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ABSTRACT

This dissertation systematically explores the applications of spatial linkages into
rigid origami. This is achieved by utilizing the kinematics of linkages to folding motion
of rigid origami, where links and revolute joints are corresponded to paper facets and
crease lines, respectively. Major findings of this dissertation are in three areas, and
listed as follows.

First, rigid foldability and motion behaviour of simple origami geometry are
investigated. A well-known triangle twist origami is used, and converted into a network
of spherical 4R linkages based on their kinematic equivalence. The compatibility of this
network is combined to discuss the rigid foldability and motion behaviour of the pattern.
It is found that diverse mountain-valley crease assignments of the pattern exist, based
on the flat-foldable conditions of four-crease vertex. The pattern is then altered into a
new overconstrained 6R linkage by using the kirigami technique, and shows a good
agreement to our proposed kinematic analysis method.

Secondly, kinematic bifurcation conditions for spatial overconstrained 6R linkages
are considered by using a traditional D-H matrix method. A set of closure equations of
plane-symmetric Bricard linkage are derived in explicit forms. This has allowed us to
characterize various bifurcation behaviours and their corresponding geometric
conditions, build up a connection between plane-symmetric Bricard and Bennett
linkage families, and is ready to be applied in rigid origami geometries.

Thirdly, the analysis method is extended from zero-thickness to thick-panel
origami forms. A multi-degree of freedom (DOF) pattern consisted with six-crease
vertices is used, namely waterbomb origami. Its zero-thickness and thick-panel forms
under symmetric folding are converted into networks of plane-symmetric spherical 6R
linkages and plane-symmetric Bricard linkages, respectively, resulting in one-DOF
systems with kinematic equivalence. The zero-thickness form is shown to have a
bifurcation behaviour with two different folding paths. However, this behaviour can be
eliminated in thick-panel form, as the thickness has provided additional geometric
constraints. Finally, an investigation of closed cylindrical form of waterbomb origami
is conducted through a parametric study. It is seen that the folded tube may undergo
different behaviours, including uniform radius configuration, mechanism-structure-
mechanism transition, wave-like configuration, and rigid twist motion. Nevertheless,
the trigger condition of those behaviours can be determined by using the proposed
kinematic analysis method of rigid origami with specified geometric conditions. The
twist angle per axial strain and its relationship with geometrical parameters of the tube
during the rigid twist motion are revealed. Experimental results show the enhancement

in stiffness of the tube with occurrence of the continuous twist motion.
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Chapter 1 Introduction

1.1 Background and Significance

Mechanism is a core research field in mechanical engineering, where diverse
mechanisms are designed as mechanical components to achieve desired movements.
Spatial linkage is a unique type of mechanism, in which the motion is described in three
dimensions [1]. As a subset of spatial linkage, the spherical linkage describes the
linkage where all points in the moving links move along curves that lie on concentric
spheres [2]. There is a special kind of linkage that does not comply with the Griibler-
Kutzbach’s mobility criterion [3], referred to as overconstrained linkage. It is mobile
due to the geometric properties of joints and links. It has been widely utilized in the
field of aerospace engineered structures, mainly because of its structural stiffness,
simple construction and performance reliability. Kinematics is the study on the
geometry of motion in mechanisms without regard to the forces acting on the
mechanism [4]. The kinematics of spatial linkages is much more difficult than planar
linkages since they produce more complicated motion. The study on it helps to better
understand the motion of spatial linkages, which is the basis for the design, dynamic

analysis and control of mechanisms.

On the other hand, origami, an ancient oriental art of producing 2D or 3D intricate
structures through folding a flat sheet of paper, has recently seen surge in a variety of
engineering fields. The highlights in the newly formed origami engineering include
mechanical metamaterials [5-13], self-folding machine and robots [14-16],
reconfigurable structure [17], shock-resistance device [18], packing [19, 20], and so on.
Although the motion of origami structure is utilized in these fields, little work has been
done on the kinematic property of the origami pattern itself due to the complexity and
multi-degree-of-freedom in the origami motion. One exception is Miura-ori, whose
motion is relatively simple and its kinematic analysis has been widely used to reveal
the mechanical properties, such as Poisson’ ratio and stiffness [6, 8, 21]. Since most
engineering materials used to construct origami structures and metamaterials are
relatively rigid, a subset of origami that permits continuous motion between folded and
unfolded states along the pre-determined creases without stretching or bending of the
facets, rigid origami, has drawn special attention.

In the mechanism perspective, the creases of rigid origami can be treated as
rotation joints and the paper facets treated as links [22]. A single-vertex pattern with all
creases intersected at the vertex is kinematically a spherical linkage [23, 24]. Then the
multi-vertex crease pattern can be modelled as a network of spherical linkages, and its
rigid foldability can be judged by kinematic approaches [25-27]. Yet, in most of the
practical engineering applications, the thickness of the material cannot simply be
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ignored. To fold these thick panels, an approach has been proposed recently, where the
creases no longer intersect at one point, so the spherical linkage assembly for the
origami of zero-thickness sheet is replaced by an assembly of spatial overconstrained
linkages [28, 29]. Therefore, the work on the kinematics of spherical linkages and
spatial overconstrained linkages contributes to the motion analysis of rigid origami,
which further facilitates the engineering applications of origami patterns.

1.2 Aim and Scope

The aim of this dissertation is to conduct kinematic analysis of spatial linkages
based on the D-H matrix method and apply it to explore the rigid foldability and motion

behaviour of origami patterns.

In this process, the rigid foldability of triangle twist origami pattern is firstly
examined based on the kinematics of spherical 4R linkage network and new
overconstrained 6R linkages are derived by kirigami technique. Then the kinematics of
the plane-symmetric Bricard 6R linkage is analyzed and its bifurcation variations are
discussed. After that, the results are applied to study the symmetric folding of six-crease
thick-panel waterbomb origami, which is modelled as a network of plane-symmetric
Bricard 6R linkages. The motion behaviour of its corresponding tessellation of zero-
thickness sheet is demonstrated by a network of spherical 6R linkages. Finally, the
motion behaviour of the closed cylindrical form of waterbomb origami is investigated
through a parametric study, by means of modelling it as a closed network of spherical
6R linkages.

1.3 Outline of Dissertation

This dissertation consists of seven chapters, which are outlined as follows.

Chapter 2 presents a bibliographic review of existing work related to our task,
including the work on kinematics of spatial linkages, rigid origami and their cross-over
study. Kinematic analysis approach, singularity and bifurcation of spatial linkages, and
existing spatial overconstrained 6R linkages are summarized. In the rigid origami part,
the review starts from engineering applications of origami patterns, then to origami
patterns consisting of four-crease vertices and six-crease vertices. The flat foldability
and rigid foldability are distinguished. Rigidly foldable origami tubes, thick-panel
origami as well as the kirigami technique are reported. Finally, the survey on cross-over
study of spatial linkages and rigid origami is conducted, including the origami analysis

based on spatial linkages, and origami-inspired linkages.

Chapter 3 deals with the rigid foldability and motion behaviour of a generalized
triangle twist origami pattern. Diverse mountain-valley crease (M-V) assignments of
this pattern are enumerated based on the flat-foldable conditions for four-crease vertex.
The effect of M-V assignment on the rigid foldability is discussed. A variant of doubly
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collapsible octahedral Bricard and a novel overconstrained 6R linkage are derived by
applying the kirigami technique to this pattern.

Chapter 4 is to conduct the kinematics and bifurcation analysis of the plane-
symmetric Bricard 6R linkage based on the traditional D-H matrix method. The explicit
closure equations of this linkage are derived by solving the highly nonlinear
trigonometric functions. Accordingly, the kinematic properties of different plane-
symmetric Bricard linkages are discussed. The degenerated SR/4R linkages are obtained
under certain geometric conditions. Various bifurcation behaviours of the plane-
symmetric Bricard linkage and their corresponding geometric conditions are

demonstrated.

Chapter 5 focuses on the symmetric folding behaviour of flat-foldable waterbomb
pattern with both zero-thickness sheet and thick panels. Considering the compatible
conditions, a general kinematics model of the waterbomb pattern is presented. The
kinematic equivalence between the thick-panel origami and that of zero-thickness sheet
is proved, where the plane-symmetric Bricard linkage is adopted to replace the spherical
6R linkage for the thick-panel waterbomb origami. The kinematic behaviours of the
general waterbomb origami under different geometric conditions are presented for both

zero-thickness and thick-panel origami forms.

Chapter 6 is devoted to seek the motion behaviour of a generalized waterbomb
tube under both longitudinal and circumferential symmetry through a parametric study.
The kinematics of the tube is setup by modelling it as a closed network of spherical 6R
linkages. Considering the longitudinal symmetry, the motion is classified into two cases
according to the number of rows being odd or even. Different behaviours of the tube
are revealed, including the uniform radius configuration, mechanism-structure-
mechanism transition, wave-like configuration and rigid twist motion. The trigger

conditions of these behaviours are discussed based on the kinematics of the tube.

The main achievements of the research are summarized in Chapter 7, together with
suggestions for future works, which conclude this dissertation.
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Chapter 2 Review of Previous Works

2.1 Kinematics of Spatial Linkages

2.1.1 Kinematic Analysis Approach

The science of kinematics deals with the geometrical and time properties of a
motion [2]. A detailed kinematic analysis of spherical mechanisms has been conducted
by Chiang [30]. Several methods have been developed to analyze the kinematics of
spatial linkages. Denavit and Hartenberg proposed a matrix method based on the use of
four independent parameters, referred to as D-H notation [31]. Gogu systematically
presented structural synthesis of various spatial parallel mechanisms by the theory of
linear transformation [32]. Dai comprehensively presented the kinematics, mobility,
mechanics and stiffness of various mechanisms, devices and robots based on the screw
theory [33] after the theory being proposed by Ball [34] and developed by Hunt [3].
The theory has been further extended to finite screws for the kinematics of closed-loop
linkages [35-37] based on the screw triangle [38]. Murray, Li and Sastry illustrated the
kinematics of manipulators and multi-fingered hands by Lie group and Lie algebra
theory [39]. This method was also adopted for the motion analysis of parallel
mechanisms [40], such as the 3-PUP mechanism [33, 41]. Clifford algerbra, also known
as geometric algebra, has been adopted in the kinematics analysis of spatial linkages as
well. Chai and Li derived the analytical expression of the motion space of Bennett
linkage by this approach [42]. Dual quaternions, a kind of Clifford algerbra, were used
for the kinematic synthesis of constrained robotic systems [43] and inverse kinematics
of general spatial 7R mechanism [44] as well as in neuroscience [45]. Based on dual
quaternions, a new theory for the kinematic analysis of closed SR linkages with revolute
joints, termed as bond theory, was proposed by Hegediis, Schicho and Schrocker [46,
47]. The theory was then extended to Stewart Gough platforms [48] as well as closed
6R linkages [49]. Chablat, Kong and Zhang dealt with a comprehensive kinematic study
of a 3-DOF multi-mode parallel robot [50]. A comparative study on the three methods
for robot kinematics based on the matrix transformation, Lie algebra and screw theory,
has been conducted [33, 51]. The geometric methods in robotics including Lie groups
and its subgroups, Lie algebra, line geometry, screw theory and Clifford algebra have
also been reviewed by Selig [52]. Among all these methods, the matrix method based
on D-H notation [31, 53] provides a straightforward way to reveal the motion of each
joint and its relationship with any other joints, so it is adopted to conduct the kinematics
of spatial linkages in this dissertation.

