
Elastic Energy Behaviours of Curved-crease Origami



2 mm 50%

-

-

I





ABSTRACT

This thesis systematically explored the design and utilisation of elastically-bent curved-

crease origami. This was achieved by developing a set of curved-crease patterns with

consideration of the interaction between material elastic bending energy behaviours and

origami developability constraints. The thesis makes the following contributions.

First, an exact analytical surface representation of a curved-crease pattern was devel-

oped by introducing the 1D elastica solution for large elastic bending deformation into the

mirror reflection curved-crease origami generation process. The new geometry, deemed

elastica surface origami, is capable of concisely and accurately capturing the principal sur-

face curvature and developability characteristics of elastically-bent curved-crease origami.

A surface error analysis of 3D scanned physical prototypes was used to validate the analyt-

ical geometries, which were shown to be highly accurate to within 50% of the 2mm sheet

thickness for a range of elastica surface profiles. Limitations of the curved-crease gener-

ation method were also explored including the derivation of a maximum compressibility

limit; investigation of accuracy of numerical folding motion simulation; and an investiga-

tion of a free edge distortion behaviour which occurred in certain origami forms.

Second, an elastica-derived bending strain energy formulation was used to generate a

customizable force-displacement response in curved-crease compliant mechanisms. This

new method was presented by translating the local cross section deployment mechanics

to a global frame of reference set according to the design parameters of the curved-crease

origami unit geometry. A valid local-global translation and force-displacement response

was found when the cross section deformations with and without developability constraints

were suitably close to each other. This key feature enabled a range of predictable non-linear

force-displacement responses to be realised through the alternation of pattern edge angle,

edge length, and tessellated forms.

Third, a new application of curved-crease origami was developed for control over the

shape of an elastically-buckled thin-walled cylinder, using pre-embedded crease lines. The

failure mode was pre-determined as a stabilised high-order elastica surface, which mani-

fests via a diamond buckling mode, similar to imprecise failure modes known to occur in

cylinders of this type. A set of prototypes were tested and showed that the buckling process

can be guided to a range of designed failure modes. The deformed surface was measured

and shown to have a near-exact correspondence to the analytical geometric description.

Finally, the investigation into the driving mechanics of the buckling process was closely

explored. It was found that the controllable buckling process exhibited a bistable transition

from a higher strain energy tubular state to a lower strain energy curved-crease state.

Overall, this thesis has made a significant contribution to the research field of origami
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engineering and large deformation non-linear mechanics. It offers a strong research plat-

form for curved-crease origami ranging from the fundamental geometrical relations to po-

tential engineering applications.

KEY WORDS Elastica, curved-crease origami, compliant mechanism, elastic bend-

ing strain energy, buckling shape control, thin-walled cylinder
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background

Curved-crease origami is a class of origami patterns which have a curved fold that

imparts a non-zero principal curvature into a thin sheet during a non-rigid folding. They are

noted for their striking and beautiful folded forms and as such, they are widely employed

as decorative or aesthetic components, including as packaging and sculptures.

A new generation of performative applications is emerging which seeks to adopt

the beauty of curved-crease surfaces for novel engineering and architectural applications.

These include compliant and lamina-emergent mechanisms [1–3], self-assembling devices

[4], energy-absorption components [5, 6], façade and shading components [7–9], folded

shell components [10, 11], and deployable and thin-walled structures [12–18]. Some of

these applications are demonstrated in Fig. 1-1.

Curved-crease applications have all been enabled by preceding work in mathemat-

ics, modelling, and simulation of curved-line folding. However, modelling techniques are

limited. Recent concise geometric descriptions of curved-crease origami do not account for

elastic or plastic bending energy and thus present variations to the precise folded fabrication

[9]. Other modelling methods typically require numerical discretisation of a target curved

surface to allow developability constraints to be enforced at pattern vertices. The discre-

tised surface can approximate a physical surface through relaxation for minimum bending

energy, however such methods are cumbersome and their accuracy is largely unknown.

Therefore, the core objective of this thesis is to develop a new analytical modelling method

that can concisely and accurately capturing both developability and bending behaviours of

a curved-crease origami surface.

Furthermore, curved-crease origami has a great potential to be utilised as a compliant

mechanism, as they share many of their key characteristics, including sophisticated fold-

ing behaviour and strain energy storage capability [19]. However, folding behaviours of

curved-crease origami are poorly understood. Existing methods utilises a pseudo-rigid ap-

proximation of a curved-crease surface for simulating its folding motion [20, 21], and sub-

sequently incorporate material properties to capture the folding mechanics. These methods

simply enforce the rigid-foldability without the consideration of surface minimum bend-

ing behaviour, hence their accuracy is largely unknown. Therefore, further investigation is

needed to explore the interaction between material bending behaviours and origami devel-

opability constraints during folding.
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A. B. C.

D. E.

Fig. 1-1 Curved-crease origami applications. (A) Compliant mechanism [3]. (B)

Energy-absorption component [6]. (C) Façade component [8]. (D) Deployable structure [13]. (E)

Thin-walled structure [18]. Images reproduced with permission.

1.2 Aim and Scope

The aim of the thesis is to propose new curved-crease origami representations with the

consideration of material bending behaviours. It will do this by exploring the intersection of

curved-crease origami geometries and large elastic bending mechanics, following a central

argument that a 1D elastica solution for large elastic bending deformation can link to a
better design solution for curved-crease origami. The focus of the thesis is on embedding

curvature, representing sheet elastic bending behaviours, into the design geometry to give

accurate representations of curved-crease origami for different objectives [14, 22]. These

include modelling of target folded forms, simulation of folding behaviours, and accurate

response of physical phenomenons. This thesis is limited to the consideration of Miura-

derivative and Yoshimura-derivative curved-crease patterns, as they are commonly used

fundamental origami patterns.

1.3 Layout

The thesis structure consists of five chapters as follows:

• Chapter 2 highlights the significance of the thesis by outlining current knowledge

in areas of key relevance. These include a brief overview of origami-inspired engi-

neering, modelling of curved-crease folded forms, and simulation of curved-crease

folding behaviours. Furthermore, the theory of elastica will also be introduced.

• Chapter 3 utilises a specific type of elastica solution to develop an analytical ge-

ometric construction method for curved-crease origami which can concisely and

accurately capture the bending behaviours, namely elastica surface generation of
curved-crease origami. An experimental approach is used for validating the accu-

racy of analytical geometries. The proposed analytical method is then combined

with existing numerical approaches to capture the behaviour of several curved-
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crease geometries with different boundary conditions.

• Chapter 4 explores the folding mechanics of curved-crease origami by considering

first the minimum elastic bending behaviours of a curved surface, and subsequently

considering the interactions between this surface and introduced origami developa-

bility constraints. A new curved-crease bending translation (CCBT) method to

analytically describe the folding mechanics of a curved-crease origami is presented.

This enables predictable non-linear force-displacement responses to be realised for

curved-crease geometries with different geometric design parameters.

• Chapter 5 presents a new method to control the shape of a elastically buckled

medium length thin-walled cylinder by using pre-embedded curved-crease origami

patterns. The failure mode is pre-determined as a stabilised high-order elastica sur-

face, which manifests via a diamond buckling mode. A set of prototypes are tested

and show that the buckling process can be guided to pre-determined failure modes.

• Conclusions of key findings and discussion on future work are given in the final

thesis chapter, Chapter 6.

3
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Chapter 2 Literature Review

This chapter will present a background of previous research work in three areas of key

relevance to the thesis scope. First, an overview of origami geometry will be presented.

Second, available modelling methods for curved-crease origami will be listed. Finally, the

fundamental mechanics of large elastic bending of slender beams will be reviewed.

2.1 Origami Geometry

2.1.1 Origami-inspired Structures

For the past several decades, origami-inspired structures have been increasingly stud-

ied and adopted across a wide range of scales and disciplines. Scales range from nano-scale

DNA [23] to deployable space structures [24]. Disciplines demonstrated to have a high

suitability for origami-inspired design include civil engineering [25, 26], biomedical engi-

neering [27–29], aerospace engineering [30, 31], mechanical engineering [32, 33], material

science [34, 35], artistic product design [36–38], and architectural design [39, 40].

Origami-inspired structures are popular, as the use of folding technique imparts sheet

materials with many interesting and useful performance characteristics. These include de-

ployability [41, 42], static load-carrying capability [43–45], and aesthetics. For example,

subway maps [46], ballistic barriers [47], and solar arrays [24] can all be efficiently com-

pacted into smaller volumes for storage and transportation, as shown in Fig. 2-1A-C, re-

spectively; folded corrugations can be used to improve the structural stability and stiffness

of timber plate structures [48], energy absorption tubes [49], and deployable structures [50],

as shown in Fig. 2-1D-F, respectively; and beautiful sculptures [51, 52] and shell compo-

nents [20] can all be folded from a single sheet, as shown in Fig. 2-1G-H and Fig. 2-1I,

respectively.

A range of sheet materials is suitable for folding, such as timber [53, 54], metal [18,

55], plastic [56, 57], and composite sheets [58, 59]. These materials are incorporated with

diverse origami patterns for generating different behaviours. An introduction of origami

patterns is further discussed in the following section.

2.1.2 Origami Patterns

Origami patterns map all creases utilised in folded configurations as unfolded 2D

diagrams [60, 61]. They can be described using the following terms [62]:

• A crease represents either a mountain or valley fold, corresponding to convex and
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A. B. C.
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Fig. 2-1 Origami-inspired structures. (A) Foldable subway map [46]. (B) Deployable ballistic

barrier [47]. (C) Origami solar array [24]. (D) Folded plate structure [48]. (E) Energy absorption tube

[49]. (F) Folded accordion shelter [50]. (G) A reconstructed Bauhaus model [51]. (H) Hexagonal

Column with Cusps [52]. (I) Gregory Epps’ car design [20]. Images reproduced with permission.

concave folds, respectively.

• A vertex is a point intersected with two or more creases.

• The degree of vertex is the number of creases intersecting at the vertex.

• The folded state is the end or intermediate stage of a folding motion.

The geometry and mountain-valley assignment of creases are major design consider-

ations in determining the shape of a folded state. For the purposes of this thesis, origami

patterns are classified into two types based on the crease shape, straight-crease origami and

curved-crease origami, as shown in Fig. 2-2A-2-2B, respectively.

2.1.2.1 Straight-crease Origami

Straight-crease origami are capable of generating complex 3D forms made up of

polygonal facets connected with straight crease lines. They possess developability, that

is the ability to be folded from a continuous flat sheet, for making planar materials a great

use in engineering applications. The developability of a straight-crease origami is enforced

with a vertex angle criterion, specifically that the summation of angles around each vertex

must equals to 2π [63].

Straight-crease origami may also possess rigid-foldability, referring to the fact that
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A. B.

Flat Bent

Straight-crease Curved-crease

Fig. 2-2 Origami patterns and their design components. (A) Straight-crease origami. (B)

Curved-crease origami.

facets do not stretch or twist during a rigid folding motion, hence enabling folding of rigid

materials. Many methods have been developed for judging the rigid foldability of diverse

straight-crease patterns. For example, Huffman [63] and Miura [64] employed the Gaussian

curvature theory to study rigid-foldable origami using a 4-degree polyhedral vertex; Watan-

abe and Kawaguchi [65] showed that their diagram and numerical methods are sufficient

to be applied on several 4 and 5-degree patterns according to their mountain–valley assign-

ments; Tachi [66, 67] utilised his numerical algorithms for simulating the folding motion

of one-DOF rigid-foldable origami based on the kinematic of 4-degree vertices; and many

kinematic model-based methods are also available which consider origami patterns as the

assembly of spherical linkages [41, 68–70].

Among many rigid-foldable patterns, the Miura pattern is a common 4-degree pattern

due to its pattern simplicity and the one-DOF characteristic [64, 71]. Extensive research

has been conducted for the Miura pattern and its derivatives, specifically in the field of

geometric modelling and the investigation of kinematic and mechanical behaviours. For

example, Wu [72] developed a set of geometrical relations for simulating folded shapes and

folding motions of Miura, Arc, and Arc-Miura patterns; Gattas et al. [73] extended Wu’s

modelling approach to non-developable Miura pattern, non-flat foldable Miura pattern, and

tapered Miura pattern; Klett and Drechsler [74] studied the tessellation of Miura pattern

for their foldcores; and Ma et al. [75] explored graded Miura patterns for realising graded

structural stiffnesses. Several of these patterns are further utilised in this thesis, including

Miura, Arc, and Arc-Miura patterns, as shown in Fig. 2-3A-C, respectively.

Common 6-degree rigid-foldable patterns include the Yoshimura pattern, Kresling pat-
tern, and Waterbomb pattern, as shown in Fig. 2-4A-C, respectively, which are all possess-

ing a multi-DOF characteristic. Note that the Yoshimura and Kresling pattern are made

up with the same base, where all vertices are intersected with four mountain creases and

two valley creases; the Waterbomb pattern is the combination of two kinds of vertices, in-

cluding vertices intersected with four mountain creases and two valley creases, and two
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mountain creases and four valley creases. Owing to the flexibility of thin sheets, these pat-

terns can produce a non-rigid folding motion in their tubular forms, typically involving a

multi-stability or nonlinear buckling behaviours [76–78]. For example, the Yoshimura pat-

tern can be naturally formed in buckling of thin-walled cylinders under lateral compression

[79–81], the tubular Kresling pattern can be deployed to multiple stable states [78, 82], and

the Waterbomb pattern can form a tubular configuration with a non-uniform radius [83].

Miura Arc Arc-MiuraA. B. C.

Valley

Mountain

e

f

e

f

a

b

c

d

a

b

c

d

Fig. 2-3 4-degree patterns and their folded forms. (A) Miura pattern. (B) Arc pattern. (C)

Arc-Miura pattern.

2.1.2.2 Curved-crease Origami

Curved-crease origami arise as a hybrid of sheet folding and bending. They use curved

folds to impart surfaces with non-zero principal curvatures during their non-rigid folding

motion. This striking feature has led to diverse interesting 3D shapes with developability.

The developability of curved-crease origami can be evaluated using the Gaussian curvature

theory, which will be further explained in the following section.

The folded state of a curved-crease origami is usually determined mechanically by

minimising the total elastic energy from the sheet and the crease [84, 85]. This can result

in two types of curved folds, including non-planar curved-fold and planar curved-fold [86,

87], as shown in Fig. 2-5A-B, respectively. If there is a torsion remaining within the crease,

a non-planar curved-fold is formed; and if there is zero torsion within the crease, then a

planar curved-fold is formed. A random curved-crease origami in fact can be a composition

of both non-planar and planar curved folds, as demonstrated in [20].

Unlike straight-crease origami, curved-crease origami ‘patterns’ are not named with

strict classification, but they are seen in many well-known historical aesthetic works, such

as the ‘Bauhaus model’, ‘Hexagonal Column with Cusps’, and Gregory Epps’ car design, as

shown in Fig. 2-1G-I, respectively. These examples are also important figures representing

the development of knowledge in curved-crease origami: the classic ‘Bauhaus model’ was

long been designed using the trial and error method in the late 1920 s [51]; the ‘Hexagonal

Column with Cusps’ was designed with a mathematical definition in the 1970’s, which
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A. B. C.Yoshimura Kresling Waterbomb

Valley

Mountain

a

b

a

b

Fig. 2-4 6-degree patterns and their tubular folded forms. (A) Yoshimura pattern. (B) Kresling

pattern. (C) Waterbomb pattern.

had a strong connection to a computational process [52]; and Gregory Epps’ car design

was designed to demonstrate the potential of future robotic manufacturing technologies

[8, 20]. More examples can be found in a comprehensive history of curved-crease origami

documented in [88].

B.A.
PlanarNon-planar

Fig. 2-5 Types of curved-fold. (A) Non-planar curved-fold. (B) Planar curved-fold.

2.1.3 Developable Surfaces

2.1.3.1 Gaussian Curvature of Surface

The Gaussian curvature (or total curvature) K is an intrinsic measure to describe the

characteristic of a smooth surface [89]. It is calculated as the product of principal curva-
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tures, κ1 and κ2, at a point on the surface:

K = κ1κ2 (2-1)

One way to find the point of principal curvatures is employing a moving Darboux frame

(or normal plane) on the smooth surface, where the intersection will form a 2D curve and

enables the evaluation of plane curvatures κ for finding κ1 and κ2, as shown in Fig. 2-6.

Plane curvature at a point can be calculated as:

κ =
1

ρ
=

dθ
ds

(2-2)

where ρ is the radius of an imaginary osculating circle sharing the same tangent and curva-

ture, also known as the radii of curvature. Using the osculating circle is a geometric way

to represent the curvature. The physical way to understand the curvature is based on the

change of the tangent angle dθ of the infinitesimal segment ds. Being a plane curvature,

positive curvature refers to a concave feature, negative curvature refers to a convex feature,

and zero curvature refers to a planar feature.

κ1 κ2

ρ1 ρ2

Fig. 2-6 Principal curvatures of a smooth surface.

The characteristic of a smooth surface can be determined based on the sign of the

Gaussian curvature. If K > 0, a dome-like surface is formed with principal curvatures

pointing toward the same direction, as shown in Fig. 2-7A. If K = 0, a smooth developable
surface can formed with one principal curvature being zero and the remaining principal

curvature being non-zero, as shown Fig. 2-7B (described further below). If K < 0, a

saddle-like surface is formed with principal curvatures pointing toward opposite directions,

as shown in Fig. 2-7C.

2.1.3.2 Fundamental Types of Developable Surface

There are three types of fundamental 3D developable surface. They are cylindrical,

conical, and tangent developable surfaces [90–92]. Flat planes are also 2D developable sur-

faces as they are made up with zero principal curvatures. Smooth developable surfaces have
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K>0 K=0 K<0

+κ

-κ

+κ +κ

+κ

κ=0

A. B. C.

Fig. 2-7 Gaussian curvature of smooth surfaces. (A) K > 0: Dome-like surface. (B) K = 0:

Developable surface. (C) K < 0: Saddle-like surface.

a key feature in that they can be unrolled to a flat plane without any distortion. Therefore,

they are suitable to the modelling of surfaces which can be made out of sheet materials.

