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ABSTRACT

Metamaterials have unusual physical properties that are produced by designing
topology and deformation of their microstructures based on the basic physical laws.
The previous studies have allowed metamaterials at the forefront of an interdisciplinary
research field. Origami, a famous design method, has been used in creating
metamaterials, where both rigid and non-rigid structures show unique mechanical
properties. This dissertation investigates metamaterials created by a mixture of rigid
and non-rigid origami units and proposes geometric design rules and property
programming approaches. Notice that the rigid units have received kinematic analysis,
which contributes to the available theoretical model for mechanical research. Thus, this
dissertation focuses on the study of non-rigid units and the programmability of mixture
metamaterials. The highlights of this dissertation are listed as follows.

First, based on the uniaxial tension experimental results, a theoretical model of the
non-rigid square-twist type 2 unit is proposed by building an equivalent rigid pattern
with an additional virtual crease. Two deformation paths with a bifurcation are found
by the theoretical calculation of the type 2 unit. The comparison between theoretical
and experimental results proves that square-twist type 2 unit tends to follow a low-
energy deformation path. The research reveals successfully programmable mechanical
properties by tuning geometrical parameters and material stiffness.

Next, due to the complex deformation and unavailable equivalent model method,
an empirical model is presented to study the non-rigid square-twist type 1 unit by
combining biaxial tension experiments and finite element modeling. A three-stage
deformation process, including tightening, unlocking, and flattening, is unveiled in the
type 1 unit through a detailed analysis. The empirical model correlates
geometric/material parameters of the origami structure and its mechanical behaviors
and further offers accurately predicting and programmable mechanical properties based
on specific engineering requirements.

Finally, a design method is proposed to create tessellated and graded metamaterials
by rationally arranging units with different types and geometric parameters according
to the analysis of units' mechanical behaviors. The energy, initial peak force, and

maximum stiffness of metamaterials are proved to be the summation of the



corresponding properties of the component units. The programmability of
metamaterials can be achieved by establishing the relationship between the mechanical
properties and the types, proportions, geometric and material parameters of the units.
This dissertation significantly improves the design principle and property
programmability of origami-based metamaterials. The design method of mixing rigid
and non-rigid origami units inspires a new class of programmable origami metasheets

for complex engineering applications.

KEY WORDS: Kinematics, Non-rigid origami, Mountain-valley crease assignment,

Tessellation, Mechanical metamaterials, Programmability, Predictability
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background and Significance

Metamaterials, man-made architected materials with extraordinary and
customizable physical properties that are unavailable in the traditional materials, lead
to a wide range of potential applications including seismic surveillance, space crafts,
and renewable energy. The behaviors, such as negative index of refraction in the
electromagnetic field!), controlled and redirected propagation in the acoustic field!?,
and negative Poisson’s ratio in the mechanical field®), are dictated by both engineered
repeating microstructures or units and material constituents!*7). Unlike the exotic
properties of some metamaterials obtained by the simple permanent 3D constructions,
those of mechanical metamaterials are more sensitive to the kinematic motion,
structural deformation, or equilibrium state transition of the microstructures. This
phenomenon introduces more programmable and tunable properties to mechanical
metamaterials and attracts the attention of many researchers.

The unusual and desirable properties of mechanical metamaterials are enabled by
relying on the large deformation of their structures and controlled by the deformation
of the unit® !l or the relative motion between the combined units!'>'#!. In previous
studies, elastic materials are used in fabricating metamaterial structures to provide
motion behaviors similar to compliant mechanisms!'®!. And the structural design
st16201 By purposely

managing the connections between the neighboring units or rational designing the

contributes to the reconfigurable behavior in metamaterial

building block and hinges, programmable/controllable mechanical behaviors can be
created?" 221, In general, structural characteristics play a key role in achieving various
counterintuitive mechanical properties. It means the rational design of the deformed or
deployed structures is required in metamaterials. The existing structural design methods

(23291 "arrays of grids%33, structural

of mechanical metamaterials includes elastic bars
network3+4% topological framework!*!), lattice structures*?, kirigamil?!: 2% 43-431 and
origami'*® 471 methods.

As one of the famous design strategies of deployed structures, origami has a

superior capability of generating complex 3D structures by folding 2D sheets following

1
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patterns with a set of mountain and valley creases!*3). This folding behavior supports
the tunable and deployable frameworks of origami structures, while the patterns offer
systematically variable design parameters to carry out the programming on them. The
existing researches show that folding behaviors perform in two ways: folding along the
creases and folding through the deformed facets. The patterns folded through the former
way are called rigid-foldable origami'*®!. Due to the folding process controlled by
individual creases, the rigid-foldable origami structure usually shows a simplified
mechanical response. Those folded by the mixture of the two ways are named non-
rigid-foldable origamil*”!. Contribution from facet deformation can extensively increase
the overall stiffness and enlarge the energy landscape of the metamaterials, leading to
an upper band of mechanical properties as opposed to the rigid metamaterials. Previous
origami metamaterials are predominantly developed from rigid-foldable origami

jl46,49-541 and its derivatives®>>%%. To

patterns, represented by the well-known Miura-or
widen the properties in origami metamaterials, non-rigid origami patterns, represented
by the Kresling!*-¢1-64] and square-twist patterns!®> %61 have been of increasing interest
to researchers. Both rigid and non-rigid origami patterns have advantages in different
aspects of creating metamaterials, respectively. However, past studies usually consider
the metamaterial formed by a single type of either rigid or non-rigid pattern. And the
research of non-rigid-foldable origami usually has difficulty predicting the motion or
deformation of the structure caused by complicated patterns.

In addition, previous studies have proved that both the material components and
the shape of the structure demand programmability to widen the application range of
the mechanical metamaterials. For varying geometry or shape of the programmable
metamaterial, the methods usually include altering the type of unit cells®”), tuning the
density of the tessellation block in the assembly structure!®®], or switching the zero-
energy configuration of the metamaterial consisting of several zero-energy modes!®’.
But the programming approaches based on modifying material parameters vary by the
design and fabricated principle of the metamaterial. For example, in the auxetic
metamaterial designed by square lattice structures, the temperature depending materials
were introduced to the material components to create programmable stiffness by
altering the buckling behavior of the lattice structure with temperature!*?l. Moreover,
studies on origami metamaterials discovered that different material sheets used to

fabricate facets and creases produce programmable thermal expansion coefficients by
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offering varied motion behaviors using the materials’ stiffness!** 7%, Noticing that
programmability is the significant feature of metamaterials, the effects of changes in
both geometric and material parameters have to be investigated in this dissertation.
Therefore, for creating a new series of mechanical metamaterials with improved
properties, it is necessary to establish mobile structures by combining rigid and non-
rigid origami patterns. To reach this aim, two problems demand solutions. One is how
to join two or more types of origami patterns together. In this combination, both the
mountain-valley crease assignment and the geometric parameters of different types of
units have to be compatible, which is the foundation of a mobile tessellated structure.
The other is how to achieve the predicted and programmable properties of the
mechanical metamaterial. Since the mechanical metamaterial is structural sensitive,
their properties can be easily programmed by tuning the proportion or geometric
characteristics of each type of unit. Meanwhile, the different material properties of the
facets and creases also provide programmable incompatible or complex deformation of
the origami units. In conclusion, the solutions to both the compatibility of tessellations
and the programmability of metamaterials will create a systematically constructional

process of novel mechanical metamaterials and contribute to their further engineering

applications.

Soft State (0)

Fig. 1-1 (a) Rigid“ and (b) non-rigid!"!! origami mechanical metamaterial.

1.2 Literature Review

1.2.1 Rigid Origami Mechanical Metamaterials

The rigid foldability gives these origami structures stiff facets and flexible creases,

which allows them to be analyzed by kinematic methods!*®!. Many previous studies of
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the rigid origami metamaterials focus on the design strategy of the Miura-ori pattern,
which has simple geometric parameters. The Miura-ori metamaterial has been proved
to have a single degree of freedom (DoF) and a negative in-plane Poisson’s ratio (Fig.
1-2(a))[4%-33-541 The units of a Miura-ori structure always fold synchronously according
to the rigidity, which results in only one peak and a flat plateau in the force vs.
displacement curvel®?!. In further investigations, the rigid foldable behavior is found to
retain in some Miura-ori derivatives. For example, the Tachi-Miura pattern (Fig. 1-2(b))
in Ref. [72] can also form a rigid origami metamaterial. Because of the stiff facets and
one DoF behavior, dynamic features of the rigid-foldable origami structure can be
analyzed by the multi-bar linkage model, where the facets and creases are modeled as
bars and hinges, respectively. Moreover, some defect design methods help the Miura-
ori pattern to keep rigid foldability and add properties. As shown in Fig. 1-2(¢c), a new

59,601 i designed based on the Miura-

origami pattern named Basic unit Cell with Hole!
ori pattern in two ways. One is to create an offset between two adjacent strips with
original geometric parameters'*’), and the other is created by combining two zigzag
strips with different scales’®®. The kinematic methods and the calculation of Poisson’s
ratio used in the Miura-ori structure have been proved to apply to this new origami
pattern. And the additional variables of the holes’ dimensions provide the defective
pattern with a way to program the in-plane Poisson’s ratio. In the above origami
metamaterials, the rigid foldability is active in the whole folding process. However,
some origami patterns only offer rigid foldability in a partial folding process.

The partially rigid foldability has been found in some Miura-ori derivatives!®>> 7>
73 and other traditional origami patterns, such as waterbomb!’6#2], The origami pattern
in Fig. 1-2(d) is designed by modifying the sector angles of each parallelogram facet in
the original Miura-ori pattern, which also changes the folding angle or configuration of
different facets®*!. The kinematic calculation of this generalized Miura pattern indicates
that the rigid foldability only occurs before the minimum folding angle equals zero.
Furthermore, the multilayer metamaterial designed by stacking units also shows
partially rigid foldability because the layers with lower height always finish the folding
process before others. This type of rigid foldability expands the negative Poisson’s ratio
in the original Miura-ori metamaterial to the tunable one and creates infinite stretching

and bulk moduli®®!. Another Miura-ori derivative is a tube shown in Fig. 1-2(e)!”’!

assembled by two rows of Miura-ori units. Several Miura-ori tubes can be connected in
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different directions to form an anisotropic metamaterial. The interaction between
multiple origami tubes generates an incomplete folding or unfolding process. Folding
behaviors of the anisotropic metamaterial varied in different directions contribute to the
reconfigurability. Combined with the 3D printing technique, the anisotropic
construction helps microscaled origami metamaterials to tunable anisotropic stiffness!’*
73] In addition, the partially rigid foldability in waterbomb and Ron Resch patterns also
results from some parts of the structure folding more quickly than others. As shown in
Fig. 1-2(f), in the rigid folding process, the diameter of the waterbomb tube is
continuously decreased!’®!. For some geometric parameters, facet interference happens
at the ends of the tube when the diameter of the middle row of units does not reach the
minimum, which means the rigid motion cannot finish in the practical metamaterial.
Meanwhile, for some situations where all rows of units synchronously achieve the
minimum diameter, twisted performance appears in the origami tube from the middle
rows of units after the rigid motion process, forming a non-rigid folding process!’’).
These non-rigid deformations result in a significant increase in stiffness in the
waterbomb tube. The partially rigid-foldable origami metamaterials show that the non-
rigid deformation process leads to more exotic properties than the rigid one.

In general, the above references show that though the rigid origami can be easily
analyzed and programmed, it is difficultly used to produce novel metamaterials to

satisfy the increasingly demanding engineering requirements.
1.2.2 Study Methods of Rigid Origami Metamaterials

1.2.2.1 Rigid Foldability and Relationship between Rotation Angles

Folding of rigid-foldable patterns is characterized by pure rotation about the
creases without deformation from the facets, which is the foundation of the analytical
derivation of the folded configuration. Thus, judging the rigid foldability of an origami
pattern is the first step in calculating its folding process and associated rotation of
creases. A simple judging method called the diagram method is proposed in Ref. [83]
and validated by a matrix treatment. In a single-vertex patten, the mountain and valley
creases (marked by solid and dotted lines in Fig. 1-3) are represented by vectors with
direction away from or towards the vertex and numbered in anticlockwise order. With
adjusted length, the vectors are connected head-to-tail. The rigid-foldable vertex has a

closed loop of vectors while the vectors’ oriented area has both positive and negative

5
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signed parts. The opposite is non-rigid foldable. In a multi-vertex pattern, After
determining the rigidity of each vertex, the rigidity of the pattern can be judged by
comparing the vector length of the common creases. For the vector length, 1! (=1, 2,
3,4, and j=a, b, ¢, d), the compatible condition I =17, I =I5, 15 =1, and I{ =17
appears in a rigid-foldable pattern (the left picture in Fig. 1-3), while the opposite
incompatible condition appears in a non-rigid-foldable pattern (the right one in Fig.

1-3).

Poisson's ratio v,
:

1:6=60° II1:6=120° V:6=147.96°

Fig. 1-2 Mechanical metamaterials designed by rigid origami including (a) Miura-ori'*®), (b) Tachi-
Miura polyhedron[’?, (c) Basic unit Cell with Hole (BCH)P* %%, (d) generalized Miural™, (e)

Miura-ori tube!”>*1, and (f) waterbomb!”®/,
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Fig. 1-3 Illustration of judging the rigid foldability of origami patterns.

/7
=
[§=]
7
+
&%»
>
°Z[)
[§=]




Chapter 1 Introduction

There are also some analytical methods to judge the rigidity of the origami pattern
and give the 3D state or the relationship between rotation/dihedral angles at the same
time, such as numerical algorithms!®¥, kinematic theory!®-# and quaternions and dual
quaternions!®.

In the numerical algorithms method!® (Fig. 1-4(a)), the relationship between
folding angles, d:;, of a single-vertex pattern is given by c€0so; = f (Cosénl) or
cosS,,, = f *(coss, ). When the inner facets of a pattern are formed by four vertices,
see the lower picture in Fig. 1-4(a), the pattern is rigid-foldable when the equations,

foa(f2 a(fe, (2 (coso))=1dentity or f,, (f H(coss))= f,..,u(f 2u(coss)) ,
are always workable for arbitrary folding angle 614,

In kinematic theory!®®l the vertex surrounded by multiple creases can be
modeled as a spherical linkage. To explain this method, the example of a combination
of the four-crease vertex and its corresponding spherical 4R linkage is shown in Fig.
1-4(b). The crease in the pattern is modeled by joint z; in the linkage, the sector angle
ai(i+1) 1s equivalent to the angle of rotation from revolute joints z; to zi+1, and the dihedral
angle ;) can be calculated by the rotation angle 6,*7-3], For computing the kinematic
motion of a spherical 4R linkage, the closure equation based on Denavit-Hartenberg
(D-H) notation is given as

Q1 Q35+ Qus - Quu = 1, (1-1)
where Q.. (=1, 2, 3, 4), the matrix that transforms the expression form (i+1)-th
coordinate system to i-th coordinate system, is expressed as

COSH, —COSex,y SN, sina,y -Sin G
Qpuy =|8iNG;  COSery;,y) -COSH,  —sin e,y - COSH,
0 Sin &) COSQ 1,y

; (1-2)

and i+1 is replaced by 1 when it is equal to 5!*7). Substituting Eq. (1-2) to Eq. (1-1), the
relationship between rotation angles, 6, are obtained. For a mountain crease, the
dihedral angles, i, are calculated by yi=n-6:. For a valley crease, the equation is given
as wi=0i-n%7). Then, the relationship between dihedral angles is established from that
between the rotation angles. When the dihedral angles of each vertex have been
obtained, the compatible condition of combining these vertices becomes the key point
to judge the rigid foldability and solve the folding process of the given pattern. In Fig.
1-4(b), the three vertices share three common creases, which means an equivalence

relationship, wi =y, we =y ,wi =y, can be established between the dihedral

7
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angles of the adjacent vertices around these creases!®’). Thus, the compatible condition

is established:

a b c
tan‘LZ4 tan% tan'LZ4

a b c :1’ (1_3)
tan 72 tan YL tanl//—zl

An origami pattern can be rigidly folded if its sector angles satisfy Eq. (1-3).

Fig. 1-4 Explanation of (a) numerical algorithms, (b) kinematic theory!®”), and (c) quaternions and

dual quaternions.

The example of the quaternions and dual quaternions®) method is shown in Fig.
1-4(c), where the normalized vectors e; represent the i-th creases in the pattern, and the
normalized vectors n; are perpendicular to the i-th surface Si. This method is based on
the rotating vector model. The right picture in Fig. 1-4(c) shows that the sector angle
aii+1) 1s the rotating angle from ei to ei+1 and the folding angle o is the rotating angle
from ni.1 to ni. In Ref. [89], the rotation of the vector is represented by a quaternion q
that is a combination of a scalar part and a vector part. Then, the relationship between

!

the normalized vectors of creases is calculated by €, =0q" -€, (a f ) , where " and

i
'

(ﬁ ”‘) are corresponding to the sector angles and the normalized vectors of surfaces.

Similarly, the relationship between the normalized vectors of surfaces is calculated by
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!

A (G e‘“) . Thus, if the pattern is rigid-foldable, the loop-closure equations

~ ~a

Ny =4
of this system are n, =n, and e, =e,, where nr and er are the final vectors in
calculating the rotation of the vectors'®”!,

Based on the relationship between dihedral angles given by the above methods,
the 3D configuration of the origami pattern in the folding process is constructed.
Combining the 3D configuration with other analysis methods, the exotic properties of

the corresponding metamaterial can be studied.

1.2.2.2 Mechanical Behaviors

In the rigid-foldable Miura-ori and its derivations, the facets rotate only around the
creases, which implies that the configuration and mechanical behaviors of the unit or
tessellation structure can be all determined by the side lengths and the rotation angles!“%
33-53] 'When creases of an origami pattern are modeled as rotational hinges with a hinge
spring constant, the energy calculation of the i-th crease is U, =Kk; -1, - (goi - (Pi,o)2 / 2154
55,991 where ki, li, i, and @i are the rotation stiffness, length, dihedral angle and natural
dihedral angle of the i-th crease. In this crease energy calculation, the dihedral angles
can be obtained by the kinematic or matrix methods reviewed in Section 1.2.2.1. For
the general origami pattern with no kinematic analysis, a vector method is introduced
to the crease energy calculation. In this method, the definition of creases and facets are
all described by vectors as shown in Fig. 1-5, and the crease energy for the i-th crease
is given as U, =1, -(— ki COS@, o - U; -V, —k; sin g, - (G xVi)-VT/i)[91]. Then, the elastic
energy of an origami unit or tessellation structure with Nc creases is shown as the

summation of all crease energy.
u=>u,. (1-4)

For the rigid origami structure, the work of external forces is satisfied with the
minimum total potential energy principle!®* >, which offers the calculation method of
external force and stiffness. In the tessellation structure with external forces shown in
Fig. 1-6, the elastic energy is obtained by Eq. (1-4). The potential energy is calculated
by the elastic energy and the work of the external forces, Fx, Fy, and F-, applied in the

three directions.

dD
m=U - "’Fx-dﬂd(p'-j‘”Fy.—yd@'— "’Fz-did(p'. (1-5)
Po dgp' Po d(D' Po d(p’
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Due to the principle, the condition of the equilibrium state when the structure is

subjected to external forces is expressed as dIT/d¢ = 0% 351, The external forces are
calculated by
Fx-dd%+Fy-dd[;y+Fz-dd% =?j—l;. (1-6)
When the experiment is conducted by a uniaxial load, Eq. (1-6) is rewritten as
£ _du /dD, _du —:dU/dDy:dU, F_du/db, _du .
“ dp/ dp dD,” ¥ de/ dp dD,” ° d¢/ dp dD,

Fig. 1-5 Illustration of the calculation for general origami pattern established from an n-crease

vertex.
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Fig. 1-6 Illustration of calculating the mechanical properties of rigid origami tessellation

metamaterials.

Besides these analytical methods, the property of origami structure can be
investigated by the finite element method®*!, which has been validated in both quasi-
static and impact test analysis on rigid origami structures®>l. To obtain an accurate
analysis method, researchers also presented the combination of finite element method
and theoretical analysis to study the mechanical properties of rigid origami structure!>).

The finite element method is sensitive to mesh, so the analysis of the optimal element

10
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size has to be conducted before the simulation of the structure. In a practical origami
structure, the length and width of the facets are much larger than their thickness. Many
numerical simulations of the origami structure are quasi-static analyses, where the ratio
of kinetic to internal energy is kept below 5% to ensure that the dynamic effect is
insignificant.

This section reviews the investigations on the mechanical properties of rigid
origami metamaterial. Some of the research methods have become the basis of the study
on non-rigid origami metamaterials. Thus, the approaches to studying the mechanical

properties of non-rigid origami metamaterials are explained in the next section.

1.2.3 Non-rigid Origami Mechanical Metamaterials

The unusual properties of non-rigid origami mechanical metamaterials are caused
by their structural deformation that focuses on facet bending or stretching. The existing
non-rigid folding behaviors are produced by two methods: (1) transition from rigid-
foldable origami patterns to non-rigid ones by changing their material or geometric
parameters, (2) the original pattern design shows a non-rigid folding process. Thus, the

review of non-rigid origami metamaterials is presented in these aspects.

1.2.3.1 Non-rigid Origami Structures Created from Rigid-foldable Patterns

In the non-rigid-foldable structures transitioned from the rigid origami patterns,
there are three established transition methods, including introducing material/geometric
defects to rigid-foldable origami patterns, rationally changing pattern features of several
component units, and modifying the construction of origami units.

In previous studies, most defective origami structures are established depending
on the Miura-ori one and always show non-rigid foldability. Tuning the number and
dimensions of imperfections is an effective way to program the mechanical properties
of the corresponding metamaterials. For example, different materials of the facets can
change the deformation mode of the original Miura-ori structure from rigid to non-
rigid®¥ (Fig. 1-7(a)). Compared with the high Young’s modulus, the material with the
lower one can be regarded as a defect. The stiff facets have the same motion as the
original origami structures, while the soft ones contribute facet-bending behavior to the
structure. The folded behaviors added by soft facets lead to programmable DoF of the

non-rigid origami structure. Moreover, the example in Fig. 1-7(b) shows a method to
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create pop-through defects on an original Miura-ori metasheet!®>. The defects break the
rigid folding process of the Miura-ori structure due to their neighboring bending facets.
Thus, the new bending behaviors affect the structure‘s responses to the compression
load. The experiments in Ref. [95] established a relationship between the compression
modulus of the defect Miura-ori structure and the number and location of the defects,
which validate the programmable modulus of the defect origami structures. Besides,
the imperfections appear not only on the 3D folded configuration but also in the 2D
crease pattern. Literature [96] shows a perturbed crease pattern that is created by
introducing a small perturbation on the vertices of a Miura-ori pattern, which changes
the pattern from a flat-foldable one to a non-flat-foldable one (Fig. 1-7(c)). The non-
flat folded configuration of the modified pattern affects its folded process and
mechanical behaviors. The experimental and numerical analyses proved that the linear
modulus and plateau stress of perturbed origami metamaterial are significantly affected
by the degree of perturbation on the vertices®,

Rational changes in pattern feature usually lead to graded origami patterns, which
have regularly varied characteristics on one or several dimensions. For example, in the
Miura-ori derivatives with graded mechanical behaviors, the changeable features
include mountain-valley crease assignments and geometric parameters. Based on the
regular switch between mountain and valley creases, various configurations are
designed by Miura-ori pattern and result in different deformed and mechanical
behaviors®’). Further analyses show that the parameters of the metamaterials fabricated
by stacking origami units can be graded both in and out of layers. The example in Fig.
1-8(a) shows a stacked Miura-ori metamaterial with two different sets of geometric
parameters, which results in nested-in and bulged-out configurations®®-1°!l. The switch
between two configurations is a non-rigid folding process and causes bistability in a
two-layer construction. Then, the metamaterial assembled by multiple two-layer
structures can achieve multi-stability and program its modulus by controlling the switch
of nested-in and bulged-out configurations®®!. On the other hand, the example in Fig.
1-8(c) shows a metamaterial designed by identical layers of origami units with graded
in-layer parameters!!%?. Each layer of the structure is modeled by parallelogram facets
at intervals of rectangular ones. In a compression test, the rectangular facets collapse
after the parallelogram ones. The folding process of the parallelogram facets is a

mechanism motion, and that of the rectangular one is a structural deformation. The two
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different deformation behavior processes cause a two-stage graded peak force and
stiftness. The above references express that the graded geometric parameters introduce
a mechanism motion process followed by several structural deformed ones to the
metamaterial. Since the structural deformation offers higher mechanical properties than
the mechanism motion, the graded metamaterial structure designed by appropriate
geometric parameters shows a progressive increase in the peaks of stress/force curves.
Thus, a novel design method of graded geometric parameters has been presented to
improve the force response and achieve superior energy absorption®*381. As shown in
Fig. 1-8(b) and (d), the side lengths or sector angels decrease/increase progressively in
the neighboring units and then influence the dimensions and shapes of the multi-layer
metamaterial in height and width directions!® 37). Both types of graded metamaterial
collapsed layer by layer or column by column, leading to multiple peaks in the stress or

force curves and further high energy absorption.
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Fig. 1-7 Metamaterials designed by defective origami structures, such as (a) different materials on

facets®, (b) pop-through defects!), and (c) perturbation of vertices®®l.
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Modifying the construction of origami units creates new building blocks in
mechanical metamaterials, such as origami loops!!®* 1% and modular units!'%% %), The
novel mechanical metamaterial designed by origami loops has programmable
foldability and stability due to its tunable geometric parameters and formed methods.
As shown in Fig. 1-9(a), identical rigid Miura-ori units can be used to produce origami
loops through different assemble ways!!”). Both rigid and non-rigid foldability can be
achieved in the origami loops because the compatible condition in the original Miura-
ori structure is not always available in the looped origami structures in the folding
process. Each non-rigid foldable origami loop shows a bistable behavior. This design
principle allows the metamaterials fabricated by Miura-ori loops to retain the negative
Poisson’s ratio of Miura-ori units while producing multiple stable states. Moreover, a
special class of closed loops, named star-shaped units, was proposed!'®! (Fig. 1-9(b)).
The results show that tuning the geometric parameters of the pattern can program the
stability of the star-shaped unit from single to double. In the structure fabricated by
several n-pointed star-shaped units, the discrete configurations that are satisfied the
compatible condition introduces the multi-stable states to these star-shaped structures.
Further analysis proves that a cubic metamaterial formed by lots of independent star-
shaped origami loops can be programmed to have multi-stability and single-stability in
different directions. In contrast to origami loops, modular origami structures usually
have unique configurations that introduce reconfigurable and reprogrammable
behaviors to the corresponding non-rigid origami metamaterials. A modular unit shown
in Fig. 1-9(c) has two rigid-foldable paths distinguished by a non-rigid-foldable gap,
which results in bistability!!?). The theoretical calculation in Ref. [109] proved that the
bistability of the modular unit is controlled by the width of the non-rigid-foldable gap
and programmed by geometric parameters. For modular origami metamaterials, the
reprogrammable mechanical responses are produced by connecting the units with
varied geometric parameters or in different stable states. Another modular origami
metamaterial is designed by extruded polyhedrons that are assembled by folded
ribbons!!!%1121 as shown in Fig. 1-9(d). The folded ribbons affect both the foldability!!'!"]
and DoFs (i.e. the number of the deformed path)!!'!l of the extruded polyhedron unit.
The origami unit with multiple DoFs has various pre-folded states with different

[110]

behaviors, which achieves reprogrammable mechanical responses and

reconfigurable acoustic waveguides!''?! in the corresponding modular metamaterials.
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Fig. 1-8 Metamaterials designed by graded origami patterns, including graded geometric

parameters (a and b) among different layers®® %), or (c and d) within identical ones!®’> 1921,

However, these non-rigid structures transitioned from rigid-foldable ones have
their limitation in designing mechanical metamaterials. For the metamaterial fabricated
by defective origami structure, defects reduce local stiffness and furtherly produce
unexpected failure and fracture in their construction, which affects the mechanical
properties controlled by deformations. In graded origami metamaterials, the design of
geometric parameters significantly affects their mechanical properties, but the existing
investigations mainly focus on the Miura-ori pattern. The effects of this method on other
potential origami patterns need to be analyzed. For the metamaterial designed by
origami loops, its programmability is only controlled by geometric configuration, such
as the sector angles and side lengths. Once geometric parameters of the origami loop
are determined, mechanical properties of the corresponding metamaterial cannot be
tuned by other methods, such as switching some mountain creases to valley ones.
Moreover, the disadvantage of modular origami metamaterials is that the original
foldability and mechanical properties of the individual unit may not appear in the whole

structure because of the connected behavior between neighboring units. Thus, many
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researchers prefer to study the mechanical metamaterials created by the original non-

rigid-foldable origami patterns.

o

State #2

Foldable

Normalized displacement

Fig. 1-9 Mechanical metamaterials designed by (a) origami loops!'?”, (b) star-shaped loops!'®®!, (c)

origami cube!'”), and (d) extruded polyhedron with assembled folded ribbons!!!%!,

1.2.3.2 Non-rigid Origami Structures Designed by Original Non-rigid-foldable Patterns

In addition to the non-rigid origami metamaterials created by modifying rigid-
foldable patterns, the design principle of non-rigid-foldable ones is one of the most
effective ways. Its unique configuration and deformation have an advantage in
designing metamaterials that are satisfied with complex conditions. According to the
facet's shape of the folded configuration, the original non-rigid-foldable structures can
be divided into two groups: the planar origami and the curved one.