The setup of each coordinate system in a linkage is presented in Fig. 2-1, where
the axis z; is along the revolute joint i, X; isthe common normal from z,_, to z,

and »; is determined by the right-hand rule. Thus the geometric parameters are
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defined as the link length 4., the link twist ¢, and the joint offset R, where
@41 1s the normal distance between axes z; and z,,,, & isthe angle of rotation
from z to z,,, positive along X.,,,and R, isthe normal distance between axes X;
and X, positive along z,. The kinematic variable 6, is defined as the angle of
rotation from X; to X, positive along z;, which measures the rotation between two

links joined by the revolute joint z;.
/z, Zi,

z al(l+l)
Zi ;
'xl+]
Xi

Joint i—1

Joint i

Fig. 2-1 The D-H notation of adjacent links connected by revolute joints

For a single-loop linkage consisting of & links, the closure equation is
L, T,..T, =1, (2-1)
where the transformation matrix 7., is

cos) —cosq,,,sinb, sing,,,, sin6,  a,,, cosé,

i(i+1
_|sing,  cosa,,,cos6, —sing,,,, cosb, a,,, siné, 22)
(i+1)i — . 5 -
O sin ai(iJrl) cos 6¥i(i+1) Ri
0 0 0 1

and when i+1>k, it is replaced by 1. It transforms the expression in the (i+1)th
coordinate system to the i th coordinate system. The inverse transformation 7j,;, has

the following property.

cos @, sin 6, 0 @i
T g |78 &y SING,  cosa,,,cos6,  sine,,,, -—Rsing,,,, (2-3)
i(i+1) (i+1)i . . . -
sin g, sing,  —sine;,,, Cos6, o8, —R cosa,,
0 0 0 1

As for spherical linkages, the axes intersect at one point as shown in Fig. 2-2,
which means the lengths and offsets of each links are zero and thus Eq. (2-1) reduces
to

0,0,.90,=1,, (2-4)

where
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cos, —cosq,,,sinf, sing,,,, sing,
Q(i+1)i =| sin 01 cos af(i+1) cos 91 —sm ai(i+1) Cos Hz 5 (2'5)

0 SIn &, COS &,y

and the inverse transformation is

cosé, sin 6, 0
Q1) =| —COS &,y SING,  COSQ,, CO80,  sing, | . (2-6)
sing;,,,sin@, —sing,,,, cosf cose,,,,

Joint i+1

Joint i—1

Ziy

Joint i

Fig. 2-2 The D-H notation of a portion of a spherical linkage

Therefore, the kinematics and motion behaviour of spatial linkages can be carried
out based on the solutions of Eq. (2-1) or Eq. (2-4).

2.1.2 Singularity and Bifurcation

During the investigation on kinematics of spatial linkages, singularity should be
taken into consideration. It is a configuration of a system in which the subsequent
behaviour cannot be predicted [54]. Gosselin and Angeles defined singularity as a
configuration in which the Jacobian matrices involved become rank deficient [55]. It is
shown that singularities of closed-loop mechanisms can be classified into three types
including inverse kinematic singularity, direct kinematic singularity and combined
singularity. However, there exists a new family of singularity in parallel mechanisms
where the Jacobian matrix of the input-output velocity equation is not singular, termed
as constraint singularity by Zlatanov, Bonev and Gosselin [56]. This kind of singularity
occurs at a configuration where the screw system of the constraint wrenches
degenerates and the degree of freedom (DOF) of the mechanism instantaneously
increases. Numerous approaches have been adopted to analyze the singularity of spatial
mechanisms. For example, geometric algebra was used for the singularity analysis of
3-RPS [57], 3-RPR [58], and 3/6 Stewart parallel manipulars [59]. Jha et al. presented
a descriptive singularity analysis of a Delta-like family by using algebraic tools [60].
SingLab, a graphical user interface for the singularity analysis of parallel robots based
on the Grassmann-Cayley algebra, was developed by Ben-Horin et al. [61]. This
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method was then extended to the singularity analysis of lower mobility parallel
manipulators [62] and a 6-DOF parallel manipulator together with Grobner bases [63].

Bifurcation is the phenomenon that the mechanism has two motion branches when
it comes to the constraint singularity [64]. An algorithm for determining all the
configuration branches and bifurcation points of symmetric Stewart platform was
proposed by Wang and Wang [65]. It is believed by Lee and Hervé that bifurcation
belongs to a special category of singularity, during the study of a 6R mechanism with a
bifurcation towards two distinct single-DOF modes [66]. A parallel mechanism with
bifurcation of Schdenflies motion was designed by Li and Hervé [67]. Zhang, Dai and
Fang investigated the bifurcated motion of the 3-PUP parallel mechanism when the
platform is parallel to the base [33, 68]. Gogu discussed the nature of bifurcation in
constraint singularities and demonstrated the relation between these singularities with
the structural parameters of parallel mechanisms [54, 69].

For single-loop linkages, Chen and You stated a bifurcation of the extended Myard
6R linkage at two configurations where two states of self-stress exist and the DOF
increases [70]. Song, Chen and Chen found a 6R linkage constructed by two Bennett
linkages in an asymmetric configuration, which could bifurcate between Bennett
linkage and general line-symmetric Bricard linkage [71]. Song and Chen presented the
bifurcation of the double-subtractive-Goldberg 6R linkage [72] and Wohlhart’s double-
Goldberg 6R linkage [73]. Zhang and Dai proposed a metamorphic 8R linkage and
investigated bifurcation and trifurcation of its two extracted overconstrained 6R
linkages [33, 74]. They also presented an evolved Sarrus-motion linkage with
trifurcation under specific parametric constraints [75]. Multifurcation was revealed by
Qin, Dai and Gogu as a phenomenon that several states of a mechanism with different
mobility would occur once a mechanism passes a constraint singularity [76] and was
revealed by Aimedee et al. as a case for reconfiguration [77]. Zhang, Miiller and Dai
investigated the multifurcation of a reconfigurable 7R linkage, which can be
transformed between the non-overconstrained 7R linkage and overconstrained 6R and
4R linkages [78]. He et al. developed a novel one-DOF single-loop reconfigurable 7R
mechanism with multiple modes by insecting a revolute joint to the overconstrained

Sarrus linkage [79].

Various tools have been used to study bifurcation of spatial overconstrained
linkages. Pellegrino proposed a structural computation to determine the number of
independent states of self-stress in the mechanism with singular value decomposition
(SVD) of the equilibrium matrix [80], which was used to analyze the bifurcation of
threefold-symmetric Bricard linkage [81]. Gan and Pellegrino introduced a numerical
solution to a loop-closure equation for deployable structures forming a closed loop [82],
which was adopted in the detection of bifurcation of double-subtractive-Goldberg 6R
linkage [72] and Wohlhart’s double-Goldberg 6R linkage [73]. Kumar and Pellegrino
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developed a special algorithm to detect the existence of a bifurcation ahead of the
current configuration [83]. The screw theory particularly the screw system approach
[33, 84-86] has also been adopted in the bifurcation analysis of parallel mechanisms.
Chen and Chai discovered the bifurcation of a special line and plane symmetric Bricard
linkage from the motion paths based on closure equations [87]. Most of these methods
help to identify the existence of bifurcation, but further work needs to be done on the
spefic bifurcated motion branches. Explicit solutions of closure equations contributes
to reveal the detailed motion process of spatial linkages, therefore they will be derived
based on the D-H notation in this dissertation.

2.1.3 Spatial Overconstrained 6R Linkages

For a spatial linkage, mobility, the number of independent coordinates needed to
define the configuration of a kinematic chain or mechanism [88], can be determined by
the Griibler-Kutzbach criterion [3]:

g

M=6(N-g-1)+)_f, (2-7)

i=1
where M is the number of DOFs, N is the number of links in the linkage including
the fixed one, g is the number of kinematic pairs in the linkage, f; is the number of
DOFs for the ith kinematic pair.
However, some spatial linkages are mobile without satisfying the mobility
criterion as Eq. (2-7), which are known as overconstrained linkages [84]. Here the focus
is put on the overconstrained 6R linkages, which is a single closed-loop overconstrained

linkage constructed by six revolute joints. These overconstrained 6R linkages are

classified as followed.
(1) Bennett-based overconstrained 6R linkages

The Bennett linkage is a spatial overconstrained 4R linkage with zero offsets, in
which alternative links have same lengths and twists, and the lengths are proportional
to sine values of corresponding twists as shown in Fig. 2-3. The setup of the coordinate
systems are in accordance with the D-H notation [31]. It is the only spatial
overconstrained 4R linkage with joint axes neither concurrent nor parallel. Its geometry

conditions are

a,=a,=a, a,=a, =b, (2-8a)
O, =0,=0, Qy,=0, =0, (2-8b)
sina/a=sin /b, (2-8¢)
R=0(0=123,4). (2-8d)
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Fig. 2-3 The Bennett linkage

As a construction element, it can be combined together to generate different types
of single-loop overconstrained 6R linkages with properly synthesis and construction
methods. Baker defined the obtained linkages as Bennett-based overconstrained 6R
linkages, on which a throughout and in-depth research was conducted [89]. These
linkages include Myard’s 6R linkage and its extension [90, 91], Goldberg’s 6R linkages
[92-94], Wohlhart’s double-Goldberg 6R linkage [93], double-subtractive-Goldberg 6R
linkage [94], back-to-back double-Goldberg 6R linkage [95], mixed double-Goldberg
6R linkages [96], Waldron’s hybrid 6R linkage [97] and Yu and Baker’s syncopated 6R
linkage [98] etc. Figure 2-4 illustrates the construction of a serial Goldberg 6R linkage
by combining three Bennett linkages where the common joints and links shown in
dashed lines are removed. Since the Bennett linkage is the construction unit, its
geometric condition should be satisfied for all Bennett-based overconstrained 6R
linkages.

Fig. 2-4 Construction of a serial Goldberg 6R linkage

(2) Bricard 6R linkages

This family of overconstrained 6R linkages was proposed by Bricard consisting of
three deformable octahedral cases [99] and three spatial-linkage cases [100], see Fig.
2-5, of which the mobility is due to the symmetric property. The geometric conditions
of these linkages are listed below.

10
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For the general line-symmetric case,

Ay =0qys, Ay =05, 3y =g, (2-9a)
O =0, Oy =0, O =0, (2-9b)
R =R,, R,=R;, R, =R (2-9¢)

4
(e) (H)
Fig. 2-5 Bricard 6R linkages: (a) the general line-symmetric case, (b) the general plane-

symmetric case, (c) the trihedral case, (d) the line-symmetric octahedral case, (e) the plane-
symmetric octahedral case, and (f) the doubly collapsible octahedral case.

