their thick panel counterparts, respectively.

Br

Figure 4-10 Thick origami model for six-crease origami vertex.
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Figure 4-11 Relationships between dihedral angles for six-crease single vertex origami.

The kinematic motion of this Bricard linkage again matches that of the spherical
6R linkage of the zero-thickness model. This enables us to make a thick panel origami
arch using the diamond pattern. The folding sequence of both zero and non-zero
thickness models are shown in Fig. 4-12.

Folding sequence of a zero-thickness origami model of the diamond pattern and its
thick panel counterpart based on the plane-symmetric Bricard linkage. All the vertices
are identical. The sector angles around each vertex are 7/ 6, 27/ 3, 7/ 6, 7/ 6,27/ 3
and 7/ 6.

LS. . o
Sy \

S SN
W N\
R

Figure 4-12 Zero-thickness model of Diamond pattern and its corresponding thick panel model.
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4.4.2 Waterbomb Pattern

The waterbomb pattern has two types of six-crease vertices: D and W as shown in
Fig. 4-13.

Figure 4-13 Waterbomb pattern.

Vertex D is a special case of the diamond pattern. Vertex W is enlarged in Figure
S11. The sector angles between adjacent creases of vertex W satisfy

VA

(4-51)

Vs
Qp, = O 2570@3 =0y =0y = Osg =

Figure 4-14 Vertex W of the waterbomb pattern.
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The spherical 6R linkage has, in general, mobility three. To reduce it to mobility

one, the following constraints are imposed. First, plane symmetry is maintained, so,

0,=6,,06,=0,, (4-52a)

Moreover, considering it is connected to the neighbouring vertices D’s, the
kinematic relationship between ¢ and @, (or @,) of vertex W must identical to that

between ¢ and @, ofvertex D. The latter is given by Eqn. (4-37). Replacing §, and

6, inEqn. (4-37) with § and @,, respectively, yields
tanﬁ+ ﬁtan& =0 (4-52b)
2 2 2

noting that a, = 7 for vertex W.
2

With constraints of Eqn. (4-52), the mobility of this spherical 6R linkage becomes
one. Using Eqn. (4-31), we found two remaining equations governing the motion of this
linkage, which are

tani = 2‘[anﬂ (4-52c¢)
2 2
tani =4tan’ ﬁ+ 3tanﬂ (4-52d)
2 2 2

Eqn. (4-52) are the complete set of closure equations of the spherical 6R linkage in
vertex W.

The relationships between the angular variables and their respective dihedral angles

are
O=r+¢, 0,=n+¢,, 0,=1—0,,
1 1 2 2 3 3 (4_53)
0,=r+¢, O, =1—¢,, 0, =7+,
Substituting them into Eqn. (4-52) gives
Ps = P35 Qs =Py (4-54a)
tan& = l‘[anﬁ (4-54b)
2 2 2
o _N2 .0 (4-54c)

tan—=——tan—
2 2 2
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tan’ P

o _

4 +3tan?

tan (4-54d)

(41

Now apply the same partition angles to divide the thick panel into six subpanels by
letting

Br __ Br __ Br __ _
a12 - alZ > a23 - a23 > a34 =27 a34’
(4-55)

Br _ Br _ _ Br __ _
Oys = Oys, Osg =27 s> Qg =27 U

and then place revolute joints in-between each adjacent panels, a 6R assembly is
obtained, Fig. 4-15. Thick origami model with six fold lines that do not meet at a point.
The dihedral angles are marked along each joint axis.

This 6R assembly must be a plane symmetric Bricard linkage to acquire mobility,
which requires the thicknesses of the subpanels satisfy

Br _ _Br Br __ _Br Br __ _Br
Usg = dy3 5 Ay =gy, A3y = Ays (4-56)

In order to achieve compact folding, the above equations have to be modified to

Br _ _Br Br _ _Br __ Br Br _ _Br __ Br
Use =y, Ay =ag = (14 p@)ay;, a3y =a,5 = pay, (4-57)

in which 4 is a constant yet to be determined.

Similar to what we have done with the Bennett and Myard linkages, the closure
equations for this Bricard linkage can be obtained, which are

0F = 0% 0% = 0% (4-58a)

Br
o ,u(,u+1)-tanzei+,u+1

tan” = — (4-58b)
w0 -tan?-(tem2 §+1)

Br Br
tan% = @/ tan% (4-58¢)
7
gBr
0P (e —1)-tan® 22— — y—1
tan ; = G 2 o (4-58d)
: 2 (y-tan® 2
M- tan 5 (u-tan 5 +u+2)

These equations can be written in terms of dihedral angles considering that the
relationships between the angular variables and their respective dihedral angles are
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eBr =¢Br’ HBr =”+¢Br’ gBr =27Z__¢Br’
1B‘ 1B ; 23 3B Ij (4-59)
0, =@, ,0, =2n—-¢,, 0, =rw+¢,
It can be show that, if
p=1 (4-60)

the resultant equations are identical to those of the spherical 6R linkage given by
Eqn.(4-54) except that % ’sand " s take the places of o ’sand ¢ s, respectively.

Substituting Equation (4-60) into Equation (4-57), the thickness of subpanels must
satisfy

Br _ _Br _ _Br _ _Br Br _ _Br __ Br
Ay; =3y =45 =dsg, 0, =dg =20, (4-61)

Figure 4-15 Thick origami model for origami vertex W.
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Figure 4-16 Zero-thickness model of Waterbomb pattern and its corresponding thick panel model.

When 4 #1 , the thick panel origami of vertex W in the traditional waterbomb

pattern can still be flat foldable. This is evident by curve c in Fig. 4-17 where 4 = % .

Curve a s the relationships between dihedral angles ¢, and ¢, inzero-thickness six-

crease rigid origami for vertex W. Curves b and c are the relationships between dihedral
angles ¢ and ¢ for the thick panel counterparts based on the Bricard linkage

with different panel thicknesses. Note that curve b overlaps with curve a, demonstrating
that the kinematical equivalence of the spherical linkage and the Bricard linkage.
However in such circumstance, the motion of vertices D and W are not compatible any
more, i.e., the changes in dihedral angle about fold lines shared by linkages around D
and W differ during folding process. As a result, the mobility is lost.

In addition, it should be pointed out that the bifurcation does exist in both zero-
thickness and thick panel origami of the traditional waterbomb patterns due to the fact
that axes z> and z¢ in both Fig. 4-14 and Fig. 4-15 are co-linear initially when the sheet

or panel is completely flat. This can be avoid in making «,, = ¢, # %, but it is beyond

the scope of this article.
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a: Spherical 6/

b Bricard 67
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~ :1

/
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0 /3 27/3 m A==
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Figure 4-17  Relationships between dihedral angles for vertex W in the waterbomb origami
pattern.

4.5 Conclusion

We have developed a comprehensive kinematic model for rigid origami of panels
with non-zero thickness. This is done by identifying a spatial linkage model that is
kinematically equivalent to the rigid origami of a zero-thickness sheet. In other words,
the motion of the spatial linkage mimics that of the spherical linkage commonly used
to model rigid origami. To achieve this, we identify a spatial linkage that has the angular
conditions for arrangement of fold lines identical to that of the spherical linkage, and
then prove analytically that their motions are precisely alike.

The thick panel counterparts to four-, five- and six-crease vertex origami patterns
are overconstrained spatial linkages. The number of such linkages is rather limited. It
is relatively straightforward for four-crease origami patterns as only one spatial 4R
linkage exists. However, five- and six-crease single vertex patterns commonly comprise
two or three degrees of freedom, whereas their corresponding spatial overconstrained
linkages have only one mobility degree of freedom. In these cases, equivalence can
only be accomplished through reducing the degrees of freedom of the former by
symmetry or other means. This may be beneficial for practical applications as the
folding of thick panels can be more easily controlled due to their single degree of
freedom. Moreover, the synthesis can also be used for origami patterns consisting of a
mixture of vertices with various creases. Fig. 4-18 shows the folding sequence of a thick

panel origami based on a pattern with both four- and six-crease vertices.
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Figure 4-18 A thick panel origami based on a pattern with both four- and six-crease vertices.
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Chapter 5 Conclusion and Future Works

5.1 Conclusion

This thesis presents our work on constructing mobile networks of spherical 4R
linkages and design rigid origami patterns. Then the kinematic theory is used to judge
the rigidity of origami patterns and the effect of mountain-valley fold assignments on
the rigidity is presented. Negative Poisson’s ratio metamaterials based on rigid origami
patterns are also proposed in this thesis. A novel kinematic synthesis for rigid origami
of thick panels is established for real engineering applications. In this chapter, we have
a whole conclusion for the whole thesis.

(1) Network of four spherical 4R linkages

Based on the analysis of kinematics of spherical 4R linkage, we propose sixteen
alternative input-output relationships between the kinematic variables. Then we build
three types of assemblies of four identical spherical 4R linkages. The topology
structures of these three types are respectively rotational symmetric, plane symmetric
and two-fold symmetric. The symmetrical characters make these assemblies compatible

and mobile.