The planar origami patterns can form both planar and tubular metamaterials. For
the planar metamaterials, a traditional origami pattern named Ron Resch pattern!® 3]
has a complete non-rigid folding process except for the configuration where the dihedral

angles of valley creases equal zero!!!*]. The compression on the zero-angle construction

16



Chapter 1 Introduction

causes a further deformation of the vertical facets and valley creases, which offers a
high energy absorption. In the tubular metamaterials, one of the famous non-rigid
origami patterns is triangulated cylinder pattern, also called Kresling pattern7 141211,
The significant behavior of Kresling unit is that the number of equilibrium states can
be tuned by sector angles of the pattern!*” '], As shown in Fig. 1-10(a), the Kresling
structure with small sector angles has two equilibrium states, which results in easy
deployability and collapsibility. But that with large sector angles has only one
equilibrium state, which implies high load-bearing capability. Another special behavior
of the cylinder structure with large sector angles (see Ref. [119]) is collapsing along
two different paths because the height of the completely deployed state is lower than
the maximum one. The cylinder structure that is stretched to the maximum height before
compression is easy to reach the collapsed state while that along direct compression
path is hard. It indicates that two different mechanical responses can be achieved in the
same Kresling structure and can be tuned by an external load. Then, a metamaterial that
can both be deployed and carry load are able to be created based on this origami design
method. In a further study, the Kresling pattern with easily collapsible units was used
to fabricate a metamaterial mechanism that can form rarefaction solitary waves!?%! (Fig.
1-10(b)). When the metamaterial was under an impact load, the analysis results in Ref.
[120] showed that the former part of the origami structure feels compression while the
latter part feels tension first. This special phenomenon allows the metamaterial to create
an impact mitigating system independent of the material properties. Meanwhile, the two

equilibrium states result in chaotic dynamics of the Kresling pattern, where the energy

[121 122

absorption performance!'?!l, the nonlinear spring behavior!'*?! and the prediction of
nonlinear dynamic behavior''?* 124 have been received attention. The special deployed
and folded configurations of Kresling pattern also enable itself to combine with
magnetic actuation!!?> 1261 (Fig. 1-10(c)) or motor-driven tendons!’!l, and further
achieve origami robot with highly integrated motion and multi-stability!'>”!?], In the
engineering field, the bistable resonator created by Kresling structure can efficiently

(1301 Moreover, the

tune the torsional bandgaps to solute the torsional vibrations
Kresling pattern can be combined with the 4D printed method, in which the shape
memory materials help to produce the tunable compression twist behavior!!3!l,
Changing the arrangement and sector angles of the triangular facets, the twisting

d[132, 133

triangulated cylinders with spring behavior were produce 1. The spring behavior
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is produced by the combination of collapsible twisting unit and the elastic material,
where the former is for energy storage and the latter is for shape recovery. These
characteristics contribute to building a soft robot with highly reversible compressibility.
When the crease assignment and sector angles are modified in another way, a diamond
pattern is created and shows similar mechanical behavior as the Kresling pattern. The
load-carrying behavior allows the structure of diamond pattern to be used to improve

energy absorption devices!'34,
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Fig. 1-10 Metamaterial based on Kresling origami pattern, which creates (a) programmable

equilibrium states!''?!, (b) impact mitigation!!?"), and (c) origami robot!'?> 12¢],

Besides the origami patterns consisting of planar facets and straight creases, the
curved origami patterns can also form non-rigid origami metamaterial because of the
deformation caused by buckling or bending surface. The existing design principles of
curved origami patterns include curved-crease!'*> 138 and curved surfaces!!**'*!l (Fig.
1-11). All curved origami structures show deformed motion and configurations caused
by the bending behavior of facets combined with the bending and folding behavior of

the creases. To establish an analytical model of curved origami structure, the elastica
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surface generation method!!*> % is introduced to the design of curved origami
construction, where the novel mechanical response and structure’s developability can
be both accomplished. Further work proved that the mechanical properties of a curve

origami metamaterial can be tuned by the curvature of the creases!!*].
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Fig. 1-11 Metamaterials inspired by curved origami pattern including (a) curved-crease on planar

surfacel!3], (b) straight crease on curved surface!'*?], and (c) curved-crease on curved surface!!*%.

There are also some unsolved problems in the metamaterials produced by non-
rigid-foldable origami patterns. The curved origami pattern usually has difficulty
fabricating practical models because the material sheet on the boundary of the curved
structure cannot meet the curvature of the design principle. It limits the experiments
and practical applications of curved origami structures. For other non-rigid-foldable
origami patterns, the configuration cannot generally be accurately calculated by
analytical methods. So, the difficulty of studying the corresponding metamaterials is
quantifying their mechanical properties.

The references in Section 1.2.2 present that contribution from structural
deformation can extensively increase the overall stiffness and enlarge the energy
landscape of the origami-inspired metamaterials. The facet bending and stretching in
the non-rigid structures lead to a wider range of mechanical properties as opposed to

rigid ones. However, past researches mainly focus on metamaterials formed by a single
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type of rigid or non-rigid origami structure/pattern. The possible mixture of origami
units with different rigidities requires more attention because it can cover a wide range

of mechanical properties.

1.2.4 Study Methods of Non-rigid Origami Metamaterials

The non-rigid-foldable patterns give significant facet deformation during folding
to the corresponding origami structures and metamaterials!®l. And they offer a much
larger collection of crease patterns and hence could lead to wider and more versatile
potential applications compared with rigid origami patterns. However, it is very difficult
to predict the motion of non-rigid-foldable origami analytically due to the simultaneous
deformation along creases and within facets. Thus, developing a better and more
predictive understanding of non-rigid-foldable origami remains a challenge.
Overcoming this hurdle will result in novel mechanical metamaterials with

programmable properties.

1.2.4.1 Mechanical Analysis of Triangular Pattern

In general non-rigid triangular patterns, the deformation of the facets is illustrated
by the stretching and rotation of the creases, which gives assumed conditions for
calculating the structure’s elastic energy. For example, when an origami structure has
Nei creases stretched and Ne2 creases rotated in the folding process, the elastic energy

can be given by
Ny 1 Nc, 1
ZE s (s,l 5|0) ZE ri’ r, ( ¢I0) > (1'8)

where Is, Iri, ks.i, kri are the length and stiffness of the stretched and rotated creases, @i
is the rotation angles of the rotated creases, and subscript 0 represents the initial state!!2],
In this method, the length of the stretched creases and the rotation of the rotated creases
are all calculated by the deformed configuration of the origami structure. Thus, it is
only available for non-rigid origami with a known analytical model at arbitrary
configuration. The configuration of non-rigid origami structure usually includes stable
and instable modes. For non-rigid triangular patterns, the stable or instable states can
be determined by introducing bar, cable-rod, or cable-rod-membrane models with
vertices defined as finite particles to analyze the non-rigid structurel'44],

Furthermore, the numerical simulations were also introduced to the nonlinear

study of non-rigid origami structures with triangular facets, where the creases are all
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modeled as bars and simulated by truss elements!'*> %), The Young’s moduli of the
three types of creases are different, where the stiff ones are used for keeping the constant
length of the crease and the soft ones enable the structure to fold. However, when the
Kresling structure is fabricated by engineering plastic, the stiff assumption is not
applicable for the triangular facets. The solution to this situation is that the four-node
shell elements are used to model the triangular facets while the nodes on all sides of

tl1471 All finite element models that are used

one polygon are fixed at a reference poin
in further study need to be validated by analytical or experimental results.

Noting that the above research methods only contain the crease deformation while
ignoring the effect of the facets, this theoretical modeling method cannot accurately
describe the configuration of the whole non-rigid origami family. The non-rigid origami

with other shaped facets demands new approaches.

1.2.4.2 Mechanical Analysis of Non-triangular Pattern

The challenge for property characterization and programming the mechanical
behaviors of non-rigid patterns is caused by their complicated deformation modes. For
non-rigid origami structures with non-triangular patterns, a commonly used approach
is to triangulate the pattern by adding extra virtual creases in non-triangular facets!],
The non-rigid origami structure usually has a few compatible configurations and a
series of incompatible ones!'*®!. The former can be determined by crease rotations as
those used in rigid origami structures, while the latter can be modeled by simplifying
the facet bending as a rotation of the virtual crease on the diagonal of the facet. This
usually will turn a non-rigid pattern into a rigid one!'*’], but not necessarily with one
degree of freedom. Then by assigning different rotational stiffness to the original and
virtual creases, the deformation of the pattern can be solved analytically in certain
cases!!°"). Based on these analytical crease rotations, the energy of the non-rigid origami
structure can be obtained by the rotation energy of both original and virtual creases.
Moreover, several computational approaches based on the same triangulation principle
have also been developed for non-rigid patterns, such as bar-and-hinge models!*! or

s!'32 In these computational models, the creases are

pin-jointed bar framework model
modeled by bar elements with rotational springs, where the former shows the
deformation of the creases and the latter explains the folding behavior around the

creases. And the facets are triangulated by a bar element on the diagonal, where the
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rotation of the bar element represents the bending behavior of the facet. Thus, the
vertices in the pattern become the joint between these connected bar elements. The

potential energy of the system can be expressed as IT=U, +Ug, —W,,, where the

ext?
strain energy stored in both the bar elements, Ubar, and the rotational springs, Uspr, and
Wext 1s the external work. Those models enable an analysis of complicated patterns very
efficiently in comparison with standard finite element models, but also inevitably
preserve the limitation of pattern triangulation.

The essence of this facet triangulated approach is using the rotation of virtual
creases to simulate the bending of facets, when the main deformation of the facets is
bending with a single curvature, this approach will yield quite accurate results. However,
when the facet distortion is more complex with non-zero Gauss curvature or the non-
rigid pattern is already formed by only triangular facets and cannot be further
triangulated, it would be difficult to obtain realistic results out of this approach. When
only one or a few facets in a non-rigid pattern are noticeably bent with a single curvature,
it is possible to add virtual creases only to those facets and obtain an equivalent rigid
pattern with a single degree of freedom. Yet, there is no ready solution for every non-
rigid pattern. As the complexity of the pattern increases, an analytical solution cannot
always be obtained. In response to this difficulty, finite element models of the pattern
have been developed for specific applications!!>® ¥, In modeling the deformation
process, one method uses the eight-node linear brick elements to form a continuous
model where the differences between creases and facets are caused by the thickness of

t1134 while the other one uses four-node shell elements in the model where

the elemen
the rotation stiffness of the creases can be quantified as a spring constant of hinges!®],
However, most finite element analyses of non-rigid origami structures only offer
qualitative study of the deformed modes and mechanical properties!'3]. The validation
by comparison with experiments or analytical results is required in using the finite
element method to quantitively research and furtherly predict or program the
mechanical behavior of non-rigid origami structures!>l.

The references reviewed in Section 1.2 show that origami-inspired mechanical
metamaterials have the potential for many applications, such as soft robots, energy
absorptions, and adaptive systems. The rigid and non-rigid origami structures both offer
novel and exotic properties to mechanical metamaterials. But previous studies are

conducted on a single type of rigid or non-rigid origami structure. A possible mixture
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of rigid and non-rigid origami structures is required to widen the range of mechanical
metamaterials’ properties. Thus, the potential design approach combining rigid and
non-rigid origami units in a single metamaterial demands more attention. Meanwhile,
the validated theoretical or experimental analysis corresponding to each type of unit
contributes to the accurate prediction and programming of mechanical responses of the

whole metamaterial.

1.2.5 Square-twist Origami Mechanical Metamaterials

In the traditional origami patterns, ‘square-twist’ origami, first proposed by
Kawasaki and Yoshidal®!, is remarkable because it has both rigid- and non-rigid-
foldable types controlled by the assignment of mountain and valley creases. The
assignment characteristics confirm that the square-twist pattern has four unique
types!'>> 1361 named type 1-4 (Fig. 1-12(a)). The illustration in Fig. 1-12(a) shows that
each type of square-twist origami pattern contains four identical 4-crease vertices.
Meanwhile, the kinematic analysis of 4-crease vertices indicates that different
relationships between rotation angles occur on the vertices with varied mountain-valley
assignments!!'*’]. Thus, based on the motion transmission path, the compatible condition
established on the close-loop of four vertices implies that there are two non-rigid-
foldable (type 1 and 2) and two rigid-foldable (type 3 and 4) square-twist origami
patterns (14 1571 (Fig. 1-12(b)).

The rigid type 3 and 4 square-twist patterns have simple mechanical behaviors due
to the deformation of rigid origami configuration concentrating on the creases, which
leads to few studies existing in these two origami units. The non-rigid type 1 and 2
square-twist patterns have rotationally symmetric behavior in both mountain-valley
crease assignment and folding process, which results in complex deformation and
further produces numerous mechanical properties. Thus, more researchers focus on the
two non-rigid origami units, especially the type 1 square-twist unit. Previous studies
have used the type 1 square-twist origami pattern to design an origami-equivalent

154]
9

compliant mechanism!'**), frequency reconfigurable origami antenna! and

1581 (Fig. 1-13). Most of them ignore the facet distortions by

mechanical energy storage!
replacing the facets with flexible linkages or fabricating the creases with lower material
stiffness than the facets. However, the facet deformation plays a key role in providing

the non-rigid origami units with widened mechanical behaviors, such as the strong self-
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locking behavior resulting from the interaction between facets in type 1 square-twist
unit. So, both crease and facet deformation need to be analyzed before using the square-

twist units to design mechanical metamaterials.
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Fig. 1-12 (a) Square-twist origami pattern and four different mountain-valley assignments. (b) The

rigidity of type 1-4 square-twist patterns!'#°,

Designing metamaterials with a wide range of tunable properties needs to solve
two problems. First of all, it is important to propose a potential design approach that
combines rigid and non-rigid origami units in a single metamaterial. It should be noted
that incorporating origami units of different types is in general not trivial because they
commonly have different crease numbers and mountain-valley assignments, and thus,
may not be compatible with each other. However, the four types of square-twist patterns
possess an identical crease layout, which makes it possible to tessellate different units
together while maintaining geometrical compatibility in the flat and fully folded states.

Folding a pattern with such a mixture of units with different rigidities opens up ample

24



Chapter 1 Introduction

opportunities to program the mechanical properties. By varying the proportion of each
type of unit, the mechanical properties can be tuned between an upper limit posed by
the non-rigid pattern and a lower limit set by the rigid one. The second problem is to
find out the quantitative relationship between the mechanical properties of the pattern
and the geometric and material design parameters. Previous efforts on mechanical
characterization of the non-rigid square-twist pattern include triangulating the entire
pattern and analyzing it as a system of bars and hinges!®¥. Alternatively, a virtual
diagonal crease was introduced in the central square facet to turn it into a rigid pattern
with a single degree of freedom!'*”) so that it can be analyzed using an established
mathematical’®” or kinematic approach'*’!. Nevertheless, those two approaches could
not capture the complex facet deformation in the pattern. Thus, the equivalent
theoretical model has attracted researchers’ attention and expressed the constitutive
relation and stability of the square-twist units!!®!). Moreover, finite element models of
the pattern have also been developed for specific applications!!>* 1381 but little
information is given about the detailed deformation process or validation with

experiments.

(10

= —

Fig. 1-13 Metamaterials inspired by non-rigid-foldable square-twist origami pattern, which have
applications in (a) origami-equivalent compliant mechanism!'**), (b) frequency reconfigurable

origami antenna!'>¥, and (c) mechanical energy storage!!>®].
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In conclusion, due to the varied rigidity of different square-twist units, the origami
pattern can be used to design metamaterials to cover a wide range of mechanical
properties. Section 1.2.5 indicates that the unresolved issues are the construction

principle of different units and programming methods of mechanical properties.

1.3 Aim and Scope

This dissertation aims to establish the validated mechanical model of non-rigid-
foldable square-twist origami patterns, find a general tessellated method for a variety
of square-twist units, and propose an approach to program and predict the mechanical
properties of the corresponding tessellated metasheets.

In this process, the theoretical model of the mechanical property of rigid foldable
units has been obtained by the known relationship between the rotation angles. Thus,
the predicted or programmable model of mechanical properties of the non-rigid square-
twist origami units is firstly investigated. For the non-rigid type 2 unit, a theoretical
model is presented according to the kinematic analysis that converts the foldability of
the unit. For the complex non-rigid type 1 unit, an empirical model is proposed using
the combination of finite element model and experimental analysis. Depending on the
theoretical or empirical models of the non-rigid units, their mechanical properties can
be programmed by the geometric and material parameters. Then, a tessellation rule for
the square-twist metasheets is explored using the rigid and non-rigid unit patterns. The
metasheets with the compatible crease assignments and the gradient geometric
parameters are both designed in this research. Finally, the approach for predicting the
mechanical behaviors of the square-twist metasheets is introduced. Based on the
relationship between the mechanical behavior and geometric or material parameters
discovered in the study of units, the programmability of properties of the metasheets
can be achieved by increasing/reducing the proportion of one type of unit or changing
their designed parameters. As the evaluation of the metasheet, this study focuses on

widening the range of the tunable properties and creating superior mechanical behaviors.

1.4 Outline of Thesis

This dissertation consists of five chapters, which are outlined as follows.
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Chapter 1 presents a review of the previous works on mechanical metamaterials
and mechanical modeling methods of rigid- and non-rigid-foldable origami structures.

Chapter 2 proposes a method to create the theoretical model of the non-rigid type
2 pattern based on the kinematic analysis of the rigid modified type 2 pattern that has
an additional crease compared with the non-rigid one. The axial tension experiment
introduced to the type 2 and modified type 2 pattern validates the theoretical model and
explains an important bifurcation behavior of the pattern. The mechanical properties of
the type 2 pattern can be programmed by the theoretical model, which becomes the
foundation for predicting the behaviors of the corresponding uniform tessellation.

Chapter 3 is to build an empirical model of the non-rigid type 1 pattern using the
combination of biaxial tension experiment and numerical simulation after the kinematic
analysis method proves to be unavailable for its deformed behaviors. The correlation
between the geometric and material parameters of the structure and its mechanical
properties can be obtained by the empirical model. Then, the programmable mechanical
properties of the pattern depending on the empirical model are discussed, where its
possibility of use in a uniform tessellation is illustrated.

Chapter 4 is devoted to seeking a validated approach to creating a series of square-
twist metasheets with programmable mechanical properties. First, the tessellation rule
of the metasheets formed by different types of units or different geometric parameters
is presented. Then, the quasi-static tension experiments are conducted to establish the
relationship between the metasheets with different constructions and their deformation
process and mechanical properties. Finally, the global mechanical properties predicting
and programming of the square-twist metasheets are achieved by calculating and tuning
their constitutional unit behaviors, respectively.

As a conclusion of this dissertation, Chapter 5 summarizes the main achievements

of the research and the suggestions for future works.
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Chapter 2 The Non-rigid Square-twist Type 2 Unit

2.1 Introduction

The type 2 square-twist pattern is composed of a central square facet, four
trapezoidal ones, and four rectangular ones, with the mountain-valley crease
arrangement and folded configuration shown in Fig. 2-1. It is parameterized by two side
lengths, / and a, and a twist angle, a. For theoretical characterization of the non-rigid-
foldable pattern, determination of the deformation mode is a prerequisite. Folding and
unfolding of a cardboard model indicated that besides rotation of the creases, the central
square seemed to be noticeably bent whereas all the other facets were nearly flat. In
rigid-foldable patterns, the deformation of origami structures comes only from the
rotation of creases, the dihedral angles of which can be theoretically derived.
Consequently, the elastic energy of the structure can be easily calculated by adding up
the energy in each creasel®,

For theoretical characterization of the non-rigid-foldable type 2 pattern, however,
two major challenges arise, i.e., how to obtain the dihedral angles of the creases and
how to calculate the bending energy of the deformed central square. Here, the approach
of adding a virtual diagonal crease between vertices B and D is adopted on the central
square so as to derive the dihedral angles of all the creases from the kinematic model
of the modified type 2 pattern, and to quantify the bending energy of the central square
as rotation energy of the virtual crease.

The outline of this chapter is as follows. In section 2.2, an axial tension experiment
is introduced to the type 2 pattern. Section 2.3 presents the kinematic analysis of the
type 2 pattern modified by adding a crease on the central square. The theoretical model
of type 2 and modified type 2 pattern is built based on the kinematic analysis result in
Section 2.4. In Section 2.5, the validation of the theoretical model and the stability
analysis are presented by experiments. An important bifurcation behavior of the pattern
is also discussed in this section. In Section 2.6, the theoretical model is utilized to
program the mechanical properties of the pattern. Furthermore, a 2x2 type 2 metasheet
is tested to demonstrate the feasibility of the proposed theoretical model. Finally, a

conclusion is given in Section 2.7.
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—— Mountain crease -—--Valley crease
(a) : (b)

@]
=

Smm

(c) . (d)

Fig. 2-1 (a and c) Pattern, geometric parameters, and crease mountain-valley assignment of type 2
square-twist pattern with left-handed and right-handed versions, (b and d) unfolded and folded

configurations of a paper model with left-handed and right-handed versions.

2.2 Uniaxial Tension Experiment

2.2.1 Digital Image Correlation (DIC) Test

Considering the two-fold rotational symmetry of the type 2 unit, a uniaxial tension
experiment in the diagonal direction was established to quantify the deformation of the
central square. As shown in Fig. 2-2. The experiment was conducted on a horizontal
testing machine developed in house to avoid the influence of gravity. The machine had
a load cell of 50N with an accuracy of 0.5% and a stroke of 800mm. The specimen was
tensioned by a displacement of 32.96mm at the loading rate of 0.2mm/s to eliminate
dynamic effects. The deformation process of the experiments was recorded using a
standard digital camera (Canon 70D) at 25 frames per second. The exact deformed
configuration of the central square facet was captured by a digital image correlation
(DIC) system CSI Vic-3D9M with a camera resolution of 2704x3384 pixels at a frame
time interval of 500ms.
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The specimen shown in Fig. 2-3 was fabricated from polyethylene terephthalate
(PET) of thickness =0.5mm using a Trotec Speedy 300 laser cutter. The geometry of
the specimen was selected as a=25mm, /=25mm, and a=30°. The creases were cut as
dotted lines of 2mmx0.3mm perforations at Imm intervals in Fig. 2-3(a). To decrease
the stress concentration and avoid the crack initiation and propagation, a circle
perforation was produced on the vertices of the patterned material sheet. Then, it was
folded by hand to form the origami structure. The specimen was attached to the machine
using two fixtures as shown in Fig. 2-3(b). The left one was fixed on the load cell,
whereas the right one on the support had a rotational degree of freedom to allow the
specimen to rotate about the x-axis. Moreover, a hinge was connected to each fixture to
enable rotation of the specimen about the y axis. The central square marked by red lines
was painted with black speckles, which was the measured area for DIC capture of the

type 2 specimen.

Displacement [
control system FEESE SRS

Fig. 2-2 Experimental setup, where the horizontal testing machine consists of a load cell,

Data acquisition system

displacement control, and data acquisition systems.

2.2.2 Geometrical Reconstruction

The experimental result of the type 2 specimen is shown in Fig. 2-4. Four
configurations of the specimen with tension displacement Ax=0mm, 4.84mm,
15.48mm, and 21.12mm, are shown in Fig. 2-4(a) as representatives. It is observed that
during tension, facet rotation about the creases dominates, whilst the central square

facet always bends and unbends along diagonal A—C. Then the exposed areas of the
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square enclosed in the red quadrilateral regions are geometrically reconstructed using
DIC and subsequently fit with single-curved surfaces with the following polynomial

governing equations

f(x)=0 (2-1a)
f.(x)=-1.61x10°x* =3.23x10°x® +1.11x102x* +1.76 x10?x — 3.72x10% (2-1b)
f.(X)=2.26x10"°x* —3.16 x10°x* +1.36 x102x* ~1.47 x10?x —3.61x10™" (2-1c)
f,(x)=5.36x10°x* —2.00x10°x* +1.17x10?x* —8.10x10°x —3.06 x10* (2-1d)

Fig. 2-3 Details of (a) the specimen and (b) fixtures.