Note that developable surfaces are a very small subset of all possible smooth surfaces, as

most surfaces are non-developable and possessing a doubly curved form, that is K � 0, such

as spheres and hyperboloid surfaces.

2.1.3.3 Generation of Developable Surfaces

Developable surfaces are ruled surfaces which can be generated by the continuous

motion of a straight line moving along a space curve [93–95]. The space curve is called

a directrix and the straight line is called a generator or ruling of the surface [12]. This

definition can be used for manipulating the shape of a developable surface. For example, a

cylindrical surface can be generated by a set of parallel rulings arranged in space, as shown

in Fig. 2-8A; a conical surface can be generated by a set of non-parallel rulings meeting at

an apex, as shown in Fig. 2-8B; and a tangent developable surface can be spanned by a set

of rulings tangential to a space curve, as shown in Fig. 2-8C.

A. B. C.

Ruling

Directrix

2D

2D

3D

Tangent

Fig. 2-8 Generation of fundamental types of developable surface. (A) Cylindrical surface. (B)

Conical surface. (C) Tangent developable surface.
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2.1.3.4 Origami Surfaces

Origami surfaces can be understood as a special extension of developable surfaces,

as they are the assembly of two or more developable surfaces subjected to geometric con-

straints that preserve the developability across crease lines. For example, the Miura pat-

tern is a developable surface made up with repetitive parallelogram planes; and a simple

curved-crease surface can be obtained from two cylindrical surfaces sharing a common

developability constraint [12, 96], as shown in Fig. 2-9.

A physical curved-crease pattern can be folded to different 3D minimum bending en-

ergy configurations depending on boundary constraint conditions. These folded config-

urations can be described as the assembly of different fundamental developable surfaces

[63, 86]. If a planar curved fold is formed, it can be considered as the assembly of cylin-

drical or conical surfaces, where the crease is kept in a 2D plane [20], as shown in Fig.

2-10A-B, respectively. If a non-planar curved fold is formed, it can be considered as the

assembly of tangent developable surfaces, where the crease is transformed to a 3D space

curve [13], as shown in Fig. 2-10C.

Developability
Constraint

(a)

(b)

(a)

(b)

Fig. 2-9 Assembly of smooth developable surfaces sharing a common developability constraint.

Figure from left to right: Flat sheet components, 3D developable surfaces, and curved-crease origami.

2.2 Modelling of Curved-crease Origami

Driven by new applications of curved-crease origami, recent research effort has been

devoted to accurately model the folded form of curved-crease origami [57, 97]. By neces-

sity, these all must capture two characteristics of curved-crease origami surfaces: enforce-

ment of a constant zero Gaussian curvature for surface developability and evaluation of the

non-zero principal curvature for surface bending behaviour.

12



Chapter 2 Literature Review

2D2D 3D

A. B. C.

Bend

Twist

Fig. 2-10 Curved-crease surface assembled from (A) cylindrical surfaces, (B) conical surfaces, and

(C) tangent developable surfaces.

2.2.1 Geometric Methods for Folded Forms

2.2.1.1 Transformation of Developable Surfaces

The mirror reflection method is one of the simplest geometric construction methods for

generating curved-crease surfaces based on the transformation of smooth developable sur-

faces [87]. The transformation is done by intersecting a plane through a developable surface

and obtaining the folded configuration by plane mirror reflection, as shown in Fig. 2-11A.

The mirror reflection method is therefore capable of generating planar curved folds but not

non-planar curved folds, as shown in Fig. 2-11B-C. This method was developed with a key

theorem of that, ‘A surface generated by applying mirror reflection to a part of an origami
surface is also an origami surface’. That is to say, rulings of the folded surface are also

reflected about the flat mirror plane. Multiple reflections can thus generate a complicated

origami surface with sequential planar curved folds, as shown in Fig. 2-11D. A key benefit

of using the mirror reflection method is that the developability constraint of a curved-crease

surface can be concisely obtained. This enabled Mitani [98] to develop a fast interactive

computational modelling tool for 3D column-shaped curved-crease origami. However, ex-

isting utilisations of the mirror reflection method does not yet account for surface bending

behaviours, hence the accuracy is largely unknown.

2.2.1.2 Transformation of Base Rigid-foldable Patterns

Gattas and You [21] proposed a curved-crease creation method which transformes a

known straight-crease origami pattern into curved-crease variants. The Miura pattern and

its derivatives were used as ‘base’ straight-crease patterns in their proposal. Analytical

‘ellipses’ are defined through sequential zigzag ridges of the base pattern for generating
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D.

Mirror 
Plane

C.

Fig. 2-11 Curved-crease origami creation using the mirror reflection method. Single-crease

reflection from a (A) simple curved surface, (B) cone surface, and (C) extruded sine curve. (D)

Multi-crease reflections from a simple curved surface.

edge curves of the curved-crease surface, as shown in Fig. 2-12A. Note that three zigzag

points do not provide enough information to create an unique ellipse, a gradient parameter

is defined in the ellipse creation procedure. Elliptical geometry is used, as the intersect-

ing geometry of a mirror reflection plane and a cylindrical surface is an elliptical curve, as

shown in Fig. 2-12B. This indicates that the curved-crease surface is designed to possess an

‘arc surface’ (cylindrical surface) as the non-zero principal curvature. This method is con-

sidered to extend and provide a parametric definition for the mirror reflection method, hence

the developability condition is preserved during the transformation. Furthermore, Chandra

et al. [99] developed a modelling tool for generating curved-crease tessellation of freeform

geometries which is also based on the transformation of straight-crease patterns. The main

advantage of these transformation methods is that they are capable of parametrizing and

modelling curved-crease folded forms for a specified target volume. However, the limi-

tation of these transformation methods is again that they do not yet consider any bending

energy within the geometry, hence the correspondence between designed and manufactured

geometry is approximate only, as demonstrated in [9].
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EllipseA.

B.

Ellipse

Arc

Cyliner

Mirror 
Plane

Fig. 2-12 Curved-crease origami creation from base rigid-foldable patterns. (A) Transformation

procedure of a folded Miura pattern to its curved-crease variant. (B) The principle of the transformation

method.

2.2.2 Numerical Methods for Folded Forms

Above analytical descriptions of curved-crease origami are suitable for simple planar

curved folds. Numerical methods (or discrete methods) are employed for modelling more

complex curved-crease surfaces, such as non-planar curved folds. These require the curved-

crease surface to be numerically discretised to allow vertex developability constraints to be

enforced at pattern vertices [20, 21, 100], with discrete rulings approximating either an inex-
act or exact bending behaviour. A curved-crease approximation can then be generated in a

computational environment based on those identified rulings, by fitting a planar quadrangle

(PQ) mesh to the curved surface [101, 102].

2.2.2.1 Inexact Bending Behaviour

Inexact methods approximate an observed curved crease surface but are simplified to

avoid explicit consideration of material bending behaviours.

An inexact PQ mesh can be simply generated through tracing of a physical prototype

[20]. This method is considered as a hybrid physical and digital design technique which

is capable of providing reasonable approximation of material behaviours. The benefit of

building physical prototypes is that designers can be inspired from the reaction of physical

curved-crease behaviours and create a range of design possibilities. This method has also

demonstrated that a curved-crease approximation can be recreated in different scales and

materials by utilising the same PQ mesh assembly. However, designing a desired folded

from can be a challenging task, as traditional origami trial and error relies on experience

and time.

Gattas and You [21] showed that a pre-defined analytical curved-crease surface can
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be discretised into a PQ mesh assembly. The approximation was achieved by subdividing

cylindrical and conical surfaces into rigid origami strips by following their ruling orien-

tations, corresponding to non-tapered and tapered curved-crease Miura geometry in their

proposal, respectively. Although they did not consider any bending behaviours in their

pre-defined geometries and the discretisation process, they have demonstrated that a good

curved-crease approximation can be achieved with finer divisor rulings, as demonstrated in

their physical prototypes.

A higher resolution of curved-crease approximation can also be achieved computation-

ally by smoothing a coarse PQ mesh input based on the framework of dynamic relaxation

[96]. However, non-developable mesh assemblies are formed during the smoothing process,

as the mesh quantity, size, and shape are progressively changed. This method thus uses a re-

laxation method for realising an optimised approximation of a curved-crease surface which

is developable and possessing planar meshes.

A few computational methods are available to create an inexact curved-crease ap-

proximation by specifying surfaces rulings about a pre-defined curved fold using different

discretisation algorithms [103, 104]. These methods are different to mesh-based methods,

as they allow users to deal with smooth developable surfaces based on continuous curves

and splines. The relationship between surface rulings and the shape of a folded configura-

tion were closely considered in these methods, hence enabling interactive manipulation of

curved-crease surfaces.

2.2.2.2 Exact Bending Behaviour

Exact methods combine geometric developability constraints with a consideration of

material bending behaviours to give a stronger approximation of a curved-crease surface.

Kilian et al. [10] presented a quadratic discrete bending energy formulation for fitting

the PQ mesh to a curved-crease surface using an optimisation based computer processes.

Their method optimised for minimum discrete bending energy from curvature while enforc-

ing developability at vertices. A physical model can be scanned and digitally reconstructed

using their optimisation algorithm, which will then form a reasonable approximation of a

folded sheet.

Solomon et al. [105] presented a subdivision-based modelling approach for transform-

ing a specified straight-line ruling pattern to a curved developable surface. Their method

first decomposes the input geometry into multiple developable patches. For smoothly bent

regions, they subdivide rulings and relax them by minimizing a curvature-based bending

energy while enforcing the exact developability. The smoothed region is hence developable

and consists of finer rulings with the consideration of material behaviours.

Although these exact methods have captured the surface developability with the con-

sideration of material behaviours, there are three ongoing challenges. First, the capacity of

these approximation methods for accurately modelling a folded form is largely unknown,

as validations do not yet exist. Second, these methods did not suggest the design process for

defining the input surface. Third, these methods have not yet explored the folding motion
of the generated model, which will be further discussed in the following section.
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2.2.3 Numerical Folding Simulations

Modelling the folding motion of a curved-crease origami is an extremely challenging

task, as the complexity of accurately capturing both surface developability and sheet bend-

ing behaviours is amplified when considering motion. Numerical methods were developed

to simulate the folding behaviour of a known curved-crease surface, typically involving the

use of rigid-foldable curved-crease approximations [20, 21]. These methods first require

a pre-defined curved-crease surface to be numerically discretised into rigid mesh assembly

using above inexact and exact methods. The generated model typically possesses 4-degree

vertices and a single-DOF rigid-foldable characteristic. This then enables the compliant

folding motion of a curved-crease origami to be approximated using a rigid folding mo-

tion. This technique has been successfully utilised in robotic constructions where the fold-

ing simulation is used as the instruction for manufacturing curved-crease components, as

demonstrated in [8].

2.2.3.1 Rigid-foldable Curved-crease Miura Pattern

This thesis adopts the numerical folding simulation method developed by Gattas and

You [21] for a unit curved-crease Miura pattern. The simulation method is briefly sum-

marised here as it will be utilised in later chapters. Note that this method can also be used

for other curved-crease patterns made up with multiple creases, if creases are spanning

along the same direction and crossing common boundary edges.

A.

B.
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Φ1 Φ2 Φ3

s1 s2 s3
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γ3‘
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k = 0 1 2 3 4 5 6
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Edge curve 1
(Discretised)

Aη‘

Bη‘

(0, 0, 0)
ηA

ηB

Fig. 2-13 Folding simulation of a rigid-foldable curved-crease Miura pattern. (A) Initial state. (B)

Intermediated folded state.

First, the rigid-foldable PQ mesh assembly is created by subdividing the unit curved-

crease Miura pattern into rigid origami strips connected along common longitudinal edges,
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as shown in Fig. 2-13A. The folding motion of each rigid strip can be characterised by

a varying common edge angle, ηA, using the method described in [73]. That is to say,

the change in shape of Edge curve 1 determines the complete motion of the rigid strips

assembly.

At the initial state, Edge curve 1 can be described with control vertices in a Cartesian

system (+xk,+yk) from the origin, where subscript k denotes the vertex position, as shown

in the sub-figure in Fig. 2-13A. Three design parameters about Edge curve 1 are specified,

they are: length of line segments [s] = s1, s2, s3, ...sk, angles between line segments and the

y-direction [γ] = γ1, γ2, γ3, ...γk, and lateral sector angles [φ] = φ1, φ2, φ3, ...φk, which can

be calculated as,

φk = cos−1
(cos ηB

cos γk

)
(2-3)

where ηB = (π−ηA)/2 is the initial angle between the side length of the pattern and the base

plane.

During intermediate folded states (Fig. 2-13B), [s] and [φ] remain unchanged and the

new [γ
′
] = γ

′
1, γ

′
2, γ

′
3, ...γ

′
k can be calculated as

[γ
′
] = cos−1

(cos[φ]

cos η
′
B

)
(2-4)

where η
′
B is determined by the current edge angle η

′
A = π−2η

′
B. Knowing [s] and [γ

′
] allows

nodal translations (Δx,Δy) of Edge curve 1 to be calculated for k > 0 (excluding the origin),

where

Δx = [s] sin[γ
′
] (2-5)

Δy = [s] cos[γ
′
] (2-6)

Therefore, the shape of new Edge curve 1 at an intermediate folded state can be deter-

mined by joining the origin with displaced vertices ((xk>0 + Δx), (yk>0 + Δy)). A folded PQ

mesh assembly is then created by projecting the new Edge curve 1 to other edge curves, de-

termined by η
′
B and η

′
A. Finally, the folding motion is simulated with multiple intermediate

folded states being specified.

2.2.3.2 Compliant Behaviours of Curved-crease origami

Once the folding motion of a rigid-foldable curved-crease approximation is simulated,

compliant mechanism theory using a pseudo-rigid-body-model (PRBM) can be employed

as one suggested strategy for modelling its folding mechanics [106, 107]. The PRBM ap-

proach assumes that the elastic strain energy is stored only in creases, which act as torsional

springs with an elastic stiffness, as shown in Fig. 2-14. The total strain energy UPRBM is cal-

culated as the summation of the energy stored in both longitudinal and transverse creases,

calculated based on the change of crease line dihedral angles:

UPRBM =
∑ 1

2
ks

(
α
′
d − αd

)2
(2-7)
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where ks is the crease stiffness and αd and α
′
d are dihedral angles at initial and deformed

states, respectively.

If crease stiffness is assumed as zero, folding motion corresponds to a rigid-foldable

straight-crease origami folding mechanism. If crease stiffness is calibrated to material bend-

ing stiffness, this then gives a more accurate representation of a compliant folding motion,

but still enforces a rigid-foldable motion path [108].

PRBM has been demonstrated to be effective for modelling straight-creased compliant

mechanisms [109, 110], but recent research suggests that minimum energy surface rulings

will change as a curved surface folds [111]. It is therefore unknown if PRBM is valid for

curved-crease compliant mechanisms and there are no experimental data sets or analytical

solutions yet available to support such validation.

A A

Rigid links

Torsional springs

A

A

Cross section

αd

αd’

Fig. 2-14 Curved-crease origami folding simulation using PRBM.

2.3 Large Elastic Bending

This thesis shall apply large elastic bending theory to origami design. The fundamental

theory of elastic bending mechanics is briefly summarised below.

2.3.1 Elastica Curves

Elastica curves are geometries that describe the large elastic deformation of a slen-

der beam [112]. Early mathematical models describe the elastica geometries as one-

dimensional curves and were subsequently shown in mechanics models to represent nat-

urally stable bending forms, that is curves corresponding to minimum bending energy con-

figurations and also postbuckling geometries [113–115]. They have been extensively stud-

ied for a range of boundary conditions and deformations (Fig. 2-15), with a typical elastica

for a pinned-pinned beam with uniform bending stiffness (Fig. 2-16). The curve represents

the centreline geometry of the deformed beam and possesses a non-uniform curvature, in

contrast to the uniform curvature typically assumed for small beam deformations.

From structural mechanics, the relationship between beam curvature κ and deflection

y is given by Equation 2-8. The non-linear denominator term arises from the large defor-
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Fig. 2-15 Elastica curves for different boundary constraint conditions. Images on left are from

[112]. Images on right are from [14] and curves generated from prototype deformation. Images

reproduced with permission.

mation strain-displacement relation, which includes finite rotation of a beam element. The

constitutive relationship is unchanged from linear theory, with curvature related to moment

M and flexural rigidity value EI as shown.

κ =
y′′(x)(

1 + y′(x)2
) 3

2

=
M
EI

(2-8)

The elastica profile is obtained through integration of Equation 2-8, however retention of the

denominator term makes this a complex task. The denominator term is usually neglected

in engineering structures with assumed small beam deformations, however in large elastic

deformation the term cannot be neglected. Mathematically, the solution for certain idealised

cases can be achieved with Jacobian elliptic functions [116], however explicit solutions have

also been derived, including for the case of one-dimensional simply-support beams. This

thesis shall employ the explicit solution developed by Pacheco and Piña [117] and Valiente

[118], which expresses the elastica curve in Cartesian coordinates and is published as a

Visual Basic script online [119]. The solution is summarised as follows.

F F

(0, h)

(+x, +y)(-x, +y) θ

Θ
-x +x

+y

h

b
L

Fig. 2-16 Elastica curves for a simply-support slender beam with uniform bending stiffness.