Then, the symmetrical compatible conditions are equivalent to the kinematic
transmission loops, i.e., the geometrical conditions are presented by the kinematic
theories. We use the sixteen alternative relationships to modify the transmission loops
and keep closed. According to the new modified transmission loops, the mobile
assemblies of four different spherical 4R linkages are derived while the kinematic
compatibility is always kept.

With the paper treated as links and the creases as joints, new rigid origami patterns
are obtained by referring to mobile assemblies of spherical 4R linkages with the paper
flat geometric condition. The theory proposed in this thesis not only provides the
solutions for the mobile assemblies of spherical 4R linkages, but also shows the
feasibility to design rigid origami patterns by studying the kinematic compatibility
condition of spherical 4R linkage assemblies.

(2) Mountain-valley folds of origami patterns

The rigid origami patterns should satisfy strict geometrical conditions, e.g., paper
facets in the double corrugated pattern are all parallelograms. The types of creases,
mountain fold and valley fold, also have important role in the rigid foldability of
origami patterns. According to the relationship between spherical linkages and rigid
origami, the effect of mountain-valley fold assignments on the rigidity of flat foldable
origami patterns are analysed with a kinematic method. The analysis result gives
multiple kinds of rigid double corrugated pattern with different mountain-valley fold
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assignments.

Metamaterials from the stacks of double corrugated patterns have been proposed
with many varieties when changing the mountain-valley assignments. Following the
folding of the rigid origami patterns, the metamaterials exhibit negative Poisson’s ratio
and different mountain-valley assignments can affect the deformation property of
origami metamaterials largely. The square-twist pattern and its metamaterials with
negative Poisson’s ratio are also discussed to show the generalization of this method.

(3) Origami of thick panels

The traditional kinematic model for rigid origami is based on spherical linkages, but
the material thickness can not be accommodated. By shifting hinges out of plane of the
origami pattern, this problem will be solved. This new comprehensive kinematic model
for rigid origami of panels with non-zero thickness is based on the spatial linkages.

The number of such linkages is rather limited. It is relatively straightforward for
four-crease origami patterns as only one spatial 4R linkage exists. However, five-crease
and six-crease single vertex patterns commonly comprise two or three degrees of
freedom, whereas their corresponding spatial overconstrained linkages have only one
mobility degree of freedom.

The construction process of thick panel origami models for four-crease origami
vertex is using Bennett linkage, five-crease origami vertex by using Myard linkage, and
six-crease origami vertex by using Bricard linkage. This is done by identifying a spatial
linkage model that is kinematically equivalent to the rigid origami of a zero-thickness
sheet, i.e., the motion of the spatial linkage mimics that of the spherical linkage
commonly used to model rigid origami.

Thick panel models for multi-vertex patterns by this technique is also presented in
this thesis. Moreover, the synthesis can also be used for origami patterns consisting of
a mixture of vertices with various creases. A thick panel origami based on a pattern with

both four- and six-crease vertices are also shown in this thesis.

5.2 Future Works

This thesis systemically presents the theories of using the network of spherical 4R
linkages and rigid origami for constructing deployable structures and metamaterials. In
order to improve the performance of the deployable structure, a number of potential
research areas are outlined as follows.

(1) The mobile assemblies of spherical 4R linkages are based on the topological
symmetric. More general method of constructing mobile network of spherical 4R
linkages will be explored in the future.

(2) Referring to the assemblies proposed by our method, a lot of rigid origami
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patterns with 3x3 quadrilateral mesh can be designed. In the further research, we will
extend the unit patterns unlimitedly to get large-scale rigid origami patterns by
tessellation method.

(3) The mechanical property of the metamaterials will be analysed in the future and
find suitable engineering application fields of these metamaterials.

(4) Use the thick origami technique to design new solar arrays, antenna of satellites,
and other deployable structures in the space engineering.

(5) Finish the force analysis of the origami-inspiration deployable structures and
optimize the design parameter to achieve better performance, such as larger deploy-fold
ratios, easier to actuate the structure and better controllable deploying motion.
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Table A1. The variations of kinematic relationships and the corresponding geometric parameters

RL(G, vs. 6,)

R2 (0. vs. (x-6,,))

ai(m) > a(i+l)(i+2) ’ a(i+2)(i+3) > a(f+3)i

ii1y> Xiniyiv2) s T~ Hivayins)> 7+ Xiasy

ity Xinyiv2y> 7 T Xisayinny — T Xz

ii1y> Xisnyivay s~ Fiayins)» X3y

iy

T+

(1)i+2) Finayinny» 8 T iy

ai(i+l) ,—T+ a(i+l)(i+2) s 7= a(i+2)(f+3) ’ a(f+3)i

Qi) + a(i+l)(i+2) T F a(i+2)(i+3) > i3

i1y~ F Airayinays ~Xinayinsy % T Xy

_ai(Hl) ST — a(i+1)(i+2) ’ a(i+2)(f+3) T a(i”)i

i) T T Finayina) T Fivayins) >~ Finayi

—al.(m), T — a(,'+1)(1+2) , T+ a([+2)([+3) ’ _a(t‘+3)f

Oy, T

Ay iv2y> ~Fivayisa) T~ Finayi

Ty Ty ir2) s Fivayiay s T Fins)i

Ty T X3 T T Farayinn) T T Fiaz,

iy T inyir2y T T Fiaayinn)s T T i)

T4ty T X a2y T Fayinsy s T Eiw3)i

= Aiginny Fisiyir2) FKiv2)i3) T~ Fisayi

7= Riinys Finnina) 7~ Finayind)> ~ Fivayi
= Cyiinys Xiniyinays ~F T Qisayinays ~Xinayi

7= Qyiany> Ainnyivn) >~ Frayied)s T~ Kivz

7= i1y~ Aiiiyivays Hinayins)» ~ sy
7= Ciianys =0+ Aianyian) s T~ Xaaayins) s T~ Fiasyi

T—Q.

iG> 7 +

(i+1)(i+2)> + Aivayiv3)s T~ Kz

= i1y~ + Cinyivn)s ~Xinayind)» ~Xisdyi

T Q11> BT Xaayinny> Kiayinsy Xindyi

-7+ Ciir1)> T~ Ciayivays T~ igayinzy» 7 + Xi13)i
1

-7+ a'(i+1)’ T — a(i+1)(i+2)’ -+ 6z(i+2)(i+3)’ T+ a(i+3)i

T ) T Qs ~ Xinayinsy s Xivayi

T E Q1) T2y Finayinsyr 8 T Xz

1

T i1y T Ry i) T

a(i+2)(i+3) > a(i+3)i
T F iy X snyis) > T T Xinayinsy Xivayi

1

-7+ 0[.<i+1), _a([+l)(i+2) s Ty i43) T + a(i+3)i

R3 (6, v.s. (~7+6,)

R4 (6, vs. —6,)

Xy 7T~ Xayisy > Xivayinsys ~F + Xiyayi

ai(Hl) s 7T — 6\((Hl)(iJrZ) s 7T — a(i+2)(i+3) > a(i+3)i

Xiianys T~ Aiayingys 70 T Xiiayinsy» Xivsyi

Qii41)> T~
Qiiry> ™
Qiiy> ™
Qiiy> ™

ai(Hl) s

TR
—is)»
iy
iy
_ai(Hl) ’
_ai(Hl) >
_ai(Hl) >

sy

Fisiyiv2)» ~ Favayina) 8 ¥ Ky
X isnyiv2)> Fivyiva) Kind)i

irnyina)> 7T~ Fiaayinzy> 7+ Xz
Aisnyir2) 7+ Firayia) 7 T Xz
Fiiyivay> ~ Fiivayinz)> Fivdi

A jyiv2)> Hinayiv)r ~ Ky

X iisnyiv2)> 7T~ Ain2)ie3)> T~ Finzyi
Aianyia) s~ T Ciiayinz) T~ Xy
Fiisnyir2)> ~ Fivayins)» ~ Fivayi

T Qayirays Fiaxis) T~ Xivay
T O ayiv2) T T Xiaayivsy s Xy
T Qayirays T T Aiayinsy T Xz

A A2y Xy T Xy

7= y(iv1y> T~ Hinyinnys Fivayinsy> ~ Find)i
=iy T~ ipayinn)ys T~ Civayins) o T~ Cinzyi
/2 ai(Hl) ST — a(i+1)(z’+2) , T+ a(i+2)(i+3) 7T — a(i+3)i

i

w— a-(H]) ST — a(i+1)(z‘+2) ’ _a(i+2)(i+3) ’ _a(”3)i
T — 0![(,~+1) 5 _a(i+1)(;+z) > a(i+2)(i+3) T a(i+3)i
V2 ai(H—l) 5 _a(i+l)(i+2) s 7T — a([+2)(i+3) 3 _a(i+3)i
= Qyi1)> =Xy~ T Aiiayins) >~ Xy
T = Cyih1y> ~iyi+2) s ~ vy i43)2 T~ Cinyi
T iy Xinayiny s Xivayinsys ~F T Xz
T iy Xiryinay s T~ Xivayinzy» Xivdyi
-+ Qi Ky~ + X ii2)i+3)> Kivdyi
T iy Kisayinay ~ Fisayinay T i)