As shown in Fig. 2-4(b), geometrically reconstructed central squares (measured
area) were established using DIC (colored points) and best-fit polynomial single-curved
surfaces (yellow surfaces) in Eq. (2-1). A good match between the experimental result
and the fitting surface is obtained in all four configurations, with the fitting error
calculated in Fig. 2-4(c) being within half of the material thickness (the green and
yellow areas in pie graphs) in over 90% of the measured area. Hence, it has been proven
experimentally that the central square of the type 2 pattern is subjected to bending with
a single curvature, based on which a theoretical model will be built to characterize its
mechanical behavior. Noting that the bending behavior of the central square in Fig. 2-4
is similar to the folding behavior of the central square with an additional crease. Here,
the approach of adding a virtual diagonal crease between vertices B and D is adopted
on the central square so as to derive the dihedral angles of all the creases from the
kinematic model of the type 2M pattern (see Section 2.3), and to quantify the bending

energy of the central square as rotation energy of the virtual crease.
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(C) Fitting error M (-00,-0.5¢) m (-0.52,0) ~ (0,0.57) m (0.5¢,400)

6.45% (i)§ (i) (i); 0.18%").

26 345 41.63%: 24.62% 2:19% 21, 61%
67.21% 58.37% :; 72.59%:

Fig. 2-4 (a) Configuration, (b) geometrically reconstructed central squares, and (c) the pie graphs
of the errors between the experimental results and fitting surfaces of the specimen at four

representative tension displacements.

2.3 Kinematic Analysis

The square-twist pattern in Fig. 2-1 has four identical 4-crease vertices, noted as
vertices A, B, C, and D. In kinematic analysis, the vertex can be modeled by a spherical
4R linkage as shown in Fig. 2-5, where the axes of the revolute joints intersect at one
point. For the coordinate frames on the links and joints presented in this figure, z; is
along the revolute axis of joint i, and x; is normal to both zi.1 and z:. aiii+1), the twist of
link i(i+1), is the angle of rotation from z; to zi+1 about xi+1. 8;, the revolute variable of
joint i, is the angle of rotation from x; to xi+1 about zi. Then, for type 2 square-twist unit,
the equivalent kinematic model is a closed loop of four spherical 4R linkages as shown
in Fig. 2-6. Based on the matrix method of the Denavit-Hartenberg notations!'®?], the

closure equation of the spherical 4R linkage is
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Q17 Q23 Qs - Quy =15 (2-2)
where
COSE,  —COSay,y-SinG,  sinay,,) -sing,
Qi =| SING,  COSex;;,y)-COSH,  —SiN @,y - COSH, (2-3)
0 Sin &,y COS(;.y)

when i=4, (i+1) is equal to 1. By calculating Eq. (2-2), the relationship between revolute
variables 6; and 6;+1 (i=1, 2, 3, 4) can be expressed as
COS(j,1)(is2) * SIN A(i_y); - SIN @(5,) - COSH,
+COS;_y); - SIN &5y - SIN A 1,)1,2) - COSO,,
+COS(1,9) - SIN (j,1y,2) - SIN ;4 - COSH, - COSH, (2-4)
= SIN &(j,1y142) - SIN iy -SIN G, -sIN G,

+COSQjp)(143) ~ COSQ(j1)  COSQj1).z) - COSOY( gy = 0.

2]

Fig. 2-5 A spherical 4R linkage.

In general, the rotation angle from joint i to joint (i+1) in linkage j, aij(m) (i=1,
2,3,4,and j=a, b, c, d), is the sector angle between the i-th and (i+1)-th creases for the
Jj-th vertex. The revolute variable of joint i in linkage j, 49ij (=1, 2, 3,4, and j=a, b, c,
d), is the rotation angle along the i-th crease of the j-th vertex in the origami pattern.
According to the definition in Fig. 2-1, the sector angles can be given by

j

T N
_ i i i_
0‘12—E'azs_a1a34—51a41_7[_a (2-5)
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Substituting Eq. (2-5) to Eq. (2-4) and noting the mountain-valley assignment of type

2 pattern, the relationship between the rotation angles Qij and 6, can be solved as

i+1
0, 0, 0} 6,
tan7 _ —cosa tan? _ —cosa tan7 _ cosa tan? _ cosa

o) T sina+l’ Nz T 0 Csing+1° O “l-sina’

(2-6)

tal ta

tal

ta

Fig. 2-6 The equivalent kinematic model of the type 2 unit, which is a closed loop of four

spherical 4R linkages.

A single spherical 4R linkage is kinematically of one degree of freedom. For the
linkage loop in Fig. 2-6, each pair of adjacent linkages shares a common joint (or
creases), i.e., AB, BC, CD, and DA should have an identical rotation angle for the
vertices on both ends,

0:=6,00=6,05 =6,y =67 (2-7)
In each linkage (or vertex), the kinematic transmission between 6! and 6} (j=a, b,
¢, d) can be described by Eq. (2-6). Substituting Eq. (2-7) into Eq. (2-6), the input-
output relationship can be described as

cos* «
o =——""7"__@p° 2-8
> (l+sina)' 2-8)
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The relationship, 65 # 6 when «a e (O,;r/ 2), indicates that the four spherical 4R
linkages in Fig. 2-6 with the crease arrangement of the type 2 pattern cannot form a
complete loop. To create a compatible closed loop with retaining the original crease
arrangement of the type 2 pattern, I proposed a method that adds a diagonal crease in
the central square between vertices B and D according to the experimental result in

Section 2.2, as shown in Fig. 2-7(a).

— Mountain crease --Valley crease

(a) T

(b)

10mm

Fig. 2-7 (a) Pattern, geometric parameters, definition of creases and vertices, (b) unfolding and

folding configurations of modified type 2 (2M) unit.

This method modifies the relationship between the kinematic variables 6 and
0} (j=b, d) and converts the foldability of the type 2 unit from non-rigid to rigid. The
modified type 2 (2M) unit consists of two 4-crease vertices (A and C), which can be

modeled as spherical 4R linkages with the same geometric parameters and kinematics
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as Eq. (2-5) and (2-6), and two 5-crease vertices (B and D), which can be modeled as
spherical 5R linkages, see Fig. 2-8. The closure equation of the spherical 5R linkage
can be given as

Q127Q2 Qs Qus Qs =15 (2-9)
where Q, is defined by Eq. (2-3), and when i=5, (i+1) is equal to 1. By setting up

the geometric parameters of the type 2M unit in Fig. 2-7(a), the sector angle ai"(iﬂ)

|+1

(=1, 2, 3,4, 5, and j=b, d) of the two 5-crease vertices can be defined as

T T
— — ] _
o, = Oy =0, Oy = 2,a51—7z—a (2-10)

4 4

a

51
Fig. 2-8 A spherical 5R linkage.

Because the spherical 5R linkage is of two degrees of freedom, 6] and 0} are
defined as the input angles to obtain the output angles &), 6] and 6} (=b, d).
Substituting Eq. (2-10) into Eq. (2-9), the relationship between the kinematic variables

is expressed as

j /
tan9—4 QZE)JQE' (2-11)
1
6) -PJ+ P)’—4pj.p)
tan7: \/ Y , (2-12)
1

cos6) =2sina - (—cosa - cosh; +cosa-cosh) —sina-sind} -sind) )+1,  (2-13)

where
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Q, =sina + cosa +sina -cosd, +cosa - cosé)
Q) =-sing) . (2-14a)
Q) =sin’a- (sin2 0} +sin? 6] )— 2sin a - cosa - (cosalj —00303")
P/’ :(COSa-sin 0J -sin @) —cos® a-cos@J) -cosd) —sin a-cosa -cosH) +1)
+(sin? &r-cosd; —sin a-cosa)
P) = 2(—sin a-sin @) -cos@] —sin a-cosa -cosd) -sin ) —sin® a-sin 494’) .(2-14b)
P, :(c05a-sin 0J -sin @) —cos® a-cos@J) -cosf) —sin a-cosa -cosH) +1)
—(sin? &r-cosd; —sin a-cosa)
The kinematics of vertices A and C in Eq. (2-6), can be simplified as

) —cosa . O} a0 i
tan?z:sinoc+1tan?l"94J ==0;.0, =0 (2-15)

To illustrate the folding more clearly, the dihedral angles l//ij (i=1,2,3,4,j=a,c,
and i=1, 2, 3, 4, 5, j=b, d) of each vertex, instead of ¢9ij (i=1,2,3,4,j=a,c,and i=1,
2,3,4,5,j=b, d), are used to analyse the configuration and kinematic paths of the type
2M unit. Their relationships are

O =m—yl 6 =y, 70 =7 —y;,0/ =7 —y,. (2-16)
where j=a, c. Substituting Eq. (2-16) into Eq. (2-15), the relationship between dihedral
angles of vertices A and C is given by

i i
tanw_zzﬂtanl//_l
2 1l-sina 2

Similarly, the geometric relationships of the kinematic rotation angles and the

wi=yiyl =y (2-17)

dihedral angles for vertices B and D are
O =y} 7,0, =y)—n,0) =n—yw),0l =y} 7,60 =yl -x. (2-18)
where j=b, d. Substituting Eq. (2-18) into Eq. (2-11)-(2-14), the dihedral angles of

vertices B and D can be calculated by

tan W—‘{ =— qu . =, (2-19)
q, ¢sgn(g’ INGE
j j
tan ¥ — Py (2-20)

:
- pl+ypl - pi - pd
cosy) = 25ina'(—cosa-cosy/j +Cosa - cosyy +sina-siny;] -sin z//sj)—l. (2-21)
where
g, =sina+cosa —sin a-cosy,) —cosa -cosy )
q) =siny) . (2-22a)
g) =sin? a-(sin2 w] +sin®y) )+ 2sin a-cosa-(cosa//lj —coswg)
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p; =(c03a~sin wi -siny) +cos® a-cosyd -cosy) —sina-cosa - cosy ) —1)
+(sin? & - cosy/! +sina~cosa)

p) =sina-siny) -cosy} —sina-cosa -cosy) -siny) +sin? a -siny)

p) =(c03a~sin wi -siny) +cos® a-cosyd -cosy) —sina-cosa - cosy ) —1)

—~ (sin2 a - cosyd +sina - COSa)

(2-22b)
9' =y —y,,, (2-22¢)
w,, = 2arctan/cosa/(Ll-sina). (2-22d)

Joining the four vertices together can form a closed loop of two 4-crease vertices
and two 5-crease vertices, see Fig. 2-7(a). The common creases of adjacent vertices
have the same kinematic rotation angles,

a_ d a_ b c_ b ¢ _ d b — d (2_23)
Vi =V W =YW =W W =Y, W0 =W,
which leads to the compatibility condition to determine the rigid foldability of the

pattern

wh:wu‘_vju:wd
f;/ 1 2 1 3> d

Nyl=yi =y (2-24)
2 = 2

Here, a spherical 4R linkage is with one degree of freedom, so in linkage A, w;’
is taken as input and 5 as output; in linkage C, ; is taken as input and y, as
output. Meanwhile, a spherical 5R linkage is with two degrees of freedom, so in linkage
B, v2 =y, and w' =y, are taken as two inputs to determine the output wy; in
linkage D, w5 =y, and yw? =y are taken as two inputs to determine the output
ws . Eventually, w2 =y is the additional condition to setup the relationship between
the initial inputs, w; and w/; . Therefore, the whole system is of only one degree of
freedom.

Substituting Eq. (2-17), (2-19)-(2-23) into Eq. (2-24), two sets of kinematic
equations of the type 2M pattern can be obtained, which means there are two folding

paths for the pattern. The equations for path 1 are

tan V2 = sina+1 tan V/—l, (2-25a)
2 COSa 2
Vs =y =ws =we =y =y, (2-25b)
e e e VLV (2-25¢)
d d
Wy O,
tan ¥4 = , (2-25d)
2 qf —sgn(g” Wa:
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d d
tan V5 - Py , (2-25¢)
d d2 d .d
_p2+\/p2 _pl'ps
d

cosy) = Zsinoc-(—coswcom,//;1 +C0osa -cosy +sina-siny! -sin z//;’)—], (2-25f)

V2 =¥s (2-25g)
vl =y, (2-25h)
Vs =V, (2-25i)
and the equations of path 2 are

tan 22 = sina+1 tan l/j—l, (2-26a)

2 cosa 2
R R R R e (2-26b)
R A Vo VAL Vo (2-26c¢)

d d

tan ¥4 — G , (2-26d)

d

2 g +sgn(g® Nag
d d
tan 5. = B , (2-26¢)
g+ p -l
cosy; = 2sin a-(— COSa - COSY, +COSar-COSy; +Ssina-siny; -siny )—L (2-26f)

vE =3, (2-26g)
Vi =y, (2-26h)
Vs =vs, (2-26i)
where

9' =y — g, (2-27a)
w,, = 2arctan \/cosa/(1-sin ), (2-27b)

0, =sina+cosa —sina-cosy, —cosa -cosy
q; =siny; : (2-27¢c)

qs :sinzoc-(sinzx//ld +sin’ ! )+ Zsina-cosw(coswf —cosw;’)
pl = (COSa-sin ws -siny +cos’ a-cosys -cosy{ —sina-Ccosa -Ccosy, —1)
+(sin? a-cosy? +sina-cosa)
P =sina-siny! -cosy; —sina-cosa-cosyy -siny. +sin’a-siny, .(2-27d)

d

ps = (COSa -siny} -siny +cos’ a-cosys -cosy; —sina-cosa-cosy, —1)
—(sin® & -cosy? +sina -cosa)

To illustrate the kinematic characteristics, two kinematic paths of the type 2M

pattern together with six representative configurations on each path are shown in Fig.

2-9. The configurations (I1 IT; III: IV1 V1 Vi) represent the unfolding sequence on path

1; (I2 12 12 IV2 V2 VI2) represent the unfolding motion on path 2. Rectangular facets
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in the same colour (dark or light blue) are parallel during motion. These paths intersect
at three points that correspond to fully folded (I1 and 1), fully deployed (V11 and V1),
and bifurcation configurations (IV1 and IV2). In each kinematic path, there are two pairs
of parallel rectangular facets, and all four facets become parallel in the bifurcation
configuration. In addition, penetration of the facets into each other occurs on kinematic
path 2 between the fully folded and bifurcation configurations, which is exemplified by
configuration II2 in Fig. 2-9. This is an important observation, as it implies that when a
type 2M unit is unfolded, it may not be able to follow kinematic path 2 because of
physical interference. Hence, there are two possible paths to unfold the unit: one is path
1 throughout, and the other is path 1 first, followed by a switch to path 2 at the point
where the paths bifurcate. The bifurcation on configurations IV1 and IV2 in Fig. 2-9
only holds when a=30°.

’ 1 >
] I — Kinematic path 1|~
ol . Nt Kinematic path2| >
\ ~
0 4511 d90 135 180 ~. 111,
v/ (deg)

|
#\g

Fig. 2-9 Two different kinematic paths of the type 2M pattern together with six representative

configurations on each path, where =30° and the bifurcation is ! =105.54°.

The comparison between Eq. (2-25) and (2-26) reveals that the relationship

between the dihedral angles in both kinematic paths, which can be described with five
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different angular variables, t,//ld, w;, 1//3"j , t//f, and l//s, are all related to a. The

variation in the two kinematic paths with varied a presented in Fig. 2-10 shows that the

bifurcation point with =2arCtan\/COSa/(1—Sin a) is always found in the
kinematic curves of the type 2M pattern. The larger « is, the later the bifurcation

happens (Fig. 2-10(a)).

a=10° o=20° a=30° o=40°

Kinematic path 1
Kinematic path2 - - - - e
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(a) (b)
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Fig. 2-10 Kinematic curves of the dihedral angles (a) w; , (b) w?,(c) wy,and (d) wd vs. y.

for kinematic paths 1 and 2 of the type 2M unit with varied a.

Furthermore, the facet penetration appeared in configuration Il2 is caused by the
difference between y; and l//f , where v, = l//ld is always in both kinematic paths
by Eq. (2-25b) and (2-26b). The relationship between l//flj and !,//1d in Fig. 2-10(c)
indicates that the larger a is, the larger difference between the two dihedral angles exists

in path 2 before the bifurcation point, i.e. the more serious the penetration of the facet
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is. Notice that the two kinematic paths have an identical relationship between l//3d and
w! in Fig. 2-10(b), which is not affected by varied a. It is because l//;j and ! are
controlled by the two 4-crease vertices A and C in Eq. (2-25a)-(2-25¢) and (2-26a)-
(2-26¢), and each 4-crease vertex with determined crease assignment has a unique
solution as shown in Eq. (2-2)-(2-6). In other words, the two different kinematic paths

of the type 2M pattern is only depending on the 5-crease vertices B and D.

2.4 Theoretical Model

Before calculating the theoretical energy, the definition of dihedral angles for the
crease of a type 2 unit is simplified as shown in Fig. 2-11. Then, the elastic energy, Uk,
of the type 2 pattern during unfolding along either kinematic path can be calculated as
the summation of the energy of the twelve original creases, Ue, and that of the virtual

crease on the central square, Us.
1& 1
U =Uc+U, =23 ke L (0 — 010 f ok L (o, — ., F- (2-28)
i=1

In which ke, Li, ¢, and ¢; 0 are, respectively, the torsional elastic constant per unit length
along the crease, length of the crease, dihedral angle, and natural dihedral angle in the
undeformed state for the i-th crease, whilst &, Ls, ¢s and ¢so are the corresponding
parameters of the virtual crease.

According to the kinematic analysis in Section 2.3, the relationship of the dihedral

angles in Fig. 2-11 is as follows when ¢4 is set as the input angle.

tan & 125N o P , (2-29a)
2 Ccosa 2
9,
Q, —sgn(g )y q
tan 2o =1 ( )\/_3 ) (2-29b)
2 0,
A, +son(g Wa,
% p
tan 75 = S , (2-29¢)
=P, +y(p) ~ P ps

COS@,, = 2sin & - (~ cosa - cosg, +Cosa - Cose, +sina -sin g, -sing; )1,  (2-29d)

Oy =V=Pg=Pss Po=P;=P3=P1, P5=05, P11=0Ps5, (2-2%¢)

where
9=0, — Py (2-291)
., = 2arctan /cose/(l-sin ), (2-29g)
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g, =Sin & + cosa —Sin & - C0Se, — COS - COS,
G, =sing ; (2-29h)
0s =sin’ & - (sin? , +sin’ @, )+ 2sin & - cosa - (cosg, — cosg,)
p, = (COSa -sin ¢, - sin @ +C0OS* & - COS @, - COS@, —SiN & - COSa - COS P, —1)
+(sin? & - cosg, +sin & - cosa)
p, =sin o -sin @, - cOSg, —Ssin a - Cosa - COSg, - Sin @, +sin* a - sin g, . (2-291)
P, = (cosa -sin ¢, - sin @, +C0S* & - COS @, - COSP, —SiN & - COSax - COS @, —1)
—(sin® & -cosg, +sin & - cosa)
Here, the relationships, ¢, =@, @w=¢,, P=¢3, ¢; =0, Pp,=¢;, and
¢y, = @5, are caused by the two-fold rotational symmetry of type 2 unit, while ¢, =¢,,
Oy =P, Py =¢;,and @, =¢@, result from Eq. (2-17) of vertices A and C.

— Mountain crease -- Valley crease -- Virtual crease

Fig. 2-11 Definition of the dihedral angles.

Using the dihedral angles in Eq. (2-29), the energy of each crease can be calculated

by
1
U, :Ulzzkc'l((ol_wl,o)za (2-30a)
a 1 2
U8=Uz=TU4=§kc-a(¢4—¢4,o) , (2-30b)
U, =U, =wul=%kc(a+|'0050€)(§01—(/’1,o)2, (2-30c)
1
U,=U, = Ekc g, — 040 ), (2-30d)
1
Uy =Us =2k, alps - . (2-30¢)
1
Uy, =Ug =k, (a+] -c05a s — @50 ) (2-30f)
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J2
Uy, = - Ke 115 — 9100 ) (2-30g)

where kc and kr are the torsional elastic constants of the original creases and the virtual

crease, respectively, / and a are two side lengths of the type 2 pattern (Fig. 2-1(a)).

Then, the energy of the original creases, Uk, is
12
U,=>U,
i=1
= kc(a+| -COSa + I)(gnl —golvo)z + kc(a+ I)((p4 —gpAYo)z ,
+K. -a(go5 — @5 )2 +K. (a +1 -COSa)(go6 — Qg0 )2

and that of the virtual crease on the central square, Us, is

V2
U = 7 K; - I(@ls —P130 )2 . (2-32)

(2-31)

Finally, substituting Eq. (2-31) and (2-32) to Eq. (2-28), the total energy of the
type 2 pattern, U, is
U, =U_+U,

— kc(a+| . COS¢ + I)((Dl —(01’0)2 + kc(a+ |)(§D4 — §04’0)2 + kc . a((os _(05,0)2 : (2_33)

2
+K, (a +1 ~COSa)((/)6 ~Ps0 )2 + % K - I((Dls ~— D130 )2

As shown in Fig. 2-3(b), the tension loading on the specimen is in the diagonal
direction. The deformed diagonal length and the natural diagonal length in the
undeformed state of the type 2 specimen is defined as x4 and xd,0, respectively. The
diagonal length, x4, can be described using the dihedral angles in Eq. (2-29).

X, =VUZ + Vi + W (2-34a)

where
u=(a+l-cosa)-1-sina-cosp, +a-cos(p, —¢,)
v=-a+!|-sina-cosg, —(a+| -COSa)COS((og —%)
w=[l-sina-sing, +a-sin(p, — ¢, )]
—[I-sina-sing, +(a+1-cosa)sin(g, — ¢, )]

(2-34b)

And the natural diagonal length, x40, can be calculated by Eq. (2-34) when the dihedral

angles, @i, is equal to the natural dihedral angles, @i 0. Then, the displacement, Ax, which
is the deformation of the type 2 specimen in the diagonal direction, can be defined by

AX= X4 — X4 (2-35)

The elastic energy of a type 2 pattern and the creases following each kinematic

path is, respectively, calculated, normalized by kc/, and drawn against normalized

tension displacement Ax// in Fig. 2-12 and Fig. 2-13. The geometry of the pattern is
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selected as a=30°, a=[, p4,0=0°, and the ratio kr/kc is set to 8 in order to exemplify the
difference between the two paths. It can be seen that the elastic energy of kinematic
path 2 is higher than that of path 1 prior to the bifurcation point and becomes lower than
that of path 1 afterward. Theoretically, when a structure is loaded, the low-energy
deformation path will be followed. Therefore, the theoretical model predicts that the
type 2 pattern will initially follow path 1 and then bifurcate to follow path 2, which has

not been reported in origami structures of its kind.

—Kinematic path 1  ---Kinematic path 2
80

60 /

40 -

Ut/ (ke )

20 -

0 0.35 0.7 1.05 1.4
Ax/l

Fig. 2-12 Normalized theoretical elastic energy Uy/(k./) vs. displacement Ax// of the type 2M

pattern.
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Fig. 2-13 Normalized theoretical elastic energy Ui/(kcl), Uo/(kcl), Us/(kel), Ual(kel), Us/(kel),
Us/(kcl), and Uis/(kcl) vs. displacement Ax/l of (a) kinematic path 1 and (b) kinematic path 2 of the
type 2M pattern.
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It is worth mentioning that Eq. (2-28) is valid only when the creases have a linear
elastic torque versus rotation angle relationship, and modifications are required should

a different constitutive relationship be adopted.

2.5 Mechanical Behaviors of Type 2 Unit

2.5.1 Validation of Theoretical Model

To validate the theoretical model derived in Section 2.4, a rigid-foldable type 2M
specimen was first built and tested. The specimen had identical geometric parameters
with the type 2 one in Fig. 2-4(a) except for the additional crease at the central square,
and was manufactured and tensioned in the same manner. In the theoretical calculation
of the elastic energies of the type 2M and type 2 specimens, the torsional stiffness of
the original creases was determined through experiments and curve fitting. A
preliminary crease rotation experiment indicated an elastic followed by a mild
hardening relationship between the bending moment per unit length, M, and the change
in the dihedral angle, Ag. Thus a nonlinear elastic relationship with two stages as shown
in Fig. 2-14 is used to characterize the torsional behaviour of the original creases for
simplicity in theoretical calculation. Then, two parameters were determined: the
dihedral angle (for illustrating the range of the first branch of the curve), Apy, and the
torsional elastic constant per unit length (slope of the first branch of the curve), kc. In
this model, the slop of the second branch of the curve was set by zero (see Fig. 2-14).
As expressed by the experimental results of the type 2M unit, the first-stage linear
elastic response occurred when 40°<p4<55.23° (Fig. 2-15(a)). Thus, the dihedral angle
was set as Apy=55.23°-40°=15.23°. The torsional elastic constant per unit length of the
creases, k¢, was obtained through the best fit of the experimental curve in Fig. 2-15, to
be 0.76N-rad™.

Then the theoretical total energy of the specimen following the two kinematic
paths is calculated and differentiated with respect to tension displacement to obtain
force. In the calculation, the natural dihedral angle ¢40=40° is measured from the
specimen, whereas the others are derived based on the kinematic model. A nonlinear
elastic model is found to be able to realistically model the relationship between crease
torque and rotation angle. This model indicates that when the rotation of the dihedral

angle is less than Agy, the creases perform elastic deformation with torsional elastic
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constant, kc, and result in linear elastic energy. While for the dihedral angle that rotates
more than Agy, the beyond part is elastic deformation with a zero torsional constant and
leads to nonlinear elastic energy. Here, the torsional elastic constant and rotation angle
are determined as kc=kr=0.76N-rad™! and Apy=15.23° based on experiment and curve
fitting. Correspondingly, Eq. (2-28) is modified as follows to calculate the total energy
of the type 2M specimen.

13 1

ZEkC L (Coi —®io )2’ Pio <P <@t AP,

Uo=1" . 2 (2-36)
Z[E kL -Ap,” K, L A (0, — 0,0 — Mg, )} P> Pio T AP,

i=1

In which, kL (goi —(pivo)2 / 2 and Kk, -L -A(py2 / 2 represent the first stage of the
nonlinear elastic energy while k_ - L, -Aqoy (gpi — @0~ Agoy) represents the second one.

In the tension experiments, the force is measured directly from the experiment and
the energy is obtained by integration of the force over the displacement. The
theoretically derived normalized total energy, Uy/(kc/), and normalized force, F/kc, of
type 2M are drawn against normalized displacement Ax/[ together with the
experimental ones in Fig. 2-15(a) and (b). Note that before the bifurcation point, only
the energy and force on kinematic path 1 are calculated, because kinematic path 2 in
this range is inaccessible in experiments owing to physical interference. As expected,
the experimental curves bifurcate and follow the low-energy deformation path
throughout loading. One discrepancy, however, is that the tiny force drops at the
bifurcation point in the theoretical curve is not observed in the experimental curve,

possibly because the magnitude of the force drop is too small.