For the general plane-symmetric case,

A, =dg, Gy3 =dsg, 3y =dys, (2-10a)

11
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O, +0 =T, Oy +0 =T, O, +0 =T, (2-10b)
R =R,=0, R,=R,, R,=R,. (2-10c)
For the trihedral case,
al,+al,+al =a,+a,+a;, (2-11a)
a12=a34:a56:§, 0(23:0(45:0(61=37”, (2-11b)
R=0(@(=12,--,6). (2-11c)
For the line-symmetric octahedral case,
Ay =0y =y =Ays = A = A, =0 (2-12a)
R+R,=R,+R,=R,+R,=0. (2-12b)
For the plane-symmetric octahedral case,
A, =0y, =y =0y =g =g =0, (2-13a)
in
For the doubly collapsible octahedral case,
A, =0y =y =0y = A5y =g, =0 (2-14a)
RRR,+R,R R, =0. (2-14b)

The study on the three Bricard octahedral cases began with Bennett who studied
their geometry and kinematic properties [101]. Lee derived closure equations of the
three octahedral cases with matrix transformation method [102]. Baker found that the
stationary configurations of a special line-symmetric octahedral case are precisely
equivalent to the minimum energy conformations of the flexing molecule [103]. Chai
and Chen found a stationary structural configuration of the line-symmetric octahedral
case with identical twists and offsets, which is independent of its mobile linkage form
[104]. For the doubly collapsible octahedral case, Baker studied its planar, spherical
and skew counterparts [105]. He also found out the connection between three six-bar
linkage families synthesized from Bennett isograms and the skew network engendered
by the doubly collapsible octahedral cases [106]. Lu et al. presented the construction of
deployable quadrangles by the doubly collapsible octahedron together with a detailed
parametric study [107]. They used this octahedron as the construction element to design
one-DOF networks [108] as well as reconfigurable mechanisms [109].

As to the Bricard linkage cases, Goldberg made and analyzed a 6-plate linkage
which is actually the trihedral Bricard linkage [110]. Yu studied the geometry of the

12
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trihedral Bricard linkage with its circumscribed sphere and associated quadric surface
[111]. Wohlhart studied the orthogonal Bricard linkage and revealed the two distinct
trihedral cases [112]. For the general line-symmetric case, Baker analyzed it with the
reciprocal screw system considering the special geometry constraint of the linkage
[113]. Song, Chen and Chen found that it can bifurcate to the Bennett linkage under
certain circumstance [71]. They also conducted kinematic study of the original and
revised line-symmetric Bricard linkages [114]. Zhang and Dai extracted two special
line-symmetric Bricard linkages from a metamorphic 8R linkage [74]. Lopez-Custodio,
Dai and Rico studied its branch reconfiguration based on toroid intersections [115].

Among them, the plane-symmetric Bricard linkage has been extensively studied.
First of all, implicit closure equations of six Bricard linkages were derived by Baker
[116]. Phillips reviewed the Bricard linkages and introduced their relationship with
other overconstrained linkages [117]. Baker analyzed the general plane-symmetric six-
screw linkage including the plane-symmetric Bricard linkage with the reciprocal screw
system approach [118]. The movability of the plane-symmetric Bricard linkage was
investigated by Li and Schicho based on the theory of bonds [119]. Deng et al. presented
a geometric approach for design and synthesis of single loop mechanisms including the
plane-symmetric Bricard linkage [120]. They also proposed a virtual chain approach
for the mobility analysis of multi-loop deployable mechanisms with plane-symmetric
Bricard linkage as basic element [121]. Kong conducted type synthesis of single-loop
overconstrained 6R spatial mechanisms for circular translation in which the plane-
symmetric Bricard linkage is taken as an example [122]. Even though various synthesis
methods have been used to study the plane-symmetric Bricard linkage, there is no
progress on the solution of explicit closure equations after Baker’s implicit ones.

Recent research applies the plane-symmetric Bricard linkage to the design of
deployable structures. For example, Chen, You and Tarnai proposed a threefold-
symmetric Bricard linkage which is a special case of the plane-symmetric one to fold
the triangular or hexagonal structures [81]. Viquerat, Hutt and Guest design a
rectangular ring which can be folded into a compact bundle. Kinematically this is an
alternative form of the plane-symmetric Bricard linkage [123]. A number of such
retractable rectangular rings can form a family of large deployable mechanisms by
synchronizing the motion of all linkages [124].

Because of the symmetry property, the plane-symmetric Bricard 6R linkage tends
to have complicated bifurcation behaviours, which should be avoided in the application
of deployable structures, but could be made use of in the design of reconfigurable
mechanisms. The kinematics and bifurcation behaviour of a special line- and plane-
symmetric Bricard linkage was analyzed using the SVD numerical method by Chen and
Chai [87]. Zhang and Dai analyzed motion branch variations of the line- and plane-
symmetric Bricard linkage based on reciprocal screw systems [33, 125]. Lopez-

13
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Custodio, Dai and Rico revealed a set of special plane-symmetric Bricard linkages with
various branches of reconfiguration based on intersection of two generating toroids
[126]. However, the current bifurcation analysis of the plane-symmetric Bricard linkage

only focuses on special cases.
(3) Other overconstrained 6R linkages

There are several other overconstrained 6R linkages except for the two major
linkage family, i.e., Bennett-based linkage family and Bricard linkage family. The
Sarrus linkage is the first spatial overconstrained linkage, which has two set of hinges
with different directions and each set consists of three parallel hinges [127]. Baker
derived the closure equations of the double-Hooke’s-joint linkage, which has been

widely used as a transmission coupling [128]. Its geometric conditions are

Ay =0y =ass =0, =0, o, =0,=0,=0,=—, R=R =R, =R;=0. (2-15)

3

Bennett extended these two linkages to a general one, i.e., the Bennett plano-
spherical hybrid 6R linkage, which can be regarded as a combination of two spherical
4R linkages with different centres [129]. The screw-system-variation enabled
reconfiguration of this linkage and its evolved novel metamorphic parallel mechanism
have been investigated by Zhang and Dai [130]. Altmann proposed an overconstrained
6R linkage, which was later identified as a special case of general line-symmetric
Bricard linkage [131]. Its geometric conditions are

ap=a;5=0a, ay=a5=0, a,, =ag, (2-16a)
o, =0, =72, 0y=0,=7/2, 0, =0, =37/2, (2-16b)
R=0(i=L2,---,6). (2-16¢)

Schatz derived a linkage from a special trihedral Bricard case, referred to as Schatz
linkage, which was used as a Turbula machine for mixing fluids and powders [117]. Its

geometric conditions are

a,=as,=0, ay=a,=a,5=a, a, = \/ga , (2-17a)
Oy =0y =0y =0 =0, =712, ¢ =0, (2-17b)
R =-R;, R,=R;=R,=R;=0. (2-17c¢)

Wohlhart proposed an overconstrained 6R linkage with three partially plane-
symmetric link-pairs, which is a generalisation of the trihedral Bricard linkage [132].
Its geometric conditions are

A, =0y, Uy =0Qys, dsg =gy, (2-18a)
O ==y, Oy ==, Qs =0, (2-18b)
R=R =R, =R, +R,+R, =0, (2-18¢)

14
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Mavroidis and Roth discovered the Bennett-joint 6R linkage when deriving the
inverse kinematics for general 6R manipulators [133]. The geometric conditions of this

overconstrained 6R linkage are

Ay =3y, Oy =dss, Ays =g, (2-19a)
=0, Oy =0, O)=0, (2-19b)
sine,, / a,, =sin,, / a,; =sinq,; / a5, (2-19¢)

R=R,=0, R,=R,, R,=R, or R=R,=0, R,=R,, R,=R.. (2-19d)

Dietmaier found another overconstrained 6R linkage when solving the same

inverse kinematics problem with a numerical method [134]. Its geometric conditions

are
a,, =ds , (2-20a)
=y (2-20b)
sine, / a,, =sine, / a5, sine,,/a,, =sinq,;/a,,
sing,, (cos ¢, +cos )/ a, =sina,, (cosa,, +cosas)/ ay,, (2-20c)
R =R, R,=R,, R,=R =0, (2-20d)

This section reviewed various spatial overconstrained 6R linkages. The emphasis
was put on our object of study, Bricard linkages. For others, the geometric conditions
are mainly summarized. Despite the extensive research on spatial overconstrained 6R
linkages, the bifurcation behaviour of the plane-symmetric Bricard linkage as well as
the inner relationship between the Bennett-based overconstrained linkages and the
Bricard-related ones is to be revealed. In addition, novel mobile overconstrained 6R

linkages remain to be discovered.

2.2 Rigid Origami

Origami has drawn increasing attention of mathematicians, scientists and
engineers since the mid-1970s [135]. It has been widely adopted in aerospace
engineering due to its superior efficiency of packaging large surface structures into
smaller volumes for storage or transportation. These applications include solar arrays
[136, 137], satellite antenna reflectors [138, 139] and space telescope [140, 141] etc. In
civil engineering, the folding technique was used in the design of mobile facets [26,
142, 143], reconfigurable and multi-locomotive devices [14, 144, 145] and so on. In
biomedical engineering, an origami stent graft was developed [146], several
encapsulation origami robots [147-149] as well as origami surgical grippers [150, 151]
were designed. Some of these applications are presented in Fig. 2-6.
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Fig. 2-6 Origami applications in aerospace engineering: (a) a foldable solar panel [137], (b) a

deployable antenna [139], (c) a foldable telescopic lens [141]; in civil engineering: (d) a
deployable origami tent [26], (e) a self-folding origami robot [14], (f) a modular origami robot
[144]; and in biomedical engineering: (g) an origami stent [ 146], (h) an untethered miniature
origami robot [147], (i) a four-DOF origami grasper [150].

2.2.1 Origami Patterns

In origami, there are two kinds of creases, i.e., mountain crease and valley crease.
When you are looking at the paper, the mountain crease brings the moving part of the
paper away from you, while the valley crease is opposite. The crease pattern refers to a
mapping of all the creases in an origami form [152]. Even though there are numerous
origami patterns, here my interests are limited in those consisting of four-crease vertices
and six-crease vertices.

Among those origami patterns involving only four-crease vertices, the simplest
one was presented by Huffman, which is called Huffman grid [153]. It consists of a
single four-crease vertex, which is repeated continuously in rows and columns. Two
sector angles of the vertex are equal to 7 /2 and the other two are equal to @ and
7 —o . By varying the angles of the generating vertex of Huffman grid, the chicken
wire pattern was obtained by a mirror-symmetric vertex [154]. Barreto presented a
pattern named Mars, which includes a single four-crease vertex and its inversion [ 155].

Miura invented an origami pattern comprised entirely of parallelograms for use in space

16



Chapter 2 Review of Previous Works

solar panels, referred to as Miura-ori [156]. The graded Miura-ori pattern was proposed
by Xie, Li and Chen [157], and was used to design structure with graded stiffness by
Ma, Song and Chen [21]. Tachi presented a quadrilateral mesh origami pattern
consisting entirely of quadrilateral panels [158]. Evans et al. introduced origami gadgets

to be used in modifying existing tessellations and creating new tessellations [159].

There is a family of origami twist among the four-crease-vertex origami patterns,
which was often used for tessellation of origami patterns in art [160]. It is a crease
pattern consisting of a central polygon with parallel crease-pairs radiating from each
side of the central polygon [161]. Three typical origami twist patterns including triangle

twist, square twist and hexagon twist are presented in Fig. 2-7.