-1+,

z(i+l)’_”+a

(+1)i+2)» Fir2yi+3) s Fiva)i
-7+ Q1) + )i+ T~ Xisayisz)ys + Ai13)i
-+ ai(Hl) ,— 7T+ a(i+1)(i+2) , =T+ 6K(i+2)(i+3) s+ a(i+3)i

-+ a[(,q.]) , T+ a(i+1)(i+2) ’ _a(i+2)(i+3)’ a(i+3)i

111



Doctoral Thesis of Tianjin University

Table A1. The variations of kinematic relationships and the corresponding geometric parameters

(continued)

RS (x—6,) vs. 6,)

R6 (7-6) vs. (x-6,,)))

=41y s T = Cinyinay s Civayinsy» Kivd)i

= Ci1y> T Qiyyyi2)s T~ Xiinyinzys B+ Qiisy;
= C1y> T~ Qipyyi2ys T+ Qiigyinnys B+ Qs
T—= ai(Hl) ST — a(i+l)(i+2) » _a(i+2)(i+3) s a(i+3)i

= Q1) ~Xianyinn) Fivayivs)r % + Qiaayi
=1y~ igayiv2)s T~ Ainayinsy > Xied)i
=1y ~Xinryivny 7+ Aiiayivsy» Xinsyi

T—= ai(Hl) > _a(i+1)(i+2) s _a(i+2)(i+3) T+ a(i+3)i
T+ ai(i+1) s a(i+1)(i+2)’ a(i+2)(i+3) s T — a(i+3)i

-+ Ciir1y> Aisiyi2) 2 T~ Ainyi+3)> ~ X in3)i

T Oy Xiayinays Tt Xianyinzy s~ Xivayi

T Oy Xiayinay s~ Xivaxizys T~ Xins)i

T+ ai(i+1) , T+ a(i+1)(i+2)’ a(i+2)(i+3) s _a(i+3)i

-+ Aiiv1ys— 7 + Qi) T~ Civayinz)» T~ Ainy,

T+ ai(i+1) , T+ a(i+1)(i+2)’ T+ a(i+2)(i+3) 5T — a(i+3)i

T 0y Ay a2y TRy ia3) > T Ry

iis1y> T~ Aianyivzy» Xivayinz)» T~ Xindi

ai(Hl) ST — a(i+l)(z’+2) 5T — a(i+2)(i+3) s _a(i+3)i

i1y
Qi1
Aiiv1ys
Aiiv1y»
Aiiv1ys

Qiisny»

T—= a(i+l)(z’+2) T+ a(i+2)(i+3) » _a(i+3)i

T—= a(i+l)(z’+2) » _a(i+2)(i+3) 5T — a(i+3)i

T yi+2) > Xinayinz) s T X3y
T yie2)0 T T inayinzy s T iy
T yie2) T T A3y T Xz

T yi+2) > T A ia)i43) 0 T X i)

Ty Xy Fivo)ies)s Kiivs)i

i1y Xinnyivn) s T~ Aisayinzys T+ A sy

i1y Xinnyinays T T Xianyinzys % T Xyysy

iy Xisiyinn)ys ~ Fivayis) > Kivsyi

_ai(Hl) T+ a(i+1)(i+2) ’ a(i+2)(i+3) , T+ a(i+3)i

_ai(Hl) T+ a(i+1)(i+2) 57T — a(i+2)(i+3) s a(i+3)i

_ai(Hl) T+ a(i+1)(i+2) , T+ a(i+2)(i+3) s a(i+3)i

Ty T Ay ia2) s T X rayi3) T Ay,

RT (7-6) vs. (-7r+6,,))

R8 (x—06.) vs. —=06,))

= Cii1y> Xianyivn)s Xinayinnys —F T iz
=41y s Ainryiv2) s T~ Civayinsy» Kind)i
=1y Xinnyinzys 7 T Xiiayinny> Xy

=1y Xinyinays ~Fivyinny ~F T Xz

= Cih1y> 0+ X ryinnys Xivayien)» Kinsyi
= Ci1y> ™+ Riryian)s T~ Xiinyinnys T sy
T—= ai(Hl) , T+ a(i+1)(i+2) , T+ a(i+2)(i+3)’ T+ a(i+3)i

=iy T+ Qiyyiaay> ~Xiaayinsy» Xinsyi
T 0y T~ Xayiva) Kivayies)r ~Xind)i
T Q11> T Aianyinn)s T~ Hinayinsys T~ Kz

T+ ai(i+1) ST — a(i+l)(i+2)’ T+ a(i+2)(i+3) ST — a(i+3)i

TR F 14y T Qi i2)s ~ Riaayies) ~ Xinai
T X0y T vy Fisayind) T T Xy
T Oy T vy T T Xy~ Xy
T iy X ryinay s T T Xanyinsys ~Xivayi

T+ ai(i+1) s _a(i+1)(i+2) > _a(i+2)(i+3)’ = a(i+3)i

Aiis1y»
Qiivny»
Uiiv1yo
Qiivny»
Aiis1y»
Qiis1y»
Aiis1y»

Qiivny»

A1) i+2) > Aivayi+3)> ~ ivs)i
Qiryiv2)2 T~ Cirnyies)s T~ Kigzyi
Aianyivay> 7+ Uiy T~ Xigay
Airnyiv2)s ~ XHivayind) >~ Find)i
T F Cyiray Xiaayinn) o T~ Ainsyi
T F Qi) T Xinayinnys ~ Xindyi
TR F Ay T T Kanyiazy sy

T+ Qi i12)0 T X iaayin3) s T~ Xy

a1y T Xyina)y Xivayinzys ~F T iz

Ty T Ciayin2) o T T Ainayingy > Fivayi

_ai(Hl) 5T — a(i+1)(i+2) , T+ a(i+2)(i+3) » a(i+3)i

Ty, T

Qisiyiva)s ~Xisayinzys T+ Aiisy

Ty T isyivay s Flivayivzy > Fivdyi

i1y X inyin2)s T~ Xisayinzys —F T Xz

i1y T inyinays T T Xiiayinzy T iy,

T a1y T a1 i+2) T i) i43) > Kins)i
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Table A2. Geometrical conditions of two-fold symmetric assemblies for Kokotsakis meshes

Two-fold symmetric case

R2R2
a __ _ b __ _ c _ d _
alZ =7 alZ’aIZ =7 alZ’“lZ - alZ’aIZ - alZ’
a _ b _ ¢ _ d _
a23 - a23’a23 - a23 ’a23 - a23’a23 - a23’
a _ b _ ¢ _ d _
Oy = Oy Oy = U3y, Oy = Oy, Ay = Oy,

a _ b _ [ d _
Ay ST Q0 =T = Oy, Oy = Uy, Ay = Oy

RARA4(RI2R12)
a __ _ b __ _ c _ d _
Oy =T =0, 0 =T = 0,0, =Q,,0),, =0,
a _ [ c _ d _
Opy =T = Oy, Uyy =TT — Uy, Up3 = U3, Oyy = Qs
a __ _ b _ _ c _ d _
Oy =T = Qi Oy =T = Ay, Ay = Oy, Oy = Uy,

a __ b _ _ [ d _
Q) ST — 0y Oy =TTy Ay = gy, Ay = Ay

R16R16
a __ b _ c _ d __
alZ - a127a12 - a125a12 - a127a12 - alZ’

a __ b _ c _ d _
a23 - a23’a23 - 0!23 ’a23 - a23’a23 - a23’

a __ b _ _ c _ _ d _
Ohy = O3y O3y =TT =0y Oy = T = Uy, Oy = Ay,
a _ b _ _ [ _ d _
Ay =0y, Q) =TT = QY Oy =TT =0y, Qyy =0y
R2R15R16
a __ b _ c _ d _
O =TT =0y =T =0y, 0 = 0,0 =),

a __ b _ c _ d _
Opy = O3, Uy = Oy, Qp3 = Uy, U3 = U,

a _ bo_ ¢ o_ d _
Oy = Oy s Uy =TT = U3y, Oyy = 0= Qg Oy = gy

a _ b _ c _ d _
Oy =TT =00y = 04,0 =TT =0y, 04 = Ay,

R3R7TR5
a __ b _ _ [ _ d _
O =00 =T =0y, 0 =T —0,,0),) =0,
a __ _ b _ c _ _ d _
Oy =T = Q3,3 = Oy, 0y =TT = U3, Up3 = Uy,
a __ _ b _ _ ¢ _ d _
O3y =T =y, Oy =T = Ay, Ay = Oy, Oy = Uy,
a __ b _ c _ d _
Oy = 0y, Qy = 0y, Oy =0, Ay = Oy
R3R14R16
a _ b _ c _ d _
Uy =00 = 0,0, = 0,0, =0,
a _ [ c _ d _
Opy =T =0y, Uyy =TT — Uy, Up3 = U3, Oyy = Qs
a _ b _ co_ d _
O3y =T = Qg = Oy, Oyy =TT =0y, Oyy = Uy,
a __ b _ ¢ _ d _
Ay = QY50 =TT =0, Oy =TT — 0y, 0y = Oy
R4RIRI2
a __ _ b __ c _ _ d _
Oy =TT =0, 0 = 0,0 =T =00, =0,
a __ _ b _ c _ _ d _
Oyy =70 = Oy, Uyy = U3,y =TT — U3, Oyy = U,
a __ _ b _ c _ _ d _
O3y =T = Qg = Oy, Oyy =TT = Oy, Oyy = Uy,
a __ _ b _ [ _ d _
@ =T = QY04 = QO =TT =0y, Oy = Ay