Ap,=15.23°
0.3
0.2
z
=
0.1F
ke
O ,I 1
0 60 120 180
Ag (deg)

Fig. 2-14 Nonlinear elastic model for the original creases.
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Fig. 2-15 Theoretical and experimental (a) normalized force F/k. and (b) normalized energy
Uy/(k.l) versus normalized displacement Ax// for the type 2M specimen with the natural dihedral

angle ¢40=40°. (Bifurcation of the theoretical curves occurs at ¢13=94.12°.)

Regarding the virtual crease on the central square of the type 2 unit, I determined
from the digital image correlation result that the maximum strain in the central square
during loading, 0.67%, was lower than the yield strain of the material, 0.72%, indicating
that the material was in the elastic range during deformation. Therefore the virtual

crease was assumed to be linear elastic. The torsional elastic constant per unit length,

ki, was calculated based on the bending stiffness of the facet!®],
E-1 E-t
k, =—— = 2-37
s 12s -37)

where £=2299.18MPa was the Young’s modulus of the polyethylene terephthalate
sheet, which was determined from tension experiments, /=0.5mm was the thickness of
the sheet, and s=21.50mm was the bending arc length of the central square measured
from the reconstructed geometry based on digital image correlation (arc from vertices
A to C in Fig. 2-16(a) and (b)). Substituting the values into Eq. (2-37), the torsional
elastic constant per unit length of the virtual crease was determined to be kr=1.11N-rad™".

Subsequently, the model is validated by comparing the experimental and
theoretical results for the non-rigid-foldable type 2 specimen in Fig. 2-4(a) with a
natural dihedral angle of ¢4,0=30°. The same procedure as in the case of the type 2M
pattern is followed expect for that the torsional stiffness of the virtual crease needs to
be determined. Here, the energy of the virtual crease is K; - L ((ps — )2 / 2 in the

whole folding process because of the linear elastic bending deformation existing in the
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central square facet. Consequently, the theoretical total energy can be calculated by

modification of Eq. (2-28) as follows
12

Z%kc Llp —o0) +%kf Lo, —00 ), 00 <0 <0, +A0,,
i=1

12 1
U, = Z|:E ke - L 'A(Dyz +k, - L 'A(Py((”i —®io _A% )} (2-38)

= , P> AR,

+%kf ) Ls (¢s ~ P50 )2

Then the force can also be derived by differentiation of the energy against displacement.

The theoretical and experimental results are presented in Fig. 2-17(a) and (b).
Again a reasonable agreement is achieved, especially with respect to the four feature
points I-IV on the force curve. In addition, the theoretical force reaches a local
maximum (point III) at the bifurcation point and then drops. This is because the virtual
diagonal crease starts to unbend when the structure reaches its bifurcation configuration,
which releases elastic energy and causes a drop in the force. Notice that the drop is not
as dramatic in the experiment due to that the limited rigidity of the facets makes them
deform simultaneously with the creases.

The repeatability of the experimental results proved by several specimens is
described as the red shade in Fig. 2-15(a) and (b) as well as Fig. 2-17(a) and (b).
Therefore, a conclusion can be obtained that the two challenges for theoretical
characterization of the non-rigid-foldable pattern have been solved. The analytical
model, which combines kinematics and mechanics, can accurately predict the

mechanical behaviors of type 2 square-twist pattern.

() oo S 5 (b) 20

y (mm)

; /k C E
HRY; z : -20

-20  -10 0 10 20
x (mm)

Fig. 2-16 (a) Bending arc length and (b) the fitting curve using polynomial functions between

vertices A and C of the central square of the type 2 unit.
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------ Experimental path ——XKinematic path 1 ---Kinematic path 2

(b)

12

Uil (ke 1)

Ax/l

Fig. 2-17 Theoretical and experimental (a) normalized force F/k. and (b) normalized energy
Uy/(k.l) versus normalized displacement Ax/[ for the type 2 specimen with the natural dihedral

angle ¢40=30°. (Bifurcation of the theoretical curves occurs at ¢13=94.12°.)

2.5.2 Stability of Deformation Path

It has been shown that if undisturbed during loading, both type 2M and type 2
patterns will follow the low-energy path. However, it would be interesting to know if
initially placed on the high-energy path, whether it will follow it or drop to the low-
energy one. To investigate this, a type 2M specimen was fabricated with two voids of
9.50mm by 16.50mm (inset of Fig. 2-18) to eliminate physical interferences. This made
the branch of kinematic path 2 before the bifurcation point physically reachable, leading
to four possible deformation modes: path 1 throughout deformation; path 1 followed by
path 2; path 2 followed by path 1, and path 2 throughout. Then four experiments were
conducted on the specimen, and the experimental paths in terms of @6 versus @4 were
measured and presented in Fig. 2-18.

Specifically, in experiment 1, the specimen was set initially on kinematic path 1
and tensioned without disturbance. It moved on path 1 up to the bifurcation point and
then dropped to kinematic path 2. In experiment 2, the specimen was also on kinematic
path 1 initially. Immediately after bifurcating to path 2, it was manually adjusted back
to kinematic path 1 and then applied further tension. However, the specimen did not

stay on kinematic path 1 and quickly dropped to kinematic path 2. Experiments 3 and
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4 respectively followed the procedures of experiments 1 and 2, but started from a
configuration on kinematic path 2. In both cases, the specimen quickly dropped to the
low-energy path (i.e., path 1 prior to and path 2 after the bifurcation point). Those
experimental findings agree with theoretical analysis. Moreover, the results imply that
the origami structure will follow a stable deformation path that is insensitive to

perturbation, which makes it better adaptive to various work conditions.
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Fig. 2-18 Two kinematic paths and four experimental paths of a type 2M specimen with two voids.

In the experiments, the initial dihedral angle p40=45°.

2.6 Programmability of Mechanical Properties

2.6.1 Effects of Geometric and Material Parameters

Using the theoretical model, the mechanical response of the type 2 pattern can be

readily programmed by simply changing the material and geometrical parameters. This
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is demonstrated by calculating and comparing the energy and force of a series of
structures with varying parameters (see Fig. 2-19 for material parameters and Fig. 2-20
and Fig. 2-21 for geometric parameters). In the calculation, the same nonlinear elastic
original creases, linear elastic virtual crease, and natural dihedral angle ¢4,0=30° as
those for the type 2 specimen in Fig. 2-4(a) are adopted. And the displacement is

normalized by the maximum displacement, Axmax, in all the curves for convenient

comparison.
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(a) (b)

16 3
g
=5 12 S 2.25
>:‘ Wi
b [ -
E ST~ > 2
m 8 B ,/ ,._ __________ ;:_.- 5 15
=) s, o
Q Lo - : )
N YR ~ a0
= R 5
£ 4r /;_/.‘4_.‘;" S 0757
= e

0 a l ) l O R T \
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Displacement, Ax/Ax ax Displacement, Ax/Ax .
(c)
30

—
wh

]
—
wn

Normalized Force, F/k,
<

(o)
o

1 1 1

0 0.25 0.5 0.75 |
Displacement, Ax/Ax pay

Fig. 2-19 The effects of the stiffness ratio k¢/k.. (a) The normalized energy, Uy/(k.[), (b) ratio of the
central square bending energy to the crease energy, Uy/U., and (c) normalized force, F/k., of the

type 2 pattern derived from the theoretical model.
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Fig. 2-20 The effects of the twist angle a. (a) The normalized energy, Uy/(k.l), (b) ratio of the
central square bending energy to the crease energy, Uy/U., and (c) normalized force, F/k., of the

type 2 pattern derived from the theoretical model.

The investigated material parameter is the ratio of the torsional stiffness of the
virtual crease, which is essentially the bending stiffness of the central square, to that of
the original creases. The energy and force curves of five models with identical a=30°
and a//=1, but different ke/kc values ranging from 1 to 16, are presented in Fig. 2-19. It
can be seen that as the ratio increases, both the energy and force increase. This is
because at higher torsional stiffness, more energy is required to deform the central
square, thereby lifting the force barrier to reach bifurcation. Furthermore, the decrease
in force at the bifurcation point becomes larger, and a negative force occurs when kt/kc

surpasses 5.04. The condition for the existence of a negative force is analyzed in Section
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2.6.2. Briefly, this phenomenon is best explained by the variation in the bending energy
of the central square. It has been shown in Fig. 2-17(a) and (b) that the unbending of
the central square after bifurcation releases elastic energy and leads to a drop in the
force. As shown in Fig. 2-19(b), the ratio of the central square bending energy to the
crease energy, Us/Ue, increases with kt/ke. When kt/ke>5.04, the energy release in the
central square is greater than the energy increase in the original creases, leading to a
reduction in the total energy of the structure and a corresponding negative force.
Therefore, the mechanical properties and behavior of the structure can be programmed

simply by tuning the bending stiffness of the central square facet.
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Fig. 2-21 The effects of the side length ratio a/I. (a) The normalized energy, Ui/(k.l), (b) ratio of
the central square bending energy to the crease energy, Us/U., and (c) normalized force, F/k., of

the type 2 pattern derived from the theoretical model.
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The geometric parameters also influence the behavior of the structure. A
comparison of five models with « in the range of 25°-45°, ki/ke=1 and a//=1 indicates
that increasing the twist angle lowers the initial peak force but raises the force barrier
to the bifurcation point (Fig. 2-20). Decreasing a//, which means keeping the size of the
central square constant while shortening the facets around it, reduces the entire force
level owing to the decrease in the crease lengths, see the results in Fig. 2-21 from five
models with a/l ranging from 1/4 to 4 while a=30° and kt/kc=1. The force drop in the
bifurcation point becomes more pronounced with decreasing a// because of the higher

bending energy of the central square facet.

2.6.2 Negative Force

As shown in Fig. 2-19(c), the force curve can be negative after the bifurcation
point when the stiffness ratio, kt/kc, surpasses a critical value. To analyse this critical

stiftness ratio, the force is calculated using the following equation.
du
F=—2%. 2-39
d() (2-39)
Substituting Eq. (2-33) into Eq. (2-39), a rewritten equation is expressed as

kc(a+ |-cosa + I)(gol —golyo)z + kc(a+ I)((o4 - ¢4’0)2 + k. -a((/)5 - gos,o)z
d
2
+ kc(a+ I -COSO!)((DG _(Ps,o)2 + \/Z_kf 'I((Dls _¢13,0)2

d(Ax)
kc(a+l-cosa+l)(¢)1—(p1,0)2 e
d| + kc(a"' I)(% _(1’4,0)2 +K; - a((”s _(/75,0)2 + d(zz K - I((P13 _4013,0)2}
+ kc(a +1- COSOC)(¢6 ~ Q.0 )2

F =

(2-40)

d(Ax)
I-cosa + 1 \g, — @1, i
(a+1-cosa+1)p, — ., ) (5

d +(a+ |)((04 - §04,o)2 + a((”s - (05,0)2 + kfd{z |(¢13 B (”13,0)2]
+(a+1-cosa)ps — 5, ) i

T d(Ax)

Generally, the force can be positive or negative depending on the geometric and
material parameters. Considering the models in Fig. 2-19 with a=30°, a/[=1, and
04,0=30° Eq. (2-29) and (2-40) can be used to work out that the minimum force Fmin<O0,

i.e., a negative force occurs when

56



Chapter 2 The Non-rigid Square-twist Type 2 Unit

d{(a+ I-cosa+1)p -, ) +(a+1)e, (04'0)2}

+ a((p5 ~ P50 )2 + (a +1- COS“)(‘/’G - (Pe,o)2

“ d(\/f |(¢13 ~Pi3p )ZJ

Physically, this means that when A#/kc surpasses the critical value, the energy

=5.04. (2-41)

min

release in the central square is greater than the energy increase in the original creases,

thereby leading to a negative value in the force curve.

2.6.3 Tension Experiment of 2x2 Type 2 Metasheet

Here, it is validated that the mechanical properties of type 2 metasheet can be
predicted by the theoretical model of unit as mentioned above. A 2x2 tessellation of the
type 2 unit (Fig. 2-22) was designed, manufactured using the same material and
technique for the type 2 unit in Fig. 2-4, and tested to demonstrate the feasibility of the
proposed design approach. Therefore, the same torsional stiffness for the original and
virtual creases were also utilized to calculate the theoretical energy and force curves.
Based on the programmability analysis, the angle a=40° is chosen for the tessellation
so as to manifest its bifurcation behaviour. The theoretical energy and force curves are
also calculated from Eq. (2-38) and drawn together with the experimental results in Fig.
2-23. Six points of interest are marked in red on the curve in Fig. 2-23(a) and (b), which
correspond to the six configurations in Fig. 2-24. It can be seen from Fig. 2-24 that a
simultaneous unfolding of the four units was obtained. The natural dihedral angle
@, = 20° . Bifurcation occurs at Ax/Axmax=0.7 (¢,; = 64.29°).

The theoretical curves still capture the main features of the structure, including the
force plateau region (points II, III, and IV) and the force drop (point V) due to
bifurcation. The reasonably good matches between theoretical and experimental data
are achieved in both normalized energy and force. The drop (point V) in the normalized
force results from the virtual diagonal crease on the central square starting to unbend
when the structure reaches its bifurcation configuration, which releases elastic energy.
Notice that the drop is not as dramatic in the experiment, which is also discovered in
the unit experiment. That is because the facets in the theoretical calculation are perfectly
stiff, but those in the experiment have limited rigidity that makes them deform

simultaneously with the creases. In brief, the results in Fig. 2-23 indicate that the
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theoretical model developed based on the unit can be readily employed to predict and

program the mechanical properties of the tessellated metamaterials.
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Fig. 2-22 A 2x2 tessellation of the type 2 unit defined by a=25mm, /=25mm, and a=40°.

2.7 Conclusions

In this chapter, a theoretical model for the non-rigid-foldable type 2 pattern has
been developed to achieve predictable programmable mechanical behavior, based on
the kinematic analysis results of its rigid-foldable counterpart. It has been demonstrated
theoretically and experimentally that the non-rigid-foldable pattern bifurcates during
tension so as to always follow the low-energy path. This feature has not been reported
previously for origami structures. The model enables us to accurately program the
mechanical properties of the origami structure by tuning the geometry of the pattern
and/or mechanical properties of the creases and the central square facet. This
programmability through the pattern geometry and material allows various mechanical
functions to be achieved in the origami structure. For example, to design an ideal impact

163] "smaller values of

energy absorption device, which requires a long and flat plateaul
kt'ke and o, and a larger value of a/l should be selected to minimize the force drop at the
bifurcation point. The diagram shown in Fig. 2-21¢ shows nearly perfect force plateaus

when kt/ke=1 and a=30°. The height of the plateaus increases with the ratio a/l.
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Altogether, this work enables the use of non-rigid-foldable origami patterns in the

design of mechanical metamaterials with theoretically predictive behavior.

Normalized Energy, U, /(k. 1) £

===« Experimental path

—Kinematic path 1

- - Kinematic path 2

=N
wn

(78]
(=]

—_
wn

]

IT1

LA ,

V]

0 0.25 0.5 0.75
Displacement, Ax/Ax pax

1

[\
o

—_—
o

Normalized Force, F/k,

]

V1

.
-
o‘-

~

\

0.25 0.5 0.75 1
Displacement, Ax/Ax yax
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Fig. 2-24 Representative configurations of the tessellation during uniaxial tension experiment.
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Chapter 3 The Non-rigid Square-twist Type 1 Unit

3.1 Introduction

The type 1 square-twist pattern in Fig. 3-1(a) or (c) consists of a central square
facet, four trapezoidal ones, and four rectangular ones, which is parameterized by two
side lengths, / and a, and a twist angle, a. A paper model in the deployed and folded
configurations is shown in Fig. 3-1(b) or (d). It can be seen that the crease mountain-
valley assignment forms a four-fold rotational symmetry in the pattern. This pattern has
great potential in the design of mechanical metamaterials for two reasons. First of all,
it has a strong self-locking behavior which is remarkably different from the other three
members of the family. Moreover, it is relatively easy to combine it with the other rigid
and non-rigid square-twist patterns to form metamaterials with a wide range of tunable
properties. However, the quantitative relationship between the mechanical properties of
the pattern and the geometric and material design parameters, which is essential for the
programmability of the metamaterials, has so far been unclear. According to the
previous efforts on mechanical characterization of the pattern, little information is given
about the detailed deformation process or validation with experiments. In view of this,
characterizing and programing the mechanical properties of the pattern is proposed
through a combination of experiments, finite element simulation, and empirical model
development.

The outline of this chapter is as follows. In Section 3.2, the biaxial tension
experiment of the type 1 origami structure is presented. The kinematic analysis of the
modified type 1 pattern is presented in Section 3.3. The numerical simulation and
corresponding validation of the type 1 origami structure are studied in Section 3.4. In
Section 3.5, the deformation process of the structure, as well as the energy, force, and
stiffness responses, are discussed in detail. In Section 3.6, an empirical model is built
based on the experimental and numerical analysis to correlate the geometric and
material parameters of the structure and its mechanical properties. The empirical model
is utilized to program the mechanical properties of the pattern in Section 3.7.
Furthermore, a 2x2 type 1 metasheet is tested to demonstrate the feasibility of the

proposed theoretical model. Finally, a conclusion is given in Section 3.8.
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—— Mountain creases - - - Valley creases

(b)

Smm

(d)

Smm

Fig. 3-1 (a and ¢) Pattern, geometric parameters, and crease mountain-valley assignment of type 1
square-twist pattern with left-handed and right-handed versions, (b and d) unfolded and folded

configurations of a paper model with left-handed and right-handed versions.

3.2 Biaxial Tension Experiment

The four-fold rotational symmetry of the pattern results in identical deformation
holding on the four corners of the unit in the whole unfolded process. Thus, a biaxial
tension experiment, loading at four corners of the structure, was conducted through a
specially designed loading mechanism. As shown in Fig. 3-2(a), the square loading
mechanism consisted of four sliding units, each of which was composed of a 3D-printed
block and a steel linear guide fixed together. The four blocks were used to connect with
the four corners of the specimen, respectively. The sliding unit and linear guide on the
same block are perpendiculars. There was a channel in each block, where the linear
guide from the neighboring sliding unit could pass through with no rotation and forms
a prismatic joint. Here, the relative displacement between each sliding unit and its
connected linear guide is always identical. Based on this sliding behavior, applying

uniaxial loading on two blocks of the mechanism could provide stretching the specimen
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equally in the two diagonal directions, which is illustrated through the deformation

process of the specimen in Fig. 3-3. Six universal wheel bearings were installed at the

bottom of the loading mechanism to minimize the friction between the surface of the

machine and the loading mechanism. The loading mechanism was connected to a

horizontal testing machine by a stationary and a movable fixture. Using the loading

mechanism, only the data in one diagonal direction, i.e., the x-direction in Fig. 3-2(a),

is tested because the biaxial test is the conversion from uniaxial displacement.

(a)

Movable fixture with load cell

Linear guide *

, Sta.tionary
V4 Specimen. fixture
{?’" 10mm
&= =
(b)
o S
I / “ rE
v

2mm

1.5mm

1.2mm

Fig. 3-2 (a) Details of the loading mechanism. (b) Unfolded and folded configurations of the PET

specimen, and details of the crease.

The horizontal test machine had a stroke of 800mm and a load cell of 300N with

an accuracy of 0.5%. In the experiment, the specimen was tensioned by a displacement
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of Axmax=23mm along the diagonal direction at a loading rate of 0.2mm/s to avoid
dynamic effects. The exact deformations of the square facet, as well as the portions of
the rectangular and trapezoidal ones that were not occluded by others, were captured
by the DIC system in Section 2.2. Three specimens were tested to obtain reliable results.

The test specimen was manufactured by PET sheets of thickness /=0.4mm (Fig.
3-2(b)). The geometric parameters were selected as a=/=16.25mm and a=30°. The
creases were cut as 1.2-mm-wide dotted lines with 2mm perforations at 1.5mm intervals
by a Trotec Speedy 300 laser cutter, and holes with 3.2mm in diameter were cut at the
vertices to mitigate stress concentration and fracture. Afterward, the perforated sheet
was folded by hand to the fully folded shape.

Ax/Ax = 0.08 AX/AX g = 0.2 AX/AX = 0.4

Fig. 3-3 Deformation process of the specimen.

3.3 Kinematic Analysis of Modified Type 1 Unit

Due to the successful work that the foldability of type 2 unit is converted by adding
crease on the central square facet, the same research method was used to analyze type
1 unit at the beginning of this chapter. The modified type 1 pattern with an addition
crease on the central square facet in Fig. 3-4(a) is similar to the type 2M pattern. Thus,
the type 1M unit can also be modeled by two spherical 4R linkages (Fig. 2-5) and two
spherical 5R linkages (Fig. 2-8). Because the 5-crease vertices in type 1M pattern (Fig.
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3-4(a)) are similar to that in type 2M pattern (Fig. 2-7(a)), the relationship between the
rotation variables ¢9ij and (9,11 (=1, 2,3,4, 5, and j=b, d) can be solved by Eq. (2-11)-
(2-13). Notice that the mountain-valley assignment of vertices A and C in type 1 and
1M patterns causes that €] and 6’Sj have opposite signs while &) and 6] have the
same (j=a, c). The relationship between the rotation variables <9ij and 49,11 (=1, 2, 3,

4, and j=a, c) solving by substituting Eq. (2-5) to Eq. (2-4) can be rewritten as

6, 2]
tan 2 COSa tan 2 —COSa
j - i 1 ] - “ H
tane—l 1-sina tane—z l+sina
j i (3-1)
tan 23 tan o
2 _ —Cosa 2 _ Ccosa
j - Qi 1 ] - - .
tanei l1-sina tane—“ l1+sina
That can be simplified as
o1 V2 N o .
tan ?2 = 152?:0{ tan 71 0, =6),0) =-0,. (3-2)

Since the dihedral angles are influenced by the mountain-valley assignment, a new
relationship between rotation variables 6’ij and dihedral angles (//ij (i=1,2,3,4,j=a,
c,and i=1, 2, 3,4, 5, j=b, d) of type 1M pattern is described as

O =n—y!.0) =r—y,.0) =y} -7,0] =7 -y, (3-3)
when j=a, ¢, and
O} =n—y! .0 =y —7m,0) =~y 0) =y -7, 0l =7~y (3-4)
when j=b, d. Substituting Eq. (3-3) to Eq. (3-2), the relationship between dihedral
angles of vertices A and C is obtained as follows.

i i
n!'//_z — COS-a tan!’//_l
2 l+sinea 2

where j=a, c. Substituting Eq. (3-4) into Eq. (2-11)-(2-13), the relationship between

ta

wi=vlyl=y/ (3-5)

dihedral angles of vertices B and D can be calculated by

i i
tn¥i - % (3-6)
G, T/
i i
tan V5 = Py (3-7)

2 . - \2 . -2
o +(pf ~ pJ - pd
cosy) = 2sin a~(— COSa - COSy,) +Cosa - Cosy —sina -siny) -siny/ )—1. (3-8)

where
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! =sina +cosa —sin a - cosy,! —cosa - cosy,
q; =siny3 (3-9a)
gl =sin“a- (sin2 v, +sin? y/;')+ 2sin a - cosa - (cosa,ulj —cosc//;')
p) = (cosw-sin wd -siny) +cos’ a -cosy] -cosy) —sina - cosa - cosy) —1)
+ (sin2 a-cosy) +sina - COSa)
) =sina-siny) -cosy) —sina-cosa -cosy) -siny] +sin’a-siny) (3-9b)
p) = (cosa-sin wd -siny) +cos’ a-cosy) -cosy) —sina - cosa - cosy) —1)

—(sin? & - cosyJ +sin a - coscr)

—— Mountain creases - - - Valley creases

(a)

(b)

Smm

Fig. 3-4 (a) The origami pattern, definition of creases and vertices, (b) unfolding and folding

configurations of modified type 1 (1M) unit.

Joining the four vertices together, the relationship of the dihedral angles ) on
the common creases can be expressed using the same equation as type 2M pattern, see

Eq. (2-23). And the compatibility condition to determine the rigid foldability of type
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IM pattern is also the same as that of type 2M pattern, see Eq. (2-24). Using the same

analysis approach as type 2M pattern, it can be concluded that the whole type 1M

system is of only one degree of freedom.

Substituting Eq. (3-5)-(3-9) and (2-23) into Eq. (2-24), two sets of kinematic

equations of the type 1M pattern can be obtained, which means there are two folding

paths for the pattern. The equations for path 1 are

a a
tan& zﬂtanvl_l
2 l+sina 2

vi =yl =ys =y =y =y,
Wi =ys =yl =yl =y =y,

d d
tan l//_4 — q—l’
2 gy +405
Ve p;

tan7: > '
d d d d
P> +\/(p2) — Py - Ps
cosyy = 2sin a-(— COSa - COSy; +COSa - Cosy¢ —sin o -sin /¢

we =yy,
v =y,
ve =ys,

and the equations of path 2 are

= —COS':CX tan l//_l
2 l1+sina 2

s =vi =v; =wi =yl =y,
Wi =ys =y =yl =y =y,

tanw—z—

d d
tanl//_“:%'
2 Q, _\/qs
23 p:

tan > ,
Pz +\Ps — P - Ps
d

cosyy =2sina- (— COSa - COSy, +CoSa - Cosy ¢ —sin a - sin

we =yy,
we =yy,
Vs =Vs,

where

g =sina +cosa —sina -cosy, —cosa -cosys

d H d
q; =siny;
d
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(3-10a)

(3-10b)
(3-10c)

(3-10d)
(3-10¢)

sinyd)-1, (3-10f)
(3-10g)
(3-10h)
(3-10i)

(3-11a)

(3-11b)
(3-11¢)

(3-11d)
(3-11e)
sinyd)-1, (3-116)
(3-11g)

(3-11h)
(3-11i)

: (3-12a)

qs =sin2a-(sin2://ld +sin?y )+ 23inoe~cosw~(cos://1d —cos;z/;‘)
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p = (005a~sin ws -siny +cos’ a-cosyy -cosy; —sina-cosa-cosy, —1)

+(sin? a-cosy? +sine-cosar)
ps =sina-sinyy -cosy; —sina-cosa-cosys -siny +sin’a-siny .(3-12b)
ps = (005a~sin ws -siny +cos’ a-cosyy -cosy; —sina-cosa-cosy, —1)

—(sin2 a-Ccosys +sina- COSa)

To illustrate the kinematic characteristics, two kinematic paths of the type 1M
pattern, which are exemplified by  and 1//;j , together with six representative
configurations on each path are shown in Fig. 3-5. The configurations (I II1 III: IV1 Vi
V1) represent the unfolding sequence on path 1; (I2 Il IIl2 IV2 V2 VI2) represent the
unfolding motion on path 2. Rectangular facets in the same colour (dark or light blue)
are parallel during motion. In each kinematic path, there are two pairs of parallel
rectangular facets. These paths only intersect at two points that correspond to fully
folded (Ii and I2) and fully deployed (VIi and VI2). Once the motion is underway, the
two kinematic paths cannot be switched.