The 1D rod shown in Fig. 2-16 has three length parameters: support distance after
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deformation b, beam height after deformation h, and beam length before deformation (arc

length) L. These can be explicitly related to the m parameter, which is a quantity used to

evaluate elliptic functions and generally employed such that 0 < m < 1 [120]. Relations

between the length and m parameters are [117]:

b
L
= 2

E(m)

K(m)
− 1 (2-9)

h
L
=

√
m

K(m)
(2-10)

b
h
=

2E(m) − K(m)

m
(2-11)

where K(m) is the complete elliptic integral of the first kind and E(m) is the complete elliptic

integral of the second kind. The m parameter can be additionally related to the tangent angle

of the elastica curve at the initial (pinned support) location Θ with [118]:

Θ = 2 sin−1
(√

m
)

(2-12)

A unique elastica curve can be defined in a Cartesian system (±x, y) from Θ and m
parameters. First, the vertical coordinate y and tangent angle θ are related with [118]:

y =
0.5L

√
2
√

sin(Θ − π
2
) − sin(θ)

K(m)
(2-13)

which can be rearranged as:

θ = sin−1

(
sin

(
Θ − π

2

)
−

(
K(m)

y

0.5L
√

2

)2
)

(2-14)

Second, by specifying a range from 0 to h for y coordinates in Equation 2-14, the rotation

θ at each point coordinate is obtained. This is used to determine the corresponding ±x
coordinates as:

± x =

√
EI
2F

∫ − π2

θ

sinω√
sin(Θ − π

2
) − sinω

dω (2-15)

where F is the value of the two opposing horizontal end forces. F is obtained through

equilibrium and by assuming a uniform beam flexural rigidity of EI [117]:

F = EI
(
2

K(m)

L

)2

(2-16)

Finally, substituting Equation 2-16 into Equation 2-15, the term
√

EI
2F can be replaced with

0.5L√
2K(m)

. The flexural rigidity term EI is eliminated and the elastica coordinates (±x, y) are

given as a purely geometric relation [118], which mean they can arise in any elastically-bent

material:

± x =
0.5L√
2K(m)

∫ − π2

θ

sinω√
sin(Θ − π

2
) − sinω

dω (2-17)

Therefore, by specifying any two of b, h, L, m, or Θ, the remaining three parameters

can be obtained from Equations 2-9 to 2-12 and a corresponding plot of (±x, y) for 0 ≤ y ≤ h
is obtained by evaluating Equation 2-14 and Equation 2-17.
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2.3.2 Modelling Tools for Elastica Curves

There are numerous methods to model the elastica curves, summarised as follows and

illustrated below (Fig. 2-17) for the case of a simply-support elastica:

• Analytical solution: Explicit solutions have been derived for the case of simply-

support beams, but are limited for general cases. The solution is available as a

parametric VB script component in Rhino/Grasshopper [119].

• Physical form-finding: Curves can be simply obtained by manually tracing the de-

formations of an elastically bent prototype. This represents the shape of centreline

geometries for other scales and materials.

• Dynamic relaxation: Elastica curves can be numerically modelled. For example,

rotational spring stiffness models can be implemented in Grasshopper/Kangaroo

2. The dynamic relaxation process will then find elastica curves which represent

minimum energy configurations.

• Finite element approach: A straight beam can be discretized and analysed with a

large-displacement non-linear finite element method. A version of this approach is

available in Excel to demonstrate the constituent energy principles [121].

Analytical Solution: 
VB Grasshopper

Physical form-finding: 
Manual Tracing

Dynamic Relaxation: 
Kangaroo 2

Finite Element Approach: 
Excel-Solver

Fig. 2-17 Modelling tools for elastica curves.

2.4 Summary

The literature review shows that origami-inspired structures are popular, as many use-

ful performance characteristics can be generated by folding origami patterns on a range of

sheet materials. Curved-crease origami is a class of origami patterns which can be con-

sidered as a special extension of developable surfaces but contain regions with a non-zero
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principal curvature. They are capable of generating striking folded forms, hence has led

to the adoption of curved-crease forms for numerous novel engineering and architectural

applications. A range of modelling techniques have been developed to realise these appli-

cations, including simulation of folded forms and folding behaviours. By necessity, these

all must capture two characteristics of curved-crease origami surfaces: enforcement of a

constant zero Gaussian curvature for surface developability and evaluation of the non-zero

principal curvature for surface bending behaviour. However, most modelling methods pri-

oritise the developability consideration over the bending consideration. Concise descrip-

tions are approximation only, they do not account for elastic or plastic energy behaviour

and the interaction between surface bending behaviours and origami developability con-

straints. Other numerical approximation methods with bending consideration are compu-

tationally expensive with no experimental data sets or analytical solutions yet available to

support their accuracy. Therefore, this thesis aims to create a concise and accurate curved-

crease origami representation by adopting the elastica for representing sheet elastic bending

behaviours into analytical transformation methods, which will avoid the need for surface

discretisation.
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Chapter 3 Modelling of Curved-crease Origami using Elastica
Curves

This chapter presents an analytical geometric construction method for curved-crease

origami with consideration of material bending behaviours and avoiding the need for sur-

face discretisation. The new method combines a 1D elastica solution for large elastic bend-

ing deformation with a straight-crease origami projection and reflection process; it can thus

concisely and accurately capture the principal surface curvature and developability charac-

teristics of elastically-bent curved-crease origami. A surface error analysis of 3D scanned

physical prototypes is used to validate the analytical model, which is shown to be accurate

to within ±50% of the sheet thickness for a 2mm thick model for a range of elastica surface

profiles. Limitations of the model are also explored including the derivation of a maximum

compressibility limit; investigation of accuracy of numerical folding motion simulation;

and an investigation of a free edge distortion behaviour which occurs in certain origami

forms.

3.1 Curved-crease Origami Creation

3.1.1 Elastica Curves and Non-zero Principal Curvature of a 3D Surface

While elastic deformation of a 1D beam into a 2D curve is well understood (elastica

curve), predicting the elastic bending deformation of a 2D surface when folded into a 3D

form is an ongoing challenge and necessitates consideration of the principal curvatures of

a surface. It is here proposed that the 2D elastica curve formulation of Equation 2-8 can

be adopted as the non-zero principal curvature of a constrained class of elastically-bent 3D

surfaces and, by extension, provide an analytical solution for curved-crease origami forms

with developability and minimum elastic bending energy characteristics.

To illustrate the creation of a 3D form with an elastica non-zero principal curvature,

first consider a unique 1D elastica curve with parameters b and h, shown in Fig. 3-1A

and obtained from Equations 2-14 and 2-17. If extruded, it forms an ‘isotropic’ 3D shell

which is both developable and possesses a minimum bending energy, shown in Fig. 3-1B. A

simple curved-crease origami form can be obtained from an extruded shell using the mirror

reflection method, which truncates and reflects the shell about an intersecting cutting plane

as shown in Fig. 3-1C-D. If the inverted shell segment is assumed to possess the same

curvature as the original shell, the 3D curved-crease origami form is both developable and

assumed to also possess a minimum bending energy. The generated simple curved-crease
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origami is demonstrated more clearly with different views in Fig. 3-1E.

A.

h

b

Extrude

Mirror
Plane

B. C. D.

E.

Rotating

Fig. 3-1 Creation of a 3D elastica surface. (A) 1D elastica curve with parameters b and h. (B)

Extruded elastica curve demonstrates the deformed 3D shell. (C) Intersecting cutting plane on a 3D

shell for mirror reflection. (D) Reflected 3D folded curved-crease component. (E) Demonstration of the

generated simple curved-crease origami.

Designing a more complex curved-crease surface using the mirror reflection method

requires sequential specification of truncation planes and shell lengths. By reversing this

process, that is by establishing reflection planes from a desired target volume, a direct

method of surface design is achieved. This has been demonstrated previously by Gattas

and You [21], with a ‘base’ rigid-foldable straight-crease origami pattern used to specify

a target volume as shown in Fig. 3-2A. Straight-crease patterns have folded volumetric

parameter and unfolded (developable) parameter relationships that are easily established

from vertex constraints. Reflection planes are also established at vertex crease locations, so

by ‘projecting’ a curve along folded axes and reflecting about these planes, a developable

surface with an inexact bending behaviour can be parametrised. Projection of an elliptical

curve was shown to be sufficient for visual approximation of a curved-crease surface and

simulation of surface folding via discretisation into a planar-quadrangle (PQ) mesh, shown

in Fig. 3-2B. If discrete rulings on the projected surface are increased to infinity, a contin-

uous developable curved-crease surface is parametrised, shown in Fig. 3-2C. However, the

projected elliptical curve is inexact, that is it neglects bending energy considerations, and

so the geometric construction remained an approximation only.

By combining the elastica surface projection shown in Fig. 3-1 with the curved-crease

surface design method shown in Fig. 3-2, a geometric construction method is achieved

that concisely and accurately captures developability and bending behaviours. It includes

a major assumption: the elastica remains a valid representation of the bending behaviour

of the reflected surface. Key sub-assumptions are that the ‘crease line’ created from re-

flection about the truncation plane does not distort the bending behaviour of the surface;

the free edges of the 3D shell do not distort the bending behaviour of the surface; and the
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A.
Mirror 
 Plane

b
h

R

Target
Volume
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C.

(1) (2) (3) (4)

Arc
(Surface)

Elliptical
Curve 
(Crease)

(1)

(2)

(3)

(4)

Fig. 3-2 Parametrizations of (A) base rigid-foldable straight-crease origami geometry, (B)

curved-crease surface approximated with PQ mesh, and (C) inexact curved-crease surface. Each

sub-figure includes unfolded unit, folded unit, 3D surface illustration, unfolded pattern, and folded

pattern.

surface edge boundary condition is preserved as pinned-pinned as per the original elastica

derivation. These sub-assumptions will be systematically investigated in below sections.

3.1.2 Geometry Construction Method

A geometric construction method is developed here for projection of an elastica curve

onto a target folded form. A base rigid-foldable configuration is shown in Fig. 3-3A and is

known as an ‘Arc’ pattern geometry. The unfolded configuration can be completely deter-

mined by three parameters: side lengths a1, b1, and sector angle φ. Remaining side length

parameter a2 = 2b1 cos φ + a1, where a1 < a2. However, the primary interest is converting

a single vertex geometry into its corresponding curved-crease form with minimum elastic

bending energy. Therefore, the rectangular ‘transformation region’ is determined by side

lengths c1, c2, and d1, where c1 = a1/2 , c2 = a2/2, and d1 = b1 sin φ. The edge angles ηA

and ηZ are useful in defining a particular folded configuration as shown in Fig. 3-3B. The

folded configuration then provides a target volume for designing an elastica curve, where
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the design parameters b and h are defined as:

b = 2b1 sin
(
ηz

2

)
(3-1)

h =

√
d1

2 −
(b
2

)2

(3-2)

As base pattern parameters are sufficient to define two of five elastica parameters, a unique

elastica curve exists for the selected target state. When projected as an assumed non-zero

principal curvature along the folded transformation region, a curved-crease surface is cre-

ated as shown in Fig. 3-3C.

Continued projection of the elastica about all reflection planes, that is planes passing

through all zig-zag base pattern edges, creates a complete curved-crease pattern as shown

in Fig. 3-3D. If all truncations are mapped to the original elastica extrusion, it can be seen

that the Arc base pattern and curved crease pattern correspond to a linear elastica extrusion,

that is a surface with free edges parallel to the elastica construction plane. The curved-

crease Arc surface thus preserves all of the assumptions made in the previous section when

adopting a 1D elastica curve to generate an linearly-extruded surface with non-zero princi-

pal curvature. Other straight-crease origami base patterns and their curved-crease variants

can also be created with this method, however they possess varied free edge conditions

that will affect the elastica curve validity. This is demonstrated more clearly in Fig. 3-4A-C

with different types of curved free edges created from freeform straight-crease origami base

patterns. The impact of these edge conditions will be explored later in this chapter.

3.1.3 Contact Limit State

A related problem to that of exact bending behaviour is that of the compressibility

limit of curved-crease origami surfaces. Several definitions for compressibility limit exist

in literature [122], but in the context of elastic bending, it is defined here as the state at

which adjacent curved panels are first in ‘contact’ during folding, as shown in Fig. 3-5A. If

the curved-crease surface is designed beyond the ‘contact limit state’, the inverted panel will

form an intersection with the non-inverted panel, as shown in Fig. 3-5B. This configuration

can be visually designed in a computational environment, but cannot be achieved in physical

models, as penetration between panels is not permitted. Therefore, all elastica generated

curved-crease origami must be designed within the contact limit state, as shown in Fig.

3-5C.

By using the method proposed in this study, an analytical relationship can be derived

for a contact limit state which occurs when the initial rotationΘ of the elastica curve bound-

ary edge is π/2. Beyond this point, a surface generated from the projection of the elastica

curve will have contacting adjacent curved panels. From Equation 2-12, an upper limit of

Θ = π/2 will limit the m parameter from 0 to 0.5. Fig. 3-6 plots Equation 2-11 and it can be

seen that a minimum b/h ratio of 1.1981 must exist for a non-contacting elastica curve with

m < 0.5 to be constructable from straight-crease base pattern. It is noted that this is only a
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Fig. 3-3 Geometry construction procedures for target folded curved-crease origami. (A) Unfolded

base pattern, (B) folded base pattern and design parameters relevant for elastica curve specification, (C)

elastica curve projected along transformation region to generate surface with exact non-zero principal

curvature, (D) continuous projection of the elastica about all reflection planes and correspondence to

linear elastica extrusion.

theoretical limit for elastic bending. It is likely the system could be compressed further after

contact occurs, although whether this causes plastic deformation of the constituent panels,

reversible elastic deformation, and/or a change of the crease line location and configuration

would depend on the material and manufacturing method utilised in practice. This will not

be further considered in this thesis.

3.2 Experimental Analysis

3.2.1 Method

To validate the hypothesised curved-crease elastica formulation, prototypes were man-

ufactured and assessed for surface variance. All prototypes were manufactured with a
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Fig. 3-4 Curved-crease origami creation from freeform straight-crease origami base patterns. From

left to right: straight-crease pattern, curved-crease pattern, and elastica curve projection. (A)-(B)

Single-crease projection. (C) Continuous projection.

2.0mm thick isotropic polycarbonate sheet, with panels cut separately and joined with a

0.2mm thick Biotex Flax 100g/m2 2×2 Twill style weave natural fabric hinge. The sheet

material achieved the necessary large elastic deformations during folding and the hinge

material was selected as one with approximately zero rotational stiffness but with suffi-

cient connectivity and stress transfer to resist the translation displacements and separation

of parts during folding.

A series of prototypes were constructed to systematically explore the assumptions of

constructing a 3D folded surface from a 1D elastica curve. For all prototypes, a pinned-

pinned boundary condition is obtained with a manufactured jig to enforce a fixed boundary

width b. Prototypes were then 3D scanned with a FaroArm 3D scan system. The collected

mesh data was imported into a Rhino CAD environment and the surface error was measured

between the scanned mesh and an ‘exact’ CAD geometry that incorporated a thickness off-

set from centreline geometry. A optimisation routine was used to align mesh and geometry,

with the Galapagos optimisation solver used to move design geometry along 6-DOF rigid

body displacements until a minimum surface error configuration was obtained.
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Θ > 90º
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Intersection

Fig. 3-5 Definition of contact limit state. (A) Illustration of contact limit state, where adjacent

curved panels are first in ‘contact’ during folding. (B) Beyond the contact limit state, where curved

panels are penetrating each other. (C) Within the contact limit state.
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Fig. 3-6 Curved-crease contact limit state. The shaded region indicates the curved-crease design

parameters which would cause contact between adjacent curved panels. b/h is the elastica curve design

parameter and m is the parameter for elliptic functions.

Detail of the optimisation process is explained as follows. The design surface is first

designed in a Rhino-Grasshopper parametric CAD software and sampled with data extrac-
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tion points. The closest distance between these data extraction points and the scanned mesh

surface is then automatically calculated by the software and connected with straight line

segments. These lines are here defined as the ‘surface error’ between design and scanned

surfaces. To obtain an optimised alignment between surfaces, the design surface is re-

positioned using the Galapagos solver by minimising the average absolute surface error.

The optimised alignment can thus be understood as a minimum surface error configuration.

The entire work flow is demonstrated more clearly in Fig. 3-7A, summarised in a flowchart

shown in Fig. 3-7B, and utilised in a parametric CAD software as shown in Fig. 3-7C.

3.2.1.1 Elastica Surface

The experimental analysis is shown first for a simple 500mm × 500mm polycarbonate

sheet, deformed to a width of 350mm as shown in Fig. 3-8A. A corresponding design

surface was generated from an elastica curve with parameters b/L = 350/500 = 0.7 and

extruded along a length of 500mm as shown in Fig. 3-8B. The prototype is scanned and the

mesh imported and aligned for minimum surface error as shown in Fig. 3-8C. The design

surface is then sampled with approximately 10,000 data extraction points. Error is displayed

in Fig. 3-8D as a coloured line between design and scanned points, with a colour legend

from green to red for 0 to +2t error and green to blue 0 to -2t error, where t = 2mm. Red

and blue regions therefore correspond to scanned surface points that lie above and below

the simulated surface, respectively, and clear regions correspond to scanned surface points

with line lengths approaching zero, that is regions approaching zero error. The overall

accuracy of the surface is assessed with an average absolute surface error. This value was

calculated as 0.78mm for the current prototype or just under 40% of sheet thickness, which

shows the elastica design surface gives a highly accurate prediction of the scanned surface.

The majority of error is seen to arise from scanning irregularities that occur at the pinned

boundary.

3.2.2 Single-crease Reflection

An initial set of prototypes was constructed to explore the exactitude and validity of

a single truncation and reflection of the elastica extrusion, that is a single-crease reflection.

One prototype was manufactured from an elastica curve with design parameter b/L = 0.75.

A second prototype was manufactured with the simplified method proposed by Gattas and

You [21], which assumes an inexact curvature, here taken as uniform. Both forms are folded

from a 400mm long rectangular sheet, and share design parameters b and h to achieve a

common target design volume.

The elastica prototype and surface error is shown in Fig. 3-9A and has an average

absolute surface error of 0.88mm, extracted from approximately 20,000 data points. This

accuracy is similar to the non-reflected extrusion and confirms that reflection about the
crease line does not distort the bending behaviour. The pinned boundary and free edge

conditions are maintained and again are the main source of scanning error. This finding has

offered a strong contribution to the research field of curved-crease origami, which can be
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Fig. 3-7 Experimental analysis method. (A) Graphical demonstration of the optimisation process.

(B) Flowchart showing the optimisation process. (C) Utilisation of the optimisation process in

Rhino-Grasshopper.

applied in many extended origami patterns.

The simplified prototype and surface error is shown in Fig. 3-9B and has an average

absolute surface difference of 2.9mm, extracted from approximately 20,000 data points.

Interestingly, the minimum surface error occurs near the crease-line region, which implies

the crease reflection and enforced developability constraint are able to somewhat enforce the

assumed curvature. However away from the crease line, the uniform curvature assumption
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A. B. C. D.