R3R3
a d
alZ alZ’aIZ alZ’aIZ alZ’aIZ alZ’
d
a23 4 a23 a23 4

Oy =TT =03y ,Qyy =70 = Qyy, Uyy = Oy, Ay = Uy,
Q) = Oy Oy = Oy, Q) = Ay, 0y = O
R5R5
Ay =0y, 0y =T =0y, Oy =TT =0y, Oy =
Uy = Oy, Olyy = T = Qyy Qlyy = 7T — Oy, Oy = Oy,
Oy = Oy Oy = Oy, Ay = Uy, Oy = Oy,

R2R6R5
a __ _ b _ c _ _ d _
Oy =T =0, 0 = 0,0 =T =00, =0,
a __ b _ _ c _ _ d _
Oyy = O3y Uyy =T — U3,y =TT — U3, Opy = Qs
a __ b _ c _ d _
Oy = Oy 50y = Uy, Ay = Oy, Oy = Uy,

a __ b _ _ [ d _
Q) ST0— 0y Oy =TTy, Ay = gy, Ay = Ay

R2R11RI12
a _ b _ ¢ _ d _
O =TT =0y Oy =00y =T =0y, 00, =
a _ b _ C d _
O3 = Oy Uy = T = Olyy s Uy = 0= U3, Ayy = Uy,

a __ b _ c _ _ d _
a34 - a34 ’a34 - a34’a34 =7 0!34,a34 - a34’

a _ b _ ¢ _ d _
Oy =T =0y 50y =T =y, Oy =T =0y, 0y = Ay,

R3RIORI2

a _ b _ _ c _ _ d _

Oy =00 =T =0y, 0y == 0,0, =0,
a _ b _ co_ d _

Oy =T = Q3,3 = Oy, 0y =TT — U3, Up3 = Uy,
a __ b _ c _ _ d _

O3y =T = Qyy, Oy = Oy, Oy =TT =0y, Oy = Uy,
a __ b _ _ c _ _ d _

Oy = 0y 0y =T =0, Oy =T =0y, 0y =0y,

R4R8R5

a __ _ b _ c _ _ d _

Oy =T =0, 0 = 0,0 =T =00, =0,
a __ _ b _ c _ _ d _

Opy =T = Oy, Uyy = U3,y =TT — U3, Opy = Qs
a __ _ b _ _ c _ d _

O3y =T = Qg =T = Ay, Ay = Oy, Oy = Uy,
a _ bo_ e _ d _

Qyy =T 04,0y =T =0y, Oy = Oy, 0y = Oy

R4RI3R16

a __ _ b __ _ c _ d _

Oy =T =0, 0 =T =0, 0, = Q,,0),, =0,
a __ _ b _ _ c _ d _

Opy =T = Oy, Uyy =TT — Uy, U3 = U3, Oyy = Qs
a __ _ b _ c _ _ d _

O3y =T = Qg = Oy, Oyy =TT = Oy, Oyy = Uy,
a __ _ b _ [ _ d _

@ =T = QY04 = QO =TT =0y, Oy = Ay
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Table A3. Geometrical conditions of symmetric assemblies for Kokotsakis meshes

Symmetric case

R2R2
ay =0y, 0, =T =y, A =7Z'—0£12,a{dz =0y,
Uyy = Oy, Oyy = T — Oy 0Ly, :ﬂ—a23,a2d3 =0y,
a3a4 22N ﬂa3b4 =05y,05, = Ol34,0(i‘ =0y,
Q) = 0,0y =y, 0, = 0‘4170‘;{1 =0ay
R4R4
Qpy =0y, 0, = 0y, Q) =TT =@y, Oy = T =,
s azs’a; T O30y = T =0y, Uy = 70— s,
Oy = Oy, Oy = Oy, Qg =TT — Oy, Oy =TT =y,
Q) = 0y ,04) =y, Oy =TT — 0y, 0y =T =0y,
R3R16
Qpy =, ) =TT =0y, 0 = 0y, O, = O,
Oy =7 0523,0553 = 03,053 = U3, Uyy = Uy,
Oy =TT = Oy Oy = Oy, Oy = Oy, Uy = Oy,
Q) = 0,0 =T — 0y, Oy = a41:a;j1 ay

R2R6R2
a _ b o_ ¢ _ d _
Oy =TT =00 =T =y, 0 =T —0,,0,, =
a _ b _ c _ _ d _
O3 = U3, Oy = Uy, Uyy = T — O3, Upz = Uy,
a __ b _ _ c _ d _
Oy = Oy 50y = 70— Oy, Uy = Oy, Uy = Ay,

a _ b _ ¢ _ d _
Oy =T =0y, = QY5 Oy = Oy, Ay = Oy

R2R8R4
ay, = ”_alz’alhz =T-a,,a); = 77—0‘12’0‘1‘12 =
ay, = 0(23,0l2b3 =0y, 05 = 71'_0523:05;13 =0y,
ay, = a34’a;4 =y, 0, = ”_0%4’0‘;& =y,

a _ b _ c o _ d _
Qup =T = QY 0y =TT =0y, Ay =TT — 0y, Ay = Ay

R3R14R3

a __ b _ _ c _

O =00, =TT —0,,0,) =0,,0;, =Q,
a __ _ b _ c _ d

Opy =T = Oy, Uy = Uy, Up3 = Uy, Uy = U,

a __ _ b _ _ c _ d _
Oy =T =04y, 0y =TT =y, Oy =TT =y, Ay = Oy

a _ b _ ¢ o_ d _

Ay = QY0 = Oy 0 =TT =y, 0y = Oy

R4RI1R2
a __ _ b __ c _ _ d _
Oy =T =0, 0 = 0,0 =T —Q,,0),) =0,
a __ _ b _ c _ _ d _
Opy =70 = Oy, Uyy = U3,y =TT — U3, Opy = Qs
a __ _ b _ _ c _ d _
Oy =T = Qg =T = Ay, Ay = Oy, Oy = Uy,

a __ b _ _ c _ d _
Ay = 70— Oy Oy ST =0 Oy = 0y, Ay = Ay

R3R3
afy =0y, 0y =0y, 0 = 0y, Oy = O,
Uy = Oy, Oy = Oy, Oy = Oy, Olyy = Oy,
Ay = Oy 0y, = = Oy, Qsy = 7T — Oy, Oy = Oy
Oy = Oy Oy = 70— Oy, Uy =TT — Oy, gy = Ay,
R2R5
O, =7 a127a1b2 _a12>a162 :alzaag =ap,
Oy = Oy, Oy =TT — Uy, Uy azya;a =0y
Ay = Oy O, = T — sy, Oy = Oy, O = Oy,
a,=r a41,0!f1 =, a, = a41>a;j1 ay
R4R12
Ay =T =0y, 0 =T — 0y, Oy =0y, Oy =
Uy =T = Uy, Qyy =TT = Oy ,Qyy = Oy, Oy = Oy,
Oy =TT = Qyy Oy =TT = Oy, Oy = Uy, Uy = Oy,
Oy =TT — 0y, Q) =T —Cy, 0y = a41’ajl ay
R2R7R3
ay, = ”_amalbz =ap,a;, = amafz =0,

a _ b _ _ ¢ _ d _

a23 - a23 7a23 =7 a23 ’a23 - a23 ’a23 - a23 ’
a _ b _ c _ _ d _

a34 - 0,’34 ’a34 - a34’a34 =7 a34’a34 - a34’

a __ b _ c _ d _
Qu =T = QY Q) =TT =0, Oy =TT =0y, Ay = Ay

R3RI5R2
a _ b _ c _ _ d _
a12 - a12 ’alz - alZ’ al2 =7 al2’ 0!12 - alZ’
a _ _ b _ _ c _ _ d _
a23 =7 a23 s a23 =7 a23 ’a23 =7 a23 ’a23 - aZ]
a _ _ b _ ¢ _ d _
a34 =7 a34 ’a34 - a34’a34 - a34’a34 - 0!34,

a __ b _ c _ d _
Ay = 0,0y =TT =0, Oy =0y, 0y = Ay,

R3RI3R4
a __ b _ c _ _ d _
O =00 =0,,0, =T —0,,0, =Q,
a _ _ b _ _ c _ _ d _
Oy =T = Q3 Oyy =T =0y, Up3 =TT — U3 Oy = Qg
a _ bo_ co_ d _
Oy =T =04y, 0y =TT =y, Uy =TTy, Ay = Oy

a _ b _ ¢ o_ d _
Ay = QY Uy = Ay, Ay =TT~ 0y, Oy = Gy

R4RI0R3

a __ _ b _ _ c _ d _

Oy =T =00 =T =0, 0, = Q5,0 =0,
a _ [ c _ d _

Opy =T =0y, Uyy =TT — Uy, Up3 = U3, Opy = Qs
a _ b _ co_ d _

O3y =T = Qg = Oy, Oyy =TT =0y, Oy = Uy,
a __ _ b _ [ _ d _

Qyy =T 04,0y = Oy, Oy =T — 0y, Oy = Oy
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Table A3. Geometrical conditions of symmetric assemblies for Kokotsakis meshes (continued)