Two phenomena should be noticed here. First, penetration of the facets occurs on
kinematic path 1 between . =0° (configuration 1) and . =74.46°
(configuration III1), i.e. w{ <0° as shown in Fig. 3-5. Second, crease da is switched
from the valley crease, where l//f <180°, to the mountain one, where 1,//4‘,j >180°, at
configuration IIIi, where (//1d =74.46° . Moreover, the critical condition for the two
phenomena that y =74.46° in Fig. 3-5 only holds when a=30°. The kinematic
curves in Fig. 3-6(c) and (d) indicate that both the facet penetration and switch between
valley and mountain creases rely on the geometric parameter o.

Notice that in Eq. (3-10)-(3-12), only five different variables are presented in the
type 1M unit. In Fig. 3-6, the curves of relationship between the four dependent
variables v3, v, vy, w¢ and the independent variable . are depicted, where
o 1s varied. The characteristics for l//;’ and 1//3d of type 1M unit in Fig. 3-6(a) and (b)
are similar to those of type 2M unit in Fig. 2-10(a) and (b). From w{ and ¢ in Fig.
3-6(c) and (d), the facet penetration and crease switch occur only when 0>23.4°. The
larger o is, the sooner the crease switch happens and the larger the range of motion is
where the penetration happens.

However, the kinematic analysis in this section cannot accurately describe the
motion of the type 1 unit, because the additional crease on the central square breaks the

four-fold rotational symmetry of this pattern in Fig. 3-1. Thus, a combination of
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experiments and finite element model is introduced to investigate the folding motion
and mechanical properties of the type 1 unit with retaining symmetric property, and to

build an empirical model of this structure.

——Kinematic path 1 - - =Kinematic path 2
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Fig. 3-5 Two different kinematic paths of the type 1M pattern expressed by  and we together

with six representative configurations on each path, where o=30°.

3.4 Finite Element Modeling

For the finite element analysis, a simplified definition of creases and vertices in
the type 1 pattern is presented in Fig. 3-7. The dihedral angles of the facets at crease i
are described by ¢: (i=1, 2, 3, ..., 12), and the vertices are defined as P; (j=1, 2, 3, ...,
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16). Due to the elastic spring back of the creases, the specimen was not completely flat
but had a natural dihedral angle formed by the square and trapezoidal facets ¢i0=19.58°
(=1, 4,7, 10), diagonal length Lpo=53.30mm, and height Apo=7.80mm.

o=10°  o=20° a=30° a=40°

Kinematic path 1
Kinematic path2 - — - -
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Fig. 3-6 Kinematic curves of the dihedral angles (a) 3, (b) w?,(c) y;,and(d) y¢ vs.

for kinematic paths 1 and 2 of the type 1M unit with varied a.

3.4.1 Finite Element Modeling

In addition to the experiment, a finite element model of type 1 square-twist origami
structure using Abaqus/Explicit was also developed, first of all, to obtain detailed

deformations of the facet portions that were occluded by other facets during tensioning,
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and secondly, to investigate the effects of design parameters on the mechanical
properties of the structure. As mentioned in Section 3.2, the non-rigid pattern satisfies
the compatibility condition only at the fully folded and fully deployed configurations,
where all the facets maintain the original flat shape. Then, for the type 1 specimen with
a natural dihedral angle, a major difficulty arises, i.e., how to rationally build its
geometry when the planar surface cannot be employed in all of the facets. Here the
adopted method was to keep the central square flat and use curved surfaces to replace
the rectangular and trapezoid facets. To investigate the influence of curved facets on the
mechanical properties of the structure, four different geometric construction schemes
were designed, replacing the trapezoidal facets with two planar triangles as shown in
Fig. 3-8(a), replacing the rectangular facets with curved surfaces as shown in Fig. 3-8(b),
replacing trapezoidal facets with curved surfaces as shown in Fig. 3-8(c), and replacing

trapezoidal facets with curved creases and curved surfaces as shown in Fig. 3-8(d).

—— Mountain creases - - - Valley creases
P P

Py

4

P16

Fig. 3-7 Definition of vertices and creases in type 1 pattern.

All the models have the same diagonal length and height as the physical specimen.
The model in Fig. 3-8(b) has curved rectangular facets bounded by four straight sides.
The geometric construction starts with the planar square and rectangular facets based
on the diagonal length and height. The loading point is also obtained after this.
Subsequently, the trapezoidal facet is introduced to connect with the side of the square

facet and the long side of the rectangular facet. Afterward, the planar rectangular facet
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is removed, and a curved one is defined by the two common sides with the trapezoidal
facets and the loading point. Finally, the curved surface of the rectangular facet is
generated by the boundary-surface method in Solidworks. For the model in Fig. 3-8(c)
which has curved trapezoidal facets bounded by four straight sides, the planar square
and rectangular facets are first placed based on the diagonal length and height, which
determine the two common sides between the rectangular and trapezoidal facets as well
as the one between the square and trapezoidal facets. Then, the fourth side of the
trapezoidal facet is a straight line between the two endpoints of the common sides with
the rectangular facet. Finally, the curved surface of the trapezoidal facet is again
generated by the boundary-surface method. For the model in Fig. 3-8(d), the planar
square and rectangular facets are placed in the same manner as the model in Fig. 3-8(c).
Then, the long common side of the trapezoidal and rectangular facets is cut by a line
parallel to the short common side, generating a new curved common side to replace the
original straight one. Subsequently, the fourth side of the trapezoidal facet is obtained
by connecting the endpoints of the curved side and the short common side with the
rectangular facet. Finally, the curved surface of the trapezoidal facet is created using
the boundary-surface method.

The numerical model had an identical natural configuration and facet thickness
with the physical specimen. The facets were modeled as thin shells with elastoplastic
properties obtained from tension experiments: Young’s modulus £=2216.78MPa and
yield stress oy=24.46MPa. The Poisson’s ratio, v, was set to be 0.39!'%*. And the density
of the material was 1.01g-cm™. The creases were modeled by revolute connection with
tie constraint. The torsional stiffness per unit length of the creases, kc=0.44N-rad™!, was
experimentally determined from a rigid type 3 square-twist structure that had identical
geometry and base material with the type 1 specimen. Multiple point constraint (MPC)
of a beam type as shown in Fig. 3-9(a) was applied to the four corners of the model to
achieve a biaxial loading. Each loading point had only one translational degree of
freedom in the x-z plane, i.e., the two points on the diagonal parallel to the x-axis moved
along the x-direction and the other two on the diagonal parallel to the z-axis moved
along the z-direction. The four-node quadrilateral shell elements with reduced
integration, S4R, were used to mesh the model. Self-contact with no friction was
established to simulate the contacts among different facets. Mesh convergence in Fig.

3-9(b) was carried out to determine the element size of Imm. The dynamic explicit
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solver was used for its capability of simulating the large deformation of origami
structure and complex contact conditions among the facets. An analysis time
convergence test was conducted, from which a loading rate of S0mm/s was found to

yield a quasi-static deformation process. No mass scaling was used in the simulation.

(a) (b) :
Jr_; Common Long co:mmon side

side

Planar Surface = Y
|

A
Y

Lpo

(c) (d)
: Common
Common || % side
sides
Short cofnmon “
side Curved common
. y i
yI Curved trapezoidal facet | Curved trapezoidal facet s
z X Z X

Fig. 3-8 Geometric model of type 1 square-twist structure constructed by (a) replacing the
trapezoidal facet with two intersected triangular planar surfaces, (b) replacing the rectangular
facets with curved surfaces, (c) replacing trapezoidal facets with curved surfaces, and (d) replacing

trapezoidal facets with curved creases and curved surfaces.

The normalized force versus normalized displacement curves of the four models
is shown in Fig. 3-10, from which a good agreement is observed. This indicates that the
behavior of the structure is not sensitive to the specific type of curved surfaces. The

tension simulation results showed that the four models generated nearly identical force
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versus displacement curves, implying that the behavior of the structure was not
sensitive to the specific type of curved surfaces in the geometric construction. Thus the

scheme in Fig. 3-8(a) was adopted in the subsequent simulation.

(a) (b)
Constraint type: Tie; Connection type: Revolute ---- Element size=1.5 --—Element size=1
MPC type: Beam —» Boundary condition - - Element size=0.75 —Element size=0.5
4 100 4
757
= |
> o 50
25t
0 . —— .
o 0 02 04 06 08 I
z l Ax/Ax max

Fig. 3-9 (a) Details of the constraint and boundary condition. (b) The normalized force, F/k,

against normalized displacement, Ax/Axmax, the convergence analysis results.

3.4.2 Validation of Finite Element Model

The experimentally reconstructed (colored points) and numerically obtained
(yellow surfaces) deformed square, rectangular, and trapezoidal facets are compared in
Fig. 3-11, Fig. 3-12, and Fig. 3-13 at normalized displacement Ax/Axmax=0.08, 0.2, 0.4,
0.6, and 0.8, respectively. For the reconstructed facets, the DIC test provides the
deformed configuration instead of the strain distribution because the large deformation
of the origami unit is unfavorable for the strain measurement of the DIC technique. In
addition, the missing trapezoid data at Ax/Axmax=0.08 and 0.8 is caused by the overlap
and reflection of the specimen. The difference between the experimental and numerical
surfaces is measured by the fitting error, which is defined as the closest line distance
between the experimental points and the numerical surfaces and calculated as a
minimized overall surface error through optimizing the 6-DoF rigid body displacement
of the experimental results with respect to the numerical ones!!#?. The magnitude of the
fitting error is represented by the color of the experimentally reconstructed points,

which ranges from -2¢ to 2¢ as shown in the color legend. Note /=0.4mm is the material
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thickness. Moreover, the pie graphs below the configurations show the fitting error
compared with half of the material thickness. The green and yellow areas indicate the
error is within 0.5¢ whereas the red and blue areas mean the error is beyond 0.5¢. The
diagrams indicate that the fitting error is within half of the material thickness in over
80% of the measured area, suggesting a good match between the experimental and
numerical results in the entire unfolding process. Therefore, the numerical model is

capable of capturing the main deformation feature of the structure.

100 i
a il'| ==+ Rectangular facets
| 'l i with curved surfaces
5000 i}t| - = - Trapezoidal facets
| ‘-1 i with two planar
o f 4 triangles
= 50t :’/ 1 s .
= I' | & || =-—- Trapezoidal facets
i\ ; with curved surfaces
25 I;' \ i Trapezoidal facets
| \ e with curved creases
0 i N ™ and curved surfaces
02 04 06 08 1
Ax'IAx max

Fig. 3-10 The normalized force, F/k., against normalized displacement, Ax/Axmax, of the four

models constructed by different methods.

Moreover, the numerical normalized energy, U/(ke/), normalized force, F/kc, and
normalized stiffness, K//kc, are drawn against normalized displacement, Ax/Axmax, of
type 1 square-twist structure together with the experimental ones as shown in Fig. 3-14.
The force is directly measured from experiments or exported from the numerical model.
Then, it is integrated and differentiated with respect to tension displacement to gain
energy and stiffness, respectively. The red shade for the experimental curves represents
the repeatability of three specimens. Again a reasonable agreement between numerical
and experimental curves is obtained. The small gap between the numerical and
experimental forces around configuration V was mainly caused by that the
displacement control setup in the experiments could not fully capture the sharply
changed force when the specimen quickly snapped open after passing the initial peak
force. Thus, it can be concluded that the numerical model can accurately capture the
mechanical behaviors of type 1 square-twist structure, which will later be used to unveil

the detailed deformation process in the subsequent section.
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Fig. 3-11 (a) Comparison between experimentally reconstructed and numerically obtained

deformed shapes and (b) errors (pie graphs) of the square facet. The normalized displacements of

the five representatives, Ax/Axmax, are: (i) 0.08 (initial peak force), (ii) 0.2, (iii) 0.4, (iv) 0.6, and
(v) 0.8.

(b) m(-0, -0.51) m(-0.5t,0) (0,0.5) m(0.5t,+o0)

.................................................................................................

' 37% '13.82%  6.12% :33.85%
P Sy : - =7
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Fig. 3-12 (a) Comparison between experimentally reconstructed and numerically obtained
deformed shapes and (b) errors (pie graphs) of the rectangular facet. The normalized
displacements of the five representatives, Ax/Axmax, are: (i) 0.08 (initial peak force), (ii) 0.2, (iii)
0.4, (iv) 0.6, and (v) 0.8.

3.5 Deformation Process of Type 1 unit

To demonstrate the deformation process of the origami structure, six key points
are selected and marked with I to VI based on the numerical energy, force, and stiffness
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curves in Fig. 3-14, where I and VI represent the initial and final configurations, II is
the maximum stiffness, III and V are the initial peak and valley forces, and I'V describes
a transition point in the energy curve. The configurations of the structure corresponding
to the six points are presented in front and side views in Fig. 3-15. Moreover, the
normalized height, Hp/Hpo, and the dihedral angles, ¢: (i=1, 2, 3, ..., 12), of the structure,
are respectively shown in Fig. 3-16(a) and (b). And the total energy of the facets and
that of the creases are drawn in Fig. 3-16(c). In the calculation of crease energy, a
narrow strip of 0.6mm on each side of the crease is included so that the width is 1.2mm
which is equal to that of the physical specimen. Apart from the global behavior of the
structure, the diagonal lengths, energies, as well as the von Mises stress and equivalent
plastic strain (PEEQ) contours of the local square, rectangular, and trapezoidal facets

are presented in Fig. 3-17 and Fig. 3-18 to depict their deformation evolution in detail.

(a) 2t [ T 2t
(i) (i) «(iii) (iv) )
T m(-0, 050 ®(-0540) (0,0.5) mOSt+e)
(i) I(i(i))lz/ 0.129% (i) 0.080 V) . H(v)
: o o 1 27.29% = 145.77% 0.11%
_W/ N
59.18% [ \72.63% \54.12%

__________________________________________________________________________________________________

Fig. 3-13 (a) Comparison between experimentally reconstructed and numerically obtained
deformed shapes and (b) errors (pie graphs) of trapezoidal facet. The normalized displacements of
the five representatives, Ax/Axmax, are: (1) 0.08 (initial peak force), (ii) 0.2, (iii) 0.4, (iv) 0.6, and
(v) 0.8.

It can be seen from Fig. 3-16(a) that during the unfolding process, while the
diagonal length monotonically increases, the structure height first slightly drops, and
then rises quickly followed by another slow drop. Consequently, the deformation
process of the structure can be divided into three stages: a tightening stage

(configurations I-II), an unlocking stage (configurations II-V), and a flattening stage
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(configurations V-VI). First, consider the tightening stage. During this stage, the
initially tilted rectangular facets tend to be horizontal, leading to a more compact
structure with a slightly reduced height. Theoretically, the fully folded configuration of
the structure should have a zero height and a diagonal length of 54.37mm. Due to the
natural dihedral angle, nevertheless, the numerical model has a larger height of 7.80mm
combined with a smaller diagonal length of 53.30mm. As a result, when stretched, the
structure tends to approach its fully folded configuration, although is not able to
completely reach that. At configuration II, the structure reaches its smallest height, or
the most locked form that can be achieved for the selected material and loading
condition. This explains why the maximum stiffness appears here. Both facet

distortions and crease rotations are small at this stage.

------ Experiment — FEM
@ 4 ‘ : : : ®) 100 . ‘ - :
Vie 11T VI
30t 7515 1
> | < |F
S 20t e =~ 50 e
I\ |
Ay V
10t f ] 251
I V™.
oed 1l , , , 0dl WV, , ‘
0 02 04 06 08 1 0 02 04 06 08 1
Ax/Ax max Ax/Ax max
(©) 1400

-700 : ‘ : -
0 02 04 06 08 1
Ax/Ax max
Fig. 3-14 Experimental and numerical normalized (a) energy, U/(k.l), (b) force, F/k., and (c)

stiftness, Kl/k., of the type 1 structure against normalized displacement, Ax/Axmax.
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Fig. 3-15 Six typical configurations of the structure in the front and side views.

T

Upon further tension, the structure starts to open up, entering the unlocking stage
between configurations II and V. As can be seen in Fig. 3-15, the rectangular and
trapezoidal facets gradually tilt at this stage, thereby raising the central square and the
height of the structure. From configuration II to III, the crease rotations are found to be
non-synchronized, i.e., the dihedral angles formed along the long sides of the
rectangular facets, ¢: (i=3, 6, 9, 12), are almost unchanged whereas all the others
increase monotonically, see Fig. 3-16(b). To accommodate this non-synchronization,
the facets are further distorted to maintain the internal connectivity of the structure.
Specifically, the square facet is squeezed by the neighboring facets and bulges out-of-
plane to form a dome-like shape, which is manifested by the shrinkage in diagonal
length in Fig. 3-17(a). The corner areas undergo the largest deformation and develop
plasticity shown in the PEEQ contour Fig. 3-18(a). Meanwhile, the rectangular and
trapezoidal facets are also minorly compressed along the diagonal lengths as shown in
Fig. 3-17(c) and (e), but remain elastic in most of the area. The large facet distortions
lead to a sharp rise in the reaction force, which reaches its initial peak force at
configuration III. From configuration III to IV, creases 3, 6, 9, 12 start to open up along
with the others, which in turn mitigate the required facet distortions. As a result, the

deformation of the facets continues to develop, but at a gradually reduced rate, which
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can be concluded by comparing the energy curves of the three facets between II-II1 and
HI-IV in Fig. 3-17(b), (d) and (f). This leads to a reduced reaction force and
consequently a negative stiffness. When the unit passes configuration III, large plastic
regions start to appear in the three types of facets, especially the rectangular one, see
the PEEQ contours in Fig. 3-18. This is echoed in the plastic energy of the facets in Fig.
3-17(b), (d), and (). The development of plasticity slowers the energy development of
the structure, leading to the transition point IV on the energy curve in Fig. 3-14(a).
Further stretching the structure to configuration V, the diagonal length of the rectangular
facet reaches its minimum, indicating that it reaches its most distorted, also most tilted
shape. This marks the closure of the unlocking stage, characterized by the largest

structure height.

(a) 3 : : : : ®) 160
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4
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Fig. 3-16 (a) Numerical normalized height, Hp/Hpo, (b) dihedral angles, ¢; (i=1, 2, ..., 12), and (c)

facet and crease energies of the structure versus normalized displacement, Ax/Axmax.
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Fig. 3-17 Illustration of the deformed square, rectangular, and trapezoidal facets. (a and b)
Normalized diagonal length and energy of the square facet, Ls/Lso and Us/(k./), (c and d) that of
the rectangular facet, Lr/Lro and Ur/(kc/), and (e and f) that of the trapezoidal facet, L1/Lto and

Ur/(kcl) versus normalized displacement, Ax/Axmax.

After configuration V, the structure enters the final flattening stage. At this stage,

the tilted rectangular and trapezoidal facets rotate along the crease to level again, which
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causes a further unfolding of the structure accompanied by a reduction in height. The
energy curves in Fig. 3-18 indicate that all the facets tend to recover by partially
releasing their elastic energy. The rectangular facet which is mostly deformed releases
more than half of its elastic energy, whereas its plastic energy keeps steady. All the
creases, on the other hand, continuously open up till the end as shown in Fig. 3-16(b),
resulting in a roughly linearly increasing crease energy curve in Fig. 3-16(c). Since the
reaction force is mainly used to overcome the stiffness of the creases, a relatively low
force in comparison with the previous two stages is generated until when the structure
is nearly flat at the end.
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Fig. 3-18 The Mises stress and PEEQ contours of the (a) square, (b) rectangular, and (c)

trapezoidal facets.
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Overall, the total crease energy in Fig. 3-16(c) tends to increase approximately
during tension, whereas the total facet energy shows a local peak associated with the
unlocking process. Moreover, the crease energy is much larger than the facet energy in
the end. This result indicates that facet deformation is mainly responsible for the high

initial peak, while crease rotation is still the main source of structure energy absorption.

3.6 Empirical Model of Type 1 unit

From the viewpoint of programmability, it is crucial to develop a mathematical
model to predict the mechanical properties of type 1 square-twist structure. However,
it has been shown in Section 3.5 that very complicated deformation modes are generated
on the facets of the structure during the unfolding process. As a result, it is difficult to
build an elegant theoretical model for the structure by previous methods such as adding
virtual creases to create an equivalent rigid structure. Instead, an empirical model is
developed based on the numerical results to provide a practical prediction approach.
Here, three key mechanical properties are focused on, i.e. the energy at the end of
deformation corresponding to configuration VI, initial peak force corresponding to
configuration III, and maximum stiffness corresponding to configuration II in Fig. 3-14.

I start by analyzing the energy of the structure which is the summation of the total
crease energy and the total facet energy. The energy of a crease is dependent on its
length, torsional stiffness per unit length, as well as the amount of rotation. As a result,

the total crease energy is assumed to be in the form of
12
Uc =Z:uci 'kci 'Lci ’ f0|(¢) (3-13)
i=1

where wuci, kei, Lei, and fei(@) are respectively a constant energy coefficient, torsional
stiffness per unit length, crease length, and rotation function with a variable ¢. The
crease deformed behavior of the type 1 unit is the same as that of the type 2 unit, which
implies the relationship between the moment and rotation angle is described by a
nonlinear elastic model with two stages. Thus, when the crease deformation is within
the first-stage nonlinear elastic response, the rotation function is expressed as
f.(@)oc(p—g, ) . And the second-stage nonlinear deformation causes the expression
to be revised as  f ((p)oc A(py2 +Ap, -((pi —@i0 — A, ), where Agy is the angle at the
end of the first stage of the nonlinear relationship. Since the type 1 square twist structure

has a four-fold rotational symmetry and all the creases have identical stiffness, all the
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12 creases fall into three groups with length / represented by ¢: (i=1, 4, 7, 10), a
represented by @i (i=2, 5, 8, 11), and /-cosa+a represented by ¢: (i=3, 6,9, 12). Thus Eq.
(3-13) can be rewritten as

U, =4k [u, -1 f (p)+u,-a-f,(p)+uy-(I-cosa+a) fe) (3-14)

Notice that there are three deformation functions in the equation because the three
groups of creases do not open up at the same rate, which can be seen in Fig. 3-16(b).

Similar to Eq. (3-13), the energy of facet deformation can be given by

U, =u -k - L - f, () (3-15)

where ur and kr are the energy coefficients and bending stiffness of facet, while Lr and

fi(p) are the length and function of facet deformation. The parameter Lr relies on the

deformed area of the facet, St, which can be expressed as L, o« S;/I. Thus, Eq. (3-15)

can be rewritten as
S 1
U, :uf'kf'Tf'ff(qD):uf'kf'T'Sf'ff(q)) (3-16)

It has been shown from the numerical simulation that both elastic and plastic regions
could develop in the facets during loading. The plastic regions exist because the large
deformation of the structure leads to the material of the facet reaching the yield point.
Therefore, the deformed area of facet, St, consists of the plastic region, Sp, and the
elastic one, Se. The plastic regions of the square, rectangular, and trapezoidal facets,

which depend on the geometric and material parameters, are first assumed as follows

k
Ss_p=;/Sl~|2'tan05+7/52~a2+7/53~|2~k—C (3-17)
f
Sk :le-Iz-tana+;/R2 -a2+;/R3-I2-% (3-18)
f
k
ST-p=7/T1'|2'ta-r]a"'J/Tz'a-z+7/T3'|2'k_C (3-19)
f

in which yy, 7, 73 (=S, R, T) are constant coefficients. Then the elastic regions

of the three types of facets are

k
Ss-e:|2_751'|2'tana_7/sz'az_yss'lz'k_c (3-20)
f
2 2 2 kc
Sp.=a-(1-cosa+a)—yg, 12 -tana —yg, -8 — ygs -1 by (3-21)
f
. Kk
ST_e=I-sma-(l-c05a+2a)—;/T1-I2-tana—yTz-az—7T3-I2-k—° (3-22)
f
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With the plastic and elastic regions, the total facet energy is assumed to be calculated

by the following equation

1 Ke
Uf:us-e'kf'I'[I2_751'|2'tan05_752'a2_753'|2'k_j'fs-e((p)
f
rug, ko 12 tan a4 g -a? 4 gy 17 X | ()
sp’ f‘l" Vsl - ETVs Vs3 K s-p\P
f
+4u kla(lcos ) 12 -t 2y a2 ke (o)
Ree e @l ata)=yp -l lANa =Yg, @8 —Ygrs- Tl R-e \P
f
1 2 2 2 ke
+A'UFz-p‘kf‘I" Yro 17 t@Na@+yg, @ +ypq | k_ ‘fR-p((p)
f
. I-sine-(1-cosa+2a)—y,, 1% tana -y, -a>
+4uT-e'kf'|_' Iz kc 'fT-e((o)
~ 7Vt k_
f

—

kC
+ 4, ke oo yn-lP@ana+yg,-a’ +y,-l? k_j fT—p((”)

(3-23)
where us., ur, ut; (j=e, p) are the elastic and plastic energy coefficients of the square,
rectangular, and trapezoidal facets, respectively. And fs.i(¢), frRi(@), fri(p) (j=e, p) are
the deformation functions of elastic and plastic energy, respectively. Here, fie(¢) (i=S,
R, T) is related to dihedral angle, ¢, and natural dihedral angle, go, while the fi-p(¢) (i=S,
R, T) is affected by yield angle, Agp, besides parameters ¢ and go.

Then, since the force and stiffness equations rely on the displacement parameter,
a calculation is established to describe the diagonal length of the structure in the loading
direction. The length is assumed to be related to the side lengths and crease rotations
through the following equation.