A A N
B

(a) (b) ©)
Fig. 2-7 Three typical types of origami twist patterns: (a) triangle twist, (b) square twist, and (c)

hexagon twist.

For those origami patterns consisting of only six-crease vertices, there are three
common patterns including Yoshimura pattern (also diamond pattern), waterbomb
pattern and Resch pattern. The Yoshimura pattern was observed in the buckling pattern
of longitudinally stressed cylinder by Yoshimura, which is a tessellation of six-crease
diamonds with either all mountain or all valley folds along the diagonals [162, 163].
The Resch pattern is composed of many equivalent polygons [164], a special case of
which is the one with only six-crease vertices. As to the waterbomb pattern, two terms
are related to it: waterbomb bases and waterbomb tessellations. There are two types of
waterbomb bases: the eight-crease base and the six-crease base. The former is made
from a square sheet of paper consisting of eight alternating mountain and valley creases
around a central vertex, Fig. 2-8(a). One of its typical tessellations is produced by four
such bases tiling around a smaller square forming the square Resch pattern, Figs. 2-8(b)
and (c). The latter, consisting of two mountain and four valley creases meet at a single
vertex [165] shown in Fig. 2-8(d), is more commonly known, and its tessellations range
from a flat-foldable surface to a deformable tube known as the magic origami ball, Figs.
2-8(e) and (¥).
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(a)

(d)
Fig. 2-8 (a) The eight-crease waterbomb base, (b) one of its tessellations forming the Resch
pattern, (c) partially folded Resch pattern; (d) the six-crease waterbomb base, (e) its tessellation in
unfolded and folded states, and (f) the tessellation can also be used to form a tube.

Among the vast pool of origami patterns, our particular interest are the triangle
twist and the six-crease waterbomb pattern. For the triangle twist origami pattern, Evans
et al. have analyzed its rigid foldability [161]. However, they did not tackle the one with
non-parallel crease-pairs. Peng, Ma and Chen have considered all position relation of
the crease-pairs, but the central triangle in the pattern was limited to an equilateral one
[166]. For the six-crease waterbomb origami pattern, the motion of a single waterbomb
base, analyzed as a spherical 6R linkage [30], has been shown to be rigidly foldable
with three DOFs in general. When the base is tessellated, the DOF of the pattern could
increase significantly if the pattern consists of a large number of waterbomb bases.
Tachi, Masubuchi and Iwamoto have worked on the rigidity of its multi-DOF
tessellation to achieve an adaptive freeform surface [167]. Although the waterbomb
pattern is of multiple degrees of freedom, the symmetric folding is often preferred in
most of research or art work, which is done by constraining it with symmetric
conditions and then controlling the motion to reach an ideal flat-foldable state.
Moreover, the modelling approach of the reaction force based on repelling screws has
been implemented to the waterbomb base and the waterbomb-based integrated parallel
mechanism [33, 168].

On the application side, the triangle twist could be adapted to design a surface
linkage for large-scale deployable structures [169]. Single waterbomb bases have been
applied as adaptive facades [170] and waterbomb tessellations have been applied in an
extensible continuum robot [15] and an origami grasper [150]. The tubular
configuration of the waterbomb is the most commonly-used form. For example, a self-
deployable medical origami stent was proposed firstly with the structure being the
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waterbomb tube [146]. A mobile robot with worm-like locomotion was designed later
[171] and a novel earthworm-like locomotion robot was created incorporating with
origami ball structures recently [172]. Besides, a deformable wheel robot [173] and
highly efficient artificial muscles [174] were made using magic-ball origami structure.
In all of the above-mentioned applications, the waterbomb tube undergoes only radial
expansion/contraction, accompanied by the extending/shortening in the axial direction.
In this folding motion, a rigorous synchronization of the waterbomb bases along a
circumferential row is necessitated, which requires active motion control to realize.
Despite the wide application, the motion behaviour of the six-crease waterbomb
origami has remained ambiguous as its kinematic behaviour changes drastically

depending on the employed tessellation.

2.2.2 Flat Foldability and Rigid Foldability

For an origami pattern, flat foldability and rigid foldability are two important
properties in both theory and practice. The flat foldability deals with the capacity of an
origami pattern to be folded into flat sheets while the rigid foldability refers to the fact
that panels do not stretch or bend during the folding process.

The flat foldability allows the origami pattern to achieve compact folding, which
benefits the transportation and storage. Much work has been done on this aspect. Hull
initiated a mathematical study on origami and gave the necessary and sufficient
conditions of origami models with flat foldability [175, 176]. Bern and Hayes studied
the flat foldability of a given crease and showed that assigning mountain and valley
creases is non-deterministic polynomial hard [177]. Schneider gave the conditions for
an arbitrary unsigned crease pattern to fold flat [178]. Tachi provided a design system
to create new and complex 3D freeform origami patterns while preserving the flat
foldability [179].

There are three conditions of flat foldability [152]. First, as indicated by the
Maekawa-Justin Condition, for any flat-foldable vertex, the difference between the
numbers of mountain creases and valley creases should be equal to two. That is,

n,, —n, =12, (2-21)
where 7,, isthe number of mountain creases and 7, is the number of valley creases.
As a result, the number of creases for a flat-foldable vertex should be even.

Second, according to the Kawasaki-Justin Condition, let V be a vertex of degree
2n 1in a single-vertex origami pattern, and let ¢, &,, -, &,, be the consecutive
angles between the creases, the vertex V is flat-foldable if and only if
5 =0. (2-22)

o -o,+o,——

Together with the developability that o, +a,+o,+---+a,, =27 | the sum of the
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alternative angles about the flat-foldable vertex is 7.

Third, as stated in the Big-Little-Big Angle Condition, if a smaller sector angle is
bounded by two larger sector angles, the crease assignments of the two creases
bounding the smaller angle are opposite to each other. It means that the two creases
around the smallest angle must be of opposite assignment.

Rigid foldability allows an origami pattern to fold about crease lines without
twisting or stretching component panels. It enables folding of rigid materials,
facilitating the design of foldable structures. To achieve rigid foldability, motions
around each vertex must be compatible with those around its neighbours, attained only
under specific pattern geometries. Several approaches have been proposed to judge the
rigid foldability of origami patterns. Diagram and numerical methods were proposed
by Watanabe and Kawaguchi to check the rigid foldability of several known origami
patterns [180]. Tachi used some numerical algorithms to find out a family of rigidly
foldable origami with quadrilateral mesh [158]. Hull adopted spherical trigonometry to
check the rigid foldability of some origami patterns with four-crease vertices [181]. Wu
and You proposed the rotating vector model and employed quaternion and dual
quaternion to study the rigid foldability of both single-vertex and multi-vertex origami
patterns [182]. Cai et al. developed a new method to check the rigid foldability of
cylindrical foldable structures by combining the quaternion rotation sequence method
and the dual quaternion method [183, 184]. Recently, kinematic theories have been
applied in the analysis and synthesis of rigid origami patterns [22-29, 185]. By setting
up the kinematic model of the rigid origami pattern based on the assembly of spherical
4R linkages, four types of flat rigid origami patterns were obtained [185] as well as a
family of deployable prismatic structures [26, 27].

Recent work shows that both the geometric conditions and mountain-valley crease
(M-V) assignments affect the flat foldability and rigid foldability of origami patterns
[153, 161, 186]. Hull examined the problem of counting the number of valid M-V
assignments for a given crease pattern and developed recursive functions for single-
vertex crease patterns [181]. For multi-vertex crease patterns, Evans et al. discussed the
effect of M-V assignments on the rigid foldability for several origami twists including
triangle twists, quadrilateral twists and regular polygon twists [161].

2.2.3 Rigidly Foldable Origami Tubes

The tubular structures with origami patterns have been adopted in various fields
ranging from energy-absorbing devices [187] to medical devices [146]. Numerous
origami patterns have been employed to generate tubular structures, such as the
Yoshimura pattern [188], the Kresling pattern [189] and those proposed by Nojima
[190]. However, these tubes can only be folded with deformation in surfaces. That is,

they are not rigidly foldable. The emphasis is put on the rigidly foldable ones, especially
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those with one DOF that are easy to be controlled.

Some efforts have been made to the rigidly foldable origami tubes. For example,
Tachi invented a set of rigidly foldable origami tubes by a geometrical method [158,
191, 192]. A rigidly foldable cellular metamaterial was proposed based on a stack of
the Miura-ori fold pattern [193]. The folding behaviour of Tachi-Miura polyhedron
known as a rigidly foldable structure was examined [194]. Besides, the deployable
prismatic structures with rigid origami pattern were analyzed in a kinematic approach
[26]. Recently, new types of one-DOF rigidly foldable origami tubes have been
constructed by either employing additional facets onto each modular unit or combining
two joinable one-DOF tubes to a new configuration. These methods not only can be
applied to multilayered vertical tubes, but also to a radially assembled arc form profiles
[27]. For the tubular structure formed by waterbomb origami, it has multiple DOFs in
general. It can be constrained to be rigidly foldable with one DOF under certain
symmetric conditions [195].

2.2.4 Thick-panel Origami

Origami patterns are primarily created for zero-thickness sheets. However, the
thickness of rigid materials cannot be ignored in practical applications. Hence, various
methods have been proposed to fold thick panels as shown in Fig. 2-9. For instance,
tapered surfaces have been used to fold a thick panel using the Miura-ori of zero-
thickness sheet [196]. Offsets at the edge of the panels were introduced to implement
folding of thick panels using the square-twist origami pattern [197]. A more recent
research suggested to replace folds with two parallel ones to accommodate the thickness
of materials [198]. In all of these methods, the fundamental kinematic model in which
origami is treated as a series of interconnected spherical linkages remained. Different
from the above-mentioned methods, an approach in which the fold lines were only
allowed to be placed on top or bottom surfaces of flat thick panels has been proposed
[29]. As a result, the spherical linkage assembly for the origami of zero-thickness sheet
is replaced by an assembly of spatial linkages. It has been found that not only are the
assemblies of such panels foldable, but they can be folded compactly under certain
conditions. Lang et al. have made a thorough review on the thickness accommodation
techniques in origami-inspired engineering [199]. They classified these techniques into
seven cases, which include tapered panels technique, offset panel technique, hinge shift
technique, doubled hinge technique, rolling contacts technique, membrane technique
and strained joint technique. A detailed comparison of those techniques was conducted
on several characteristics such as kinematics equivalency, motion preservability,
surface flatness and design complexity. New hybrid approaches were also introduced
by combining different thickness-accommodation techniques.
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Fig. 2-9 Thickness accommodation methods: (a) tapered panel technique [196], (b) offset panel
technique [197], (c) offset crease technique [198], and (d) hinge shift technique [29].