Fig. 3-8 Surface error measurement of a simple deformed sheet, where b/L = 0.7. (A) Physical

prototype, (B) simulated surface, (C) best-fit scanned surface, and (D) surface error result.

is seen to give a poor approximation of the manufactured surface. Looking at a cross-

sectional comparison between manufactured and simplified free-edge profiles in Fig. 3-9C,

it can be see that the free edges tend to relax toward an elastica-like minimum bending

energy state.

A.

B.

C.

Fig. 3-9 Single-crease reflection of surfaces with (A) exact elastica and (B) inexact (uniform)

non-zero principal curvature. From left to right, unfolded planar pattern, simulated folded surface,

best-fit scanned surface, and surface error result. (C) Cross section analysis of inexact model.
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3.2.3 Constructed State

To examine the accuracy of the geometric construction method, selected geometries

are designed and manufactured as shown in Fig. 3-10A-C. Each design is a four-sided tubu-

lar geometry corresponding to a constructed curved-crease Arc pattern. They are folded

from a 1000mm × 500mm rectangular polycarbonate sheet with elastica curve design pa-

rameters of b/L = 0.75, 0.85, and 0.95.

A.

B.

C.

A

B C

D

FE

G

IH

Fig. 3-10 Surface error measurement of constructed state geometries. with elastica curve design

parameter b/L of (A) 0.75, (B) 0.85, and (C) 0.95. From left to right, physical prototype, simulated

surface, best-fit scanned surface, and surface error measurement result.

The surface error of each model was analysed with approximately 24,000 data extrac-

tion points, with results shown in Fig. 3-11. An average absolute surface error of 0.76mm,

0.64mm, 0.63mm was seen for b/L =0.75, 0.85, and 0.95, respectively. The correspon-

dence demonstrates a high degree of design accuracy in terms of 3D surface prediction

across a range of elastica profiles, with all average absolute surface differences within half

of the 2mm sheet thickness. Regions of maximum and minimum surface error are seen

around the boundary region and crease line, attributed primarily to manufacture and as-

sembly defects. The higher errors in steeper elastica design curves are attributed to the

same, with curved-crease prototypes with steeper non-zero principal curvatures being more

difficult to manufacture and assemble.
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Fig. 3-11 Constructed state surface error measurement results.

3.2.4 Surface Tessellation

The elastica curves used in previous examples are obtained by utilising a pinned-

pinned elastica curve. Higher order elastica curves can be obtained [123], however their

physical manifestation is highly dependant on constraint conditions. For example, the sec-

ond mode elastica shape shown in Fig. 3-12A-B is an unstable elastic equilibrium state

and one would expect the shape to return back to a first mode configuration. It is theorised

though that for folded elastica surfaces, crease lines would provide a means by which to sta-

bilise second or higher mode elastica curves, that is to say that once a higher-order crease

line is generated with mirror reflection as shown in Fig. 3-12C, it would prevent a transition

back to a lower mode as would be expected in the 1D case. A geometric construction is

shown in Fig. 3-12D for a curved-crease Arc pattern that utilises a second-mode elastica

curve for generation of the 3D curved surface.

To measure the validity of adopting a second-mode elastica curve as the folded sur-

face curvature, a prototype was manufactured from a 1000mm × 800mm polycarbonate

sheet and with b/L = 0.9, shown in Fig. 3-13. Surface error measurement was taken

from approximately 24,000 data extraction points and showed an average absolute surface

difference of 0.66mm, with errors again primarily occurring at the boundary and crease

line regions due to manufacture and assembly defects. This good correspondence shows

the second-mode elastica curve can be validly assumed as a non-zero principal curvature

and mirror reflection can be utilised to stabilise and enable manifestation of higher mode

minimum bending energy surfaces.
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Fig. 3-12 Design procedures of a curved-crease Arc pattern generated with a second-mode elastica

curve. (A) First and second mode elastica curve, (B) second-mode elastica geometries, (C) folded unit,

and (D) geometric construction.

A. B. C. D.
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Fig. 3-13 Surface error measurement of second-mode elastica surface. (A) Physical prototype, (B)

simulated surface, (C) best-fit scanned surface, (D) surface error measurement result illustration.

3.3 Combined Numerical-elastica Formulations

3.3.1 Folding Sequence

The elastica curve has been demonstrated to give a valid solution for non-zero princi-

pal curvature of a specific target folded state. However, in origami-inspired engineering, it

is often useful to simulate intermediate folded states, that is the folding sequence of a par-

ticular crease pattern. The elastica surface generation method cannot be used to generate

valid intermediate states as the reflection planes used to generate a developability condition,

and the boundary parameters used to generate the elastica curve are only coincident in the
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target state. However, many numerical methods exist to simulate the folding behaviour of a

known curved-crease surface and so an investigation was conducted to assess the extent to

which a numerical folding simulation was able to accurately model the intermediate folded

states of an elastica generated origami surface.

To simulate a folding sequence, a curved-crease origami pattern is constructed with a

‘Miura’ base pattern and elastica curve as shown in Fig. 3-14A-B. The constructed surface

is discretised into planar quadrangle strips to give a rigid-foldable piecewise assembly of

straight-crease origami that approximates the generated elastica form, shown in Fig. 3-14C.

The folding motion of the piecewise assembly can then be simply simulated by numerically

varying a common edge angle ηA [73], as shown in Fig. 3-14D. Increasing the number of

discrete rulings gives a stronger approximation of the initial target design surface, with a

fold simulation consisting of quasi-infinite rulings shown in Fig. 3-14E. This method is

selected for investigation as it is a computationally inexpensive and highly inexact; compo-

nent panels are made planar and no rotational stiffness is imparted to crease lines created

during discretisation, so no bending behaviour energy exists in the system.

For practicality of testing, a physical prototype was constructed with two curved-

crease Miura units joined together about a mirror plane as shown in Fig. 3-14D-E. Each

unit was folded from a 500mm × 500mm polycarbonate sheet with elastica curve design

parameters of b/L = 0.7. The prototype was scanned at four intermediate folded states, at

an edge angle ηA = 160o, 140o, 120o, 100o, and at the target state with ηA = 90o.

The surface error of each folded state was analysed with approximately 24,000 data

extraction points as shown in Fig. 3-15, with results plotted in Fig. 3-16. Errors are

seen to increase in progressive states, with an average absolute surface error of 0.50mm,

0.48mm, 0.69mm, 0.94mm, 1.27mm seen for ηA = 160o, 140o, 120o, 100o, 90o, respec-

tively. The first three intermediate states show good correspondence between the numerical

model and physical prototype, with the majority of errors seen around boundary regions

in a similar manner to previous surface comparisons. This shows that numerical simula-

tions can provide a good prediction of the surface geometry of intermediate folded states,

even when simplified to neglecting bending energy considerations. The validity of elastica

design mechanism behaviours will be investigated in depth in Chapter 4.

Errors are seen to jump in the fourth intermediate state and the final target state, with

the latter having an error that exceeds half of 2mm material thickness. Inspection of the

error location shows it occurred at the connected edges of the Miura units, highlighted

in Fig. 3-15E. The primary source of error was initially thought to be from manufactur-

ing defects occurring due to the increased difficulty of attaching a fabric hinge to these

non-developable edges. However, closer inspection suggested that the non-zero principal

curvature of the surface no longer corresponded to the assumed analytical elastica curve in

these edge regions. The next study was conducted to investigate this behaviour, described

in the following section.
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Fig. 3-14 Numerical simulation of folding sequence of elastica generated surface. (A) Base

unfolded Miura pattern, (B) curved-crease transformation, (C) rigid-foldable approximation of

curved-crease surface, (D) numerical simulation of folding sequence of the rigid-foldable assembly, and

(E) numerical simulation of folding sequence of a quasi-infinite rigid-foldable assembly.

3.3.2 Free Edge Effect

For curved-crease models studied in Sections 3.1 and 3.2, the constructed elastica

surfaces corresponded exactly to a linear extrusion of a 1D elastica solution, that is the ends,

or ‘free edges’, lay in a plane parallel to the elastica construction plane. It was therefore

assumed that the free edges of the 3D shell did not distort the bending behaviour of the

elastica surface. However, this assumption is thought to be invalid for elastica surfaces

generated on the Miura surface of the previous section, or for other base patterns which

possess a non-parallel free edge. To explore the effect of the free edge, two elastica surface

geometries were generated on a base pattern with non-parallel free edges.

The first investigated surface consists of the component panels of the curved-crease

Miura pattern described in the previous section, shown in Fig. 3-17A. These surfaces can
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Fig. 3-15 Surface error measurement of numerical folding simulation. From left to right: physical

prototype, simulated surface, best-fit scanned surface, and surface error measurement. Folded states

generated with an the edge angle ηA of (A) 160o, (B) 140o,(C) 120o,(D) 100o, and (E) target state 90o.

be understood as a linear elastica extrusion with free edges that lie in parallel planes that are

inclined or ‘skewed’ relative to the elastica construction plane, as shown in Fig. 3-17B. The

surface error measurement result shown in Fig. 3-18A demonstrates a surface variation,

with a flatter profile on the skew edge inclined towards the surface centreline and a steeper

profile on the skew edge inclined away from the centreline. This variation is shown more
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Fig. 3-16 Folded state surface error measurement results.
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Fig. 3-17 Surface geometry with skewed free edges. (A) Curved-crease Miura pattern geometry

and (B) corresponding linear elastica curve extrusion with skewed edges lying in parallel inclined

planes.

clearly with a cross-sectional comparison in Fig. 3-18B.

To verify the source of the error originates from the elastica assumption and not the

prototype measurement, a numerical finite element simulation was also created to com-

pare with the physical prototype. The simulation was created in the commercial software

Abaqus. A static non-linear large displacement method was used. Displacement-control

was applied on two rigid plates highlighted in Fig. 3-19A which compress the edges of a

deformable shell element to a target displacement. The surface was meshed with S4 shell

elements with global size set at 5mm following a convergence study. Material properties

were set as a t = 2mm thick elastic isotropic polycarbonate with Young’s modulus E =
2400MPa and Poisson’s ratio ν = 0.37. Deformed mesh was imported into Rhino as point

data based on the nodal displacement data of the underformed and deformed mesh. These

points were then patched to a continuous surface using Rhino-Grasshopper, as shown in

Fig. 3-19B. This enabled the surface error analysis to be conducted between numerical and

physical surfaces. Results of this comparison are shown in Fig. 3-20 and it can be seen

that the numerical and physical behaviours have a much better correspondence. Average
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A.

B.

Fig. 3-18 Surface error measurement between elastica generated surface and physical prototype

with skewed edges. (A) From left to right: physical prototype, simulated surface, best-fit scanned

surface, and surface error measurement result illustration. (B) Cross-sectional comparison.

absolute surface error was 3.37mm for the elastica surface comparison and only 0.78mm

for the numerical surface comparison, which shows the elastica curve is an invalid repre-

sentation of non-zero principal surface curvature in skewed edge regions of 3D surfaces. It

also confirms the free edge distortion is the likely cause of the error observed in the previous

section.

A second surface was investigated to understand the effect of free edge distortion in

a reflected curved-crease origami surface. A single-crease model was constructed from an

Arc-Miura base pattern, with skew edges and geometric construction procedure as shown

in Fig. 3-21A-B, respectively. Prototype parameters were for a 400mm long arc length,

an extrusion length of 400mm, and an elastica curve design parameter of b/L = 0.75. The

surface error measurement result is shown in Fig. 3-22A and demonstrates a reasonable cor-

respondence between the design and prototype surfaces, with an average absolute surface

error of 1.1mm. Similar to that seen previously for the inexact uniform curvature model,

low error is seen in the crease line region, with the crease acting to enforce the assumed

elastica principal curvature. Larger errors of up to approximately 3.1mm are seen towards

the skewed free edge, shown more clearly in cross section in Fig. 3-22B. A numerical finite

element simulation was again used to check accuracy of the physical prototype, however a

hybrid surface generation approach was used whereby a rectangular sheet was numerically

deformed to the target width and then geometrically reflected about a plane, shown in Fig.

3-23. This prevented an assumed crease line from altering the minimum bending energy
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Fig. 3-19 FE simulation method for a skewed shell. (A) Undeformed and deformed mesh in the

Abaqus software. (B) Surface recreation from Abaqus to Rhino-Grasshopper using nodal data.

configuration. The average absolute surface error decreased to 0.98mm and the accuracy of

the surface is seen to have improved both at crease line and free edge locations, shown more

clearly in cross section in Fig. 3-23C. This improvement indicates that a Arc-Miura patten

design with eliminated free edge effect has been achieved, as the impact of the free edge ef-

fect is localised and does not influence the mirror reflection region. An initial investigation

of non-localised free edge effect was conducted, described in the following section.

3.4 Limitation of the Proposed Modelling Method

3.4.1 Motivation

A range of elastica solutions exists for other boundary constraint conditions and bend-

ing stiffness (EI). In this final study, elastica curves with non-uniform bending stiffness

caused by the shape variation (I) are investigated. Two 500mm long flat strips are designed

with a 2.0mm thick isotropic polycarbonate sheet. They are Type 1 (Fig. 3-24A) and Type

2 (Fig. 3-24B) strip, corresponding to the strip with wider and narrower mid-span region,

respectively. To compare their bending deformations with elastica curves derived from a

uniform bending stiffness, physical strips are bent with one support moved-in horizontally

10% of the length for each sub-deformation, up to a total displacement of 100%.

Comparison results are shown in Fig. 3-24A-B for Type 1 and Type 2 strip, respec-
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B.

Fig. 3-20 Surface error measurement between finite element simulation and physical prototype

with skewed edges. (a) From left to right: undeformed FE model, deformed FE model, best-fit scanned

surface and surface error measurement result illustration. (b) Cross-sectional comparison.

tively. It can be seen that deformations of Type 1 strip are above-below-above elastica

curves with a uniform bending stiffness, because it has a flexible-stiff-flexible feature; de-

formations of Type 2 strip are below-above-below elastica curves with a uniform bending

stiffness, because it has a stiff-flexible-stiff feature. As elastica curves are purely geometric

relations, bending deformations of Type 1 and Type 2 strip can arise in other elastically-bent

materials. If bending deformations of Type 1 and Type 2 strip can be accurately captured,

further investigation is needed to examine whether they can be adopted as the non-zero

principle curvature design of elastically-bent curved-crease origami.

3.4.2 Elastica Surface with Non-uniform Bending Stiffness

To examine the suitability of the geometric construction method developed in Section

3.1 with other elastica solutions, two elastica surfaces are selected to be the ‘base’ non-

reflected shell. They are Type 1 and 2 shell, designed by purely enlarging the width of Type

1 and 2 strip, respectively, and have a curve design parameter b/L = 0.75, as shown in Fig.

3-25A-B, respectively. Note that bending deformations were simulated using the numerical

method described in Section 3.3.2; a good correspondence between strip and shell again

confirms that the shape of elastica is purely a geometric relation.

The surface error of Type 1 and 2 shell was analysed with approximately 140,000

data points, with result shown in Fig. 3-26A-B, respectively. An average absolute surface
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Fig. 3-21 Curved-crease Arc-Miura pattern geometry with skewed free edges. (A) Linear elastica

curve extrusion with inclined planes and mirror reflection plane and (B) corresponding unfolded and

folded configurations.

A.

B.

Fig. 3-22 Surface error measurement of single-crease reflection free edge effect. (A) From left to

right: physical prototype, simulated surface, best-fit scanned surface, and surface error measurement

result illustration. (B) Cross-sectional comparison.

error of 0.27mm and 0.79mm was seen for Type 1 and Type 2 shell, respectively. The

correspondence demonstrates a high degree of simulation accuracy in terms of 3D surface

prediction with all average absolute surface differences within half of the 2mm thickness.
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B.
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Fig. 3-23 FE simulation of curved-crease origami. (A) Design procedure, from left of right:

undeformed FE model, deformed FE model, exported surface, intersecting mirror reflection plane,

reflected curved-crease component. (B) Surface error measurement result illustration. (C)

Cross-sectional comparison.

Higher errors are seen around boundary regions, attributed primarily to manufacture and

assembly defects. The good correspondence has confirmed that both numerical-elastica

profiles are reliable, hence can be used for examining the interaction with the introduced

origami developability constraint, discussed in the following section.

3.4.3 Non-localised Free Edge Effect

To explore the bending behaviour of curved-crease origami with a non-uniform bend-

ing stiffness, four hybrid curved-crease origami surfaces were created from the Type 1 and

2 shell using the method described in Section 3.3.2, including:

• T1 CC Origami I: Type 1 shell with mirror plane intersected about the free edge, as

shown in Fig. 3-27A.

• T1 CC Origami II: Type 1 shell with mirror plane intersected about boundary edges,
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Fig. 3-24 Bending deformations of (A) Type 1 and (B) Type 2 strip. Green lines are analytical

elastica curves derived from uniform bending stiffness and black lines are scanned results obtained

from manually tracing deformations of strips with non-uniform width.

as shown in Fig. 3-27B.

• T2 CC Origami I: Type 2 shell with mirror plane intersected about the free edge, as

shown in Fig. 3-27C.

• T2 CC Origami II: Type 1 shell with mirror plane intersected about boundary edges,

as shown in Fig. 3-27D.

The surface error of each design surface was analysed with approximately 140,000

data points, as shown in Fig. 3-28-3-29 and summarised in Fig. 3-30. The impact of free

edge effect are clearly seen in scan results, indicate that design geometries were only ca-

pable of capturing the approximate shape of manufactured prototypes. This is shown more

clearly in a cross section analysis, as shown in Fig. 3-31. An average absolute surface error

of 4.67mm, 1.51mm, 1.44mm, and 1.68mm of the material thickness are seen for T1 CC

Origami I, T1 CC Origami II, T2 CC Origami I, and T2 CC Origami II, respectively. These

errors exceed half of the material thickness, so distortion is confirmed to have occurred. The

source of error is attributed to the developability constraint imparted on the elastica surface,

which distort the surface minimum bending behaviour. That is to say, the 2D elastica is no
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Fig. 3-25 Simulation result of numerical-elastica. (A) Type 1 and (B) Type 2 geometries.

longer a valid representation of the non-zero principal curvature of the curved-crease sur-

face. Based on qualitative observations of the free edge effect seen in this chapter, a simple

criteria is proposed for the distortion of elastica surface curved-crease origami, summarised

as follows:

• Distortion will not occur if the curved-crease pattern has a rectangular sheet bound-

ary. The folded form can be considered as a reflected elastica curve extrusion, where

the reflection does not distort the bending behaviour.