D, =2[d, -I-sina- f,(p)+d,-a- f,(p)+d,-(I-cosa+a)- fu(p)].  (3-24)
where di, d2, and ds are length coefficients, fa1(p), fa2(¢), and fi3(¢) are deformation
functions of creases 1, 2, and 3, respectively. Notice that the rotation of crease 2 does
not affect the diagonal length, and therefore fax(¢)=1, and then Eq. (3-24) can be
simplified to

D, =~/2[d,-1-sina- f(p)+d,-a+d,-(I-cosa+a)- f4(p)]. (3-25)
Here, the function, fii(p) (i=1, 2, 3), is expressed as  f; (go) oc COSQ .
With all the above equations, the energy, force, and stiffness of the structure can

be obtained as
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K,-(d,-1-sina- f,(p)+d,-(1-cosa +a)- £5(p))
—K,-(d;-1-sina- f2(p)+d;-(1-cosa +a)- f(p))

dD, /dg [d,-1-sina- ) (p)+d,-(I-cosa+a)- f(p)f (3-28)

. 1 k) .o
K, =Ug, -k 'I_'[IZ _7/51'|2 tana -y, -a’ _733'|2 k_J fs-e(¢7)
f

l kC "
+Ug, Ky 'I_'(stlz'tana"'?/sz -a2+7/s3-|2-k—]- fS—p(?)

f

k
+4uR_e-kf-%-[a-(l-005a+a)—ym-|2-tana—sz-az—ym-lz-k—“]fF;'_e((p)
f
1 kC 14
+4uR-p'kf'T‘(7/R1'|2'tana+7R2'a2+7R3‘|2'k_]'fR-p((”)
f
. 1-sina-(I-cosa +2a)—y, 1% -tan
+4uT—e'kf'_' 2 2 kc f%,e((”)
e - Miad SVl Rl
L Ky
1 Ko | <0
+4uT-p'kf'|_' 7T1'|2'tana"'?’Tz'az"'?/Ts'lz'k_]'fT—p((ﬂ)

f

+ 4ucl ’ kc a- fcli((p)+ 4u02 ’ kc ’ I ’ fc’;(q))—l— 4uc3 ’ kc ’ (I COSa + a)' fc’é(q))
(3-29)

k
'[|2_751'|2'tana_7sz 'az_Vss'Iz'k_cj' fs’-e(go)
f

K, ,
+Ug, Ky - '(731"2 lana +yg -a2+]/53-|2 k_j fs-p(@)

f

+4u,, -k, -%-{a-(l-005a+a)—yR1-I2-tana—yR2 -az—yR3-I2-E—°] fe ()

f

1 K, ,
+4uR-p'kf'I_’[VRl'IZ'tana"‘?’Rz'a2+7R3'|2'k_j'fR—p(CD)
f
. 1-sina-(I-cosa +2a)-y,, 1> -tana
+ AU, K - 2 2 ke f'lfe((o)
e il S PRl R
L Ki
1 kc ’
+4uT-p'kf'i' 7/T1'|2'tana+7/T2'az+7/T3'|2'k_j'fT-p((p)
f

+ 4ucl : kc a- fc'l(q))+ 4u02 ’ kc 1 fc!2(¢)+ 4u03 ’ kc ’ (I ‘COSa + a)' fc,:%(g))
(3-30)

87



Doctoral Dissertation of Tianjin University

Assuming the variable ¢ corresponding to the energy at the end of loading, initial

peak force, and maximum stiffness is gu, ¢r, and gk, respectively, the three properties

can be calculated from Eq. (3-26)-(3-30),

k
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where

1
K, =u,, -k ~I~I2+uK2'kf- -a-(I-cosa +a)

-

+uK3-kf-%-I~sina~(|-cosa+2a) (3-34)
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+ Uy - K, -%-I-sina-(l-cos(x+2a) (3-35)
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diy =d;- fi(p),  dis=d5- T4(0), -

Notice that in Eq. (3-33) for the maximum stiffness, the terms associated with the
plastic regions are ignored because the PEEQ contours in Fig. 3-18 indicate that all the
facets remain elastic at configuration II where the maximum stiffness is achieved.

To determine the unknown coefficients in Eq. (3-31)-(3-35), a series of 20
numerical models with varying side length, a, twist angle, a, and crease torsional
stiffness, ke, as listed in Table 3-1 were built and analyzed. The side length, /, was fixed
to 16.25mm for all the models, and the sheet thickness and material parameters were
the same as that in Section 3.2. Based on the results also listed in Table 3-1, the

coefficients can be obtained as follows using the nonlinear regression.
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Table 3-1 Geometric and material parameters of the numerical models and results.

Model a[mm] a[deg] ke[Nrtad']l  Axmex [mm]  Ulke])  Fmawlke — Kmaxllke
1 16.25 30 0.68x1072 23.00 202.18  4643.79  64760.59
2 16.25 30 0.43x10°! 23.00 69.57 750.27 10422.74
3 16.25 30 0.85x10"! 23.00 51.16 378.97 525242
4 16.25 30 0.11 23.00 46.80 285.42 3951.94
5 16.25 30 0.17 23.00 41.60 192.87 2653.91
6 16.25 30 0.34 23.00 32.07 98.62 1330.74
7 16.25 30 0.51 23.00 27.26 67.15 899.22
8 16.25 30 0.68 23.00 23.85 51.15 679.44
9 8.13 30 0.44 22.39 23.04 53.46 995.56
10 12.19 30 0.44 22.70 26.08 66.20 1011.09
11 16.25 30 0.44 23.00 28.77 77.57 1050.77
12 24.38 30 0.44 23.63 36.52 99.98 1223.23
13 32.50 30 0.44 24.25 46.34 115.33 1300.21
14 48.75 30 0.44 25.49 63.86 142.80 1614.16
15 65.00 30 0.44 26.73 72.17 145.37 1631.23
16 16.25 20 0.44 15.70 24.76 22.41 249.98
17 16.25 25 0.44 19.46 27.04 41.76 544.72
18 16.25 35 0.44 26.20 34.72 137.75 2063.27
19 16.25 40 0.44 29.51 50.45 201.23 3398.61
20 16.25 45 0.44 32.45 68.27 267.75 5055.34

Uy, =—21.35,u,, =1.35x10%,u, = 4.88,u,, = —409.96, U, = —9.05,
Uy = 271.38,u,, = 6.73,u,, =5.57x107*,u,, = 8.54,
7q =0.32, 75 =0.06x107*, 5, =0.19, (3-39)

Ve =0.42%1075, 7, =9.26x10°2, 7y =0.84x107,

¥r,=0.18, 7, =0.81x107, y;, = 0.12;
Ug, = —50.61, U, = 294.82, U, = 6.73, U, = 313.16, U, = 33.43, U, = 225.41,
Ug, = 7.60,Ug =8.74x107%, Uy =2.02x107%,d,, =-1.52,d,, = 0.90,

7q =0.33x107, 5, =0.65x107%, », =0.63x107?,
Yeo =0.65%x107, 7o, =0.42x107%, 7, = 0.11x107°,
711 =0.83x107, y;, =0.81x107%, ;5 = 0.41x107;
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Uy, = —165.75,u,, = 79.86, u,, = 44.80,u,, = 9.67,U,, =5.72x10™*,
U =1.19,u,, = -59.66, u,, = —63.14,u,, = 407.88,U,,, =0.16 x10™, (3-41)
U, =451 U, =2.04x107°,d,, =-0.11,d,, =0.25,d/, =-0.56,d/, = 0.11.
Substituting Eq. (3-39)-(3-41) to Eq. (3-31)-(3-35), the energy, initial peak force,
and maximum stiffness of the structure can be obtained.
In addition, the deformation process of the numerical model with kt/k.=1 is studied.
The parameter implies that the stiffness of the creases is identical to that of the facets,
which is different from the ordinary origami structures with weakened creases. The
numerical results in Fig. 3-19(a) and (b) show that the structure still follows the same
three-stage process. And comparing with Fig. 3-18, the Mises stress and PEEQ contours
in Fig. 3-19(c) and (d) indicate that the plastically deformed regions increase with the

crease stiffness. Thus the empirical model applies.

(a) Tightening, Unlocking,  Flattening (b) o " v
80 g : 1200 g
60
600
< 3
=40 :
0
20

—_
o
—

+2.45e+01
+1.84¢e+01
+1.22e+01
+6.12e+00
+0.00e+00

Mises stress

(d

+1.00e-02
+7.50e-03
+5.00e-03
+2.50e-03
+0.00e+00

Fig. 3-19 (a) Normalized force, F/k., and (b) normalized stiffness, K//k., versus normalized
displacement, Ax/Axmax, of the numerical model with k¢/k=1. (c) The Mises stress and (d) PEEQ

contours of the numerical model with k¢/k=1.
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3.7 Programmability and Prediction of Mechanical Properties

3.7.1 Programmable Properties

The predicted curves of normalized energy, initial peak force, and maximum
stiffness of the structure based on the empirical equations (3-31)-(3-35) are respectively
drawn in Fig. 3-20, Fig. 3-21, and Fig. 3-22 together with the numerical results (black
triangles) and experimental results (red circles) in Section 3.2, from which a good match

is obtained for all the three properties.

A FEM results — Prediction curve O Exp results (k¢/k.=1.59, a/l=1, ¢=30")
(a) (b)

10°

10° 10! 102 10° 10! 102
kelk, kelk
(c)

10° 10! 102
kelk

Fig. 3-20 Predicted (a) normalized energy, U/(k./), (b) initial peak force, Fmax/kc, and (¢) maximum
stiffness Kmax//kc, of type 1 square-twist structure with normalized crease stiffness ki/k. from 1 to

110. The experimental and numerical results are also shown in the figure.
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A FEM results — Prediction curve O Exp results (kp/k.=1.59, a/l=1, a=30")
@ 100 ‘ : ®) 200
80t
150 +
= 60 t Su
= % 100 |
> 40l o
4
204 50
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1 2 3 4 1 2 3 B
all all

500
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Fig. 3-21 Predicted (a) normalized energy, U/(k./), (b) initial peak force, Fmax/kc, and (¢) maximum
stiffness Kmax!/ke, of type 1 square-twist structure with side length ratio a// from 0.5 to 4. The

experimental and numerical results are also shown in the figure.

The empirical equations enable us to program the mechanical properties of the
structure based on material and geometric parameters. Figure 3-20 shows the results
with fixed geometric parameters a//=1 and a=30°, and varying ratio of facet bending
stiffness to crease rotational stiffness kt/kc, in which 4t is experimentally determined to
be 0.70N-rad! based on the method in Chapter 2. It can be seen that when ki/kc is
relatively small, the energy increases at a low rate with kf/kc, which implies that the
contribution from crease rotations is dominant in the energy of the structure. As kf/kc
becomes larger, the role played by facet distortions is more prominent, and consequently,

the energy rises at a higher rate. The initial peak force and maximum stiffness, on the
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other hand, increase nearly linearly with k#/kc in the entire range, indicating that these

two properties are dominated by the facets of the structure.

A FEM results — Prediction curve O Exp results (k;/k.=1.59, a/l=1, a=30")
@ g : : . : ®) 300
A
200
3‘\)
z
Lx.,E
100
0 : - : : 0 - : : :
20 25 30 35 40 45 20 25 30 35 40 45
o (deg) a (deg)
©) 6000
N
4000
S‘o
g
B
2000
Ol
20 25 30 35 40 45
o (deg)

Fig. 3-22 Predicted normalized (a) energy, U/(k.l), (b) initial peak force, Fmax/kc, and (¢) maximum
stiffness Kmax//ke, of the type 1 square-twist structure with twist angle a from 20° to 45°. The

experimental and numerical results are also shown in the figure.

Furthermore, if normalized crease stiffness kt/kc=1.59 and twist angle a=30° are
kept, while side length ratio a// is varied from 0.5 to 4, it can be found from Fig. 3-21
that the energy, initial peak force, and maximum stiffness increase with a// since it
enlarges the rectangular and trapezoidal facets while keeping the size of the square
constant. Finally, the results of the models with identical k#/kc=1.59 and a/l=1, and

different twist angle o ranging from 20° to 45°, are shown in Fig. 3-22. Increasing a
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raises all three mechanical properties especially the maximum stiffness since a larger
twist angle leads to a more twisted and consequently stiffer structure. When a is less
than 20°, the structure behaves like a rigid origami structure with no obvious initial
peak force but a long plateau force as in the case of the type 3 origami structurel®®!.

To further validate the accuracy of the empirical equations, another structure with
a=24.375mm, /=16.25mm, a=35°, and k=0.24N-rad”! was fabricated and tested
following the same procedure in Section 2. The experimentally obtained energy, initial
peak force, and maximum stiffness were 234.93J, 43.77N, and 44.11N-mm™!, whereas
the predicted values were 202.57J, 54.02N, and 43.73N-mm™'. The experimental and
predicted normalized mechanical responses are shown in Fig. 3-23, where the
predictions are very close to the corresponding experimental results. Thus, it can be
safely concluded that the empirical equations developed here are capable of predicting

the mechanical properties of type 1 square-twist structure.

o Experiment v Preditcion |

3500

2800 ¢ §
2100
1400

700 ¢

. ] .
Ultk D) Fax ke Kpaxllke

Fig. 3-23 Experimental and predicted normalized energy, U/(k./), initial peak force, Fmax/kc, and

maximum stiffness Kmax//kc, of the validated model with k¢/k:=2.92, a/I=1.5, and a=35°.

3.7.2 Predicted Properties

The prediction of mechanical properties of type 1 metasheet by the empirical
model of the corresponding unit is presented in this section. A 2x2 tessellation of the
type 1 unit (Fig. 3-24(a)) was designed, manufactured using the same material and
technique for the type 1 unit as mentioned in Section 3.2, and tested to demonstrate the

feasibility of the proposed design approach. Therefore, the same torsional stiffness for
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the original and virtual creases was also utilized to calculate the predicted energy, initial
peak force, and maximum stiffness. Here, the same geometric parameters as the
experimental specimen in Section 3.2 were chosen for the tessellation so that the
prediction results of tessellation can be calculated by the prediction of a unit in Fig.
3-22. The predicted energy, initial peak force, and maximum stiffness calculated from

Eq. (3-31)-(3-35) are drawn together with the experimental results in Fig. 3-24(c).

—— Mountain creases - - - Valley creases

(b) -

(© ; R
o Experiment v Preditcion |
1200
v
900 ¢ o
600 t
300 ¢
o
v b4
Ultk D) Foax ke  Kmax!k

Fig. 3-24 (a) Pattern, (b) experimental system, (c¢) predicted normalized energy, U/(kc/), initial
peak force, Fiax/ke, and maximum stiffness Kmaxl/kc, of the 22 type 1 metasheet (ki/k~1.59,

a/lI=1, and 0=30°). The experimental results are also shown in the figure.

As shown in Fig. 3-24(b), the loading system, as well as the connection between
specimen and fixtures of the 2x2 tessellation, are identical to those of the unit, which
implies that each unit in the tessellation structure is controlled by one fixture and two
neighbour units. Then, the units can be considered as nonlinear springs and the

metasheet as an assembly of springs connected in series and parallel. Thus, the
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predicted energy of the metasheet is calculated by the total energy of four units, i.e.
U2«2=4U. The predicted initial peak force and maximum stiffness of the metasheet are
obtained by adding up those of the units and then dividing them by 2 and 22, i.e. Fax-
max=2Fmax and K2-2-max=Kmax. Again the predictions are very close to the corresponding
experimental results, see Fig. 3-24(c). Notice that the difference between experimental
and predicted stiffness exists in the 2x2 metasheet. To explain this phenomenon, a
characteristic of the type 1 structure is proposed that the maximum stiffness happens in
the tightening stage of the unfolded process (see Section 3.5 and Section 3.6). The
deformation of tightening status performs differently between a single unit and a 2x2
metasheet because the fixture is identical on the four corners of a single unit but the
unit in a 2x2 metasheet has only one corner supported by the fixture while three corners
supported by the other units. Therefore, the different deformation of the structures leads
to an error between the experimental and predicted results of the 2x2 type 1 metasheet.
In general, the results in Fig. 3-24 indicate that the empirical equations can be used in
predicting the mechanical properties of the square-twist metasheet.

The three validated models in Section 3.7 have different material parameters
(kt/ke=1.59, 2.92), various geometric parameters (a//=1, 1.5 and a=30°, 35°), and
diverse numbers of units (single unit, 2x2 metasheet). But all of them show a reasonably
good match between predicted and experimental results. Thus, the conclusion can be
presented that the predicted method proposed in this work is available for type 1 units

with arbitrary parameters.

3.8 Conclusions

To conclude this chapter, the deformation characteristics and mechanical
properties of a rotationally symmetric square-twist origami structure, referred to as the
type 1 square-twist structure, have been analyzed experimentally and numerically. This
work unveiled the three-stage deformation process of the structure, including the
tightening stage, unlocking stage, and flattening stage, and analyzed the evolution of
facet distortions together with the key features in the energy, force, and stiffness curves
in detail. This result thus enables an exact understanding of the deformation and
mechanics of the structure, which cannot be achieved by the previous facet triangulation

approaches!®> 14 1601 due to that they can only capture facets bending, or equivalent
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compliant mechanism method!"** because it ignores the facet distortions. Based on the
deformation analysis of the structure, a series of empirical equations have been for the
first time established to quantitively correlate the geometric parameters and base
materials with the energy, initial peak force, and maximum stiffness of the structure,
which are validated by quasi-static tension experiments. The empirical model offers an
approach to accurately programming the mechanical properties of the non-rigid origami
structure as well as guidance for its applications in various engineering fields.

Only the mechanical properties of an individual square-twist structure have been
investigated in this paper. When forming metamaterials, how those properties will be
related to the bulk materials warrants further research. Next, I will study the design
principle and property programmability of mechanical metamaterials composed of a
single type of square-twist structure or a mixture of them, aiming to develop a series of
origami-inspired metamaterials with a wide bandwidth of programmability and
tunability.
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Chapter 4 Metasheets Built with a Mixture of Rigid and

Non-rigid Square-twist Units

4.1 Introduction

The reported metamaterial designs are usually formed by periodic tessellation of
a single type of either rigid or non-rigid pattern and thus are not able to cover the wide
range of mechanical properties provided by a possible mixture of rigid and non-rigid
patterns. Here, a potential design approach that combines rigid and non-rigid origami
units in a single metamaterial is proposed to overcome such a problem. By varying the
proportion of each type of unit, the mechanical properties can be tuned between the
upper limit posed by the non-rigid pattern and the lower limit set by the rigid one. It
should be noted that incorporating origami units of different types is in general not a
trivial task because they commonly have different crease numbers and mountain-valley
assignments and may not match each other. In this chapter, I take advantage of this
unique feature of origami and propose a new kind of metasheets based on the square-
twist pattern, see Fig. 4-1(a). Previous work!!*] indicated that there are four possible
assignments of mountain and valley creases as shown in Fig. 4-1(b-d), leading to two
non-rigid units named types 1 and 2, and two rigid ones denoted types 3 and 4. Each
square-twist unit has distinct folding behavior and mechanical properties, which have
been thoroughly studied at the unit level in Chapter 2 and 3. In this Chapter, combining
these different units in a single metasheet is proposed, aiming for programming its
mechanical properties in terms of energy, load bearing capability, and stiffness within
an elevated landscape by varying the type and proportion of different patterns.

The outline of this chapter is as follows. The tessellation rule of the metasheets
composed of different types of units with different geometric parameters is set up in
Section 4.2. In section 4.3, a series of metasheets are designed and fabricated, and quasi-
static tension experiments are conducted to obtain the deformation process and force
versus displacement response. The experimental results of different types of metasheet
and varied boundary conditions are also presented and discussed in this section. In

Section 4.4, the relationship between the global mechanical properties of the metasheets
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and the constitutional unit behaviors, and the property programming strategy are also
studied. Finally, the conclusion is given in Section 4.5, which summarizes the main

findings in this Chapter.

(a)

Mountain crease - ---Valley crease
(b) Type 1 (non-rigid) (©) Type 2 (non-rigid)

(e) Type 4 (rigid)

Fig. 4-1 (a) Pattern of a 4x4 metasheet tessellated by square-twist units. Crease mountain-valley
assignments of (b) type 1, (c) type 2, (d) type 3, and (e) type 4 square-twist origami units and their
folded configurations. (Scale bar: Smm) The mountain and valley creases are described by solid

and dashed lines, respectively.

4.2 Tessellation Rule

4.2.1 Compatible Mountain-valley Assignment

To build the tessellation rule of the metasheets based on the square-twist units, first

consider tessellating units with identical geometric parameters, i.e., side lengths / and
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a, and twist angle a as shown in Fig. 4-1(b). Here only three types of units, the non-
rigid types 1 and 2 and the rigid type 3, are included in the tessellation. The rigid type
4 unit is excluded since it has a similar mechanical response to type 3. When building
the tessellation, the three types of units can either be in the form as shown in Fig. 4-1(b-
d) or their flip-overs, i.e., units with reversed mountain-valley crease assignments. Note
that the flip-overs of type 2 and 3 units are equivalent rotating each of them by 90° and
180°, respectively, whereas the reversed type 1 is not. Hence, the reversed type 1 unit,
denoted as type 1R, is treated as an independent building unit in the tessellation. As a
result, four building units are shown as enclosed in the upper box of Fig. 4-2.
Furthermore, since the units have rotational symmetry, if those in the upper box of Fig.
4-2 are defined as left-handed units, their right-handed counterparts enclosed in the
lower box can also be generated. And the left-handed and right-handed versions of the
same unit cannot match each other by rotation either. Therefore, a total of eight building
units can be derived from the three types of units, named Tij (=1, 1R, 2, 3, and j=L,
R for left- and right-handed units).

Having obtained the building units, next the compatibility condition for
neighboring units is set up in the flat state. As also seen in Fig. 4-2, each edge of the
unit has a long and a short crease perpendicular to and intersecting with it. When two
units are connected by a common edge, the two short creases intersecting with the
common edge must have the same mountain-valley assignment and be colinear in order
to be merged to form a new crease, and so should the two long creases. To visualize the
connectivity of the units, a schematic representation is introduced as shown in color in
Fig. 4-2. Such schematic representation was first used in a study of origami patterns

(1651 Each edge of the unit is represented as a colored

formed by degree-4 vertices
serrated line. The arrow-shaped protrusions in the left-handed units and the notches in
the right-handed ones indicate the position of the pair of long and short creases. In
addition, the yellow color is applied when the short crease is a mountain and the long
one is a valley, and the green color when the assignment is opposite. Following this
schematic representation, the geometrical compatibility condition dictates that units can
be joined only when the connecting edges have identical color and complementary
serrated shapes.

Utilizing the eight building units and the tessellation rule, the metasheets can be

designed like playing a jigsaw puzzle. Start from square metasheets with 2x2 units. It
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can be seen in Fig. 4-3(a) that left-handed units must be surrounded by right-handed
ones, but the selection of each quarter is not unique. There are four shared edges in the
2x2 tessellation, and each one can be either yellow or green, leading to 16 (2%) possible
combinations (Fig. 4-3(b)). And in each combination, there are two units to choose from
for each piece, resulting in 16 (2%) possible tessellations (Fig. 4-3(b)). Therefore, the
number of all possible 2x2 tessellations is 256 (2* x 2%). Excluding those that can be
obtained by rotating the others, 136 tessellations are left, which are arranged by the
numbers of type 1 and 2 based units in Table 4-1 (details shown in Appendix A). Note
that the number of type 3 based units can be worked out by 4 minus the total of the
other two types of units. Since a 2x2 tessellation contains four units, the lines in Table
4-1 indicate that the sum of the number of type 1 and 2 based units is more than four.
As in the case of creating a single unit, the tessellations fall into two groups which are
mirror-symmetric to each other. Another important feature is that all the tessellations
share the same crease layout shown in Fig. 4-3(a), and they differentiate from each other
only by the mountain-valley assignments. This indicates that all the designs can be
obtained using the same pre-creased sheet material, and even transform the metasheet
from one design to another by unfolding and refolding. In fact, this feature can be

generalized to any m>m pattern, in which m is a positive integer.

—— Mountain crease - - --Valley crease
(a) Left-handed units
Reversed Type 1 Type 2
I I
] T
= _r < TZ
A\ a— pi——
| I —_—
1 1
(b) Right-handed units
Type 1 Reversed Type 1 Type 2 Type 3
ll 1
e —
=R 5o T 1
I I A
1 1

Fig. 4-2 The mountain-valley assignments and jigsaw puzzle representations of (a) left-handed and

(b) right-handed type 1, reversed type 1, type 2, and type 3 units.
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(a) 2x2 tessellation
L R % L | TR
. R T T T T
T T Example : ’ ! >
— R
™9 Tt th N

Identical
Identical units i TBL common edges
M

-
B

Fig. 4-3 Tessellation rule of the square-twist units with identical geometric parameters. (a) A 2x2
tessellation defined by left- and right-handed units. (b) Different 2x2 tessellations modelled by

identical units or identical common edges.

Table 4-1 The number of 2x2 tessellations excluding those obtained by rotating the others.

Otype lunit 1typelunit 2typelunits 3typelunits 4 type 1 units

0 type 2 unit 10 16 14 4 2
1 type 2 unit 16 24 12 0 —
2 type 2 units 14 12 6 — —
3 type 2 units 4 0 — — —
4 type 2 units 2 — — — —

Starting from 2x2 tessellations, the larger metasheets can be built using either of
two methods. A straightforward one is adding one unit at a time based on the established
tessellation rule. Alternatively, the 136 2x2 tessellations can be used as second-order
building units to create larger tessellations, which is more efficient without missing any
design. Theoretically, the number of tessellations increases exponentially with the
number of units; #nxm units could produce 2" square tessellations (details shown in

Section 4.2.2). While this enables great diversity in the metasheets, it also makes the
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design process quite complicated. From the viewpoint of mechanical property,
nevertheless, not all the possibilities are needed in the exploration. This is because the
units out of the same type can be treated as identical because flipping over a unit or
changing it from left-handed to right-handed does not affect its folding behavior.
Therefore, the eight units can be categorized into three groups, the type 1 units including
T, T}, T and TJ, the type 2 units including T, and TJ, and the type 3 units
including T3" and T3R , and consider only the number of each group in the study of
metasheet mechanical properties. Consequently, only a small fraction of the vast pool
of tessellations with varying unit combinations is required to program the properties of
the metasheets. For instance, only 15 second-order units are required to design nine 4x4
tessellations with varying proportions of type 1 units from 100% to 0% at an interval
of 25%, which are shown in Fig. 4-4. In addition to the tessellations with 0, 4, 8, 12,
and 16 type 1 units shown in Fig. 4-4, those with other numbers of type 1 units are
shown in Fig. 4-5. It implies that the number of type 1 units can continuously vary from
0 to 16 in a 4x4 tessellation. As in the case of 2x2 tessellations, all patterns shown in
Fig. 4-4 and Fig. 4-5 have the same crease layout, though the mountain valley
assignments differ, i.e., one crease is mountain in one pattern whereas it may become

valley in another.