Symmetric case

R4R9R4
a _ _ b _ c _ _ d _
O =TT =0y, 0 =0y, =T —0,0,) =0,
a _ b _ co_ d _
Oy =T = Q3,3 = Oy, 0y =TT — U3, Up3 = Uy,
a __ b _ c _ _ d _
O3y =T = Qyy, Oy = Oy, Oy =TT =0y, Oy = Uy,

a __ b _ c _ d _
Oy =T =050y =0y, Oy =T =0y, 0y =0y

Table A4. Geometrical conditions of rotation assemblies for Kokotsakis meshes

Rotation case

R2R5

a _ . b _ c _ _d _
alZ =7 a125a12 - a127a12 _a12’_a12 - alZ’

R3R16

a __ b _ _ c _ d _

a12 - alZ ’a12 =7 alZ’ alZ - alZ’ alZ - alZ’
a __ b _ _ c _ d _ a __ _ b _ c _ d _

0!23 - a23’a23 =7 a23’ a23 - 0!23, a23 - aZ}’ a23 =7 a23’a23 - a23’ a23 - 0,’23, a23 - a23’
a __ b _ _ c _ d _ a __ _ b _ c _ d _

Ay = Qg Oy =TT = Qyyy Oz = Ay, U3y = Ay, Ay =T =0y, Ay = Qyyy Uy = Ay, Az = Ay,
a __ _ b _ c _ d _ a __ b __ _ c _ d _

Oy =T = QY04 = 04y, 0y = Oy, Oy =0y Oy = Q0 =TT =y, Oy = Qs Oy = Qe

o, 0y =0y, +0, =7 a, 0y oy, oy, =21

R4R12

a _ bo_ c _ d _
alz =7 alpalz =7 alz’ alZ - a12’ alZ - aIZ’

R2R6R5
a __ _ b _ _ c _ d _
O =T =00, =TT =0, O =0, O =05,
a __ _ b _ _ c _ _ a __ b _ c _ d _
Opy =T =350y =T — Uy Up3 = U3, Qpy = Uy, Oy = Ohy, Uy = U3y Q3 = U3, Q3 = U,
a __ b _ c _ _ a __ b _ c _ d _
Ay =T =0y, Oy =TT = Qyy U3y = Ay Oy = Ay Ay = Oy =TT =gy, O3y =T = Qyy, Ayy = Uy,
a __ _ b __ _ c _ _ a __ _ b _ c _ _ d _
Oy ST = QY0 =TT = Qs Oy = Qs Qg =0y Oy T 0,0y = Qs Oy =T— 0y, Ay = 0.

O+ 0y =0y +0y =7 A+ 0y =03 +0Q, =7

R2R7TR16

a __ _ b _ c _ _ _
alZ =7 alZ’aIZ - alZ’ alZ =7 alZ’ alZ - alZ’

R2R8RI12
a __ _ b _ _ c _ _ d _
O ST =00, =T =0, O =T=0,, &, =Q),
a __ b _ c _ _ d __ a __ b _ c _ _ d _
Oy = O35 Qpy =T =y Uy =TT =z, Qpy = Uy, Oy = 0Oh3, Uy = U3y U3 =TT — U3, Up3 = U,
a __ b _ c _ d _ a __ b _ c _ d _
Qyy = A3y, Qyy = Uy O3y = Ay, O3y = Oy, Ay = Oy, 03y = Ay, O3y =T = Uy, Oy = Ay,

a __ _ b __ _ c _ d _ a __ _ b _ _ c _ _ d _
Quy =T =0y, Ay =TT = Qs Oy =0y Oy = Qe Oy =T =0, 0 =TT Qs Qy =T =y, Oy =0y

O+ 0y =Qy +0y =7

O+ 0y =03 +Qy =7

R3RI5R5 R3R14R16
a __ b __ c _ d _ a __ b _ _ c _ _ d _
Oy = 0,0, =0, O =0, O) =0, Ay =00, =T =0y, Gy =T =0y, G =&,
a __ _ b _ _ c _ d __ a __ _ b _ c _ _ d _
Opy =T = Q35 Oyy =T =035 U3 = U3y Qpy = gy Q3 =T =0y Uy = U3y Qpy =T —0lyyy Uy = U,
a __ _ b _ c _ _ d _ a _ b _ c _ d _
Oy =TT =0y, Uyy =0y Qag =T =0y Qyy =y, O3y =T = Qyy, Oy =TT =0y Oy = Ay, Oy = Oy,

a __ b _ _ c _ _ d _
Oy = Qs 0y =TT =y Oy =T =0y, Oy =0

U +0y =0y +0y =7

T 0y to, o, =7

a _ b _ c _ d _
a41 _a41’a41 - a41’ a41 - a41’ a4l - a41'
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Table A4. Geometrical conditions of rotation assemblies for Kokotsakis meshes (continued)

Rotation case

R3RI3RI12 R4RI1R5
a __ b _ c _ _ d _ a __ _ b _ c _ d _
Ay =00, =0y, Q) =T =0, O =0, O =T =00, =0y, Q) =0y, O =0,
a _ _ b _ _ c _ _ d _ a __ _ b _ c _ d _
Oy =T =0y, U3 =TT — W3, Uy =T =3, Oy = Q Oy =T =03, Uyy = U5 Uy = Oy Oy = U,

a

_ b _ c _ d _ _ b _ c _ d _
Qyy =T =0y Uyy =TT =y, Oy =TT =0y, Ay =Q U3y =T =03y, 03y =T =0y, Qyy =T —Qyy, Oy =0

a __ b __ c _ _ d _ a __ _ b _ _ c _ _ d _
Oy = QY04 = Qs Oy =T =0y Oy = Qe Qg =TT 04,0 ST =0y, Oy =T =0y, Oy =Q
O +0y, =Qp+03y =7 O+ 0y =0y +0y =7

R4RI10R16 R4R9R12

a __ _ b _ _ c _ _ d _ a __ _ b _ c _ _ d _
O =TT =00, =T =0y, O =T—0, O) =0 O =T—0,,0,; =0, O, =T—0,, &, =&,
a _ b _ ¢ o_ d __ I b _ [ d _
Oy =T = Q35 Oy =TT — Q3 Opy =T — U35 U3 = A U3 =T =0y, U3 = Uz, Opy =TT — U3, Ay = Oy
a __ _ b _ c _ d _ _ _ b _ c _ _ d _
Oy =TT =y, Oy = Uy Oy = Qg Ay =y, Oy =T = Qyy, 0y = Ay, O3y =T =0y, Qyy = Ay,
a _ b _ c _ d _ [ b _ c d _
Oy =T =y, 0y =0y Oy =0y, Oy =0y Oy TTT—0,0) =0y, Oy =TT =0, Oy =0y

O + 0y =Qy +Qy =7 O+ =0y +Qy =7
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The results the compatible equation of spherical 4R linkage are
07 (1,1) = cos °*" - cos @) —cos " - sin 67" -sin ;4
0 (1,2) =sin )" -sinas, * -sin @74 —cosasy * - cos 6°*F - sin ;4

S4R S4R S4R . nS4R
—cosqa;,  -€osa,, -cos@;"" -sinf,

S4R S4R S4R S4R S4R S4R S4R
0,7 (,3)=cosa,;  -sina;,  -sin@’"" +sina,, -cos@’ " -sin b,
+cosa;,® -sin a2S34R -cos @, -sin §°*"

P (2,1) = cos 85 -sin 0°*F + cos ) - cos @7 -sin 674
S4R S4R S4R S4R S4R S4R : S4R
0,7 (2, 2) =cosq,, -COSay, -cos6’ " -cosl;,"" —cosa,, -sinb
: S4R S4R
—sina)* -sinal " -cos 6,

S4R S4R : S4R : S4R S4R S4R
0% (2,3) =sin " -sin 8°*F -sin ) ** —cos a3, * -sinay* - cos &,