• Localised distortion can be achieved if the curved-crease pattern with skewed free

edges is designed from a rectangular sheet, hence the folded form can be remapped

to a linear elastica extrusion with bending stiffness and boundary condition pre-

served as per the original elastica derivation.

• Non-localised distortion will occur if the curve-crease pattern has a non-uniform

boundary which cannot be reconfigured to a rectangular sheet. It involves the use

of elastica curve derived from a specific combination of shell geometry (with a

non-uniform bending stiffness) and boundary condition, hence the introduced devel-

opability constraint will distort the bending behaviour of the non-reflected elastica

surface.
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Fig. 3-26 Surface error measurement of shells. (A) Type 1. (B) Type 2. Each sub-figure includes

physical prototype, scanned mesh surface, simulated surface, best-fit scanned surface, correspondence

result illustration, and result data.

Together, it is concluded that the proposed curved-crease modelling method is limited

to the utilisation of a specific type of elastica solution for near-exact representation of sheet

elastic bending behaviours, that is elastica with a uniform bending stiffness and pinned-

pinned boundary condition. Extrusion and reflection of other elastica solutions can lead to

a non-localised free edge effect.

3.5 Conclusion

This study has presented an analytical geometric construction method for curved-

crease origami that concisely and accurately captures curvature and developability con-

straints. Developability is preserved without the need for surface discretisation by projec-

tion and reflection of an assumed 2D elastica profile about a known 3D straight-crease

origami surface. The use of an elastica curve for non-zero principal surface curvature

gives a near-exact analytical representation of 3D curved-crease origami surfaces that are
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Fig. 3-27 Design procedures of curved-crease origami using Type 1 and 2 elastica curves. (A) T1

CC Origami I. (B) T1 CC Origami II. (C) T2 CC Origami I. (D) T2 CC Origami II.

elastically-bent and have boundary conditions consistent with the utilised elastica solution.

Extensions of the method were explored and included identification of the compressibility

limit of curved-crease surfaces; construction of stable curved-crease origami surfaces from

higher-order elastica profiles; and demonstration that a numerical simulation of the fold-

ing motion of a discretised curved-crease surface gave a good prediction of behaviour of a

physical prototype over a full range of motion. Limitations of the method are in modelling
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Fig. 3-28 Surface error measurement of Type 1 origami. (A) T1 CC Origami I. (B) T1 CC Origami

II. Each sub-figure includes physical prototype, scanned mesh surface, simulated surface, best-fit

scanned surface, correspondence result illustration, and result data.

of surfaces which possess free edge regions that are not parallel to the elastica construction

plane, non-localised free edge effect, and the need to use of a straight-crease base pattern

that approximates the desired curved-crease form.
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Fig. 3-29 Surface error measurement of Type 2 origami. (A) T2 CC Origami I. (B) T2 CC Origami

II. Each sub-figure includes physical prototype, scanned mesh surface, simulated surface, best-fit

scanned surface, correspondence result illustration, and result data.

0.00

1.00

2.00

3.00

4.00

5.00

A
vg

  A
bs

 S
ur

fa
ce

 
D

iff
er

en
ce

 (m
m

)

T1 Shell

T1 CC Origami I

T1 CC Origami II

T2 Shell

T2 CC Origami I

T2 CC Origami II

0.5t

t

2t

Fig. 3-30 Surface error measurement result summary of Type 1 and Type 2 geometries.

52



Chapter 3 Modelling of Curved-crease Origami using Elastica Curves
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Fig. 3-31 Cross section analysis of (A) T1 CC Origami I, (B) T1 CC Origami II, (C) T2 CC

Origami I, and (D) T2 CC Origami II.
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Chapter 4 Curved-crease Origami Folding Mechanics

This chapter explores the folding mechanics of curved-crease origami by consider-

ing first the minimum elastic bending behaviours of a curved surface, and subsequently

considering the interactions between this surface and introduced origami developability

constraints. An analytical solution is presented by translating the local cross section de-

ployment mechanics to a global frame of reference set according to the design parameters

of the curved-crease origami unit geometry. A valid local-global translation and force-

displacement response is found when the cross section deformations with and without de-

velopability constraints are suitably close to each other. This feature enabled a range of

predictable non-linear force-displacement responses to be realised through the control of

pattern edge angle design, edge length design, and tessellated forms.

4.1 Folding Mechanics of Curved-crease Origami

4.1.1 Elastic Bending Strain Energy of a Beam

It is here hypothesised that a lower bound energy prediction for a curved-crease

origami, UBEND , can be obtained if the total energy released is assumed to be the same

as a non-folded curved surface constructed from an equivalent sheet. Equivalency is de-

fined as a sheet possessing the same non-zero principal curvature, flexural rigidity, and

area. The ‘cross section’ of the non-folded curved surface utilised in this study is adopted

as the simplified representation of the surface and considered as an unconstrained 2D beam

for analysis. Folding motion of the sheet can be obtained as the minimum bending energy

deformations of the 2D beam representation with an arc length, L, and rectangular cross

section, w × t, deformed with a free boundary condition, as shown in Fig. 4-1A.

The elastic bending strain energy stored in the deformed beam representation is cal-

culated based on the change in curvatures between the initial and deformed state. The

curvature of the initial κ and deformed κ′ beam sections are expressed in terms of radii of

curvature ρ and ρ′, respectively, and defined as the rate of change of the tangent angle dθ
ds

and dθ′
ds , respectively:

κ =
1

ρ
=

dθ
ds

(4-1)

κ′ =
1

ρ′
=

dθ′

ds
(4-2)

where s is the position of a given section of the beam along the length, which is the same
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for initial and deformed states. The strain ε is determined as:

ε = −z
dθ − dθ′

ds − zdθ
(4-3)

where z is the position of the fibre of the beam section in thickness, t, that is −t/2 ≤ z ≤
t/2. For a linear elastic material, the stress, σ, has a linear relationship with the Young’s

modulus, E:

σ = E × ε = E
(
− z

dθ − dθ′

ds − zdθ

)
(4-4)

The elastic bending energy stored in the overall beam body, UBEND , is then derived as [124,

125]:

UBEND =

∫
V

1

2
σεdV

=
E
2

∫
S

∫
A

z2
( dθ − dθ′

ds − zdθ

)2
dAds

=
E
2

∫
S

∫
A

z2
(dθ − dθ′

ds

)2( 1

1 − zdθ
ds

)2
dAds

=
E
2

∫
S

∫
A

z2
(1

ρ
− 1

ρ′
)2( 1

1 − z 1
ρ

)2
dAds

(4-5)

Solving the internal term
∫

A
z2( 1

1−z 1
ρ

)2dA gives,∫
A

z2(
1

1 − z 1
ρ

)2dzdw = w
∫ t

2

− t
2

z2(
1

1 − z 1
ρ

)2dz

= wρ3
( t
ρ
+

4tρ
(2ρ − t)(2ρ + t)

+ 2ln
(2ρ − t
2ρ + t

)) (4-6)

where w is the total width of the beam equivalent to the width of the curved surface, as

shown in Fig. 4-1B. Substituting Equation 4-6 back into Equation 4-5 then gives the explicit

form:

UBEND =
wE
2

∫
S

(1

ρ
− 1

ρ′
)2
ρ3

( t
ρ
+

4tρ
(2ρ − h)(2ρ + t)

+ 2ln
(2ρ − t
2ρ + t

))
ds (4-7)

Calculation of UBEND at sequential folded states is demonstrated using a beam deformed

with an arc of uniform radius of 35.3mm at the initial state giving a curve design param-

eter b/L=0.75. This is the assumed cross section of a w × L = 180mm × 90mm sheet, as

shown in Fig. 4-1A-B. The material properties of the beam representation are assumed as a

t = 0.5mm isotropic PET sheet with E = 2299MPa. For this particular instance, deformed

shapes were obtained using a numerical finite element method described in Section 3.3.2

with the 2D beam subdivided into 40 elements. The nodal displacement data were used

to generate a smoothed deformed beam profile using a 3rd order polynomial interpolation,

for each intermediate configuration. Curvature values were then evaluated with 1000 sam-

pling points on the beam along its arc length. Combining multiple bending deformations

with material properties in Equation 4-7 then gives the energy-displacement history path

shown in Fig. 4-1C, where the displacement is measured as the changed in vertical distance

between beam’s mid and end position during intermediate states, denoted as h − h′.
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Fig. 4-1 Bending behaviour of a simple curved surface with an arc of uniform radius cross section

profile. (A) Bending deformations using a 2D beam representation. (B) Illustration of arc surface

bending. (C) Energy-displacement history path.

4.1.2 Comparison of Lower and Upper Bound Energy Behaviours

To investigate the interaction between a surface’s minimum bending behaviour and

developability-constrained behaviour, curved-crease origami geometries were created by

imparting crease lines on a simple curved developable surface, with the utilisation of multi-

ple intersecting truncation planes as developed in Chapter 3. The w×L sheet is reconfigured

to a curved-crease origami by inverting and assembling the split panels about the truncation

planes, where the inclination angle of the truncation planes is identified as ηB as shown

in Fig. 4-2A. The edge angle, ηA = π − 2ηB, is useful in defining a particular volumetric

configuration. If the constructed curved-crease origami is deformed, the developability of

its ‘local’ cross sections are enforced by the developability constraint highlighted in Fig.

4-2B, which can potentially lead to a higher energy behaviour than the non-folded surface.

To explore the simplest case of developability condition, the curved fold developability

constraint is set to have a zero rotational stiffness in this study. An upper bound energy

behaviour of a curved-crease origami UPRBM is defined when the foldability is fully enforced

by the assumed rigid-ruling folding motion, as shown in Fig. 4-3A-B, which enables the

utilisation of PRBM formulation (Equation 2-7) discussed in Section 2.2.3.

The UPRBM calculation is demonstrated using a curved-crease origami constructed from

the arc surface utilised in the previous section with ηA= 90o, termed ‘arc surface origami’

and shown in Fig. 4-3A-B. The folding behaviour is simulated with surfaces approximated

with S = 100 rigid divisions at the initial state following a convergence study described in

Section 4.1.5. Longitudinal discrete rulings of surfaces are assigned with a linear spring
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Fig. 4-2 Geometric construction of an initial curved-crease origami. (A) Simple curved

developable surface split by multiple truncation planes. (B) Assembling the split components. (C)

Constructed initial curved-crease origami.

stiffness equivalent to the material bending stiffness ks = EI/ls, where second moment of

area I = wt3/12, and spring effective length ls = L/S . Local cross section displacement

h − h′ was measured based on developability-constrained deformations, as shown in Fig.

4-3A.

Comparing energy behaviours of arc surface origami in Fig. 4-3C, it can be clearly

seen that UPRBM > UBEND , with strict enforcement of the developability condition causing a

higher energy behaviours as hypothesised. The energy paths are different because their cor-

responding deformation were approaching different end states; a ‘non-flat’ sheet-bending

deformation is seen for UBEND and a ‘flat’ developability-constrained deformation is seen for

UPRBM , as shown in Fig. 4-1A and 4-3A, respectively.

4.1.3 Elastica Surface Curved-crease Origami

A special class of ‘elastica surface origami’ exist, which adopts elastica curves as

the generating curvatures for curved-crease pattern construction, as described in Chapter

3. Elastica curves are the elastically-deformed shapes of a straight slender beam, a simple

elastica surface can be bent to a fully flat configuration following minimum bending energy

deformation, as shown in Fig. 4-4A. Therefore, the surface bending behaviour of elastica

surface origami during intermediate deformed states is hypothesised to be similar to the
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Fig. 4-3 Upper bound energy behaviour of arc surface origami. (A) Developability-constrained

deformations of a 2D arc representation. (B) Initial and end folded state determined by rigid-ruling

folding motion. (C) Upper and lower energy-displacement path comparison.

developability-determined rigid approximation, with both approaching to a flat configura-

tion.

A 2D elastica curve is used for calculating the lower bound energy behaviour UBEND

of a simple elastica surface constructed from a w × L = 180mm × 90mm PET sheet. The

elastica curve is designed to have a curve design parameter b/L=0.75, which is the same

as the arc beam utilised in Section 4.1.1, but with a non-uniform curvature along its arc

length. Analytical solutions are available for obtaining the exact shape of an elastica curve

bent to sequential intermediate states [117, 118]. The UBEND energy path is then obtained by

incorporating exact beam bending deformations with the PET material properties, as shown

in Fig. 4-4B.

The elastica surface origami geometry utilised in this section is reconfigured from the

simple elastica surface with ηA= 90o. The constructed surface is then discretised to give

a rigid-foldable piecewise assembly of straight-crease origami for obtaining upper bound

energy behaviour UPRBM , as shown in Fig. 4-4B.

Comparing lower and upper bound energy behaviours of elastica surface origami,

it can be clearly seen that UPRBM ≈ UBEND , with a common end sheet-bending and

developability-constrained deformation causing a highly similar lower and upper bound

energy behaviour as hypothesised. The similarity also indicates that the developability con-

straint has a small/neglectable influence to surface minimum bending behaviour during the

folding motion. Looking at a comparison of energy behaviours across elastica and arc sur-

face origami in Fig. 4-4C and Tab. 4-1, ΔU = UPRBM −UBEND for the elastica surface origami

is seen to be extremely small in compared with arc surface origami. As the only difference

between arc and elastica surface origami is the curvature design at the initial state, it is

confirmed that the curvature design is a key component to accurately determining energy

behaviours of curved-crease origami.
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comparison. (C) ΔU comparison of elastica and arc surface origami.

Tab. 4-1 Compariosn of energy behaviours of elastica and arc surface origami

(h − h′): 0 to 24 mm Elastica Arc

Max. UBEND (mJ) 107.44 108.63

Max. UPRBM (mJ) 107.69 146.58

Max. ΔU (mJ) 1.21 37.95

4.1.4 Experimental Validation of Energy Behaviours

To validate the accuracy of energy behaviours during curved-crease folding, prototypes

were manufactured and tested. Geometries were selected to be the elastica and arc surface

origami with parameters as described above. The material selected for this investigation

was the 0.5mm thick PET sheet. Curved panels were then jointed with a 0.1mm thick

isotropic vinyl hinge, which has a relatively small rotational stiffness but with sufficient

connectivity to resist the separation of parts during folding. Prototypes were subjected to

a quasi-static compression test by using a Type 5982 Instron Universal Testing Machine.
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The specimens were compressed at a rate of 60 mm/min and until 75-80% of their original

hight. Finite element (FE) simulations were also created to ensure that the experimental

data is not distorted by manufacturing and/or measurement defects.

FE simulations were created in the commercial software Abaqus. An implicit non-
linear static analysis method was used, which accounts for geometric nonlinearity due

to large displacements and rotations, where material and boundary nonlinearity were ne-

glected. Similar to the experimental method, displacement-control was applied on two

external rigid plates to laterally compress the deformable curved-crease pattern in the soft-

ware, and material properties were set to be the same as the PET sheet described above.

During deformation, NLGEOM was turned on, which accounts for stiffening effects with

stiffness matrix being updated after each step. Surfaces were meshed with quadrangle S4

shell elements, with an approximate global size set at a fine size 1mm following a conver-

gence study. Crease lines were modelled to be a 0.5mm wide and 0.05 mm thick reduced-

thickness regions, similar to the manner described in Gattas et al. [56], as shown in Fig.

4-5. Penetration was not permitted between panels, but it was permitted in the hinge region

to prevent thickness interaction. By using this simulation method, the approximate bend-

ing behaviour of the curved-crease can be captured. It is approximate, because the crease

modelling method is different to the actual crease construction. Therefore, strain energy

result data is collected from panels only, where the crease ‘region’ energy contribution is

neglected.

For elastica surface origami, accurate prediction is observed in Fig. 4-6A, attributed

to a minimally-distorted panel bending behaviour. For arc surface origami, it can be seen

that the constructed model has an energy behaviour between UBEND and UPRBM in Fig. 4-

6B. This is believed to be due to the developability condition not being exactly enforced in

the physical prototype with the result being a bending behaviour between surface bending

behaviour and origami developability constraints. However, the lower and upper bound

solution are still useful references for determining the energy bounds of a curved-crease

origami.

t1 >> t2

t1

t2

t1

Fig. 4-5 FE simulation method for the hinge region of curved-crease origami.
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4.1.4.1 Mechanical Properties of PET

Material tensile test of isotropic PET was conducted for obtaining its mechanical prop-

erties. From the result stress-strain curve shown in Fig. 4-7, it can be seen that the selected

material has a linear-like elastic behaviour, where the fracture point is seen at approximately

50MPa. For FE simulations, the material is considered to be linear elastic; the Young’s

modulus, E = 2299MPa, was obtained in the near-linear region, where the stress value is

less than approximately 11MPa.
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Fig. 4-7 Material tensile test result of PET.

4.1.5 Further Details of PRBM Calculation

To ensure that the PRBM approach used in this study is reliable, an S convergence

study was conducted, as S (number of rigid divisions) determines the resolution of rigid-
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foldable curved-crease approximations. To this end, there are two ways to improve the

folding simulation generated from the rigid assembly:

• Smoothing the rigid-foldable curved-crease surface at the initial state by increasing

the number of rigid divisions, or

• Rebuilding the curved-crease developable surface for each intermediate folded state

by creating curved boundary edges from discrete vertices using a 3rd order polyno-

mial interpolation, as shown in Fig. 4-8A.

The later can result in an interpolated-pseudo-rigid-body-model (IPRBM) shown in Fig.

4-8B. This then allows the strain energy history to be obtained based on the curvature

measurement of the cross section using Equation 4-7. A reliable S value is said to be

obtained if PRBM and IPRBM give the same strain energy results.

To assess the difference between PRBM and IPRBM, the tested geometry was se-

lected to be the curved-crease component of the elastica surface origami used in Section

4.1.3. Strain energy values were captured at 25%, 50%, 75%, and 99% deformed state with

S ranging from 2 to 500. The comparison result between methods is shown in Fig. 4-8C.