4.2.2 The Number of Possible mxm Tessellations

The procedure of calculating the number of possible tessellations for an mxm
metasheet, N, is illustrated in Fig. 4-6. When m is an odd integer, the procedure is
started from one unit as shown in Fig. 4-6(a), which has N1=2° possibilities. Extending
it to 3%3, the inner unit is surrounded by 8 outer units with 8 common edges (the gray
dotted lines) that are located on two rows and two columns, which means a single row
or column has 3-1=2 common edges. As demonstrated in Section 4.2.1, each common
edge has two options, yellow or green, and therefore the possible combinations of the
common edges between the outer units are 2*G-. When the inner unit is determined,
the units that share a common edge with it are also determined. The four units at the
corners, which have two common edges with other units, have two selections for each,
leading to 2% possible combinations. Therefore, the number of possible 3x3 metasheet
is N;= (24 . 24(3_1))- N, . Using the same approach, the number of possible 5x5
tessellations is N = (24 : 24(5_1))- N, , and that of 7x7 tessellations is
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N, = (24 -24(7_1))- N; in Fig. 4-6(a). Thus, the number of possible mxm square-twist

tessellations with an odd m can be given as
N, =(2-2"9). N, ,. (4-1)

St o
\—l—l

Type 1+2(8:8)

(a) ﬂ (b)
i

Type 1(16)

(d)

(€) R = ® TR 1R
L —

Type 1+2+3(4:8:4) Type 1+3(4:12)

Fig. 4-4 Nine 4x4 tessellations with varying number of type 1 units. (a) 16 type 1 units, (b) 12

type 1 and 4 type 3 units, (c) 8 type 1 and 8 type 2 units, (d) 8 type 1 and 8 type 3 units, (¢) 4 type
1, 8 type 2, and 4 type 3 units, (f) 4 type 1 and 12 type 3 units, (g) 16 type 2 units, (h) 4 type 2 and
12 type 3 units, (i) 16 type 3 units.
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Fig. 4-5 4x4 tessellations with (a) 1, (b) 2, (c) 3, (d) 5, (e) 6, (f) 7, (g) 9, (h) 10, (i) 11, (j§) 13, (k)
14, (I) 15 type 1 units that are supplemented by type 3 units.
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When m is an even integer, the center is a 2x2 tessellation with N, = 2. 242
possible combinations as shown in Fig. 4-6(b). Using the same method as for the odd
m, the number of possible 4x4 tessellations in Fig. 4-6(b) is determined by the number
of inner 2x2 tessellations, the possible combinations of the common edges of the outer
units, and the possible combinations of the four corner units, from which

N, = (24 : 24(4’1))- N, can be obtained. Similarly, the number of possible 6x6
tessellations in Fig. 4-6(b)is N, = (24 . 24(6’1))- N,. Thus, the number of possible m>m
square-twist tessellations with an even m is also given by Eq. (4-1).

For odd m, Eq. (4-1) can be written as

N, =(2 24" ) N,
f(24 24, (24 4m D) N w2

_ (24 _24(m—1))_(24 _24((m—2)—1))_”(24 .24(3—1)). 93
Substituting m=2¢-1 (¢=1, 2, 3, ...) to Eq. (4-2), it can be simplified as
Nm _ (24 _24((2(1—1)—1))_ (24 _24((2(q—1)—1)—l) ) ) _(24 .24(371)). 23

_ e .24;(2971)71 3
_ 24q—1+4q(q—1) (4-3)

2(m+l}1+2(m+1)[m7+l—l)

_ 2m(m+2)

For even m, Eq. (4-1) can be written as
N, =(2¢- 24" ).N,
—(2* _24(m—1) (24 '24((m—2)—1) "N
2t o e, "

:. (24 _24(m—l)>_ (24 _24((m—2)—1))“_(24 _24(471)). (24 _24(271))
Substituting m=2q (¢=1, 2, 3, ...) to Eq. (4-4), it can be simplified as
N = (24 _24(2q—1))‘(24 .24((2(q—1))—1)).._(24 _24(471))_(24 .24(271))

q

43 (00-1)
=2%.p

(1+(29-1))q

/T Sl S Ml |
—24.0 2 (4-5)

_ 22q(2q+2)

_ 2m(m+2)
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Comparing Eq. (4-3) and (4-5), it can be concluded that the number of possible
mxm square-twist tessellations designed by the method presented in this paper is 2"(**2
for an arbitrary m. Finally, it should be mentioned that some tessellations obtained this
way may match others by rotating a certain angle, but they are not excluded from the

calculation of the total number of possible tessellations.

(a) 7%7 tessellation

5x35 tessellation

3x3 tessellation

T/ T/ T/

i

H_J
2 common edges
Y
4 common edges
A4
h'd
6 common edges

-
2 common edges /

%_J

4 common edges

Y
6 common edges

b .
(b) 6x6 tessellation
4x4 tessellation
2x2 tessellation @ ) f'?n
L 3
=
f=)
> s > > £
E =
5 5
© vl
B J
[——
3 common edges
AN ~ J

5 common edges

Fig. 4-6 Illustrations of calculating the number of possible m>m tessellations for (a) an odd m and

(b) an even m.

4.2.3 Compatible Geometric Parameters

In addition to tessellating units with identical geometric parameters, it is also
possible to introduce geometric gradients in a tessellation. Still consider a 2x2
tessellation as an instance. In the general case, all the four units can have different side

lengths /; and twist angles a: (i=1, 2, 3, 4). To satisfy compatibility conditions on the
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common edges, the geometric parameters of the units in Fig. 4-7 should satisfy the
following equations
l,-sing; =1, -sina, =1, -sina; =1, -sing,,
a; =a;,a’ +1,-cosa, =a +1,-cosa,,
a’ =aZ,a +1 -cosa, =a; +1,-cosa,, (4-6)
a =a,a; +1,-cosa, =a; +1, -cosa,,
aj; =a;,a’ +l,-cosa, =a’ +1,-cosa,,
It is important to note that in the graded tessellation, the four side lengths a:', a?, a?’,
ai* (i=1, 2,3, 4) in a unit are no longer identical, and they have to be defined individually.

Metasheets with more units can be designed following the same principle.

—— Crease ——— Edge
at
4 2
LT] L.
m— |
3 1 a23
~ a ay
a]l h _=E - [y
(25
o
2 2
al a2
k. Yy
A Y
a, a4
¥ | 0y
a3 3
ay
1 !3 » >le > 14 e
da —
3 3
» a; a,
2
a
a2 i
el

Fig. 4-7 A 2x2 tessellation with geometric gradients.

4.3 Mechanical Properties of Tessellated Metasheets

4.3.1 Fabrication and Experiment

To investigate the mechanical properties of the metasheets, physical specimens of

the nine 4x4 designs with different unit combinations, as shown in Fig. 4-4, were
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fabricated and tested. The geometric parameters were set as /=a=16.25mm and a=30°.
The specimens were fabricated from a 0.4mm-thick PET sheet. The creases were cut as
0.8mmx3mm perforations at 1.5mm intervals and holes were cut at the vertices to
mitigate stress concentration and fracture, shown in Fig. 4-8(a), using a Trotec Speedy

300 laser cutting machine and then manually folded to their fully folded states.

(a)

0.8mm

3mm

(b)

"
e
-

Square loading mechanism

Fig. 4-8 Tension experiment of the metasheets. (a) Crease design of the specimen and square

loading mechanism. (b) Experimental setup.

Quasi-static tension experiments were conducted on the specimens with the same
horizontal testing machine in Section 2.2. The machine had a stroke of 800mm and a
load cell of 300N. To achieve a uniform deformation, a square loading mechanism
composed of four linear guide rails and eight sliding fixtures was designed to load the
specimen at four corners and four middle points of the sides as shown in Fig. 4-8(b).
For eliminating dynamic effects, the specimen was stretched at a loading rate of

0.2mm/s until the diagonal length reached 306mm. The entire deformation process of
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the specimen and the force versus displacement curve were recorded using the same
method in Section 2.2. In addition, three key mechanical properties of the unit, the
energy, U, initial peak force, Fmax, and maximum stiffness, Kmax, were also calculated
from the curve. The energy was defined as the work done by the force during the loading
process, and the maximum stiftness was the largest tangent slope of the force versus
displacement curve prior to the initial peak as mentioned in Chapter 3. To obtain reliable

results, three specimens were tested for each design.

4.3.2 Mechanical Properties of Used Units in the Metasheet

Before researching the metasheets, the three types of units were also characterized
experimentally following the methods provided in Chapter 2 and 3. The unit samples
adopted the same geometric parameters and fabrication process as the metasheets. The
facet bending stiffness and crease rotational stiffness of the units were determined as
k=0.70N-rad! and k=0.44N-rad’!, and the yield rotation angle Apy=22.92°. The
experimental normalized force, F/kt, versus normalized displacement, Ax/Axmax, curves
of the three units are drawn in Fig. 4-9(a), and the normalized energy, U/(kfl), initial
peak force, Fmax/kf, and maximum stiffness, Kmax//kt, are presented in Fig. 4-9(b-d).

For each curve in Fig. 4-9(a), the solid line is the averaged result of three tests, and
the shaded band is the standard deviation. The natural dihedral angles formed by the
square and trapezoidal facets of type 1, 2, and 3 units are experimentally obtained as
19.58°,25.20°, and 28.30°. It can be seen that all the three properties of the type 1 unit
are remarkably larger than those of type 2 and 3 units. Moreover, the three properties
of the type 1 unit are predicted using the empirical formulas in Chapter 3, and those of
the types 2 and 3 units using the theoretical formulas in Chapter 2. As shown in Fig.
4-9(b-d), these predictions match reasonably well with the experimental data, which

will later be utilized to program the properties of the metasheets.

4.3.3 Mechanical Properties of Uniform Metasheets

The deformation processes and normalized force, F/ks, versus normalized
displacement, Ax/Axmax, curves of the three metasheets composed of a single type of
units are presented in Fig. 4-10(a-c). First, the performance of the one formed by the
rigid type 3 units is investigated. It can be seen from Fig. 4-10(a) that a simultaneous

unfolding of all the units is obtained, leading to a slowly rising force followed by a long
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plateau. Similarly, the metasheet comprising solely of the non-rigid type 2 units shows
a synchronized unfolding process among the units which is shown in Fig. 4-10(b). As

result, a smooth force curve as in the case of a single type 2 unit is also generated.

(a) 60 . . . . (b) 25
— Type 1
20t > - —Type 2
40t il --=Type 3
— = 15 ; = Type 1
S % ; (experimental)
201 10 ; == Type 2
; (experimental)
- s 3 ] == Type 3
Pk BB R LA .
0 4 . : : . 0 [ (experimental)
0 02 04 06 08 1 Type 1 Type 2 Type3 |EZ2 Type 1
Ax/Ax max (predicted)
Type 2
d
© ( )1000 (predicted)
60 ] = Type 3
= 750t (predicted)
/ P
e ]
=40 V] = %
% 1] % 500 V]
E 4 g 1
= V1 Ae: ¢
200 1 (4 2500 ||
/]
0 14 Dﬂ DH 0 i Dﬂ DH
Typel  Type2  Type3 Typel Type2  Type3

Fig. 4-9 Mechanical properties of the three types of units. (a) The normalized force, F/ks, vs.
displacement, Ax/Axmax, curves. The experimental and predicted normalized (b) energy, U/(kl), (c)

initial peak force, Fmax/kr, and (d) maximum stiffness, Kmax//ks.

Subsequently, the metasheet formed by sixteen type 1 units is examined, as shown
in Fig. 4-10(c). Overall, the metasheet still demonstrates a response similar to that of
the individual unit in Fig. 4-9(a), which is characterized by a high initial peak force and
a sharp force drop due to unlocking of the units, followed by a short plateau mainly
contributed by rotation of the creases. Nevertheless, the units show a noticeable trend
of sequential rather than synchronized deformation. To explain this in detail, the units
are classified into four groups based on their locations in the tessellation. Ti-i units are
in the four corners enclosed in the purple boxes, which have two edges joined with

surrounding units and two free edges. T1-ii units are on the top and bottom sides of the
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metasheet enclosed in the yellow boxes, which have three edges joined with those of
the neighboring units and are loaded at the long side of the rectangular facets. T1-iii units
are on the left and right sides enclosed in the blue boxes, which also have three edges
joined with neighboring units but are loaded at the short side of the rectangular facets.
And T1-iv units are in the middle enclosed in the red box, which is characterized by four

common edges with neighboring units.
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Type 3 (16)
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Fig. 4-10 Deformation processes and mechanical properties of the uniform metasheets. The
normalized force vs. displacement curves and key configurations of the uniform metasheets

composed solely of (a) type 3, (b) type 2, and (c) type 1 units, respectively.
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The deformation of the 4x4 type 1 metasheet can be divided into five stages, see
Fig. 4-10(c). At stage 1 from beginning to configuration I, all the units are stretched
simultaneously until the force reaches its initial peak. Subsequently, at stage 2 between
configurations I and III, the long rectangle facets formed by the neighboring T1-i and
T units on the left and right sides of the metasheet, start to bend inward
(configurations II and III), leading to a slight drop in force. Notice that the rectangular
facets on the right side bend slightly ahead of those on the left side, probably due to the
small geometric imperfection during fabrication. At this stage, all the units are still
locked. Upon further loading, the metasheet enters stage 3 bounded by configurations
III and IV, where the eight Tiii and Tiiv units first open up (configuration IV),
corresponding to another small peak followed by a sharp drop in force. Afterward at
stage 4 between configurations IV and V, the eight T1-i and T1-iii units (configuration V)
pop open, and the force is further reduced. Finally, all the unlocked units are further

stretched to flat at stage 5 bounded by configurations V and VI, and the force rises again.

4.3.4 Mechanical Properties of Mixed Metasheets

Having studied the performance of uniform metasheets, I examine the behavior of
those formed by a mixture of different units in this section. First consider the design
with twelve type 1 and four type 3 units in the corners as shown in Fig. 4-4(b). It can
be seen from Fig. 4-11(a) that a sequential deformation process similar to that of the
uniform one with type 1 units is generated. After the initial uniform deformation, the
rectangular facets on the left and right sides bend inward, then the eight Ti-i and Ti-iv
units open up, followed by the four Tiii units. In addition, the type 1 units from the
same groups as those in the uniform metasheet also tend to deform in the same manner,
implying that the behavior of the type 1 unit is mainly determined by the location in the
metasheet or boundary condition. The type 3 units, on the other hand, are roughly
unfolded continuously. Due to the similar deformation process, the force curve is also
close in shape to that of the uniform one, but the magnitude is reduced because of the
presence of four type 3 units. For a metasheet of the design shown in Fig. 4-4(d), where
the number of type 1 units is further reduced to eight while the number type 3 units
becomes eight, Fig. 4-11(b) shows its deformation process. The four Ti-i units at the
corners, which have fewer constrained edges, pop open in advance of the four T1-iv units

in the middle, leading to two comparable local peaks on the force curves. A small local
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peak force occurs between configurations I and II because the four Ti-i units do not
open simultaneously. Besides, inward bending of the long rectangular facets is no
longer evident. For a metasheet consisting of only four type 1 units in the middle
surrounded by twelve type 3 units, whose design is given by Fig. 4-4(f), the type 1 units
tend to pop open at the same time, leading to a force curve similar to that of a single

type 1 unit as shown in Fig. 4-11(c¢).
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Fig. 4-11 Deformation processes and mechanical properties of the mixed metasheets. The
normalized force vs. displacement curves and key configurations of the mixed metasheets
consisting of (a) twelve, (b) eight, and (c) four type 1 units that are supplemented by type 3 units.
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4.4 Programmability and Prediction of Tessellated Metasheets

4.4.1 Predicted Properties

Before predicting the energy, initial peak force, and maximum stiffness of the
metasheets, a relationship between the prediction of units and metasheets is established

using the example of a 4x4 metasheet. First, the predicted energy of the metasheet, Usx4,

is the simple summation of unit energy, U; (i=1, 2, ..., 16 represents the i-th unit),
which is expressed as
6
Uyu = zutl . (4-7)
i=1
Second, the force is the derivative of energy versus displacement, which is given by
du,,
F4><4 = = . (4-8)
dD4><4

As shown in Fig. 4-8, the 4x4 metasheet specimen shows that only four units lay in the
loading direction (diagonal of the metasheet). In the experiment, the square loading
mechanism introduces identical unfolded deformation to each unit. Thus, the
displacement of the 4x4 metasheet is calculated by D, , =4-D,, where D is that of
the unit. Then, equation (4-8) can be rewritten as
16
dZu: L 1
Foa= 20D, ~ 4 2 (4-9)

i=1

where F.' is the external force of the i-th unit. Finally, the stiffness is the derivative
of force versus displacement, which is expressed as
1 s, 16
~-d»F d) F

dF4><4 4 ; t ; t 1 S

K = - = =—.3Y'K', 4-10
* dDp,, 4-dD, 16-dD, 16 & (“-10)

where Kti is the stiffness of the i-th unit. With the predicted unit behaviors in Fig.
4-9(b-d), the bar charts in Fig. 4-12 compare the experimental and predicted results of
the three uniform and six mixed metasheets illustrated in Fig. 4-4.

In the predicted models, the natural dihedral angles formed by the square and
trapezoidal facets of type 1, 2, and 3 units used in the prediction are experimentally
obtained as 19.58°, 20.50°, and 24.30°. It can be seen that in general a reasonably good
match between the experimental data and predictions is achieved. For the one composed

of type 1 units, the predictions tend to underestimate the energy. This is mainly caused
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by the extra bending of the rectangular facets on the left and right sides which is not
observed at the unit level. Thus, it can be safely concluded that the properties of the

metasheets can be well predicted by the unit results.
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Type 2 unit-predicted Type 3 unit-predicted
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Fig. 4-12 Comparison of (a) normalized energy, (b) initial peak force, and (c) maximum stiffness

between the experimental results and predictions.

4.4.2 Programmable Properties

Having demonstrated that the energy, initial peak force, and maximum stiftness of
the metasheets can be obtained by adding up the corresponding unit properties that are
predictable theoretically or empirically, I can now program the material properties of
the metasheets through a coarse stepped tuning by the proportions of different units and
fine continuous tuning by geometric and material parameters. To demonstrate this,

consider a series of 4x4 metasheets composed of type 1 and type 3 units, which have
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identical geometric and material parameters as those in Sections 4.3. The number of
type 1 units that play a major role in determining the properties changes from 0 to 16,
where some of the possible patterns are shown in Fig. 4-4 and Fig. 4-5. Figure 4-13
shows the variation of normalized energy, initial peak force, and maximum stiffness of
the metasheets. As expected, all three properties increase linearly with the number of
type 1 units in a stepped manner. Additionally, since all these 4x4 metasheets can be
fabricated out of the same crease layout, as proven in Section 4.3.1, the metasheets can
be even reprogrammed in response to specific needs, i.e., it is first folded to the design
with only type 3 units to achieve a low force, and then unfolded and refolded to the
design with only type 1 units to obtain a high initial peak. A similar
reprogramming/reconfiguring strategy has been used at the unit level to design

[154

frequency reconfigurable antennas!!*¥. But with the proposed tessellation designs, the

variety and tunable range can be greatly expanded.
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Fig. 4-13 Programmability of the normalized (a) energy, (b) initial peak force, and (¢) maximum

stiffness of 4x4 metasheets with varying numbers of type 1 units from 0 to 16.
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By further incorporating unit geometric and material properties, continuous fine-
tuning over a wide bandwidth can be achieved. The geometric parameters discussed in
this section contain the side lengths ratio, a//, and the twist angle, a. The effects of a//
in combination with the number of type 1 units in the 4x4 metasheets are first presented
in Fig. 4-14(a), (c), and (e). It can be seen that within the range of 0.5 to 4, a/l tends to
increase all three mechanical properties, regardless of the number of type 1 units.
Moreover, any value between the two adjacent steps in Fig. 4-13 can be obtained by
selecting a/l appropriately. It can be obtained from Fig. 4-13(a) that the normalized
energy U/(kil) 1s 223.60 when there are 8 type 1 units in the metasheet and becomes
234.44 when there are 9. If a U/(k:/)=229.00, which is the average of the previous two,
is wanted to be obtained, the solution can be given by keeping 8 type 1 units and
increasing a// from 1 to 1.06, or preserving the number of type 1 units as 9 and reducing
a/l from 1 to 0.94.

The effect of the other geometrical parameter, a, is presented in Fig. 4-14(b), (d),
and (f) where a changes from 20° to 45°. Similar to a//, an increase in the twist angle
leads to improvement of all three properties. However, the effect of increasing type 1
units on the initial peak force and maximum stiffness is prominent only when « is
relatively large beyond about 30°. This is because when o is small, the unit is less
twisted, leading to sharply reduced initial peak force and maximum stiffness for the
type 1 unit.

Finally, the effect of varying kc/kt, the ratio of crease-rotation stiffness to facet-
bending stiffness, between 0.25 and 0.75 is presented in Fig. 4-15. Changing kc/kt
primarily alters the total energy of the metamaterial, and is less effective on tuning
either initial peak force or maximum stiffness. And again this parameter can be used to
obtain any value between the two neighboring steps in Fig. 4-13 as in the case of a//
and a.

Notice that in the discussion here, all the units in a metasheet have identical
geometry and stiffness. Using unit types, design parameters, or a combination of both,
the properties of the metasheet can be tailored to meet specific requirements. For
example, to design an impact energy absorption device, which requires a low initial
peak force but high energy absorption, the number of type 1 units should be lowered
because it leads to a high peak, while large values of a//, a, and kc/kr should be selected

to maximize the energy absorption.
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Fig. 4-14 Programmability of the normalized energy, initial peak force, and maximum stiffness of
4x4 metasheets with varying geometric parameters. Specifically, in (a, ¢, and e) a// varies from 0.5

to 4, while a=30°, k/k=0.63, in (b, d, and f) a varies 20° to 45°, while a/l=1, ko/k=0.63.
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Fig. 4-15 Programmability of the normalized energy, initial peak force, and maximum stiffness of

the metasheets with kc/kr varying from 0.25 to 0.75, while a//=1, 0=30°.

4.4.3 Graded Property

Unit grading can also be introduced to further enhance the performance of a
metasheet. In certain engineering applications, e.g., non-lethal projectiles for
peacekeeping operations, a graded stiffness could enhance the functionality of the
structures or materials!'®l. By purposely introducing a geometric gradient in a
metasheet, a sequential deformation mode and a graded response can be engineered. To
demonstrate this, a graded 4x4 metasheet with type 1 units as shown in Fig. 4-16(a)
was designed, fabricated, and tested following the procedure in Section 4.3. It can be

seen from Fig. 4-16(b) that the eight units along the left and right sides, which have a
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smaller twist angle and correspondingly a lower initial peak force, first open up,
followed by the eight middle ones with a larger twist angle. As a result, a graded force
with two consecutive local peaks is obtained. More local peaks can be triggered by
increasing the number of units, and the position and magnitude of each peak can be

programmed based on the properties of the units.

Table 4-2 The parameters of the graded 4x4 metasheet in Fig. 4-16.

Location of unit o [deg] / [mm] a1 [mm] a> [mm] a3 [mm] as [mm]
Middle columns 40 13.15 20 20 24.02 28.05
Left and right sides 25 20 24.03 20 20 20
(a) —— Mountain crease - ---Valley crease

1
|
|
1
|
|
|

48.05

AX/AX max

Fig. 4-16 Graded 4x4 metasheet with type 1 units. (a) Pattern and geometric parameters. (b) The

normalized force versus displacement curve and key configurations.
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4.5 Effects of Different Boundary Conditions

In addition, the effects of different boundary conditions are discussed in this work.
As mentioned in Section 4.3.3 and Section 4.3.4, the units in a tessellation metasheet
can be separated into four groups. Each group has a particular boundary condition that
can be modeled using the tension experiment on 2x2 metasheets, T2x2. The Tax4
metasheet in Fig. 4-17 (a) shows the same boundary condition of Ti unit, which has two
edges fixed and one point loaded. The T2x2-ii metasheet in Fig. 4-17 (b) shows the same
boundary condition of Tii unit, which has three edges fixed and the long side of the
rectangular facet loaded. The T2x2-iii metasheet in Fig. 4-17 (c) shows the same boundary
condition of Tiii unit, which has three edges fixed and the short side of the rectangular
facet loaded. The T2x2-iv metasheet in Fig. 4-17 (c) shows the same boundary condition

of Tiv unit, whose all four edges are fixed.

——Mountain crease ----Valley crease
(a) -i T; (b) T2><2 i

lelure

Fig. 4-17 The boundary condition of (a) T2x2-i metasheet and T; unit, (b) T2x2-ii metasheet and Tj;

unit, (¢) T2x2-iii metasheet and Tiii unit, and (d) T2x2-iv metasheet and Tjy unit. (Scale bar: 10mm)

Based on the same experimental method, the mechanical properties of four 2x2
metasheets are shown in Fig. 4-18 and compared with predicted results. A good match
between experimental data and prediction is found in 2x2 type 2 and type 3 metasheets,
which implies that boundary conditions hardly influence the mechanical properties of
type 2 and 3 units. However, a distinction between experimental and predicted results
is discovered in the 2x2 type 1 metasheets with all four boundary conditions, which

means the type 1 unit is sensitive to the boundary condition. As shown in Fig. 4-18(c)-
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(e), except for the significant difference found in the comparing results of the

normalized energy of Tl2«.ii metasheet, only a subtle distinction exists in other

mechanical results of the metasheets with different boundary conditions. Fortunately,

the proportion of Tiii units in an mxm metasheet is small. Thus, predicting the

mechanical behavior of metasheets can be achieved by using the results of the type 1

unit shown in Section 4.3.2, which is illustrated by nine 4x4 tessellation specimens in

Section 4.3.3 and Section 4.3 .4.
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— Type 150
150 | [\ Type 1.0
— 12011 % Type 1.0
< 100} AT Type oy
= 60 —— Type 25,5
" —-=Type 3.2
04 0.6
Ax/Ax max
() 200
== Type 15,5
_ 1507 (experimental)
) " % E % % (experimental)
| ? 1 —/ Type 1 2%2-iii
0 H D @ D (experimental)
d
@ 180 _ E3 Type 1oy
(experimental)
< 1207
e ? = Type 2 2x2-i
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Fig. 4-18 Mechanical properties of 2x2 metasheets with different boundary conditions. (a and b)

The normalized energy, U/(ki/), and force, F/ks, vs. displacement, Ax/Axmax, curves. (c-e) The

experimental and predicted normalized energy, U/(kt/), initial peak force, Fmax/kr, and maximum

stiffness, Kmaxl/kt.
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4.6 Conclusions

The theoretical and experimental results in Section 2.6, Section 3.7, Section 4.3,
and Section 4.4 show the potential of the programmable process of square-twist
metasheets in practical application. For example, to design an ideal impact energy
absorption device, which requires a long and flat plateau, the type 2 unit should be used
in creating metasheets, where smaller values of kt/kc and a, and a larger value of a//
should be selected to minimize the force drop at the bifurcation point and provide an
increase in the whole force curve. Moreover, to create a graded stiffness metasheet,
various groups of type 1 units should be selected with different geometric parameters,
where a larger value of o should be coupled with a larger value of a/l to produce larger
stiffness.

I have designed a new group of origami metasheets by amalgamating rigid and
non-rigid square-twist origami units in a single metasheet and analyzed their energy,
load bearing capability, and stiffness. The tessellation rule for the metasheets has been
established to satisfy the compatibility conditions among neighboring units of different
types and geometric parameters. A series of metasheets with varying unit combinations
have been designed, fabricated, and tested. The experimental results indicate that the
three types of units can in general maintain their specific deformation modes and
corresponding mechanical properties. A metasheet can be treated as an assembly of
nonlinear springs connected in series and in parallel for the purpose of predicting its
energy, initial peak force, and maximum stiffness. The mechanical properties of the
metasheet can be obtained simply by summing up the properties of its constitutive units.
A good agreement between experimental data and predictions are obtained. Based on
this, the mechanical properties of the metasheets can be continuously programmed over
a wide range by tuning the proportions of different units within a sheet and the
geometric and material parameters of the units. And all the metasheets with the same
layout can be folded out from the same pre-creased sheet, thus enabling re-
programmability by simply folding the sheet following different crease mountain-
valley assignments.