2.2.5 Kirigami

Unlike the traditional folding technique, kirigami is capable of folding
discontinuous sheet materials as the cutting of paper is permitted [200]. There are three
key features of kirigami, making it widely used in foldable structures as shown in Fig.
2-10. First, multiple materials can be joined by kirigami technique to create complex
non-developable cellular patterns [201], such as 3D deployable honeycombs [202],
auxetic pyramidal core [203] and hexagonal cellular morphing wingbox [204]. Second,
the stiffness of a rigid sheet can be largely reduced, consequently raising flexibility for
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solar trackers [205] and triboelectric nanogenerators [206]. Third, the weight over
volume can be largely decreased since the sheets that make no contribution to the
motion of the pattern are eliminated. The pop-up paper mechanism [207] and the
kirigami-enabled parallel mechanism [16] where only the links and joints contributed
to the motion of the mechanism are retained are two classic applications. The last
feature will be utilized in this dissertation to derive new overconstrained linkages from

triangle twist origami pattern.

@» FEP . Paper
@ cu

5mm

Zero Strain Small Strain Large Strain

()

(8) (h)

Fig. 2-10 Kirigami technique used in foldable structures: (a) a SILICOMB cellular structure [201],
(b) a tapered honeycomb [202], (c) a kirigami auxetic pyramidal lattice core [203], (d) a cellular
kirigami morphing wingbox [204], (e) a Kapton kirigami structure for solar tracking [205], (f) a

paper-based triboelectric nanogenerator [206], (g) a paper pop-up RSSR mechanism [207], and (h)

a kirigami-enabled parallel mechanism [16].
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2.3 Spatial Linkages and Rigid Origami

2.3.1 Origami Analysis Based on Spatial Linkages

The motion behaviour of an existing origami pattern is desired for its engineering
applications. Dai and Jones firstly modelled the paper folding by treating the creases as
rotation joints and the facets as links [22, 23, 28, 33]. So the rigid origami around each
vertex is treated as a spherical linkage in which the axes of all joints meet at a point [23,
24]. An origami pattern with multiple vertices is then regarded as an assembly with
loops of spherical linkages. Therefore, the analysis of origami patterns can be conducted
based on spherical linkages. The spherical trigonometry was adopted to judge the rigid
foldability of a flat-foldable single-vertex pattern [181]. Streinu and Whiteley proved
the rigid foldability of some single-vertex origami by linking it to spherical polygonal
linkages [208]. Wu and You established the rotating vector model for single-vertex
crease system based on origami-spherical linkage analogy [182]. Xi and Lien dealt with
the foldability problem of origami patterns through a randomized method by modelling
rigid origami as a kinematic system with closure constraints [209]. Wang and Chen
modelled several origami patterns with equilateral trapezoids, general trapezoids and
general quadrilaterals as spherical linkage assemblies for the design of closed patterned
cylinder [210]. Moreover, the general condition for rigidly foldable prismatic structures
was figured out by solving the kinematics and compatibility of the mobile assemblies
of spherical 4R linkages [26]. With the proposal of thick panel origami [29], the analysis
of origami also depends on the spatial overconstrained linkages. By treating the thick-
panel origami as a network of spatial overconstrained linkages, Zhang and Chen have
derived new mobile assemblies of Bennett linkages from four-crease origami patterns
[211].

2.3.2 Origami-inspired Linkages

Inspired by rigid origami, several novel mechanisms have been developed. For
instance, an equivalent overconstrained mechanism inspired and evolved from origami
cartons with a crash-lock base has been proposed by screw-loop equations and spherical
geometry. Accordingly, several planar-spherical overconstrained linkages were derived
by altering the linkages at the diagonal corners [33, 212]. A parallel mechanism with
three spherical kinematic chains has been designed based on a waterbomb origami
pattern [213], of which the reaction force were analyzed based on the repelling-screw
[33, 168]. This origami-inspired parallel mechanism has been used to design an
extensible continuum robot [15] and an origami grasper for minimally invasive surgery
[150]. By extension, Zhang and Dai designed a novel 8R linkage from a kirigami pattern
with eight creases, which can evolve into overconstrained 6R linkages [74]. They also
proposed a plane-symmetric double-spherical 6R linkage, which was extracted from a
closed-loop origami [214].
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Therefore, the interdisciplinary research on spatial linkages and rigid origami not
only provides a way to analyze the motion behaviour of origami patterns, but also

contributes to the discovery of novel mechanisms.
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Chapter 3 Rigid Foldability of Triangle Twist Origami
Pattern and Its Derived 6R Linkages

3.1 Introduction

A triangle twist in art is a crease pattern consisting of an equilateral triangle with
parallel pleats radiating from its three sides [215], see Fig. 3-1(a). It has been proved
that no triangle twist origami pattern with parallel pleats is rigidly foldable [161]. If we
change the central equilateral triangle to a general one and remove the parallel
constraint on the pleats, a generalized triangle twist as shown in Fig. 3-1(b) would be
formed. Here a thorough analysis on rigid foldability and motion behaviour of the
generalized triangle twist is to be conducted concerning all position relation of pleats
and all schemes of mountain-valley crease (M-V) assignment. Meanwhile, the kirigami
technique will be applied for the generation of new 6R linkages from the rigidly foldable

triangle twist patterns.

(b)
Fig. 3-1 (a) An art triangle twist, (b) a generalized triangle twist, where ¢,, B,, 7,, 0, and &,

is arbitrary within the domain (0, 7) and &,+8, € (0, 7).

The layout of this chapter is as follows. The kinematics and rigid foldability of a
typical generalized triangle twist origami pattern are presented in section 3.2. Section
3.3 gives all schemes of M-V assignment for the generalized triangle twist and discusses
their effect on rigid foldability. The type of derived 6R linkage inspired from the triangle
twist kirigami pattern is identified and a new kind of overconstrained 6R linkage is
proposed in section 3.4. Final part is the conclusion in section 3.5 which ends this
chapter.

3.2 Rigid Foldability

The kinematics of the four-crease rigid origami vertex is studied firstly in order to
analyze rigid foldability of the generalized triangle twist origami pattern. If a four-
crease origami vertex is flat-foldable, its opposite sector angles should be
supplementary [159]. Therefore, in its equivalent spherical 4R linkage (Fig. 3-2),
following geometrical parameters can be defined in accordance with the D-H notation
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shown in Fig. 2-2,

a, =

=y =ay =a, =0, 0,=-0,, 0=, R=R =R =R, =0,

(3-1)

Fig. 3-2 A spherical 4R linkage

Substituting Eq. (3-1) to the closure equation of the spherical 4R linkage that

0,0,,0,:0,=1,,

and solving Eq. (3-2) by replacing siné),

(3-2)

, cos@ , sin6, and cos@, with the

double angle formula, we can obtain two solutions,

o, . Oy — O, . Ot
tan 5‘ sin % tan ?2 sin %
0=_.a+a’ Hz.a—a’
tan —2 sin—2—12  tan—2 sin—2—12
2 2 2
. O, — O, o . Ot
tan — sm% tanz4 sin 232 12
= = 3-3a
. a.ta,’ o A A ( )
tan?4 sin 232 12 tanz1 sin 232 12
and
o, — o o, +a
tan —- cos 232 12 tanz2 cos 232 12
- o, +a,,’ o - ao,.—a.,’
tan —= cos—2B 12 tan 3 cos—2—~12
2 2 2
o o, — O 7 o, +0o
tan— cos—2—12 tan-* cos—2B 12
o= i —2= 2 (3-3b)
tan—+  cos G + Oy tan—  cos O ~
2 2 2 2

It can be derived from Eq. (3-3a) that

tan(6, / 2) =tan(d, / 2) , which means 6,

tan(6, / 2) =—tan(6,/2) while

and 6, are of opposite signs whereas 6,

and 6, are of the same. Eq. (3-3b) is on the contrary. For a flat-foldable origami

pattern, the two creases around the minimum sector angle should be of opposite

assignment as a mountain or a valley crease, while the two creases around the maximum
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sector angle are of the same assignment [159]. Assuming that &, is the minimum
angle, there are totally four schemes of M-V assignment of the four-crease origami
vertex as shown in Fig. 3-3, where the mountain creases are illustrated by solid lines,
the valley creases by dashed lines, and ¢, is the dihedral angle of the facets with a
common crease Zz;. If we flip the paper, the mountain creases become valley creases,
and vice versa. Therefore, the schemes in Fig. 3-3(b) and (d) are duplicate cases of those
in Fig. 3-3(a) and (c), respectively. The two solutions in Egs. (3-3a) and (3-3b)
correspond to the two schemes of M-V assignment in Fig. 3-3(a-b) and Fig. 3-3(c-d),

respectively, which are named as Vertex-I and Vertex-II.

(d)
Fig. 3-3 Four-crease origami vertices with four schemes of M-V assignment: (a), (b) Vertex-I;
and (c), (d) Vertex-II.

The relationship between the kinematic variable 6, and the dihedral angel @, is
presented in Fig. 3-4, where we can find out that for a mountain crease, @, =7—6,,
and for a valley crease, @ =6.—7 . So the relationship is ¢, =6, -7, ¢, =7-0,,
o,=r—-6,, ¢,=n—6, for Vertex- and ¢, =7-6,, ¢,=6,-x, ¢,=7n-6,,
¢, =7 —06, for Vertex-II.

(a) (b)
Fig. 3-4 The relationship between the kinematic variable and the dihedral angle for (a) mountain
crease, and (b) valley crease.

Thus in Vertex-I we have,
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. Ot . Oy, — O
tan % sin —2——12. 5 2 tan % sin —2—12 5 12
- .o, -, - . oto,’
tan L] sin—2—"2  tan Lo sin —2—-12
2 2 2 2
L Ot . O, —C
tan % sin —2 12 5 2 tan % sin —23——"12 5 12
= = 3-4a
@, L Oy =, % . Ot ( )
tan— sm——* tan— SIn———~=
2 2 2 2
and in Vertex-11
a,. +a, a,, — 0
tan% cos—23—~12 5 2 tan % cos 212 5 12
—_ > = + s
tan 22 cos O =y tan L) cos Oy Ty
2 2 2 2
o, +o a,. —o
tan % cos—23—~12 5 2 tan % cos 2B ~12 5 12
@, B 0y — 0 ’ 2 B Oy +a), . (3_4b)
tan~+ cos—2=—12 tanL cos—2=2—12
2 2 2 2

Figure 3-5(a) shows a generalized triangle twist origami pattern with a specific M-

V assignment. Since a four-crease vertex in rigid origami is kinematically equivalent to
a spherical 4R linkage, the triangle twist origami pattern can be modelled as a network
of three spherical 4R linkages. Assuming ¢/, (j =a,b,c) be the minimum angle of
the four-crease vertex, following geometrical parameters of the triangle twist are setup,
o\ =r—oy, =0, ay=n—0o,, =y, 0<y<min{a, 7-oj, (3-5a)
a,=r-a=p, a,=r—ot, =38, 0<d<min{f, 7— S}, (3-5b)

o, =r—oy,=n—0-f, o,=r—ao;, =, 0<e<min{a+ S, 7-o- B} ,(3-5¢)

so the simplified representation of the triangle twist is shown in Fig. 3-5(b).