A good correspondence is seen when a large S value is used, that is S > 50. The good

correspondence also represents that both PRBM and IPRBM are sharing a similar folding

motion, attributed to a similar initial state origami surface, as shown in Fig. 4-8D. There-

fore, the S = 100 used in this study is considered to be a reliable value in determining UPRBM ,

as it is capable of generating fine approximations of curved-crease origami surfaces.

4.1.6 Comparison of Cross Section Profiles

A conclusion drawn from Fig. 4-4C is that if the sheet-bending and developability-

constrained deformations exhibit ‘common’ or ‘different’ curvatures at their end deformed

state, then ‘converging’ and ‘diverging’ energy behaviours will occur, respectively. This can

be demonstrated more clearly by comparing the shape of the cross section representations

and the curvature variances between curves, which can be achieved by comparing their

tangent angles difference Δθ = θBEND − θPRBM along the arc length as shown in Fig. 4-9A.

The comparison result for elastica and arc surface origami is shown in Fig. 4-9B

and Fig. 4-9C, respectively. For elastica surface origami, the tangent angle measurement

demonstrates a zero difference at the initial and end state, hence enabling intermediate de-

formations to have a high similarity, as the tangent difference on all points were converging

to zero. Arc surface origami on the other hand has an increasing tangent angle variance on

all measured points, as its sheet-bending and developability-constrained deformations are

diverging toward different end states.

4.1.6.1 Detail Calculation

Detail calculation of developability-constrained tangent angle during the folding mo-

tion, θPRBM , is summarised as follows. At the initial state, the tangle angle of the measured

point on the cross section is denoted as Θ1, as shown in Fig. 4-10A. It can be used to obtain

an useful projected tangent angle parameter, ΘP, by specifying h and ηA using Equation
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4-8-4-12:

ΘP = sin−1
( √

h2 + wk
2

d1

)
(4-8)

wk =
h

tan ηB
(4-9)

ηB =
π − ηA

2
(4-10)

d1 =
√

e1
2 + wk

2 (4-11)

e1 =
h

sinΘ1

(4-12)

where wk is a length constant which describes the skewness of the boundary edge.
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Fig. 4-9 Tangent angle measurement. (A) 2D dending and developability deformation of elastica

and arc. (B) Δθ for elastica surface origami. (C) Δθ for arc surface origami.

Substituting ΘP and ηB into Equation 4-13-4-14 then gives the lateral angle parameter, φ:

φ = cos−1
(cos ηB

cos γ

)
(4-13)

γ = 0.5π − ΘP (4-14)

During folding, φ remain unchanged as shown in Fig. 4-10B, hence the projected

tangle angle parameter at the intermediate folded state, Θ′P, can be calculated as,

Θ′P = sin−1(cos γ′) (4-15)

γ′ = cos−1
( cos φ

cos η′B

)
(4-16)

η′B = tan−1
( h′

wk

)
(4-17)

Finally, the tangent angle of the measured point at the intermediate folded state, Θ2, is

calculated using Equation 4-18-4-20:
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Fig. 4-10 Developability-constrained tangent angle calculation. Design parameter of the
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Θ2 = sin
(h′

e2

)
(4-18)

e2 =

√
d2

2 − wk
2 (4-19)

d2 =

√
wk

2 + h′2

sinΘ′P
(4-20)

Therefore, the entire θPRBM response at a point can be obtained by specifying a single

Θ1 value and multiple Θ2 values for intermediate folded states.

For bending-determined tangent angle during the folding motion, θBEND , an analytical

solution is available for elastica beam deformations, but not for arc beam deformations.

The entire θBEND response for unique elastica beam was obtained using Equation 2-14 with

multiple elastica bending configurations being specified. The θBEND response for the arc

beam used in this study was directly measured on numerical deformations shown in Fig.

4-1A using Rhino-Grasshopper measurement tools.
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4.2 Parametric Investigation of Force-displacement Responses

4.2.1 Translation of Local Deployment Mechanics

For compliant mechanisms, the mechanism response along the actuation direction is

typically more useful than an energy response as measured in a cross section deformation

direction. The ‘global’ response as measured in the actuation direction can be understood as

the product of ‘local’ cross section bending deployment with global origami geometry trans-

formation. If the local bending mechanics of curved-crease panels are minimally distorted,

they can be ‘translated’ to an analytical global force-displacement response set according

to the origami design parameters shown in Fig. 4-11A. A curved-crease bending transla-
tion (CCBT) method is here proposed to convert a local energy-displacement response to

a global energy-displacement response, and subsequently to a global force-displacement

response, as shown in Fig. 4-11B.
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Fig. 4-11 Local-global translation of curved-crease origami mechanics. (A) Intermediate state

simulation using a valid 2D beam deformation as the non-zero principal curvature. (B) The mechanics

response translation stated from left to right: local energy-displacement, global energy-displacement,

and global force-displacement.

The CCBT method first translates the local displacement measurement (h − h′) to a

global displacement measurement (H − H′). At the initial state, the global height of the

curved-crease origami H is determined based on ηB, as shown Fig. 4-2C:

H =
w
2

sin ηB (4-21)

During deformation, the global height H′ is calculated based on the assembly of deformed
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panels determined by η′B, as shown in Fig. 4-11A:

H′ =
w
2

sin η′B (4-22)

The output force F along global-Z direction generated from the summation of internal

strain energy U is then calculated as:

F =
dU
dZ

(4-23)

The elastica surface origami was constructed for validating the accuracy of the ana-

lytical global force-displacement prediction. It can be seen that the analytical (ANA) pre-

diction and experimental (EXP) result have demonstrated good agreement in Fig. 4-12A.

However, variances are seen beyond Point (c), when the local cross section is approaching

to a near-flat configuration (b/L ≈ 1). The error occurred mainly due to the ‘free edge

effect’ described in Section 3.3.2, where a stress concentration is seen around the crease-

line region, attributed to the non-uniform stress transfer on a non-rectangular surface, as

highlighted in Fig. 4-12B. Initial investigation of the free edge effect of curved shells is

shown below, but it will not be closely studied in this chapter, because the prediction error

occurred only when the curved-crease origami was deformed to a near-flat configuration;

intermediate states demonstrated a good correspondence.

Other predictable global force-displacement responses can potentially be achieved by

adjusting curved-crease origami design parameters. A parametric study was conducted to

investigate this using a range of elastica surface origami.

4.2.1.1 Free Edge Effect of Curved Shells

To explore the free edge effect in curved-crease folding behaviours, two curved shells

were designed, simulated, and tested with physical models. They were simple and skewed

curved developable surface, corresponding to Fig. 4-13A and B, respectively. Both models

were designed from a 90mm × 90mm PET sheet, with elastica surface design parameter

to be b/L = 0.75, and ηB = 45o for the skewed surface. Analytical force-displacement pre-

dictions for both models were translated from UBEND using the proposed CCBT method and

exact elastica beam bending deformations shown in Fig. 4-4A. It can be seen that analyti-

cal predictions and EXP results have demonstrated good correspondence for both models.

However, minor variances are seen from the initial state with FE confirms that errors were

not simply attributed to manufacturing or measurement defects. For simple curved de-

velopable surface, the source of error is believed to be due to the coupling effect between

in-plane loading and out-of-plane deformation, result in warped free edges as highlighted in

Fig. 4-13A. For skewed curved developable surface, the error is attributed to the combina-

tion of warped free edges and non-rectangular sheet bending, result in a non-uniform stress

transfer contour shown in Fig. 4-13B. However, wrapped regions are relatively small com-

pared to the overall shell area for both models, hence enabling actual bending behaviours to

be captured using a simplified 2D beam bending representation. Furthermore, if the skewed

shell is designed with a shorter edge length, the effect of non-rectangular sheet bending will

be amplified, as shown in Fig. 4-12B. A more significant finding is that these free edge
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effects will not be eliminated in certain curved-crease origami forms, and a more complex

behaviour will occur when the ‘free edges’ are subjected to geometric constraints.
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4.2.2 Edge Angle Effect

With reference to Fig. 4-2, it can be seen that the shape of the crease line of a curved-

crease origami is generated from the intersection between the curved surface and inclined

truncation planes, which give the edge angle ηA after the component surfaces are assembled.

An initial set of models were generated by altering the edge angle of an initial curved-crease

origami with the local cross section and origami design parameters remaining unchanged,

as shown in Fig. 4-14A. Two physical prototypes were tested, which were modified from

the elastica surface origami utilised in the previous section (ηA = 90o). They were ηA = 120o

and 60o, corresponding to results shown in Fig. 4-14B and C, respectively. Experimental

results are seen to have a good agreement with analytical predictions for both prototypes.

On the comparison of force-displacement paths in Fig. 4-14A, a more significant feature

can be observed, that is the global force-displacement response type [126] can be achieved

using different elastica surface origami constructed from the same elastica surface:

• Path (a): When ηA >90o, a hardening response will occur, as validated in Fig. 4-

14B.

• Path (b): When ηA =90o, a plastic response will occur, as validated in Fig. 4-12A.

• Path (c): When ηA <90o, a softening response will occur, as validated in Fig. 4-14C.

A stronger free edge effect and prediction error is seen when the component surfaces

have skewered edges, but it only occurs when the local deformation is approaching to a

near-flat configuration as discussed above.

4.2.3 Edge Length Effect

Recalling Equation 4-21, the global height H of the initial curved-crease origami can

be controlled by varying the edge length design parameter w with a fixed ηB. A modified

elastica surface origami was tested, with its edge length designed to be twice as long than

the elastica surface origami utilised in Section 4.2.1, as shown in Fig. 4-15A. It can be seen

that the experimental result again confirms the reliability of the analytical prediction, as

shown in Fig. 4-15B and that an extended force-displacement response has been achieved

by using a longer edge length design. It is concluded that the edge length determines the

displacement capacity of the force-displacement response, assuming the local cross section

and origami design parameters remain unchanged.

4.2.4 Modular Tessellation

A unit curved-crease origami geometry can be tessellated to larger configurations for

fulfilling specific design objective, where the deployment mechanics of the macro tes-

sellated form is generated from repeated unit geometries. Four tessellated forms were

tested including two in-plane tessellations (Tessellation X and Y), one out-of-plane tes-

sellation (Tessellation Z), and one combined tessellation (Tessellation XYZ), as shown in

Fig. 4-16A. Depending on the method of tessellation, different global force-displacement
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responses can be realised. If considering the base unit as a non-linear mechanical spring,

in-plane tessellation will give a parallel spring behaviour, out-of-plane tessellation will give

a series spring behaviour, and the combined tessellation will give a combined parallel and
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series spring behaviour, as validated in Fig. 4-16B-C, Fig. 4-16D, and Fig. 4-16E, respec-

tively.
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4.3 Customizable Force-displacement Responses

A customizable global force-displacement response can be realised by using an elas-

tica surface origami and the insight gained into the effect of available origami design pa-
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rameters. This is demonstrated more clearly in Fig. 4-17 and by following the four design

steps:

Step 1 selects a desired shape of the global force-displacement response. Diverse

responses can be generated by modifying a default elastica curved-crease origami with

different edge angles, ηA, as shown in Fig. 4-17A. The default origami utilised in this

example is the same as the elastica surface origami designed in Section 4.1.3, which can be

specified by nine design parameters, including ηA = 90o, w = 180mm, L = 90mm, b/L =
0.75, E = 2299MPa, t = 0.5mm, Tx = 1, Ty = 1, and Tz = 1, where Tx, Ty, and Tz are the

number of tessellations in X, Y , and Z, respectively. The modified form, (a), is selected to

have a softening response with the origami edge angle designed to be ηA = 45o.

Step 2 determines the maximum displacement, H, of the global force-displacement

response. This can be done by controlling the edge length design parameter, w, and out-of-

plane tessellation, Tz, of the origami, as shown in Fig. 4-17B. Specifying H and ηA allows

the total width requirement of the sheet to be calculated using Equation 4-21-4-10. For this

example, (a) is modified to (b) with H = 60mm by setting w = 130mm and Tz = 1.

Step 3 designs the energy response, U, of the unit origami geometry, that is the area

under the force-displacement path. With reference to Equation 4-7, the energy response is

determined by the origami cross section design, L and b/L, and material properties, E and

t, as shown in Fig. 4-17C. A desired energy response can therefore be generated with a

range of elastica curves and diverse elastic sheet materials. Available elastica curves are

ranging from b/L <1 to the contact limit state as discussed in Chapter 3-5. However, not

all materials have the capacity to be elastically-bent with the selected curvature, suitable

combinations must be bent within the elastic strain limit [127, 128]. As steeper curvatures

are more difficult to be deformed with fixed material properties, using shallower curvature

is one way to avoid plastic deformations. This is shown more clearly by reducing the cross

section steepness of (b) to (c) with b/L decreased to 0.85.

Step 4 finalises the total energy response and the shape of macro tessellated form.

This can be done by specifying Tx and Ty for obtaining in-plane tessellation forms, as

shown in Fig. 4-17D. As the result, the unit origami geometry will proceed a repeating

unit performance and amplifies the energy response with a parallel spring behaviour, for

example, (c) is tessellated to (d) with Tx = 2 and Ty = 2.

4.4 Conclusion

This chapter has analytically investigated the folding mechanics of curved-crease

origami by considering surface minimum elastic bending behaviours, and validated by a

set of manufactured prototypes. The curvature design in curved-crease origami was found

to be the key component to determining the interaction between surface bending behaviour

and origami developability constraints. More significantly, the use of elastica curve for

non-zero principal surface curvatures allows surface minimum elastic bending behaviours

to be preserved under a developability-constrained condition. This enabled the energy re-
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Fig. 4-17 Customizable force-displacement responses. (A) Step 1 selects a desired shape of the

global force-displacement response. (B) Step 2 determines the maximum displacement, H, of the

global force-displacement response. (C) Step 3 designs the energy response, U, of the unit origami

geometry. (D) Step 4 finalises the total energy response and the shape of the macro tessellated form.

sponse of an elastica surface origami to be accurately predicted using both UPRBM and UBEND .

By extension, a range of global force-displacement responses were also accurately pre-

dicted using the CCBT method based on the local cross section deployment translation set

according to the global curved-crease origami design parameters. The effect of origami de-

sign parameters was explored, it was found that the shape of the global force-displacement

response is determined by the edge angle, the duration of the global force-displacement re-

sponse is controlled by the edge length, and series and parallel spring effect can be achieved

74



Chapter 4 Curved-crease Origami Folding Mechanics

through modular tessellation. Together, these allow a curved-crease compliant mechanism

to be designed with a fully customizable force-displacement response.

75





Chapter 5 Curved-crease Origami Applications in Elastic Buckling of Tubes

Chapter 5 Curved-crease Origami Applications in Elastic
Buckling of Tubes

This chapter demonstrates the utilisation of elastica surface generation of curved-

crease origami in cylinder buckling control. A curved-crease tubular geometry is first gen-

erated from a higher-order elastica, where the shape is similar to the natural deformed shape

of a buckled cylinder, namely the diamond mode. A manufactured cylinder, rolled from a

flat sheet, with a pre-embedded curved-crease origami pattern is then axially compressed

and buckled into the pre-determined folded shape. The deformation is analysed and shown

to be highly accurate to the analytical geometry. This result demonstrates that the buckling

mode of a cylinder can be accurately controlled, where the crease line constraints can act

as a mode director.

5.1 Introduction

5.1.1 Motivation

Specific applications capable of utilising elastica-generated curved-crease origami

were sought as the final stage of this thesis. The elastic buckling of thin-walled tubes was

identified as one, building on recent works in straight-crease (SC) tubes at Tianjin Univer-

sity (TJU) [129, 130]. Results of this are presented here.

5.1.2 Tubular Buckling and Origami Tubes

To explore a new platform for curved-crease origami pattern applications, this section

explores the intersection of origami engineering and large deformation nonlinear mechanics

in the buckling of thin-walled tubes. It is an interesting intersection because origami patterns

can be naturally formed in some buckling modes and buckling behaviours of tubes can be

controlled by origami patterns, including straight and curved-crease patterns.

5.1.2.1 Tubular Buckling

Thin-walled tubes are used in many applications across a wide range of scales and dis-

ciplines. Their excellent weight-specific structural performance characteristics sees them

used as building elements [131, 132] and subsea fluid pipes [133, 134]. Their good crash-

worthiness behaviours see them used as energy absorption devices [135–138]. These appli-

cations all rely on a comprehensive understanding of the buckling behaviours of thin-walled

tubes.
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Thin-walled cylinders are the simplest form of thin-walled tube and their behaviour

under axial compression has been intensively studied for decades. It has been found that

their buckling modes are strongly influenced by the material properties and geometrical pa-

rameters [139], with global and local buckling behaviours determined by length-to-diameter

(L/D) and diamater-to-thickness (D/t) ratios, respectively [140, 141]. For example, long

slender cylinders with larger L and smaller D exhibit global buckling behaviours with mode

shapes arising from lateral deformation [142]. By contrast, short and medium-length cylin-

ders have local buckling behaviours [143], where the deformation involves the formation of

progressive folds within the tube itself [144]. Two significant mode shapes are seen in local

buckling, based on observations of compressed thin-walled cylinders with varying D/t ra-

tios [140]. The axi-symmetric concertina mode (also known as the ring mode) occurs with

relatively thick wall thickness D/t < 90 [145, 146] and the non-symmetric diamond mode

(also known as the Yoshimura mode) occurs with relatively thin wall thickness D/t > 90

[79–81]. Interestingly, the diamond mode is a naturally formed origami tube which can be

represented by tessellated triangles and unrolled to a planar origami pattern.

5.1.2.2 Origami Tubes

The buckling behaviour of thin-walled tubes can be controlled by utilising their imper-

fection sensitive characteristics [147]. This includes the use of non-uniform wall thickness

for a functionally-graded form [148, 149], or employing cutouts, plastic folds, or dents on

the surface to guide the deformation process to a predictable buckling mode [150–152].

Modern thin-walled tubes have also been combined with developable origami-inspired sur-

face textures [153–155], where the plastically pre-folded creases can determine the me-

chanics of the buckling process and act as a mode director [49, 156].