S4R S4R S4R S4R
—cosqa;,  -sina,, -cos@ " -cos b,
07" (3,1) =sina'" -sin 6 **
0% (3,2) =cosa)® -sinay, * +cosay; " -sinay - cos 0

S4R S4R . S4R S4R
(3,3)=cosa;," -cosasy, " —sina’* -sinay, " -cos O

Oy (1,1) = cos 8% - cos ) + cosay'" - sin 67 *F -sin ;4

0" (1,2) = cos 0 ** -sin 0 ** —cos a3 * - cos 654" -sin 94"

0" (1,3) =sina'" -sin 9, **

Qg” (2, 1) =sin 0512 -sin af;m sin 493S4R +cos af;R -COS 6’35“ -sin Hf”

S4R S4R - nS4R
—cosay " -cosay ™ -cos @) *F -sin 6

0:*(2,2) =cosay* -cosayy t -cos 8 - cos 0 + cos a, - sin 6

S4R S4R S4R
—sing,, " -sina,, -cosb

S4R S4R : S4R S4R S4R
0;%(2,3)=—cos ;) -sinay, * —cosay® -sinay* -cos @)

S4R S4R S4R : S4R S4R S4R : S4R
0.3, 1) =cosa,, -sing,, -sin@;"" —sina,,  -cosé; " -sind,

S4R S4R - AS4R
—cosay " -sinay, " -cos @) -sin 6;

S4R S4R : S4R : S4R S4R S4R
0,3, 2) =sinay,* -sin @ -sin 0 +cos o)y -sin ey - cos O

S4R S4R S4R
+cosay " sinal; " -cos @ -cos b

S4R _ S4R : S4R S4R
(3,3)=cos ;)" -cosay,* —sina* -sinaj, " -cos
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The results the compatible equation of spherical 5R linkage are

O (1,1) = cos 8,°F - (cos 6% - cos °F —cosa®* -sin §°" -sin 6,°F)
+sina”* -sin §°F - ;"

07°%(1,2) =sin(2a***) - (cos 7 -sin 8% +cos a** - cos 6,°" -sin §°°%)
+cos(2a’™*)-sin 8% (cos 8% - cos ;" —cos a®*" -sin §°°" -sin ;")

S5R

—cos(2a”)-sina®** -cos 6% -sin 6

0;7%(1,3) =sin(2a’™*) -sin 8% - (cos 87" - cos ,°F —cos a*** -sin 6% - sin %)
—cos(2a**)-(cos 7% -sin €7 + cos " - cos % -sin §°°")

5. sina®" - cos 6;°F -sin °°F

—sin2a
0% (2,1) = cos 8% - (cos °F -sin 0°F + cosa®™* -cos 877 -sin 6°F)
—sina’>* -cos 0°°F -sin ;"

0,°%(2,2) =sin(2a”*") - (sin 6, -sin @, —cos a>** -cos 8> - cos ;)
+cos(2a’*)-sin@;°F - (cos 8,7 -sin " + cos a>*" - cos " -sin 6;°F)

S5R

+cos(2a’**)-sina®** -cos 87" - cos ;"

0;°%(2,3) =sin(2a>*") -sin 6% - (cos % -sin 6% + cos " - cos °F -sin &)
—c0s(2a**)-(sin §7* -sin €°F —cos &> - cos @° - cos 6;°")

Sy sina®* - cos 67" - cos 6

+sin(2ax
>R(3,1) =cosa’ -sianSR +sina’™* -cos 6% -sin ;°F

7R (3,2) = cos(ZaSSR) sina®™* -sin 8% -sin 6;°% —sin(2a***)-sina**" - cos 65"

S5R

—cos(2a’™*)-cosa’*" - cos 6"

0,°%(3,3) = cos(2a**") -sina®** - cos ,°F —sin(2a>*) - cos a*** - cos 6"

+sin(2e**

)-sina®* -sin 6" -sin 6;°*
>R (1,1) = cos 6,7 - cos 8,°F
>*(1,2) = cos 8, -sin ;"
3R (1, 3) = sin G5F
2% (2,1) = —cosa’* -cos €;°F -sin 8,°" +sin " -sin 6; "
23%(2,2) = —sina®* -cos 6% —cosa®** -sin ;" -sin 6"
0:°%(2,3)=cosa®** - cos 8"
0% (3,1) =cosa®* -sin 6,7 +sina**" - cos 6% -sin ;"
23%(3,2) =sina’™* -sin 6, -sin 6;°F —cos a**" - cos 6; "

>%(3,3) = —sina’** -cos 6,°F

118



Appendix

The results the compatible equation of Spherical 6R linkage are
0" (1,1) =sin 8;°% - (cos(2a***) - cos 87 -sin 8, °" + sin(2a* ") -sin " -sin §°°F
+cos(2a’*™)-cosa’** -cos 8% -sin 6°°F)

+c0s 6, - (cos 0% -cos 0% —cosa®* -sin §°°F -sin 67°F)
07" (1,2) =—cos® &*** -sin 6% - (cos® € —1) + cos(2a***) -sin B - (cos® a*** —1)
+2-cos’ @’ -cos " - cos €)% -sin 8% —2-cos a®** - cos 87 -sin 8% - (cos® a’** —1)
—2-cosa’® -cos @ -cos &% -sin 8°" + cos(2a’*) - cos® a*** - cos® 6, °F -sin 6
—4-cos” a*** -cos ;" -sin §°F - (cos® a*** —1)
0% (1,3) =2-sina”*" - (cos® a’** +cos 0, —cos® a**" - cos ;)
(—cosa’*® -sin °°F + cos 7% -sin ;" + cos a’** - cos ;% - sin G°°F)

S6R : S6R : S6R . S6R S6R S6R : S6R . S6R
0,7 (2,1)==sinG,"" -(sin(2a”"")-sina”"" -cos 6" —cos(2a°°")-sin G, -sin 6,

S6R S6R S6R S6R S6R S6R : S6R

+cos(2a”"")-cosa”’" -cos G -cos @, 7" ) +cosf;, " - (cos B,°" -sin b,
+cosa’*® -cos 0% -cos 8°F)
07%(2,2) = —cos(2a**) -cos §°°" - (cos® a*** —1) + cos” a*** - cos §°°F - (cos” G7°F 1)
+2-cos’ @’ -cos 8% -sin §°°" -sin % -2 - cos a** -sin G -sin ;°" - (cos® a*** 1)
—c08(2a**®)-cos® a*** - cos §°°% - cos® % +4-cos® a*** - cos §°°F - cos )% - (cos” a**F 1)

—2-cosa’*® -cos 0" -sin §°" -sin ;"

S6R

70%(2,3) =2 sina”** - (cos® @ +cos 0, °F —cos® @™ -cos 6, °")

S6R S6R : S6R : S6R S6R S6R S6R
(cosa”" -cosf"" +sinf " -sin G, —cosa”" -cos G -cos G;,7")

S6R
Qst 3.,)= —2.sina®® -sin 02S6R -(2'Sin2( 22 )-sin2 Sk ~1)

0,°%(3,2) =2cosa”*" -sina”** - (cos ;" 1)

(cos & °F +cos” a*** —cos® a**" - cos 8 )

S6R S6R
07°%(3,3) =8-sin’ a*** -sin’ 22 —8-sin® 2T-sin4 aSoR

+2-sin* @*** -sin® 6, 1

S6R : S6R : S6R : S6R : S6R S6R 2 nS6R
O, (L) =sin(2a”"")-sina”"" -sin G -sinf, " +cosf’"" - (cos” b,

S6R 2 656R
2

+cos(2a’**)-sin )+2-cosa’®® -cos @ -sin §°°F -sin ;°" -sin® a**
0;°%(1,2) ==2-cosa’** -cos 8% - cos 8, -sin 8" - sin® &*** —sin(2***) -sin &***
-c0s 6" -sin 8 °" +sin §°°F - (cos® 8" + cos(2a”*") -sin® 6;°")

2R (1,3) =2-sina’** -sin ;% - (cos® a’** + cos 8 °F —cos® a®*" - cos ;%)
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0;°%(2,1) =sin(2a***) -sina®** - cos §°°" - sin ;" + cos® a*** -sin H°°F - sin® G
—sin’® & -sin @°° - cos a*** —cos a*** - cos G°°F - cos G5 °F - sin G°F

S6R

+cos(2a’*®)-cos® @’ -cos® 8% -sin §°°F + 4 cos® @ - cos 8% -sin 8% -sin® a***

+cos(2a’™)-cosa®* - cos 8% - cos 6, °" -sin 6 "

0:%(2,2) = —cos” a®** -cos §°°" -sin® ;% + cos(2a**") -sin” a*** - cos 8"
+sin(2a’**) -sin *** -sin 67" -sin 6, — cos(2a**) - cos® a*** - cos §°°" - cos® 6 °F
—4-cos” a*** -cos §°°F - 67°% -sin® a**F — cos a*** - cos )" -sin §°°F -sin ;"
+cos(2a’*®)-cosa’** - cos 8% -sin O°°F - sin 65 °F