(b)

Fig. 3-5 A generalized triangle twist origami pattern with a specific M-V assignment: (a) the

general representation, and (b) the simplified one.
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In this case, vertices A and B are both Vertex-I in Fig. 3-3(b) and (a), respectively,
and vertex C is Vertex-II in Fig. 3-3(c). The relationship of the dihedral angles ¢/ and

Q{ can be defined as

/uj: I j:avb’c- (3'6)
hal

cos XY Cosﬁ;ff COSOH;H
a b c
# = _ ) # = _ 9 # = > (3_7)
COS 7/ COS ﬂ at ﬂ +é
2 2 2

where

cosa<u‘<l, cosB<u’ <1, 1<u<1/cos(a+f3), for 0{+,8<§, (3-8a)

max{0, cosa} < 1 <1, max{0,cos B} <u’ <1, u‘>1, for 0(+,32%. (3-8b)

Since each crease along the edge of the central triangle is shared by two adjacent

vertices as shown in Fig. 3-5, we have
o=, oi=9, ¢,=¢. (3-9)
Further, the following relationship can be established,

b c
‘[an(p—4 tan&
2.2 (3-10)
L8 temﬂ

2 2

Therefore, the compatible condition of the triangle twist pattern [161] is

tan 2

a

(28

tan tan

ph =1 (3-11)
With defined values of @ and [, assigning arbitrary values within the domain
of definition in Eq. (3-5) to 7 and o, we can always find a € to satisfy the
compatible condition in Eq. (3-11) as
g -1 1

(§’+l)tana;ﬁ’ §=ﬂa.ﬂ,,. (3-12)

£ = 2arctan

Once the value of € obtained by Eq. (3-12) locates in the domain (0, ), the triangle
twist pattern is rigidly foldable.

Depending on the position relation of the three crease-pairs zj &z, z, & z§
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and z; & z; , the triangle twist origami pattern can be divided into three types, where
each crease-pair is intersected, or only one crease-pair is parallel, or each crease-pair is

parallel as shown in Fig. 3-6(a-c) respectively.

(a) ) (b)  (©

Fig. 3-6 Three types of the triangle twist pattern where (a) each crease-pair is intersected, or (b)

only one crease-pair is parallel, or (c) each crease-pair is parallel.

When each crease-pair is intersected, we can always find a € as Eq. (3-12) for
any value of 7 and ¢ in the domain of definition. This type of pattern is rigidly

foldable once €€ (0, 7).

When only one crease-pair is parallel, supposing that z; //z, then ¥=9J,and €

can also be derived from Eq. (3-12). If z.//z5,then d=¢,and

1= |
{=—. (3-13)

y =2arctan p
(§+Dwn5’ J7ay".

If z3//z7,then €=7 and

=g |

(§+l)tan§’ gzlu“ 7 (3-14)

0 =2arctan

Thus the pattern is also rigidly foldable with one parallel crease-pair when the

calculated angle locates in the domain (0, 7).

When each crease-pair is parallel, then =0 =&, Eq. (3-11) can be rewritten as
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cos 0(—2|- Y cos ﬁ; Y cosOH_’z‘H/
' ' =1, (3-15)
cos¥=7 cos Py COSL'BH/
2 2 2
which can be further simplified as
sinZ-sinB 0. (3-16)
2 2

Since @ and [ are interior angles of a triangle, no solution of Eq. (3-16) exists.

Therefore, the parallel triangle twist is not rigidly foldable.

3.3 M-V Assignment and Its Effect on Rigid Foldability

The rigid foldability and motion of the triangle twist with one specific scheme of
M-V assignment have been analyzed as above. Since the rigid foldability of an origami
pattern may vary with the change of M-V assignment, here we are going to find out all
possible schemes of M-V assignment for the generalized triangle twist origami pattern
and discuss their effect on rigid foldability.

According to the flat-foldable conditions of a four-crease vertex, the number
difference between mountain creases and valley ones should be equal to two [159]. It
forms the criteria for determining schemes of M-V assignment, together with the
condition on the opposite M-V assignment of the two creases around the minimum
sector angle. Hence, the M-V assignment of the generalized triangle twist is related to
the position of the minimum angle in the pattern. Considering the connection between
adjacent vertices in a triangle twist, ¢, is always set as the interior angle in the central
triangle. Since @, , &,;, &, and ¢, could be chosen alternatively as the
minimum angle, eight cases exist for one vertex in the triangle twist pattern. The
kinematic relationship between dihedral angles of the vertices with identical M-V
assignments is uniform. Therefore, the M-V assignment for one vertex in the triangle
twist can be classified into four types defined as Type P, Type Q, Type R and Type S in

Fig. 3-7 by combining repeated cases.

By defining ﬂk:tan%/tan% , where the subscript k=p,q,7r,s that

represents the type of the vertex, kinematic relationship of the two dihedral angles ¢,
and @, along the creases in the central triangle can be obtained. For Type P with ¢,
as the minimum angle, it is a Vertex-II as shown in Fig. 3-3(c), and for Tpye P with
a,; as the minimum angle, it is a rotated Vertex-I as shown Fig. 3-3(a). According to
Egs. (3-4b), (3-4a) and (3-1), we have
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.o, t,
sin 41~ 712

_ 2
U=—2 . (3-17a)
g Sina‘”_a]z
2

For Type Q with &,; as the minimum angle, it is a rotated Vertex-1I as shown in Fig.

3-3(c), and for Tpye Q with @, as the minimum angle, it is a rotated Vertex-I as
shown Fig. 3-3(a). According to Egs. (3-4b), (3-4a) and (3-1), we have

=—2 (3-17b)

For Type R with ¢, as the minimum angle, it is a rotated Vertex-II as shown in Fig.
3-3(c), and for Tpye R with ¢, as the minimum angle, it is a rotated Vertex-I as
shown Fig. 3-3(a). According to Egs. (3-4b), (3-4a) and (3-1), we have

—sin a, to,
U, = (3-17¢)

For Type S with ¢, as the minimum angle, it is a rotated Vertex-II as shown in Fig.
3-3(c), and for Tpye S with ¢, as the minimum angle, it is a Vertex-I as shown Fig.
3-3(a). According to Egs. (3-4b), (3-4a) and (3-1), we have

S a4l + al2

cOo
u=——2 (3-17d)

(b) (©) (d)

Fig. 3-7 Four types of M-V assignment of one vertex in the generalized triangle twist where the

minimum angle is (a) &;, or &,;, for Type P, (b) «,; or «,, for Type Q, (¢) &,, or ¢, for

Type R, and (d) «,, or ¢, for Type S.

As there are three vertices for a triangle twist and each vertex has four types of M-

V assignment, so there are 64 (=4’) combinations of vertices arrangements for the
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triangle twist. Considering the crease common to adjacent vertices has the same
assignment, only 32 schemes of M-V assignment are left as presented in Fig. 3-8, where
only the minimum angle of each vertex is presented and the character in frame indicates

the type of the vertex.

No.13 No.14 No.15 No.16
Fig. 3-8 All possible schemes of M-V assignment of a generalized triangle twist: No.1 PPP, No.2
PPQ, No.3 PQP, No.4 PQQ, No.5 PRR, No.6 PRS, No.7 PSR, No.8 PSS, No.9 QPP, No.10 QPQ,
No.11 QQP, No.12 QQQ, No.13 QRR, No.14 QRS, No.15 QSR, No.16 QSS, No.17 RPR, No.18
RPS, No.19 RQR, No0.20 RQS, No.21 RRP, No.22 RRQ, No.23 RSP, No.24 RSQ, No.25 SPR,
No.26 SPS, No.27 SQR, No.28 SQS, No.29 SRP, No.30 SRQ, No.31 SSP, and No.32 SSQ.
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|
’ gfl

v of
7C 12

No.29 No.30 No.31 No.32
Fig. 3-8 All possible schemes of M-V assignment of a generalized triangle twist: No.1 PPP, No.2

PPQ, No.3 PQP, No.4 PQQ, No.5 PRR, No.6 PRS, No.7 PSR, No.8 PSS, No.9 QPP, No.10 QPQ,
No.11 QQP, No.12 QQQ, No.13 QRR, No.14 QRS, No.15 QSR, No.16 QSS, No.17 RPR, No.18
RPS, No.19 RQR, No0.20 RQS, No.21 RRP, No.22 RRQ, No.23 RSP, No.24 RSQ, No.25 SPR,
No.26 SPS, No.27 SQR, No.28 SQS, No0.29 SRP, No.30 SRQ, No.31 SSP, and No.32 SSQ.
(Continued. )

Two special scenarios exist where the M-V assignment would be duplicated. First,

if we flip the paper, the mountain creases then become the valley creases. That is to say,
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these kinds of M-V assignment would be the inverted configurations. For example, the
M-V assignment in Fig. 3-9(a) (PRR) is a duplicate of the one in Fig. 3-8 No.5 with the
inverted configuration. Second, the M-V assignment would be duplicated if we change
the vertex arrangement by rotating it along the centre of the triangle. For example, the
M-V assignment in Fig. 3-9(b) is a duplicate of the one in Fig. 3-9(a) obtained by
rotation. Considering the generality of the central triangle, the M-V assignment in Fig.
3-9(b) is equal to the one in Fig. 3-9(c) (RPR) that copied from Fig. 3-8 No.17. That is,
the PRR twist in Fig. 3-8 No.5 and the RPR twist in Fig. 3-8 No.17 can be regarded as
the same. As a result, twelve unique schemes of M-V assignment are obtained, which
are denoted as PPP, PPQ, PQQ, PRR, PRS, PSS, QQQ, QRR, QRS, QSS, PSR and QSR
as shown in Fig. 3-10, where the pattern shown in Fig. 3-5 is a duplicate obtained by
rotating the type of PSS twist shown in Fig. 3-10(f).

(a) (b)

Fig. 3-9 Duplicated M-V assignments: (a) the M-V assignment obtained by flipping the paper in

Fig. 3-8 No.5, (b) the one obtained by rotating (a) along the centre of the triangle, and (c) the one
copied from Fig. 3-8 No.17.

From Fig. 3-10, we can see that there are two schemes (PRS and QRS) with seven
mountain creases and two valley ones (Fig. 3-10 (e) and (1)), four schemes (PPP, PPQ,
PQQ and QQQ) with six mountain creases and three valley ones (Fig. 3-10 (a), (b), (¢)
and (g)), four schemes (PRR, PSS, QRR and QSS) with five mountain creases and four
valley ones (Fig. 3-10 (d), (f), (h) and (j)), and two schemes (PSR and QSR) with three
mountain creases and six valley ones (Fig. 3-10 (k) and (1)). The difference between
those schemes with identical numbers of mountain and valley creases is the position of
the minimum angle, which affects the kinematics of each vertex and their compatibility.

The detailed classification of these schemes are represented in Table 3-1.
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Fig. 3-10 Twelve unique schemes of M-V assignment of the generalized triangle twist pattern with
vertex-types being (a) PPP, (b) PPQ, (¢) PQQ, (d) PRR, (e) PRS, (f) PSS, (2)QQQ, (h) QRR, (i)
QRS, (j) QSS, (k) PSR, and (1) QSR.