Instead of using pre-folded geometries, an early concept has demonstrated that

origami-inspired patterns can also be pre-embedded on smooth surfaces for altering the

elastic buckling behaviour. Straight-crease diamond patterns, pre-embedded on thin-walled

cylinders have been shown to generate a postbuckling configuration similar to the ‘dia-

mond’ mode [129, 130], as shown in Fig. 5-1. It was found that the number of circumfer-

ential and longitudinal lobes n and the slant angle α are the two most important parameters

for realising inwardly-deformed ‘diamonds’, with all tested specimens α < 45o exhibiting

the diamond mode failure. However, the manifested deformation was seen to include a

complex curved bending region and hence the exact deformed shape was unknown. This

limitation is not unique to pre-embedded tubes; for most buckling types and modes, cap-

turing the exact shape of a postbuckled configuration is an extremely challenging problem.

To overcome this limitation, Chapter 3 has suggested the possibility of the exact deformed

shape of a manufactured curved-crease origami to be accurately captured using the elas-

tica surface technique. Therefore, it is hypothesised that the shape of the postbuckled tube

can be accurately pre-determined by pre-embedding curved-crease origami on the smooth

surface.
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Fig. 5-1 Buckling shape control by using pre-embedded straight-crease diamond pattern. (A) 2D

pattern and design parameters. (B) Undeformed cylindrical shell with design pattern. (C) Deformation

when subjected to axial compression, with (D) complex curved bending regions.

5.2 Geometric Design

5.2.1 Target State Curved-crease Origami Creation

The curved-crease origami geometries utilised in this study are first modelled at their

fully-folded, or ‘target’ state. The target state of key interest in this study is a cyclidri-

cal tube with a pre-determined post-buckled shape. The geometric design method is as

developed in Chapter 3, summarised as follows. First, a ‘higher-order’ elastica curve for

a simply-supported slender rod is selected as shown in Fig. 5-2A. It represents the exact

post-buckling geometry of a compressed beam and also a minimum bending energy config-

uration. The curve has three length parameters: curve length L, target state support distance

b, and height of the curve away from the centreline h∗. These parameters are also related

to the parameter m for determining the shape of the curve, where we only consider and

enumerate even modes with a central inflection point in this study, that is m=1 is a second-

mode elastica, m=2 is a fourth-mode elastica, et cetera. Specifying any three of L, b, h∗, or

m gives an exact shape of a higher-order elastica curve. Extruding the curve by length w
then transforms the 2D curve to a simply-supported 3D surface, as shown in Fig. 5-2B.

A higher-order mode of an elastica curve is unstable without lateral restraint, for ex-

ample the m = 2 fourth-mode surface shown in Fig. 5-2B would be expected to snap to

first-mode elastica surface if it possesses only the shown end restraints. However, a pseudo-

lateral restraint and stabilising effect can be provided by folding the extruded surface as
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demonstrated in Section 3.2.4. The mirror reflection method is a technique for generation

of a folded surface from a specified developable surface. A series of mirror planes are in-

tersecting on the extruded elastica surface to control the folding angle of the folded form

and identifying sequential curve folds required for tubular configurations.

The folded surface must additionally form a tubular configuration, which introduces

several conditions on the specification of mirror planes. First, to give discrete individual

lobes, reflection planes are constructed within the extrusion sectional height 2h∗ as shown

in Fig. 5-2C. Second, an even number of mirror planes 2n must be defined so that the

final reflected surface has the same orientation as the initial surface, as shown in Fig. 5-

2D. These constraints allow plane edge angles θMB and θMA to be found with the following

relationships:

θMA =
π(n − 1)

n
(5-1)

θMB =
π − θMA

2
(5-2)

h∗ =
w

√
tan2 θMB

4n
(5-3)

Sequentially truncating and reflecting the shell about the mirror planes then gives the

target folded state of the tubular curved-crease origami, where n and m determine the num-

ber of circumferential and longitudinal lobes, respectively. To summarise, the target state

is generated with specification of four design parameters: w, L, m, and n. Parameters n and

w give h∗ from Equations 5-1-5-3, from which an elastica curve can be determined with

L, m, and h∗ using Equation 2-9-2-17. The higher-order elastica curve forms the non-zero

principal curvature for the target curved-crease surface.

The tubular origami can be unrolled to generate a 2D pattern within a w × L sheet

as shown in Fig. 5-2E. The patterned sheet can either be folded into the designed target

state, or simply rolled into a thin-walled cylinder with a diameter D. The latter forms a

cylindrical tube, pre-embedded with the curved-crease pattern. Therefore, there are two 3D

stable states, a curved-crease origami state and a cylindrical tube state. The key hypothesis

of this study is that the target curved-crease origami state is the exact deformed shape of
the cylindrical tube state. If so, it should be obtainable by actuating the patterned cylinder

with an axial compression load and at a target displacement of lD = L−b. Sub-assumptions

of this hypothesis include: the crease pattern is pre-embedded into the sheet without any

surface pre-folding; the crease lines act as hinges and do not distort the final surface bending

behaviour; and that the boundary condition is preserved as pinned-pinned as per the original

elastica derivation. If this hypothesis is correct, it can be said that the post-buckled shape of

a thin-walled cylinder can be precisely controlled by using a pre-embedded curved-crease

origami pattern.
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Fig. 5-2 Design procedures for tubular curved-crease origami. (A) 1D higher-order elastica curve

and its design parameters. (B) An unstable bent shell extruded from the higher-order elastica curve. (C)

Sequential mirror planes intersecting with the extruded shell. (D) Continuous truncation and reflection

about the mirror planes, resulting in the target state curved-crease origami. (E) The unrolled pattern and

its two possible forms.

5.2.2 Transformation of Curved to Straight-crease Diamond Pattern

Straight-crease (SC) diamond patterns are reproduced for the comparison with curved-

crease (CC) patterns in this study. To make the two patterns comparable, the shape of target

state curved lobes is transformed into diamonds by connecting the lobe boundaries with

straight-line segments as shown in Fig. 5-3A-C. As the result, both patterns share a simi-

lar shape, a common sheet size, and the same number of circumferential and longitudinal

lobes. Due to these characteristics, it is hypothesised that they will have a similar buckling

behaviour, where the design parameter n and α strongly determine the post-bucked shape

as described in Yang et al. [130]. These hypotheses will be systematically investigated in

below sections.
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Fig. 5-3 Transformation of curved and straight-crease diamond pattern. (A) Base curved-crease 2D

pattern. (B) Transformation of modular curved-lobes to diamonds. (C) Resultant straight-crease 2D

pattern.

5.3 Experimental Analysis

5.3.1 Method

To investigate the buckled shape of a patterned cylinder, nine pairs of specimens

(CC/SC patterns) were manufactured and tested. These patterns were selected based on

SC patterns with controllable buckling modes, tested previously in [130]. They were all

designed within a w× L = 278 mm × 210 mm sheet and rolled into a D/t = 294.96 cylinder

with pattern design parameters summarised in Tab. 5-1. All specimens were manufactured

with a t = 0.3 mm thick isotropic polypropylene sheet, which allows the requisite large

elastic deformations. Crease lines were pre-embedded into the flat sheet by using a laser

scoring process to reduce the material thickness along crease lines. Scored creases were

approximately 0.3mm wide and 0.15-0.2mm deep on the outer tube surfaces as all crease

are designed to be folded with the same direction, hence avoid the thickness interaction for

unscored regions during deformation. This correspondingly reduced crease line rotational

stiffnesses such that they could approximately act as ‘hinges’ during folding.

Specimens were loaded under quasi-static axial compression in an Instron Universal

Testing machine with a 100kN load cell. Displacement control was used for load applica-

tion, with a rate of 2 mm/min. Specimens were simply-supported between two rigid bodies,

mounted on the Instron base plate and cross-head. The deformation process was captured

by using a digital image correlation (DIC) system CSI Vic-3D9M, at a frame time interval

of 100 milliseconds and with a 1.2/mm2 speckle pattern [44, 130].

5.3.2 Buckling Modes and Force-displacement Responses

Tube deformations observed in tested specimens are categorised into two buckling

modes based on their post-buckled shapes, summarised in Tab. 5-1. The first mode is the

‘controlled’ type as shown in Fig. 5-4A. Patterned cylinders with this mode had all lobes

buckle and bend inwards when fully compressed by lD, as per the designed curved-crease

deformation mode. Patterned cylinders with such buckling mode are concluded to have a

‘shape-controllable’ feature which is a modified form of the idealised diamond buckling
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mode.

The second mode is the ‘uncontrolled’ type, where the patterned cylinder buckled

without triggering, or only partially triggering, the pre-embedded lobes during the com-

pression process as shown in Fig. 5-4C. This uncontrollable mode can be considered as

similar to a typical thin-walled tube local buckling behaviour.

The force-displacement of selected CC/SC tube pairs is shown for controlled and un-

controlled modes in Fig. 5-4B and D, respectively. It is seen that CC and corresponding SC

tubes share a similar force-displacement response if they are undergoing the same failure

mode. Five cases show CC and SC tubes with the same controllable buckling mode: m2n5,

m2n6, m3n5, m3n5, and m3n8. Two cases show CC and SC tubes with the same uncontrol-

lable buckling mode: m3n4 and m6n5. Two cases have different failures with controllable

buckling mode in CC tubes and uncontrollable buckling mode in SC tubes: m1n4 and m4n9.

To more closely investigate the observed differences between CC and SC buckling

mode behaviours, Fig. 5-5 shows a failure map for tested specimens, plotted against key

design parameters n and α. Also included are results from [130] for SC tubes with con-

trollable buckling mode, shown shaded in grey. SC diamond mode buckling occurs where

design parameters are distributed within or close to the shaded area. The design parameter

range which determines diamond mode buckling in SC patterns also determines the con-

trollable buckling mode in CC patterns. Similarly, away from the shaded region with α

close to or smaller than 45o, uncontrollable buckling mode occurs in both SC and CC tubes.

Non-matching failures are shown as half-coloured dots and occur above α = 45o and close

to the shaded region. This suggests that the design range for controllable buckling mode

can be extended by using curved-crease origami patterns, as compared with straight-crease

diamond patterns.

Tab. 5-1 Design parameters and buckling mode comparison for patterned cylinders with curved and

straight-crease patterns, where • = Controlled, ◦ = Uncontrolled.

m n α b/L 2h∗ lD Mode

(o) (-) (mm) (mm) (CC, SC)

1 4 71.69 0.988 14.39 2.45 (•, ◦)
2 5 62.10 0.982 9.03 3.88 (•, •)
2 6 66.19 0.991 6.21 1.82 (•, •)
3 4 45.21 0.888 14.39 23.56 (◦, ◦)
3 5 51.54 0.958 9.03 8.86 (•, •)
3 7 60.43 0.990 4.53 2.19 (•, •)
3 8 63.60 0.994 3.46 1.27 (•, •)
4 9 59.43 0.993 2.72 1.40 (•, ◦)
6 5 32.19 0.814 9.03 39.05 (◦, ◦)
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Fig. 5-4 Buckling mode classification. Left: deformation of comparable curved-crease (CC) and

straight-crease (SC) patterns. Right: Force-deformation comparison of CC and SC patterns. (A-B)

Demonstration of controlled type of buckling mode by using m3n5 patterns. (C-D) Demonstration of

uncontrolled type of buckling mode by using m6n5 patterns.
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5.3.3 Deformed Surface Analysis

For thin-walled cylinders achieving the controlled buckling mode, additional study

was undertaken to determine the correlation between the buckled shape and the analytical

folded form. The controlled buckling type m2n5 CC and SC specimens were selected for

study, with their final deformed lobe geometry measured as point cloud data from DIC

measurements. Only a single lobe was extracted from each specimen for the analysis,

due to the large deformation influence on the light source reflection causing unmeasurable

regions for the DIC system. The deformed lobe was measured at approximately 5,000 data

extraction points and imported into a Rhino CAD environment. This was compared with

the isolated analytical lobe highlighted in Fig. 5-6A, with surface error calculated as the

closest line distance between the data points and the analytical surface. A 6-DOF rigid

body displacement optimisation routine was used to locate analytical geometry, relative to

measured geometry, so as to minimise overall surface error, as discussed in Chapter 3.

Error measurements are plotted in Fig. 5-6B as a contour diagram with colour legend

from green to red for 0 to +2t error, and green to blue for 0 to −2t error, where sheet thick-

ness t = 0.3mm. An average absolute surface error of 0.09 mm and 0.23 mm were seen for

the CC and SC patterns, respectively. The correspondence for CC specimen demonstrates

a high degree of design accuracy, where the average absolute surface error is within half of

the sheet thickness. Therefore, it is concluded that the post-buckling configuration of a pat-
terned cylinder can be accurately controlled by design of a curved-crease origami pattern
with a target displacement applied.

The error analysis also shows a clear difference between the SC diamond mode and

CC curved-crease mode, although these are superficially very similar and were both classed

above as controllable buckling modes. The substantial surface error seen for SC lobes

indicates it is not collapsing to the designed geometry. Regions of high error are seen

around the crease line boundary and regions of lower error are seen in the central bent lobe

area. Therefore, it can be said that the curved deformation in the SC diamond mode is

generated as the straight-crease pattern relaxes toward an elastica-like minimum bending

energy state. The deformation process forces straight creases to somehow deform to their

closest corresponding curved-crease origami. Stronger evidence can be seen in the cross

section comparison shown in Fig. 5-6C. Close correspondence to the elastica curvature is

seen in the mid-region, but this reduces towards the bounding crease lines. To conclude, SC

and CC pre-embedded patterns can generate a controlled buckling mode, but only elastica-

generated CC patterns can give a precise geometric definition of the buckled surface.
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Fig. 5-6 Target state surface analysis of m2n5 pattern. (A) Designed geometry with elastica

surface. (B) Deformation of - top: curved-crease, bot: straight-crease pattern when the target

displacement has reached. (C) Cross section comparison.

5.4 Behaviour Analysis

5.4.1 Elastic Bending Energy of Deformed and Undeformed States

The difference in exhibited buckling modes was hypothesised to be related to the cur-

vature of the lobe, which changes direction and magnitude from the undeformed to the

deformed state. The undeformed lobe has a uniform curvature along the circumferential

direction which is obtained from the cylindrical shell surface, denoted as κ1 and shown in

Fig. 5-7A. The deformed lobe has a non-uniform curvature along the longitudinal direction

which is obtained from the elastica profile, denoted as κ2. If κ2 > κ1, the target deformation

state would have a larger surface curvature and bending strain energy potential and hence

the change of bending direction may not be easily realised. However, κ1 is a uniform value

and κ2 is a non-uniform function, so they cannot be compared in such a direct manner.

The curvature present in both undeformed and deformed lobes can be represented as

an equivalent elastic bending strain energy, assuming that either state has been folded from

a flat sheet with κ1 = κ2 = 0. The equation to calculate the energy U of a sheet subjected to

large elastic bending has been developed previously in [157] and utilised in [130] for their

SC patterns as:

U =
Et3

24(1 − ν2)

∫
Lobe

(κ2x + κ
2
y + 2νκxκy)dA (5-4)
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Fig. 5-7 (A) Curvature of a single lobe before and after deformation. (B) Correlation between

strain energy, displacement, and buckling modes.

For the polypropylene material used in this study, Young’s Modulus E = 1,260 MPa, Pois-

son’s ratio ν = 0.30, and t = 0.30mm. κx and κy are the curvatures along the perpendicular

directions of the lobe, so the undeformed lobe has κx = κ1 and κy = 0 and the deformed lobe

has κx = 0 and κy = κ2. The energy for undeformed and deformed lobes are denoted as U1

and U2, respectively.

Energy results for all tube configurations are summarised in Fig. 5-7B and Tab. 5-2.

Note that force-displacement response types classification, that is Type 1, 2, and 3 be-

haviours, is explained in the following section. The discovery of this section is that all pro-

totypes with U2 < U1 exhibited controllable buckling mode and conversely, all prototypes

with U2 > U1 showed uncontrollable buckling mode. It is concluded that a pre-embedded
CC pattern will generate a controlled buckling shape, if that shape has a lower elastic
bending strain energy potential than the initial tubular state.
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Tab. 5-2 Experimental result of different types of buckling behaviours for curved-crease patterns,

where • = Controlled, ◦ = Uncontrolled.

m n U1 U2 lD/L (U2 − U1)/U1 Result

(mJ) (mJ) (-) (-) (Type, Mode)

1 4 19.47 2.00 0.012 -0.897 (3, •)
2 5 7.79 2.81 0.018 -0.639 (3, •)
2 6 6.49 1.92 0.009 -0.704 (2, •)
3 4 6.49 11.49 0.112 0.770 (3, ◦)
3 5 5.19 2.97 0.042 -0.428 (3, •)
3 7 3.71 1.63 0.010 -0.561 (2, •)
3 8 3.24 0.38 0.006 -0.884 (1, •)
4 9 2.16 0.33 0.007 -0.846 (1, •)
6 5 2.60 13.68 0.186 4.271 (3, ◦)

5.4.2 Lobe Transition Characterisation

Examination of the force-displacement curves of curved-crease specimens can give

insight into the transitional behaviour between underformed and deformed tube shapes.

Fig. 5-8 shows the specimen responses up to their target state compression limit lD, with

controlled and uncontrolled buckling modes further classified based on observed force-

displacement response characteristics:

• Fig. 5-8A shows specimen m3n8 and m4n9 responses. These manifest a controlled

failure mode with a smooth, approximately linear region only.

• Fig. 5-8B shows specimen m2n6 and m3n7 responses. These manifest a controlled

failure with an approximately linear region followed by a slightly fluctuating plateau

region.

• Fig. 5-8C shows specimen m1n4, m2n5, and m3n5 responses. These manifest a con-

trolled failure with a classic non-linear bucking response, with a peak load followed

by sharp reduction in strength and an extended plateau region.

• Fig. 5-8D shows specimen m3n4 and m6n5 responses. These manifest an uncon-

trolled failure but also have a classic buckling response as described for Fig. 4-9C.

These force-displacement responses are classified Type 1, 2, and 3 behaviours for Fig. 5-

8A, B, and C-D, respectively.