0:°%(2,3)=2-cosa’** -sina’** - (cos 8, °F —1)-(cos® a’** +cos 6, °*

—cos’ a’*® -cos 6,°%)

2% (3,1) = 2sina*** - (cos® a&*** + cos 8, °F —cos® a*** - cos 0, )

(—cosa’™® -sin§°°F +cos §°°F -sin 6, °F + cos a’** - cos 8, °F -sin G %)

0:°%(3,2) = 2sina”** - (cos® a**" + cos 0, °F —cos® a*** - cos 6, °")

(cosa®*" - cos 8% +5in 7" -s5in €)% —cos " - cos 7% - cos 6, °F)
0:°%(3,3)=—4-cos’ a’** -cos 8 °F —2-cos’ ;" —2-cos* a**" +4-cos’ a*** -cos 6"

+4-cos’ a’** -cos® 6,°"

—2-cos’ a®* -cos® ) +1
The results the compatible equation of plane-symmetric Bricard linkage are

B : B B B : B : B : Br : B
T, (L) =—sind,” -(cos(2a™")-cos " -sinf,” —sin(2a”™")-sina” -sinf”"

B B B : B B B Br

+cos(2a™)-cosa” -cosd,” -sinf”")—cosb,” -(cos & -cos b,
—cosa” -sin@” -sin ")
T/ (1,2) =cos’ a™ -sin 6" - (cos* 8" —1)—cos(2a”)-sin 8 - (cos* a” —1)
—2-cos’ a” -cos 0" -cos 0 -sin @) —2-cosa® -cos G -sin @) - (cos’ a” —1)
+2-cosa” -cos @™ -cos @) -sin @ —cos(2a”)-cos’ a™ -cos> 6 -sin 6
—4-cos’ a” -cos @ -sin 6" - (cos’ a” 1)
T/ (1,3)=2-sina™ -(cos’ a” —cos @) +cos’ a” -cos 8)")-(cosa™ -sin 6™
+cos 0" -sin @) +cosa”™ -cos @ -sin ")
TP (1,4) =1 -cos @ —sin @ - (I, +1,)-(cos(Qa™)-cos §” -sin 6"
—sin(2a”)-sina™ -sin 0" +cos(2a™)-cosa” -cos @) -sin 67"
+1,-cos 0" -cos )" —cos 07 (I, +1,)-(cos 8" -cos

—cosa™ -sin@” -sin@’ )~ 1, -cosa™ -sin§” -sin 6

120



Appendix

B : Br : B : Br B B : B : B

T, (2,1)=—sing," - (sin(2a”™")-sina”™ -cos " +cos(2a”")-sin@™" -sinb,”

B Br B B Br B : B
—cos(2a™)-cosa”™ -cos@; -cosb,”)—cosb,” -(cosb, -sinf"
+cosa” -cos @ -sin )"
T/ (2,2) =—cos(2a™)-cos 6" -sin’ a” +cos’ a” -cos 6" -sin® 67"
—2cos’ a” -cos @) -sin@” -sin @ +2cosa” -sin§” -sin ;" -sin® o™
+cos(2a”)-cos’ a™ -cos 8" -cos® 07" —4cos’ a” -cos 0" -cos 0 -sin® a™
+2cosa” -cos @) -sin O -sin 6"
T/ (2,3)=-2sina” -(cos’ a” —cos @) +cos’ a” -cos ") -(cosa™ -cos 6"
—sin@” -sin @ +cosa” -cos 8" -cos 6}
T/ (2,4) =1 -sin0” —sin & - (I, +1,)-(sinQa™)-sina™ -cos 6"
+cos(2a™)-sin 0" -sin @, —cos(2a™)-cosa™ -cos 0" -cos 0,")

Br : Br Br Br : Br Br Br : Br
+1,-cos@,” -sin@" —cos@, -(l,+1,)-(cos@,” -sinf" +cosa” -cos@ -sinb,")
+1, -cosa”™ -cos 0" -sin )"

Br
77 (3,1)=—-2sina™ -sin ;" - (2sin’ % -sin® @ —2sin” @ +1)

Br Br
T/ (3,2) = -2sin(2a”) - cos’ %-(ZSinz %-sinz a® —2sin’* a® +1)

Br Br
7/ (3,3)=8sin’ a” —8sin* a” —8sin’ %'sin2 a® +8-sin’ %'sin4 a”

+2sin* a® -sin” 6 -1

7" (3,4)=sina™ -cos @ -sin@ - (I, +1,)—1,-sina™ -sin ;"

—sin@ (I, +1,)-(sin2a”)-cosa” +cos(2a™ ) -sina” -cos 6)")
T (4,1)=0
T™(4,2)=0
T (4,3)=0
TLBr 4,4)=1

T (1,1) =sin(2a™)-sina®™ -sin 6} -sin " —cos G, - (cos’ 6" +cos(2a")-sin’ ;")

+2-cosa” -cos @) -sin@;" -sin @, -sin’ "’

T (1,2)=-2cosa” -cos @) -cos @, -sin @) -sin’ a™ —sin(2a™)-sina™

Br : Br : Br 2 nBr Br : 2 nBr
-cos@,” -sin@, —sinf," -(cos” B, +cos(2a”)-sin" 6,")

B : Br : B 2 _Br B 2 B Br
T, (L3)==2-sina”™ -sinf," -(cos” a” —cosf," +cos"a” -cosb,")
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T (1,4)= (I, +1,)-(cos® 87" +cos(Qa™ ) -sin* ")~ 1, -cos 0" —1,
T, (2,1) =sin(2a™)-sina” -cos 8" -sin 8" —cos* a™ -sin* )" -sin 6,
+sin” a” -sin @) -cos’ a” +cosa”™ -cos @) -cos @, -sin 07" —cos(2a”")
-cos’ a” -cos’ ) -sin @ +4cos’ a” -cos @) -sin@,” -sin’
—cos(2a™)-cosa® -cos @) -cos O} -sin )"
T (2,2)=cos’ a™ -cos 8} -sin* 8 —cos(2a” ) -sin”> a” -cos 8 +sin(2a”)
sina” -sin @) -sin @ +cos(2a”)-cos’ a” -cos’ ) -cos 6"
~4cos’ a® -cos0) -cos @) -sin® a” +cosa”™ -cos @) -sin @) -sin O
—cos(2a™)-cosa® -cos @) -sin @) -sin O
T2 (2,3)=-2cosa” -sina™ -(cos )" +1)-(cos’ a” —cos 0" +cos’ a” -cos 0)")
T (2,4)=1,-cosa™ -sin@) —cosa”™ -sin@," -(cos @ +1)-sin’ a™ - (I, +1,)
T (3,1) =2sina™ -(cos’ a” —cos & +cos’ a” -cos 8 ) (cosa™ -sin @)"
+cos 8 -sin@)" +cosa”™ -cos @) -sinf,")
7.7 (3,2) = 2sina” - (cos’ a” —cos 8 +cos’ a” -cos 8)")-(cosa™ -cos 6,
—sin @) -sin @, +cosa” -cos 0} -cos ;")
T (3,3)=4-cos’ a” -cos )" —2cos’ 07" —2cos* a” —4-cos* a” -cos )"
+4-cos’ a” -cos’ @) —2-cos* a” -cos’ 6 +1
T (3,4)=-12-sina” -sin@) —2sina™ -sin 0} - (I, +1,)-(cos’ a” —cos )"
+cos’ a” -cos &)

B.
T (4,1)= 0

B
T (4,2)=0

B.
T (4,3) =0

TV (4,4)=1
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REZEAAFPRIERT SN, £ P oo, P1-P4 X PURhHEARE B A NI
Al &M, P5-P10 X/SHONIERIMER . 78 Q HocH, Q1-Q4 XUUFHEAR KA
BRI PrEH, Q5-Q6 IXPF ANIENIMERT . —> double-corrugated FT4L K% 2
HZ A P #ooM Q BocHRFIA & s, iR LS LA gi:mE & T Pl-
P4, Q1-Q4 H{fj—FhakZ Ff, F-4 double-corrugated 7 4% 1K 2 FEARHR 2 W 1 AT 1
={i8

FEARIUE P B oA Q B e )2 WIE mT 4 & 1L T X1 — > double-corrugated
PratEl %, JATAT LB TEAN NI & 07 20 EA SR B R U S50 1 (1)
BT, BT LSRG AR AL, g X Rt R R 2 B2, 7l L3R
FARLI) 3D #EA Rl ASCHEH T VUM 3D #EARL, EATEAE AR E, i
R AME . HEEMHET[FE— double-corrugated %, 1V 1142 1KHEAR T
A XL A RSS2 2T W T4 S A 4RI 28, DRI — A FE AR o4 e
NIPEIZ B AT I RN, REf8 ol BN EA R NITEIZ 3 . e RITIRS B4
Hr 2R B FE T, N 77 18] B RSE— B0, TSN 7 1A B R ST Je 38 R B0 o
R AE S 2 i R I JE S By, 1 N ST AR 7 R yaAa Ee 3y B . BT DY FhiEE A4
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BHA AT B FEAE], R EA AN R 5 7a b U o A SO I DY FR AR E A2 B
HHEAT TR, JFRAT T

Square-twist & 5 it B A IR AAT L 3L WA, 20 mldw 58 T1. T2, T3
H1 T4, Square-twist [F]ZSEPR FJ2 Q FLITHIRHA, FRATTR FHAH R 77 Xk H T
T IR HEA T AT 0, Hod T1 A0 T2 BARIMERT 8t T3 il T4 23RN
PE. K Square-twist Bl X EHES 5, A LA R G0 LA R, RSO Hm e
b AT 1R .