This work expands the design scope of origami-inspired metamaterials with a wide
range of property programmability and re-programmability to meet practical

engineering demands in various fields. The finding has opened doors to many
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interesting future research directions. For instance, in order to achieve an automatic and
efficient property programming process, a machine learning algorithm could be
incorporated into what has been discovered in this paper to more efficiently search for

the desired tessellation and design parameters to meet a specific requirement.
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Chapter 5 Achievements and Future Works

This dissertation aimed to propose a design method of origami-inspired
mechanical metamaterials by combining the rigid-foldable origami pattern with the
non-rigid-foldable one and present validated study methods for their mechanical
properties. This chapter summarizes the main achievements and the highlighted future

work.

5.1 Main Achievements

*  The non-rigid square-twist type 2 unit

First, a theoretical model for the non-rigid-foldable type 2 square-twist pattern has
been developed by modeling the deformation of the central square facet as the rotation
of a virtual crease on its diagonal of it. The kinematic analysis of the modified type 2
unit with additional crease has been generated by modeling the four-/five-crease
vertices as a closed loop of spherical 4R/5R linkages. The type 2M unit has been proved
rigid-foldable according to the relationship between dihedral angles. A bifurcation
during tension has been found and validated by experiment. Based on the kinematic
results, the mechanical properties, such as elastic energy, of both type 2 and type 2M
units have been calculated and proved to rely on the geometric parameters of the pattern
and the material parameter of the facet and creases. Moreover, the mechanical behavior
of the type 2 unit has been programmed by tuning geometry or material properties.

The kinematic model and experimental investigation of non-rigid-foldable type 2
unit have been presented in Chapter 2. The mechanical properties programmed and
predicted by geometric and material parameters using the theoretical model expand the
design of mechanical metamaterials using non-rigid-foldable origami patterns. The
work of kinematic analysis has been published in a journal paper named “Rigid
foldability and mountain-valley crease assignments of square-twist origami pattern” on
Mechanism and Machine Theory. The prediction and programmability of mechanical
behavior based on the experimental study have been published as a journal paper titled
“Theoretical characterization of a non-rigid-foldable square-twist origami for property

programmability”” on International Journal of Mechanical Sciences.
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* The non-rigid square-twist type 1 unit

Second, an empirical model of the non-rigid-foldable type 1 square-twist pattern
has been established by a combination of experimental and numerical analyses. The
kinematic analysis of the modified unit with an additional crease on the central square
has been proved unavailable for the four-fold rotational symmetry of the type 1 unit.
Thus, a finite element model has been presented for accurate deformation analysis and
validated by a biaxial tension experiment result. The finite element model of the type 1
unit shows a three-stage deformation process, divided by the tightening, unlocking, and
flattening stages. The key features in the energy, force, and stiffness curves of the type
1 unit have been analyzed in detail. Validated by experiment, the empirical model is
available for predicting and programming the mechanical behaviors by geometric and
material parameters.

The invalidated kinematic analysis, experimental and numerical investigation, and
validated empirical model of non-rigid-foldable type 1 unit have been presented in
Chapter 3. The programmable and predicted behaviors studied by the empirical model
enable metamaterial design by combining square-twist type 1 units with other rigid or
non-rigid units. The study of kinematic analysis has been published by a journal paper
named “Rigid foldability and mountain-valley crease assignments of square-twist
origami pattern” on Mechanism and Machine Theory. The research on mechanical
behavior has been submitted as a journal paper titled “Deformation characteristics and
mechanical properties programming of a non-rigid square-twist origami structure with

rotational symmetry” on Thin-walled Structures.

*  Metasheets built with a mixture of rigid and non-rigid square-twist units

Finally, a tessellation rule has been proposed to design metasheets using non-rigid
type 1 and 2 and rigid type 3 square-twist units. Both the compatible mountain-valley
assignment and geometric parameters have been discussed. The number of possible
m>m tessellations is calculated as an equation of the variable m. To explain the design
principle, the 2x2 tessellations excluding those obtained by rotating the others have
been illustrated as a jigsaw puzzle.

The mechanical performances of metasheets fabricated by uniform units are
different from those of metasheets designed by mixture units. The deformation
characteristics of metasheet in the biaxial tension experiment have been explained by

uniform and mixture specimens that the proportion of type 1 unit ranges from 0% to
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100%. Considering the units as nonlinear springs and the metasheet as an assembly of
springs connected in series and parallel, the predicted energy of the metasheet is the
simple summation of unit energy. Thus, mechanical behaviors of the metasheet have
been programmed by the proportion and property of units. Since the three types of units
can be fabricated by identical geometric and material parameters, the
reprogrammability of square-twist metasheets has been presented.

The mechanical metasheets designed by a combination of rigid and non-rigid
origami patterns in Chapter 4 widen the range of property programmability. The
reprogrammability in configuration paves a way to produce origami metasheets
meeting practical engineering demands in various fields. The work has been accepted
by Engineering and named “Tessellation rule and properties programming of origami

metasheets built with a mixture of rigid and non-rigid square-twist patterns”.

5.2 Future Works

The research reported in this dissertation establishes a rational design principle of
origami metamaterials using the unit patterns with different rigidities and presents the
corresponding prediction and programing approaches of mechanical behaviors. In this
design method, the compatible principle of both mountain-valley assignment and
geometric parameters is universal in the metamaterial design based on origami
structures. Thus, the findings of this work can be used for reference in similar studies.
To enhance the practical usage of this type of metamaterial, several potential topics can
be further explored:

First, further study can focus on the structural design method of multi-layer square-
twist origami metamaterials based on the one-layer metasheet presented in this
dissertation. In a one-layer metasheet configuration, only the mountain-valley
assignment and the geometric parameters in the adjacent units are needed to consider.
But for a multi-layer metamaterial, the connecting facets or creases between
neighboring layers request more attention. For example, the square-twist metasheet
always has several rectangular facets on the upper or lower surface. Then, a two-layer
metamaterial can be formed by connecting the identical rectangular facets of different
one-layer metasheets. When a stacked multi-layer structure of square-twist origami

pattern is established, the programming on an individual unit, a layer, or the whole
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configuration will be explored to tune both in- and out-of-layer units in one
metamaterial. The multi-layer metamaterial with arbitrary programmability may widen
the range of mechanical behaviors.

Second, because of the square-twist origami pattern obtained by multiple four-
crease vertices, the combination of different origami patterns designed by four-crease
vertices, such as Miura-ori and double corrugated, can be furtherly researched. It would
be a novel discovery whether the physical properties of the combined metamaterial are
the sum of those of different structural components or not. The new combined
metamaterial may generate a wide range of exotic behaviors in mechanical, thermal,
electromagnetic fields, etc.

Third, the tunable configuration of coupled rigid/non-rigid tessellation structure
can be either associated with shape memory material controlled by
magnetic/temperature field or fabricated by flexible materials driven by magnetic
actuators or motor-driven tendons. It achieves an active or passive reconfiguration
performance to design soft robots that are tunable and adaptive to various environments
in the future.

Finally, a characteristic of the square-twist origami pattern is that an identical
crease layout with different mountain-valley assignments can result in different types
of units and various mechanical properties. In other words, the same patterned material
sheet can form multiple metasheets with different proportions of type 1 units using
different folding paths. It indicates that a folded metasheet can be
reprogramed/reconfigured by unfolding to the initial state and switching the folded path.
Thus, future studies can  focus on  designing and  analyzing
reprogrammable/reconfigurable metamaterials that may satisfy more complex
requirements. Moreover, the reprogrammability/reconfigurability can be autonomically

tuned when the metamaterial is manufactured by shape memory material.
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Appendix

Appendix

A. The 2x2 tessellations excluding those that can be obtained by
rotating the others. (Section 4.2)

Type 2

Fig. A1 The 2x2 tessellations arranged by the numbers of type 1 and 2 units
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Fig. A1 The 2x2 tessellations arranged by the numbers of type 1 and 2 units. (Continued)
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BRIV R Bh &5 M BT AT AR I BE T 53k, e SEBILEEATRE ) 22 R aT g R AN S B
PIEE Ik RERT AT S

FEIE AR B ik, Fraait st e R B0 283, fTLlelE
A MR IR TR AR AT BS54, CLRAT 1) Z BRIEMBE T IRt
GRS, £ e A B AR E AR B 5, 2Rk A BRI R AR AR 3
BRRE RN =GR o X IR R BETH G T 3, AT ARAE R D AR K e AN
ZmAededt 7 AR B, I 7 RERASEAVE . A RRAR AR, T ELR
PrAGEA RN AP NIVEST A0 R HE R 3 4G R . FERIIE 37 40 B K
t, A iesh A s TR s el A ad AR E TR . K
b, B FORE AT 4R S5 A T AR AT, 3T IR e sha], it mT LU B84
FRERON— AN BRI RS, AT R LA IE 3 07 iR m e ST IRV A R &, it
— MG I ITIER R TR, O JE SEA UM BE 0 TR AN g B4R A R R AR AR
(EERIPEST AR A R — DR i T AR R 3R e shiz ], Hikee
A DL 93 R E 0 Tl B in » DR IH JE P e 30 4 R B0 LR AT X B — R R 42 e T /0 14
R o AEARNITESTAGEA R R, A5 HE S AR I 5 B SR R A 3 AT I ARCAZ
ISE R A B SE B, e rp T AR AR T AE F & AR VR e DA S 3R i FL R VE
Sy TARK TR ST, ARRIPEST AGE AT R R DR IR AA R
AR NS RE B ANALTE , A2 AT I RE Aol ASRAS A R B AR A5 92, 32 T A o s
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PO FAERE R TR AN G A o LA, 0T AENIVEST AT R, an ] f 16 & AT 24
I MR N T R AR I B ORI

Ak, MR, AT R 2% o B — SR A ARG f sk
Bl B NI A5 RN T 4R AT A BT o B AR M A E R S
ARG 720, AT RAR S A BN 2 K BN LR e A0 BE SR gk A L, H
FEAEIXAN BT I AR G A I R R AR o B, AnAniE P A ER R b L EAN[E] 2R
R ARG H B AE D o UV ARSI I 25 AR a1 B S i I 7 V45 21 1)
FIT AN T ERUEH & S T ARG MK IR PT 8 H AT AR T, e 2200 A2 ) B At B T v I 2«
ANF L TT H L A IR AT AR B, ASEER T U Bt S EUEILES . 25 =,
o] SEIIR A 3T AR A B 1 RE TN A G A o EH T A [R1 S8 2 (1) 47 4% 5 70 oA AN [ (1)
PERE, PR, BR 7R LATAAR S50, RE S AU AR 1 R g Ak AT DU
it AN [F) SR Y BT ) LU R S . 2R ERTIR, A T 3RAIR A MR AT SR M 37 4%
A EL, RSN TAREFE: (1) A& MR AT E W3 4858 76 ) R A B A
RENH B S EPM IR 2 B C R (2) BSLEHMPHEEN], FRE M
B PAFE o a] DA RiEsh AR T (3) Hie ook JU S E0rm L atA R
LM EHMERE 2 M IR R,  SEHUR A Hr 40 AR A2 1) T A1 2R A2 o

AR FE T Square-twist #T ARG, & £ # LG HA R IENIPE Square-twist
PraR&E M) o i Y, IR F-WIPEFIAENI: Square-twist B TTVR A 4T 4G A1 KT
BT 71, SEIUNHR & 3 4G A RHRATURR A B 1 PN A Zn A5 o 4% 521 Square-twist
Pk %, 2l IET R AR A PO AN E TR 2 R . AR (L2547
IRHEAR AN [E], mT LAIRAS 4 Fh Square-twist T4 TG, 70 51 € XA Type 1. Type 2+
Type 3 1 Type 4. 1EIHAE ) Z 0 Hrml LfE, o pidp o RIPESr 408 oo

(Type 3 1 Type 4 H.70), 1 A /bM RIERITES AR TT (Type 1 1 Type 2 H

T A TR AR TT, 7 LU E 8% i EERR SR AR,
T 11 AU BE R BEAR AT o R0 T AR M 408 s, AU RE AT 7 5
SOk, T ZARYEAS R B TC AR TR AL, A8 AN [R) R AR 7 iR A 70 B A 2« (R
ASCH SR T T AENIE: Type 2 5os, @GR 7 A M g 1 SRR
MIPES AR TG, AT FENIE S 40 A NIRRT 4R, i ia 3h 5 7 A i = th 3
IR R AR, DRI 120 75545 1T e R BR Rk . Hok, X
TAERITE Type 1 #.ot, HTHARATAE R, JoiEHE RIS T T k3T
I3, BIASCR 7 SRS B A 45 & 0 M 71, 1331 7 R S9rR A TR
KRB, HEMEAL T RITt ZE S IR RS R AR o e XA FENIE
Prafp e o M R B, HAUkPERE vT DU T 28 (A K o F11 DL S %%
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FARE o) FIMPEIZ 3 (PR SINI AR 2 dh W R #E T FE. PR, 1EHr
TERE B IeAT NI b, AT T MR R] LT S 3N ] () Square-twist
Prafs oo i) B A AP T 3 $2 TR G S 40 PR s v N . A
Ja s FETRIPEAEENIESr At oo i A, @57 1M R Eoe R, L2
. B RS FLEANIYE RE I E G R, 133 TIR-S T AU R L BE
(RPN G FE 7% o AL EE TAREFE LT =555

o 3ERIHE: Square-twist Type 2 FT4KETTHI 417

AR FEAE T XTAENIE Square-twist Type 2 #.G MU RERIIF FC. 17
SIATAENITE Type 2 $ITh, ZH— P AR ERAA , @Eid W EE Type 2
HOCH AR R 2 sk 72, PLEH PET #HkM & RAE 24T B UG AH %

(DIC) sE&, KRIMEHFrBMEF SRS, B T HIGITRA RS, i)y

TR 20 H EE B2 dh B R, T At AR R A B AT SR ORFEF RS

FEEN BT B 73 i, AR SCIREEAE Type 2 FITI 0 B D7 R THAR b,
TR A B T7 1R N — 2% RE AT IR o TR TR T7 R AR 25 dh AR TR R o A = A
AR AT 50, 4938 T — NS 4o, HAE s B A AT IR 3 5h 38
o WRYEIBBN W77, Rz S5 2 4R oo A (R P9 A DU A R T s AU Bk T Y
FEALALT, T P A T IR TR O IR AT ALAL o 38 I SRR BR T LA %o 7 ) A B4
TiE, 193] 7 H NS AR AR SR, AR B L A A R =
TR OR R o ARSCHY 20 AT uE B 13X SE 3 JR Y 10 A 2 1) 2 AR T B 2%
1, W TZSERCR ORI EST AR e . BRI, ARSIl A AT IR 0 =0
KAERIME Type 2 oo RS RBNIET 4R TT, B3] 7 HITREA X R

Type 2 BT R REY], o RIT BN KB sk,
BT — /. BEJE, ASCNG )1k, a5 H BT TR RER E Type 2 #.7t
(RSP T IEEh B8 1%F . HT AR Eas N2 iR, Type2 &AL AR M
TR PR ER 70 o IR AR BEA IS Hr IR 4% F1 Ok RN IR EL S NI 155, Horb e Aok
2 AR AR5 T IS B 7 4 i AS 21, T3 IR 5% 2N W0 ) FH 3 2 e 58 12 1) A
PR RIFEAT R o RIS T fe 8 RE AT IR % A 5 T AR S5 20 NI FE T3, B
TR MRS, DR R H et A B il S iR B Re
MR SF R TERE, AL T Type 2 BT sl BB MR EITE
Z5RKW], Type2 BT/ RIF R IR AR —BRARIS 5, T2 72 M 2k B AR 1
LA IR, HAZIRAE JG BE0T b SR i 43 31 1 56IE

RYE Type 2 BB, ASCAF ] T JURAIA B 2505 HA U RE Y
XK R SCHEE R, TR S Ml NI FE S 4 IR NI FE 0 LeAE 38 iy, | T TR
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T TTERIG N, PraCoT R AR R S I A1 bt m . RN, B EARAE R IT
I FE S A AR KR AR N, BRI BT I AR R B T . ENIEE LG
i FEE UG, Bk AIFERIELT, HMXFRESI R ok, MRS
XN, AR BRI AR, SRR RS R TRIE . SRR LY
K, ST e b B EUE 8B A TG, BRI EW iR .

TP G5, AR T X Type 2 Hr4C e o U BEHEAT F00 A 2w A2
W77, RIS RN S 6t 7 Ee ARt . Biln, 7R AR R T B
REN, TEESABH LT e AN BFER G, ARIEA SR
FEER, BOEEEECNO RS IR NI LEAf 24, IF IR EERR IR K
FELE, SIS xT B () 77 it 2 b oy O AL 77 F B RS de /), RIS G P B2z . Jik
TARMBFG R, JENIE Type 2 T L H T it aClstel, IF B35
A DATREI AN 2 R R LA BE
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At METTHIHTARE R P el LUE W, HLS PR I 1 VU B e e RhpR 1,
AL, ASONF Type 1 S CHEAT 10U SE5S o 12 S8l MURR ST i Je B, Sk
W TAE Type 1 HInHIEEANRITERE S, KA T7 i BRI —8. MSE
e R Mg, JERITE Type 1 FocHA BE PSS B8RHE. Ik4h, DIC
WEsERER, 5HA Square-twist T4 ITAF, Type 1 FITERITILFEH,
B T AR 38 7= A2 R 25 A0, Ty HL e H o IE T TR TR S 30 HE A ) 19 DY ] 5 )
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FERENL A RHENITE Type 1 BT AL, ASCH e 7 EF LIk
T AR _E IR AT IR, #ais S 2 AR B T I 98 5 v o JB sk 0 4 A% B el AT
B85, UEB T RN AR T, HAFAEM K188 1% . (B2 Eiashid iE
W, 2 SE AT AR T AN BRI DU B o AR, AN AR A T 5 ke
Type | BBICTERA MWL . L EWTFREE U, #4055 NI 4R s o i 77
EANTE 2L AERI M Type 1 oo Hr iz,

BEXX — R, ASSCERHAE 52 0 A i A BR T 7% Type 1 FRITIAR
AEGHATHI . T Type 1 FraCiciIENI I Sr S dett, RAEEANRITE
AATIEHE A RIFHPIRZS N A Re Mg &G BARBI AL, SR T IX A G L T AL e
BN BRIC o st IR ARIRAS o BRI, AR S0l 1 PN 2 R = AP A E
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W& EE R, R T %A R GRS AT DU -5 Type 1 FRIT AR TERHEAT 04T
MAZ I BT R R T AR5 SR it e Ak B T DA EE 2, JENIE Type 1 FRITINAR TR
SRR = Be: (D2 — B BOR A MATEEIRAS [ T SRR 12 3h i hr SR o B
FERABUEIRAET, B T MR AL B, B W Bk B i KA : (2
55 P B R R e o 1 K T A AR TR T iR B RS BRI B, LI S e
MR IR ERTE, BEfE Type 1 HICHIN AR E T BORES 20 10 TH AL T Re gl ¢
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IR B SRR T RE IR, [ 1 BRI 2% ETHIRES

MR DL EAR TR i, ARSCEEST T RN Type 1 BGHIALIGHEIA, FHEH T
VOMEs. 28—, BT Type 1| HuRIEE AR, MAWH X2 18 =S 211
AE: e REITI IR E . VEME ) LR RIS« 55—, Hoci S RE & F AR T AR
DAL AATIRIBE R 2 MR 2. 5=, RRREANKRINLIVEE, M T IE4 M
PR C R BB, HTARITH R B e B AR, TR A TR RE
A3 NP R . TE3R1S T Type 1 MG 5, AXHZHAFE
S S0 4 I UE 112 I A R

5T Type 1 BnILIAEA, ASCHIE 1 Il U AR B2 205 AU
PEREZ B E B R R ITEE KK, SR MUK LG RIS, FEEMELEE
AR, RECRITHIARTEREIG K, #hmiGE sk 1 ReE . JIMRIEE R38R . TR
S R IMIE EE GRS, ARSI RE sT ek I N, RIREIGE A T =AM RE S 2
Ko Mboh, HARESHIG RIS, Type 1 FRITHXGSA TR, S AT,
BEMIE =AM RES G K. BT AT AR, 7 LA dENIE Type 1
FICHIHUAR I BEREAT PN A2, NG S AUHEAT R BT 5 A S BE0E T A .

o N5 IERIEIRE S Square-twist FTAGEARKI BT 5047

AN E R T Square-twist HTAGEM R B THAEN], 257 17 HAERE
R GRAETT V25 . IO SRR B T AERI M3 4R 8 o a] USRI EE )32 LR I e A1 D RE
Bt UAA SCAE A B A A T AS RN S JERIE Square-twist HT4% 0. 26
ZL EZENANECERS W T HENIMEST AR T RE AT B, e LT
MBS HVMPERE R R R Bk, AET/AENERELLET: (D ZEFT
PRI 0T SR LU 2 IR AT A0 LART 2 25 ) DL O HE I 5 A5 5 AN (3] W 14 AT 4 22 4 1)
TR DAPHEAE —d: (2 43 HT AN IR B o TR A A5 i R 4 AR AR B AT
e, R ARy RUFIAR AR, B AN [ B T A BB AR RE IR SE MR s (3D BIFAT
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H 56, R Square-twist FrAGEM RN, ASCMER T HFRIE B, FLEEL T
=R TGRS I E SONANE P BT, AFEHENITE Type 1 A1 Type 2 5.6 A &I
P Type 3 H.7C. M Square-twist HT 4L TIPS FEF A I : (1) FENITE Type 1
BAICAERN L )5 BN 78 A AN R AT IR HRAT , PR AE DFE I g e SOy SR ) B
JCHFEIPL: (20 ARSI B O A E T TR TR J7 R ASE], AE S0 800 il e N
FEFMAFRIT, FHARREPFESINLAIX 4. HT DL E s R AR A,
TE5r M Square-twist HT AU A BRI B THEIIR, ASCHE 8 AN Honhf E k.
i, AN LT PR RN R0 N P S A — . PR AR, AR
THITULECEN: £ FHonSh T HRoMeEE, KuS5KiaME, LirR5 LR
M. T HEN], A4 H T Square-twist MBI FI B =T E AR X T
TH mXm NRICHEM B, G 2mer DR ge PR R SO ERHZTHE A
AT T2 00, BL2X2 NG Square-twist EEA RN, T — 2GR
BT Bl Z ] AR B R e A3 2, ERRR R IE N 2 5, ATRe PR
BEH 22=256 NMER 136 . IbAE, AL T LR S E ot B P
FAEN, FELAHON AL T T8 Square-twist $TAGE R L

Hk, A3 SIHEFNNR 7 2 0B oH G 1 Square-twist @BF1 KL, HoHp
BRI T EAE 0%~100% 2 (8132 A4Y, 570 IR0 % B 7 A Jie e R 35 AN 5 i
BUMRIERE o £E 50 AT A ER T — BRI RLINS, AR SOR I 7 AR () B AR AR T i
FEER AT R IR REL, ME— R ZE 2 R&H Type 2 M Type 3 HITHE
MR, BT ORI MAE R EA Type | Byl R, BT
FAFEEW, ST RIT IR R, G @M R T 22 I
JRBI A o ADCET LA B SR A, AT AR N B BT AR ORRE T A
FICHI AR TEAL IR M RE o DAL, A4 RE IR B8 W] LUFH B e iR M e R AT T
W LL4X4AHIGH) Square-twist EEAE g, HaeE AT LA N2 4 16 4~
JTCHIREEZ N, ORI SRR Nz B ORIE 1AM R & AN T a] LRSS R I
I, MR R AL R SL s Ingk 7 In) B A BT R R, R R 4 £
MHRTTAE . ZJE, BN R sk S, PrbAn] LIS, B RS2 1
A TIRESABRICHT AN 12 I 2 —. [FIEE, WIEEE I g ks, Fi,
FEE AR M A2 B T I FE TN 7N 73 2 — o Il 5 SEER 45 AT X, AR STIE
W11 FH BT BE RE 05 AT RA TR0 A A4 R} B AR R

E, AV EPREGR, AT =FEE@E RN R RE
iy, 2t 1 Square-twist HrAGHE AR IR REGmAE JT 8. A SCRT LR
7B C&UEH, Type 1 B ICHINUAR T eI KT AR PR A 86, Br AL m]
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TEBGEHEMEIRERE. (AR T Type 1 Bt REEZEANEIN, Rt MRt 2
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() JUART ARk 2 835 T T G R A B BEAR AU R, Lo 45 SRR 107
AT LS SR g B o N, Hr IR AN TR 0 W FE B ) 386 i 1 1 47 IR 4 2 e 2
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afE o A Z OO NI AERI VR S P 4GP R R T, S0 T 4GB R R T
T3, WTE T HAUME RE R T gu ARG, S AR r i 2 4 IS b TR AR SR AT 4%
AR T B E .
- ZwERE
ARICEESL T HERIE Square-twist Type 2 H. G I ER A UL & Type 1 T4

R, 25t 1 AN AERIE BT RE R AT T V4. FEURERAL B, S TR AT AR
AR B THE, B e T AN A ST PHZER 75 2R 1L A R A DA LA 2
K, SCHL T E e 2O LT LA DL R R AR AN RS HO0 i AR A B 1 RE AT
e o ASCH IR H BT HHE A PR RE g AR U7V, ke i T AR AR5 R B )
FEARL . BRI, ASHIEFE S5 R RIS F B A — e BfR 2 e N T iR X R
AGEPT R SEBR A, AT ALE R LA 7 T AT IR AR AT

(1) BT AR B HE Square-twist MBI TH 775, AR TAER LLtE—
2 EITAGEM R R T R AR E A R, R RREFE LS
PR AT A BT ) US4, (BN T 2 ZHA RN &, AHREE Z A B 3%
FETH BT IR 2 R 80 5 0, M L2 Square-twist AR A A,
X AN, B PR RE T~ T 3 A T AR ISF, AT DLRE I P A B 2 R A L2 T 1] &b
HATPHE, TERE BB L X Fh 2 28 A L AT DLSEEIL 58 Yo B AT LR RE S A2 o

(D ACHEFT ) Square-twist HT AR A& 2N WU IR T s 2060110 1%, ALtk
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(3) WIPEFIERI TR S Pral s i T L e T AR TR Cang/ a5 4 1)
TEARICAZARE) MG, it T AT 3 2 sl 3 1 () 450 o X bl 45 0 H A
PEREWT F T BT id B & A 2R A B K AR AL 2N
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(4) Square-twist # 4L 1) —MRF s, A FERIFTIR A EAF AL AT 25
AT OL R, SONEAFRAE $AIT, M= AN F R TERE . Bt dl, A
I R R RIAT AT B o 2R e Type 1 oA mEas k, war i S
NAHRH Type 3 B udUR MM R X PRIASE BB ATELEAT BN F I L
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