Similar to the analysis procedure in section 3.2, the relationships
W(i=1,2,..,12, j=a,b,c) between @ and ¢/ are substituted to the compatible
condition as Eq. (3-11) in order to find out the rigid foldability of all these types of
triangle twist with various M-V assignments. For the PPP twist (Fig. 3-10(a)), the 4/

of this type are
Sinay Sinﬁ;é‘ COSOH?-E
a b c
H = —, M = s, = ) (3-18)
sin &Y inB-9 . sa+,25+8

with 4 >1, ' >1, u >1, so it is impossible to find solutions for Eq. (3-11).
Therefore, the type of PPP twist is not rigidly foldable.
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Table 3-1 Classification of M-V assignments for a generalized triangle twist

Schemes of M-V Duplicated schemes of

Number of Number of . . o
. assignment M-V assignment Rigidity
mountain creases  valley creases : )
(Fig. 3-8) (Fig. 3-8)
7 2 PRS (No.6) RSP (No.23), Rigid
SPR (No.25)
QRS (No.14) RSQ (No.24), Rigid
SQR (No.27)
6 3 PPP (No.1) non-existent Non-rigid
PPQ (No.2) PQP (No.3), Rigid
QPP (No.9)
PQQ (No.4) QPQ (No.10), Rigid
QQP (No.11)
QQQ (No.12) non-existent Non-rigid
5 4 PRR (No.5) RPR (No.17), Non-rigid
RRP (No.21)
PSS (No.8) SPS (No.26), Rigid
SSP (No.31)
QRR (No.13) RQR (No.19), Rigid
RRQ (No.22)
QSS (No.16) SQS (No.28), Non-rigid
SSQ (No.32)
3 6 PSR (No.7) RPS (No.18), Rigid
SRP (No.29)
QSR (No.15) RQS (No.20), Rigid
SRQ (No.30)
For the PPQ twist (Fig. 3-10(b)), the 4 of this type are
sin —2”/ , sin’B; —sinL’B_g
=t =2 = , (3-19)
sin 7 sinﬁ_5 sinLﬁH

2

with ¢ >1, 12 >1, 1 <1. When arbitrary values are assigned to @, S, ¥ and

0,wecanfinda € according to the compatible condition in Eq. (3-11) as

(§2+1)tana;’8 1

£ =2arctan , 6= i (3-20)
l_gz

Therefore, the type of PPQ twist is rigidly foldable once the obtained £ is within the

range (0, 7).

For the PQQ twist (Fig. 3-10(c)), the 4/ of this type are
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sinw;? _Cosﬂ;ﬁ _sinmf—f

a b c

Iu3 = YR Iu3 = _ 5 lu3 = ’ (3_21)
SinaTy cos B9 Sma+2/3+€

with 4 >1, 1 <1, g <1. When arbitrary values are assigned to @, B, 7 and

o0,wecanfinda € according to the compatible condition in Eq. (3-11) as

&, +Dtan &P [o_!
£ =2arctan 2, 5T a e (3-22)
_ -
1-¢,
Therefore, the type of PQQ twist is rigidly foldable once the obtained € is within the
range (0,7).
For the PRR twist (Fig. 3-10(d)), the 4/ of this type are
sina—zw/ sinﬁ;5 —COSL'B_S
a b c
po=—2 =2 = , (3-23)
sin %/ sin °-p Ccos 0{+2ﬂ+8

with 4 >1, ul>1, u >1, so it is impossible to find solutions for Eq. (3-11).
Therefore, the type of PRR twist is not rigidly foldable.

For the PRS twist (Fig. 3-10(e)), the 4’ of this type are

sin 0{;7 sin '824_5 sin OH_';H‘
a b c
U =——— Us=—cF, Ms=—"""")r—, (3-24)
in @7 Smffz,ﬁ’ Sma+§+8

with ¢ >1, u! >1, wf<1. When arbitrary values are assigned to @, £, 7 and

0,wecanfinda € according to the compatible condition in Eq. (3-11) as

(AT LA
&€ =2arctan 2, 6= ulut (3-25)
£+l > *#h
Therefore, the type of PRS twist is rigidly foldable once the obtained € is within the
range (0,7).
For the PSS twist (Fig. 3-10(f)), the £ of this type are
sin 0(;_7 cos ﬁ;—J sin OH_Z’B_S
a b c
Mg =—"""—, M =—p <, =" . > (3-26)
sin 7 cos B9 sin a+§+€

with ¢ >1, u <1, g <1. When arbitrary values are assigned to @, B, 7 and

o0,wecanfinda € according to the compatible condition in Eq. (3-11) as
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-8
£ =2arctan ; 2, 6= ul (3-27)
s+l 6 6
Therefore, the type of PSS twist is rigidly foldable once the obtained € is within the
range (0, 7).
For the QQQ twist (Fig. 3-10(g)), the 4’ of this type are
—cosa;}/ —cosﬂzg —sina—i_zﬂ_g
a b c

p=—— =2 = L (328)

cos T=Y cosB=9 Sinahzﬂ%

with £ <1, 40 <1, <1, so it is impossible to find solutions for Eq. (3-11).
Therefore, the type of QQQ twist is not rigidly foldable.

For the QRR twist (Fig. 3-10(h)), the 4/ of this type are

—cosa—zi_y sinﬁ-zi_é —cosOH_zﬂ_g

a b c

My =——"—"="—, ly=—"5"7, g = ; (3-29)
cosa Y sin5 B cosw

2

with g <1, u!>1, 4 >1. When arbitrary values are assigned to @, £, ¥ and
0,wecanfinda € according to the compatible condition in Eq. (3-11) as

G+l 1

(& ~Dytan a+,B Gy = PR (3-30)

£ =2 arctan

Therefore, the type of QRR twist is rigidly foldable once the obtained € is within the

range (0, 7).
For the QRS twist (Fig. 3-10(i)), the 4 of this type are
_Cosa;y smﬁ;ff Sinfﬂf—e
a b c
My =———"— Wy=—5c"7%, ly=""""7, (3-31)
cos *y si M sina+2ﬂ+€

with 2 <1, w}>1, ui <1. When arbitrary values are assigned to @, B, 7 and

0,wecanfinda € according to the compatible condition in Eq. (3-11) as

o+ [
(1-¢,)tan 2 . l= 1

- . 3-32
é’g +1 My zu;) ( )

£ =2 arctan

Therefore, the type of QRS twist is rigidly foldable once the obtained € is within the
range (0, 7).
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For the QSS twist (Fig. 3-10(j)), the 4 of this type are

—CoS 0{-2+}/ cos’Bz5 sina+2ﬁ_g
a b c
boy=—"—"""—, bo=—F 5, o= a4 (3-33)
COS% cos B9 sinmf%

with g, <1, u, <1, u, <1, so it is impossible to find solutions for Eq. (3-11).
Therefore, the type of QSS twist is not rigidly foldable.

For the PSR twist (Fig. 3-10(k)), the 4 of this type are

Sina;y Cosﬂ2+5 s XtTP-¢€

a b c

=7, bhWw="Fp <, = ) (3-34)
sin%/ 005'825 cosa-i_’z'w;

with g >1, u’ <1, u,>1. When arbitrary values are assignedto @, B, 7 and

0,wecanfinda € according to the compatible condition in Eq. (3-11) as

Lot |

(& ~)tan +ﬂ ¢ = TR (3-35)

&€ =2 arctan

Therefore, the type of PSR twist is rigidly foldable once the obtained € is within the

range (0,7).
For the QSR twist (Fig. 3-10(1)), the 4 of this type are
—cosa;y cosﬂza —cosLﬁ_g
a b c
Hy=—"""""—, lpb=—"F% <, Hp = 5 (3-36)
cos %/ cos p-o 0s OH_2’B+8

with 4% <1, ', <1, g, >1. When arbitrary values are assignedto @, B, 7 and

o0,wecanfinda € according to the compatible condition in Eq. (3-11) as

Lot e

(;12 l)t a+ﬂ 412 :u12 lulz (3-37)

£ = 2arctan

Therefore, the type of QSR twist is rigidly foldable once the obtained € is within the
range (0,7).

In summary, only the PPQ, PQQ, PRS, PSS, QRR, QRS, PSR and QSR twists as
shown in Fig. 3-10 (b), (¢), (e), (f), (h), (1), (k) and (1) are rigidly foldable, whereas the
PPP, PRR, QQQ and QSS twists not. It should be noted that for a given M-V assignment
of the triangle twist within these eight types, the rigid foldability depends on the choice

of geometrical parameters as well. For example, the triangle twist pattern of type PSR
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with ¢=30°, B=80", y=90°, §=45° and a calculated £=7.04° is rigidly
foldable. However, when we change itto a=/f#=60° while y=90° and ¢ =45°
unchanged, it is impossible to find a compatible € for the pattern. That is, the triangle
twist becomes a non-rigid case. Therefore, we can design a rigid or non-rigid triangle
twist by choosing proper M-V assignment and geometrical parameters according to our

demands.

3.4 Derived Overconstrained 6R Linkages

Although the M-V assignment has an impact on rigid foldability of the generalized
triangle twist origami pattern, it does not affect geometric conditions of its
kinematically equivalent spherical linkages. Here the generalized triangle twist
presented in section 3.2 is used to demonstrate the derivation of spatial 6R linkage from
this pattern. Considering geometric conditions in Eq. (3-5), there are five design
parameters @, B, 7, & and € for this pattern, whereas only four are independent.
A physical origami model of the triangle twist pattern and its corresponding folding
process are designed as shown in Fig. 3-11(a). Since the vertices A, B and C always
keep in a single plane, the central triangle ABC can be removed without affecting the
motion of the pattern. Then a triangle twist kirigami pattern, which has only six creases

as shown in Fig. 3-11(b), is obtained.

Recalling the relationship between mechanisms and origami patterns, a network
of three spherical 4R linkages that corresponds to the triangle twist origami pattern in
Fig. 3-11(a), can be built as shown in Fig. 3-12(a). Creases of vertices A, B and C are
equivalent to joints a;, b, and ¢, respectively, where joints a, &b, b, & ¢, and
¢, & a, are coaxial. The adjacent links a,a, in the spherical 4R linkage A and bb,
in the spherical 4R linkage B are connected into one rigid body, and the same connection
method is applied to other adjacent links in Fig. 3-12(a), such as links a,a, &b,b, ,
bb, &cc,, bb &c,c, ¢, &aa, and c,c &aa, . When the origami pattern is
rigid with one DOF, its corresponding linkage network also has one DOF.

Once the central triangle is removed, a mobile linkage from the kirigami pattern
in Fig. 3-11(b), can also be built as a 6R linkage, see Fig. 3-12(b), after joints in the
central triangle being removed, and joints a; & b, being connected by one link, so do
joints by & ¢, and c¢; & a,. So the derived 6R linkage in Fig. 3-12(b) should also have
one DOF as the network of spherical 4R linkages in Fig. 3-12(a). The six joints in the

new derived 6R linkage have identical motion as joints a;, b,, b,, ¢,, ¢; and a,
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in the network of three spherical 4R linkages. Therefore, the kinematic analysis in

section 3.2 can be applicable to the new 6R linkage as well.

Fig. 3-11 Physical triangle twist models with ¢ =55°, =50, y=50°, §=45" and
£=35.44° for (a) origami pattern, and (b) kirigami pattern.

Fig. 3-12 Equivalent mechanisms of the generalized triangle twist: (a) the network of three

spherical 4R linkages for the origami pattern, and (b) the derived overconstrained 6R linkage for
the kirigami pattern.