AV B FE LN T —Mn] DU g JEAR 4 R R AL 2R 6 070, IF
B HE TR EF AR SiEshi# T 7Rt

7 4% e 22 e T A R R AR A5 . B AE TAZSERR T, AORHE R
ANEZRE . HETCIRH 2 P07, 2@ AR AT 118 3T X R e iX 2 i)
/R, B g sh A B BT SRONBR TN « ASCHRH T — 2848 H B & 14 AL
W ZR-E TT 1R AR DR JE AR AT 4 ) 3 o A58 FHAZ 7 2R 3 1) JE AR A 4R 5 2 R R A 4R
HAMRRZEIEAE . ZI7ER A G MR . AR 7S 3R A S0 A
A2 T AT 4R B R A RS R, T AR R AE SE s TAE R

14Nk, NIPESTAREI T s s P B E AN FE A B, R BRI
Fo FEFREZ AT LR, A KT RAEAE T — 5, IS RO e A 1)
BHZEIIAAE T — R ERTIATLAL o — WIS AR E R 8 3 A B AL 2 HHVF 23X
FRER THIATLAG RA R PR DR 540 o & i 5 1) 450 FH 22 )3 FEAR A B IR AT 4R B R, AT
SRS FH XA R T ATLAG A A Sy FLIZ Bl AR Y o T 843 R I 7E 2 JEL P A AR 1 R T
FEIE S R HEE AR, BE REFITIRAL B AL, I r AR A — € RS . 1X
SR R AN RE0E SEILRE 3 2 5L BEHT AR A S8 A 4 B O~V THT, BICE DRI (1) S B 4
A2, XEEER S FEWI T 4k AR A A7), Hoberman i ) Miura-ori #74%
B = AR AT De Temmerman 25T+ diamond origami 7 4% B 22 AR A AR TR,
S TR TR HARIEE TSR . XA, e a1 O
BIFRALT — 5, M T — MR S EALE, XU EA T IE 3 A
FEASRERT UG WA o FRABX AR, AT E L FHR BTSN ML E 8) %
B, RIER XN E B B — s, BRI 2 0 R 4 gl v,

I BR T LAY ()32 B 2 A R SR A 2 W 3 4R JE AR A Y, I Bl RS B
AR AAL T |1, P iR b W IE s i, okl e e,
BRI BT BT IR AN REHEAT AE R — AP 10 b JE X AR, FRATR 84 IR HEAR
FEJEMR BT, 73— IR HRAGAE N7, bty g e o A b i IR AN 3L T
I BABEBITIRANAS T 7] — 5o FERTRIHLA) WA Ao B3 ) 2 A 2R g 24 A AT 185 #
B AL T A A B RIS B)) AR o B 3l AR [ AT B MR T AN kA 1830
PR R — AR O, A R LLESHE )
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SN E S

AR Z A B LR HT 48 % miura-ori. square twist. diamond origami A/l
waterbomb origami NI ATAL S BIE DU Fdk. ANFITIE, X200 4R,
5R F1 6R HL#4, P Bennett {144, Myard L#4F1 Bricard HL4. X LWL JE T —3
REIR )23 [RIHLAG , FR4E Kutzbach #EN, XEA]ZHUA 0 H HEE /N T 1, #FRA
I LA o X MU 0 005 2 58 T UART SR A R CRUE FL R AT Bl e o ZEFRATTIR
R, EARKIIU . TS T IR 0 SR T s AT AR IR 2238 3 5 S5 0 1) 2 )
4R 5R H1 6R 7 AN AL FT 2836 /2 I TLART 264, SRJE 4 R B 2 T A A 4054, M
T PRAIE JE AR Y 5 25 5 R i 4 AR A BT A [F] ()3T RE S 30) o bl T4 S 1 SR ARORE TR
5% R FERIA B M A B8 3 R, BRI AR A 777 mT DL 2 IR A 1)
T 5 PR 2 Y AR AR

$ie th RS A4Sl FH 23 ) o 24 SRR SR AL 2 WP 4 AR B AR S R A s A e, IR HL
SEPL T JEAR S AR A 5 R R R I AR Y s B AR 14, B i A A 3 R I 29 AL
RERGULIC BRI 1328 . A 1 SEBEE ) I VLHED, 25 [A]0d 29 LA 5 BR TR LA 1Y
FARESFAT AR R, I = 4R A EATE AT DU BGIE R . T R 5 5 H
FH BE 1R 25 B 0k Z) R & —— R SI, AT DL B JEAR St 4R A5E B AR 2 5 3 S Y,
BA J7 {584 ) 5 A R RS A Ao 10 T 2% 3T IR A S 26 T IR A R T B R R
FERER ol B 2 B EHER 3 BB E, BN 2T  HE S E 2 E
R, HJE s O B R Y fe, BRI E BB 1, X R
SR S HL S A

AR F B EIR T FRATAE L) 2 T S 3K 1T DY A HILAL) X 0 D912 &4 Ak ) A%
FEAHE M=

(D) A T ShER LA A I 778 FE T PR/ RR i, FHDUAN 584
FHIF R ER T VU AT LA R 38 P B BRI AT LA A, $R T =Rl ml e =, XX
R HE 7 T PR 7 A e e o PR C 7 o AEBRTE DU ALY 3 30 52 70 A )
et b, ¥ FIRBEEC T AT IR, A LTS EOAN R BR T PO A LS SR S AT
BNERIE PUFFHUAL XA o AR BR AL RS 5 WIS AR TR R G 2R, PR W AT 4R,
PR T — MBI NI AR 5
(2) TR L 25 G HR AT 0T A 4% B S I BT Hr 1t B sz e, LR R W 4 4R A
SR TR AR, FAT120 4 T double-corrugated Hr4R &I 5. K5 T4t 1
BB U RO ER TR DU AT LA XA 5, PR AL 3 3 2 B i SRR X 4 AR 1R 58 2
M ANIPEREAT FE , 48 B LA SeliAn o 4R B S 11 5200 . 78 J5 %) double-corrugated
PrafE R HARIR LS &, [RARPNIERT S, X auE R
Z EHS 51322 A AR FIaRa LM BL . Square-twist #T4LEI %2 double-
corrugated 4L LR, Rttt HabAT 1740
(3) $& B B AR AT 4R3I o AN [F) T 4% G 3R A58 FH BRI AL SR 43 B AR FH 1
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PESTARBARM R R A5, FA T Bennett L4 Myard HLH4. Bricard HLF 54
AL 29 SRR SR ST SR AR AT AR T, g e 1 A% e BE VR To V23t S RO AR A T3 1) A
T ARBAR E B A E . R, FRATTHAERD 1 L8 B e 2 ) JE R 5 4%
G B IEE 2 ERSEGE, BRE R BTG e ] I8 WIS 4R 18 S AR AT
LA 8 BV P H SR AR R
AL AR GEHIE FE 1A P BRI G A LA 19X A% A0 41 B 24K SR A Sl T e 5 e )

W, IS 1 ] Y 3fr 4R e BT SOa AR L A Rt . D T BE T e A5 1Y
PERE, ASSORSREIRE TR TAEIL AT LLE I T 5177 T BT R 2R -

(1) 2 45t AT SRR T DU AT WAL RS (0 0 A1 5 A8 B 0 P X — Tt e sk A4 A
SR AR R S T S ER T DU AT HLR XA AT A LB 22 I AT IR 3R E 3

(2) FIFIASSC R A 3 v Sl ek i AL A% ) 7 iR A ER T LA 5 M3 4R
[ 22, FRATAT DAIE JUE AR B9 4RI 58 o 72 USRI TAE S, m AR X 2
AR RAEZ AT B U B R, IS 2 KRS R 4t B %

(3) X AARA EUEE AT B T 2R PR BEAT 08, SRR TE 2 1) AR SEFRR T o

(4) I JEAR BEAR BT HB R R FHREFE A1 L A2 380K 2 58 HL A R 22 W P AU e
i AT e 4t o

(5) BEAT 52 J3 0 A AR BETH S5, (5T WIPEST 4R 1 T e £ 4 3R A5 B
rPERE, B, SERIITREEL . S5 RIT S 5 KAl T A Sl AR B AT
[ IDEIERlEE
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