With reference to Fig. 5-7B, a clear trend is seen between the relative axial dis-

placement lD/L and the transitional behaviour. When the displacement is relatively small

(lD/L = 0.006, 0.007), the lobe transition is a smooth Type 1 behaviour. With increasing

displacement (lD/L = 0.009, 0.010), the buckling process is a less smooth Type 2 behaviour.

When the displacement is relatively large (lD/L = 0.012, 0.018, 0.042) but with U2 < U1,

specimens undergo a controlled Type 3 behaviour. For larger displacements again, with
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U2 > U1, specimens undergo an uncontrolled Type 3 behaviour. The presence of a classical

buckling response indicates that a bifurcation behaviour is occurring between the tube state

acting under membrane stress, and the buckled state acting under bending stress. It is hy-

pothesised that this bifurcation is happening in all controlled specimens, but that it is more

evident in specimens with a long stroke length, as a larger initial displacement and axial

load can be reached in the first stable state, before transition to the second stable state.
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Fig. 5-8 Force-displacement comparisons for all curved-crease specimens. They are identified as

(A) Type 1, (B) Type 2, (C-D) Type 3 buckling behaviour.

5.4.3 Lobe Transitional Energy Behaviour

By assessing the complete strain energy history of a lobe, the transition and hypoth-

esised bifurcation behaviour can be more closely studied. The m3n5 CC/SC specimens

shown in Fig. 5-4A were selected for the investigation, as they displayed the Type 3 clas-

sical non-linear buckling behaviour and so were judged likely to exhibit a clear bistability.

Actual deformations were collected from the DIC system as discrete data points. These

points were numerically reconstructed to a degree 5 polynomial surface, fitted with MAT-

LAB Curve Fitting Tool, as shown in Fig. 5-9. Deformations were measured and surface-

fitted at 100 frame intervals from 0 %(undeformed) to 100% (deformed) state. Equation 5-4

was used to obtaining the surface strain energy histories, with curvatures κx and κy measured

at approximately 20,000 data extraction points across the surface. Remaining parameters

values in Equation 5-4 were as described in Section 5.4.1.
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Fig. 5-9 Constructing surface from DIC data points using MATLAB Curve Fitting Tool.

The analysis results are shown in Fig. 5-10, plotted as strain energy frame interval

measurements versus relative deformation. It can be seen that analytical predictions for

U1 and U2 CC specimen strain energies have a good correspondence with the measured

experimental (EXP) strain energy. This indicates the analysis and analytical methods are

reliable. Both SC and CC specimens demonstrate a classic elastic snap-through behaviour

at approximately 25-30% relative deformation. This is characterised by an initial stable

state, here the tube energy state U1, from which the strain energy increases as the tube is

loaded. There is a sudden energy drop as the deformation snaps to a second stable state

with a lower energy potential, here the curved-crease energy state U2.

Prior to the snap-through, it can be noticed that the SC specimen has a higher energy

barrier than the CC specimen, which is attributed to additional strain energy needed to de-

form the straight creases to allow a curved-lobe snap through. The bistability behaviour of

the CC patterns is therefore relatively easier to trigger, which gives a reasonable explana-

tion of the wider design range of curved-crease origami patterns which exhibited controlled

buckling mode as highlighted in Section 5.3.2.

Following the snap-through, it can also be noticed that the strain energy histories of

the CC and SC specimens are very different. Both specimens have reached the same lower

energy bound. The strain energy for CC specimen remains stable afterwards, indicating

the stabilised deformation was reached at a minimum of strain energy. The strain energy

for SC specimens increased after the lower bound was reached, with the additional energy
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attributed again to straight crease lines deforming toward the curved lobe shape as shown

in Fig. 5-10. The strain energy histories support the observations of Section 5.3.3, with

the high surface accuracy of CC specimens arising from the stable minimum strain energy

state, and the relatively low surface accuracy of SC specimens arising from the straight

crease line interaction with the curved lobe shape.
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Fig. 5-10 Lobe transition behaviour during elastic buckling for CC and SC patterns.

5.4.4 Limitation in Numerical Modelling

Experimental results are commonly compared with FE (Finite Element) results to fur-

ther explore the mechanics of a physical phenomenon. However, in the present study, the

comparison was not made due to two reasons:

• The experimental results represent the real behaviour of the object and the presented

results have clearly highlighted the corresponding key findings.

• The degree of complexity for simulating the patterned tubes is extremely high.

In general, origami structure behaviour is highly sensitive to rotational hinge line stiff-

ness and curved-crease origami is additionally sensitive to panel thickness and material, due

to its non-zero principal surface curvature. Numerical simulation would require a number

of assumptions to be made about both of these items.

Ultimately, all numerical modelling assumptions have to be validated with experimen-

tal testing to ensure their accuracy. In the present case, crease properties of experimental

models are complicated, where they were scored on the outer tube surface, giving a rota-

tional stiffness is different in different (Mountain/Valley) folding directions and possibly

causing a thickness interaction. This could not easily be represented in a shell-based FEM

model. Another difficulty in simulating the buckling behaviours of the models is imparting

imperfections, where the type of defects can largely influence the results. These include

the boundary condition, surface, and crease defects. Again, they could not easily be repre-

sented in FEM models and ultimately, the experimental testing data would again be used to

ensure their validity.
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5.5 Conclusion

In this investigation, a new post-buckled shape control technique for thin walled cylin-

ders has been created and validated. The technique allows for control over the buckled

shape of a cylindrical tube, with the shapes shown in Fig. 5-11 all generated from the same

tube by using different embedded curved-crease patterns. More significantly, the buck-

led shapes can be precisely described as an elastica minimum bending energy surface. A

precise shape definition arose from the curved-crease geometry construction method, val-

idated with 3D surface measurement of the deformed shape. A precise energy definition

arose from a bending strain energy formulation based on undeformed and deformed surface

curvature. The energy formulation was validated with the strain energy histories and this

also showed the driving mechanics of the buckling process. Controlled buckling mode was

seen to occur as a bistable transition from a higher strain energy tubular state to a lower

strain energy curved-crease state.

A. B.

Fig. 5-11 Illustration of controllable buckling modes. (A) Undeformed cylindrical tube without

pre-embedded patterns. (B) Pre-determined target folded shape for all controlled tubes.
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Chapter 6 Conclusion

In this thesis, a set of curved-crease patterns were accurately modelled and analysed.

This was achieved by adopting elastica curves, the deformed shapes of an elastically-

deformed slender rod, as the generating curvatures for curved-crease pattern construction.

This approach is shown to enable several key advancements in characterisation of pattern

behaviour. Major findings and contributions of this thesis are briefly summarised and fol-

lowed by future research implications which conclude the thesis.

6.1 Summary of Findings

6.1.1 Modelling of Curved-crease Origami using Elastica Curves

Chapter 3 developed a new analytical geometric construction method for modelling

near-exact surface representation of folded curved-crease origami surfaces, termed elastica
surface generation of curved-crease origami. This method allowed curved-crease origami

to be designed for a specific form and target volume by transforming base straight-crease

origami patterns into their curved-crease variants. A new compressibility limit of curved-

crease surfaces was identified with an upper limit of Θ = π/2. An experimental surface

analysis showed that the design accuracy can be controlled within 50% of the 2mm sheet

thickness with a range of elastica surface curved-crease origami. It was found that the

proposed method is highly reliable if 3D curved-crease origami surfaces are elastically-bent

and preserve boundary conditions as per the utilised elastica solution. It was also found that

an unstable higher-order mode of elastica surface can be stabilised using a curved-crease

constraint.

Extensions of the method were explored and included numerical folding motion sim-

ulation and an investigation of a free edge distortion behaviour which occurred in certain

origami forms. The free edge effect was found to distort bending behaviour if the free edge

was not parallel to the elastica construction plane. This was demonstrated for both linearly-

extruded elastica surfaces and 3D reflected curved-crease origami surfaces. If the free edge

inclination is small in comparison to the extruded surface length, it would be expected to

have a minimal, localised impact. It was also found that developable tubular origami ge-

ometries, which effectively remove free edges, would avoid distortion completely.
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6.1.2 Curved-crease Origami Folding Mechanics

Chapter 4 explored the folding mechanics of elastically-bent curved-crease origami

by examining the intersection between surface’s minimum bending behaviour and

developability-constrained behaviour. It was shown that a curved-crease folding motion has

a lower (UBEND) and upper (UPRBM ) bound energy behaviour depending on the enforcement

condition of surfaces. It was then shown that the actual model had an energy behaviour

between UBEND and UPRBM , as the developability condition cannot be exactly enforced. By

adopting the elastica curve as the non-zero principal curvature of curved-crease origami, it

was found that the local cross section deformations with and without developability con-

straints are suitably close to each other during motion. This allowed the energy response of

an elastica surface origami to be accurately predicted.

A new CCBT method for analytically translating a predictable energy response to

a global force-displacement response was then developed. A range of non-linear force-

displacement responses were shown to be accurately predicted using elastica surface

origami with different origami design parameters. It was found that the edge angle de-

termines the global force-displacement response type, where a hardening, plastic, and soft-

ening response was seen for ηA greater than, equals to, and smaller than 90 o, respectively.

It was shown that the edge length determines the the displacement capacity of the force-

displacement response. It was also shown that a series, parallel, or combined non-linear

mechanical spring effect can be achieved through modular tessellation. These origami pa-

rameter effects were then demonstrated for designing an elastica surface origami with a

customizable global force-displacement response.

6.1.3 Curved-crease Origami Applications in Elastic Buckling of Tubes

Chapter 5 presented a new shape control technique for post-buckled tubes by using

pre-embedded curved-crease origami patterns. It was found that the buckled shapes can

be precisely pre-determined as an elastica minimum bending energy surface. The pre-

determined deformation was shown to be highly accurate within 50% of the 0.3mm material

thickness. An energy definition for analysing the driving mechanics of the buckling process

was formulated based on undeformed and deformed surface curvature. It was found that a

controlled buckling mode had a bistable transition from a higher strain energy tubular state

to a lower strain energy curved-crease state.

Results from this chapter have also built upon other recent findings in folded surface

mechanics. First, the pre-embedded technique with straight-crease embedded patterns was

seen in [129] to produce controlled diamond buckling over a finite parameter range for n
and α. Results in this study show that this controlled buckling range arises as a function of

bending strain energy and a bistable transition between tubular and deformed states. The

straight-crease buckling mode was found to be similar to the curved-crease mode, but with

additional strain energy from crease line deformation. Correspondingly, it was found that

the deformed shape had a larger energy barrier and final strain energy as compared to the
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minimum-energy curved-crease shapes. Second, this study has demonstrated that curved

folds provide a stabilising effect for the higher-degree elastica surface shapes. This was

hypothesised in Chapter 3, however this earlier study was only able to validate a second-

order elastica surface stabilised through pre-folding. The current study has validated up to

an eighth-order elastica surface, stabilised through pre-embedding.

6.2 Summary of Contributions

The contributions of the thesis are briefly summarised as the following three conclu-

sions:

• A new concise and accurate analytical description of manufactured curved-crease

origami surface was presented by using a curvature representing surface elastic

bending behaviours. This allows users to effectively design and pre-define the exact

folded shape of a curved-crease pattern for a specific form and target volume.

• The first characterisation of elastic strain energy and folding motion in curved-

crease compliant mechanisms was presented. By extension, a novel method

was presented for preserving the surface minimum bending behaviour under a

developability-constrained condition, which allows compliant folding behaviours

of curved-crease origami to be concisely and precisely captured.

• A novel elastic buckling shape control method for thin-walled cylinder was pre-

sented. This allows elastic buckling of thin-walled cylinders to be accurately guided

to a pre-determined shape by using an embedded elastica surface curved-crease

origami pattern, which also offers a strong platform for new origami pattern ap-

plications.

6.3 Potential Applications

Curved-crease origami is a relatively new area of study and knowledge in critical areas

is evolving quickly. This thesis has made a significant contribution particular in the field

of accurately/analytically capturing large nonlinear deformation with developability con-

straint. However, this thesis does not go into depth about specific design and application

examples. It is believed that existing curve-crease applications can be improved using the

new knowledge. For example,

• Target state modelling: With reference to Fig. 1-1C, 1-1E, and 2-1I, the elastica sur-

face technique can be applied on folded façade, thin-walled structure, and car shell,

respectively, for pre-defining their exact shapes. This then allows engineers, archi-

tects, and designers to have an accurate digital model for ease of further analysis

such as load-carrying behaviour, shading performance, and aesthetic judgement. It

should be noted that there are many other curved-crease origami geometries which

can be designed using the elastica surface and have a great potential for static appli-
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cations.

• Compliant folding behaviour: With reference to Fig. 1-1A and 1-1D, the CCBT

method can be applied on curved-crease deployable structures ranging from small-

scale medical forceps to building-scale shelters for capturing their compliant folding

behaviours. This method also allows the shape and folding behaviours of a curved-

crease deployable structure to be pre-defined. That is to say, the CCBT method is

suitable for applications where a desired shape or expected performance is specified.

• Elastic buckling shape control: Folding a complex origami pattern as the deploy-

ment methodology is labour-intensive, time-consuming and highly skill-demand.

However, the new elastic buckling shape control method allows a patterned sheet to

be easily deformed to a pre-defined shape, hence it can be considered as an advanced

manufacturing method. With reference to Fig. 2-1E, there is a large potential that

the origami tube can be assembled using the shape control method before its ex-

perimental testing. This method can also be applied on a range of curved-crease

decorative components for reducing the manufacturing effort.

Above potential curved-crease applications with the new knowledge are all based on

a common assumption, that is panels are elastically-bent using isotropic materials and
crease lines are acting as a zero rotational stiffness without thickness interaction. A range

of materials are suitable for realising this assumption and applications are not limited to

scale according to the elastica theory. However, further investigation is needed to examine

this. Finally, a brief summary of potential future work is discussed in the following section

to conclude the thesis.

6.4 Future Work

This thesis has established results for a range of elastica surface origami with their

shapes and folding behaviours to be accurately designed, and as such has suggest numerous

avenues for future research.

First, this thesis has only utilised a pinned-pinned elastica curve with a constant flex-

ural rigidity EI to construct various curved-crease surfaces. A range of elastica solutions

exist for other boundary conditions, including (1) fixed-fixed, (2) fixed-pinned, and (3)

fixed-free conditions and for incorporation of axial and shear deformation terms within the

elliptic integral [158] or non-uniform flexural rigidity caused by cross section (I) or mate-

rial (E) variation [159, 160]. These elastica curves can be adopted as the non-zero principal

curvature, which can potentially further improve accuracy and extend the range of curved-

crease origami geometries which can be specified analytically. Further study is needed to

develop this.

Second, a substantial limitation of the curved-crease creation method proposed in

Chapter 3 is that a straight-crease base pattern needs to be known a priori to generate

the required reflection planes and elastica design parameters. Whilst extensive families of

straight-crease patterns are known and accessible, the method is fundamentally unsuited
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Chapter 6 Conclusion

to generative forms of origami-inspired engineering design where an approximate straight-

crease origami geometry is as-yet unknown or where the precise final design state is uncon-

strained or not of primary interest. However, the method is highly suitable for parametric

forms of origami-inspired engineering design, as an explicit relationship between crease

pattern parameters (for example as required for manufacture) and volumetric parameters of

the design state (for example as required for 3D surface modelling and engineering analy-

sis) can be established relatively simply in a simplified straight-crease form and then ‘con-

verted’ to an accurate curved-crease form which may have a higher performative capacity.

The combination of generative and parametric design systems is an as-yet unexplored topic

in origami-inspired design.

Third, this thesis has only considered tubular behaviours for elastic buckling up to

the target deformation, as shown in Chapter 5. If deformed tubes are further compressed,

the pre-embedded crease lines and generated modes are likely to have some impact on

subsequent plastic deformation and energy absorption. This study also only considered

pre-embedded creases with approximately zero rotational stiffness. This was necessary

to isolate bending strain energy behaviours, but buckling control might be possible with

higher-stiffness creases. This would likely impact the peak elastic buckling load with further

study needed to understand, predict, and control the peak failure load. To this end, further

research on the intermediate behaviours throughout the buckling process is required, which

potentially involves a robust numerical simulation method.

Finally, the pre-embedded technique can potentially be applied to other types of devel-

opable tubes not just for cylindrical tubes, such as polygonal hollow sections, tapered tubes,

and tubes with different lengths. Additional common features in deformable tubes are also

likely to interact with potential pre-embedded patterns, for example slotted or windowed

tubes. In each cash, a different pre-determined configuration would be needed to reach to

a permissible minimum bending energy state. These permissible states may be attainable

with elastica solutions for different boundary conditions.

97





References

References

[1] Schleicher S, Lienhard J, Poppinga S, et al. A methodology for transferring principles of plant

movements to elastic systems in architecture [J]. Computer-Aided Design, 2015, 60: 105–117.

[2] Nelson T G, Lang R J, Magleby S P, et al. Curved-folding-inspired deployable compliant rolling-

contact element (D-CORE) [J]. Mechanism and Machine Theory, 2016, 96: 225–238.

[3] Nelson T G, Lang R J, Pehrson N A, et al. Facilitating deployable mechanisms and structures

via developable lamina emergent arrays [J]. Journal of Mechanisms and Robotics, 2016, 8 (3):

031006.

[4] Miyashita S, DiDio I, Ananthabhotla I, et al. Folding angle regulation by curved crease design for

self-assembling origami propellers [J]. Journal of Mechanisms and Robotics, 2015, 7 (2): 021013.

[5] Gattas J, You Z. The behaviour of curved-crease foldcores under low-velocity impact loads [J].

International Journal of Solids and Structures, 2015, 53: 80–91.

[6] Garrett D, You Z, Gattas J M. Curved Crease Tube Structures as an Energy Absorbing Crash Box

[C]. In ASME 2016 International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, 2016: V05BT07A017–V05BT07A017.

[7] Vergauwen A, Alegria Mira L, Roovers K, et al. Parametric design of adaptive shading elements

based on Curved-line Folding [C]. In Proceedings of the First Conference Transformables 2013,

2013.

[8] Epps G, Verma S. Curved Folding: Design to fabrication process of RoboFold [J]. Shape Modeling

International 2013, 2013: 75.

[9] Lee T, Gattas J. Folded fabrication of composite curved-crease components [C]. In International

Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering, 2016: 1430–

1435.
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