It has been proved that the generalized triangle twist pattern in section 3.2 is rigidly
foldable except for the parallel twist. Here the derived 6R linkages from kirigami
patterns of the two rigidly foldable triangle twists are to be discussed. First considering

the case where each crease-pair is intersected, the links have zero length with y#0
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correspondingly. The D-H notations of this new 6R linkage is depicted in Fig. 3-13(a).
The axes of adjacent rotation joints intersect, and the intersection points of z; & z,,
z, &z, z, &z, z,&z,, z; &z, and z; &z, are denotedas A, B,C, D, E and F
respectively. Suppose the length of edge AB in the central triangle be d . The
geometrical parameters of the 6R linkage can be calculated as follows.

Ay =0y =0y =0y =gy =ag; =0, (3-38a)

o, =2r—-y+0, o,=n—-f, o, =2r-5+¢,

o=0+p, O, =y—€, O, =1T—0, (3-38b)
R=AD=|—"% |4 R -_BD=-|_S7 |4
sin(y—9) sin(y—0)

R3=ﬁ:| 'smg | ‘dsma , 4:—C_:— 'sm5 ‘ ‘dsma ’
‘51n(5—8)| sin(a + f) sin(0—¢)| sin(a+ f)
R5=—C_F=—| .sm}/ | ‘dsm,B , R6=E=| .smg | ‘dsm,b’ ’
|sm(7—£)| sin(a+ ) |sm(7—€)| sin(far+ )

(3-38¢)

where 7, 60 and € should satisfy Egs. (3-5) and (3-12). According to Eq. (3-38¢),
the relationship R, Ry R;+R,-R,-R;=0 holds and all lengths of the links are zero in
Eq. (3-38a), which reveals that the derived 6R linkage is actually a variation of doubly
collapsible octahedral Bricard [99]. The kinematic relationship of the derived 6R

linkage is
0 cosa_ycos'g_a 0 cos ¥ =7 0
tan 2= i ﬁia-tan—l, tan—3=—+'tan—1,
2 cos P cos 2 2 s Y 2
2 2
0,=-6, 6,=6,, 6,=6,. (3-39)

It can be seen that kinematics of the derived doubly collapsible octahedral Bricard is
not related to the value of d . It is determined by relative position of their axes.
Kinematic paths of an instance with o=55°, [=50", y=50°, §=45° and
£=35.44" are plotted as solid lines in Fig. 3-14.
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(a) | (b)
Fig. 3-13 Schematic diagrams of the derived overconstrained 6R linkages when (a) ¥ # 0, and (b)
7=90.

T
27/3
7T/3
0
—7T/3 7
6,16, 7, 0,
/3 /70,10,
—7T 91

-T-27m/3-7m/3 0 /3 27w/3 T
Fig. 3-14 Kinematic paths of the derived overconstrained 6R linkages with ¢ =55°, f=50°,

y=50", 6=45°, £=35.44° assolid lines and =55, =50, y=0=45", £=33.52° as

dashed lines.

Then consider the second case in which only one crease-pair is parallel, that is, the

length of one link is non-zero by setting ¥ =0, see Fig. 3-13(b). In this case, axis Z,
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is parallel to z,, and GB is their common perpendicular. z, & z,, z, & z;, z, & z;,

zy &z, and z; & z; intersect at the points A, B, C, E and F respectively. The length

of link 12 is the distance between the parallel crease-pair, whereas those of all the other

links and the twist angle of link 12 are zero. The geometrical parameters of the 6R
linkage are

a, =GB=dsind, Ay, =0y, =a,,=ay,=a, =0, (3-40a)

0,=0, a,=n-, o, =2r-0+¢,
o =0+, a,=0—-€, o, =n—-0, (3-40b)

R +R,=-dcos?,

R :ﬁ:| sing | dsina _ _Gn__| sindé | dsina
’ [sin(5-¢)| sin(ar+8)" sinG—e)| sin(@+ )
R =—C_F:—| sin & | dsin R _AF= sine | dsinf
5 |sin(0—¢)| sin(ar+p)" sin(0—¢)| sin(a+ )’
(3-40¢)

d’ sin azsin Bsin S cos I sin &
sin’ (o + B)sin* (5 — &)

linkage derived from the triangle twist kirigami pattern with only one parallel crease-

It is found that R,-R;-R,+R, R, -R;= for the 6R

pair. It neither satisfies the geometric conditions of doubly collapsible octahedral
Bricard nor other existing overconstrained 6R linkages reviewed in section 2.1.3, such
as Bricard linkages [100] and Bennett-based overconstrained linkages [89] etc., which
indicates that a new type of overconstrained 6R linkage is obtained. Similarly, the
kinematic relationship of this linkage is obtained by making ¥=9J in Eq. (3-39).
Changing geometrical parameters of the exemplified derived 6R linkage to y=45°,

£=33.52° while keeping other parameters identical with the previous case, the
kinematic paths are plotted as dashed lines in Fig. 3-14. It can be found that both the
geometrical parameters and kinematic paths differ little, which implies that the new
derived overconstrained 6R linkage could be treated as an extension of the doubly
collapsible octahedral Bricard.

3.5 Conclusions

This chapter has presented rigid foldability and motion analysis of the generalized
triangle twist with varying geometrical parameters and M-V assignments. They have
been analyzed based on the kinematic equivalence between rigid origami pattern and
the network of spherical linkages. Twelve unique schemes of M-V assignment of the
generalized triangle twist have been found. However, only eight types are possible to
be rigidly foldable. The compatible conditions have been derived for these types of
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triangle twist. Furthermore, the rigid foldability has been discussed according to the
position relation of three crease-pairs around edges of the central triangle. It has been
found that the triangle twist can be rigidly foldable only when at least one crease-pair
is not parallel. In addition, a triangle twist kirigami pattern has been developed by
removing the central triangle in the rigid origami pattern. A variation of doubly
collapsible octahedral Bricard has been derived from the triangle twist kirigami pattern
where each crease-pair is intersected. And a new type of overconstrained 6R linkage
has been obtained when only one crease-pair is parallel.
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Chapter 4 Kinematic Study of Plane-symmetric Bricard
Linkage and Its Bifurcation Variations

4.1 Introduction

In Chapter 3, we derived a variation of the doubly collapsible Bricard octahedral
case and a new type of overconstrained 6R linkage. Recently, several overconstrained
6R linkages have been applied in the design of deployable structures due to their
structural stiffness and performance reliability such as the plane-symmetric Bricard
linkage. Because of the symmetry property, the plane-symmetric Bricard 6R linkage
tends to have complicated bifurcation behaviours, which should be avoided in the
application of deployable structures, but could be made use of in the design of
reconfigurable mechanisms. In this chapter, the aim is to setup the general geometric
conditions for the bifurcation of plane-symmetric Bricard linkage.

The layout of this chapter is as follows. The explicit solutions to closure equations
of the general plane-symmetric Bricard linkage are derived, and the comparison
between kinematic properties of different plane-symmetric Bricard linkages based on
these solutions are conducted in section 4.2. Section 4.3 introduces the derived SR/4R
linkages from the general case and their corresponding geometric conditions. Section
4.4 addresses the bifurcation between the plane-symmetric Bricard linkage and the
Bennett linkage. Section 4.5 discusses other bifurcation cases of the plane-symmetric
Bricard linkage under different geometric conditions. Final conclusions are drawn in

section 4.6.

4.2 Explicit Closure Equations and Kinematic Properties

The geometrical parameters of the general plane-symmetric Bricard linkage are
defined as shown in Fig. 4-1 with the conditions that

a]2:a61:a5 023:a56:b, a34:a45:C, (4—18.)
0{12:2”_0{61:053 0(23227[—0{56=ﬁ, a34:27z._a45:7/3 (4-1b)
R =R,=0, Ri=—R,, R;=—R;, (4-1c)

where the setup of coordinate frames is in accordance with the D-H notation. Here, @,
b, c, a, B, 7, R, and R, are taken as the geometrical parameters of the plane-

symmetric Bricard linkage.
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Fig. 4-1 D-H parameters of the plane-symmetric Bricard linkage

As it is a single loop linkage, the closure equation of the general plane-symmetric
Bricard linkage can be obtained by rewriting Eq. (2-1) as

T,T,T, =T,T,T,. (4-2)
Due to the plane symmetry, we have
6,=6,, 6,=6,. (4-3)
Substituting Eq. (4-3) to Eq. (4-2) and simplifying entries (1, 3) and (1, 4) (shown in
Appendix A) in Eq. (4-2), the following equation is obtained,

sin y(cos €, sin 6, + cos Ssin 6, cos 8,) +sin B cos ysin b,

cos asin ysin 6, sin @, —cos & cos Ssin ycos 6, cos b,
+sinasin fsin ycos @, —cos asin B cos ycos 6, —sin arcos fcos y
: . o , (44
¢(cos 8, cos b, —cos Bsin b, sinb,)+bcosO, +a+ R, sin Bsin 6, -4
c(cosasin @, cos 8, +cos axcos S cos 8, sin G, —sin asin Bsin 6,)
+bcosarsin @, — R, cos arsin fcos b, — R, sinax— R, sinxcos 5
which can be further simplified as
6. 6.
Atan’ ?3 + Btan?3 +C=0, (4-5)

where
(a—b+c)sin(ar— B+ y)tan’ % +2sina(R, siny

A= 9 , (4-6a)
+R, sin(y — ,B))tan;z +(a+b—c)sin(a+f-7)
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2sin y(R, sin ¢ + R, sin(a — f3))tan’ % +2((a—c)sin(a—y)
B= 0 s (4_6b)
—(a+c)sin(a+ y))tan ?2 —2sin y(R, sina+ R, sin(a + f3))

(a—b—c)sin(a— B — y)tan’ %+2 sin (R, sin y
C = 0 s (4_60)
+R, sin(y + ,B))tan?z +(a+b+c)sin(a+ f+7)

and 6, is taken as the input kinematic variable.

Moreover, the other kinematic variables 6 and 6, could be calculated by
simplifying entries (1, 3) and (3, 1) (shown in Appendix A) in Eq. (4-2) as

tani _ sin y(cos 6, sin @, + cos Bsin b, cos 6,) +sin S cos ysin b,
2 {sin osin fsin ycos @, —cos asin B cos ycos @, —sin axcos S cos 7/} , (4-7)

—cos & cos Bsin ycos 6, cos @, + cos asin ysin 6, sin 6,

6, sin asin 6, cos @, +sin 6, (sin & cos B cos 6, + cos asin )
tan— =
2 | cosy(sinasin@, sin @, —sin ¢ cos S cos b, cos b, ) (4-8)
—cos asin fcos6,) +sin y(sinasin B cos 6, —cos o cos )
The solutions to Eq. (4-5) can be divided into following three cases.
1) When 4=0,
tan % = =< . (4-9)
2 B

Substituting Eq. (4-9) to Egs. (4-7) and (4-8), the relationship between 6,, 6, and 6,

can be derived as

tan%z%, (4-10)
tan%zg, (4-11)

in which

D =2BC'sin ytan’ %+ 2(B*sin(B+y)+C’sin(B - y))tan% —2BCsiny,

| ~(B*sin(@— B-y)+C*sin(— B+ 7))tan’ %— 4BC cos asin }/tan%

5

E
—(B*sin(a+ B+ )+ C’sin(a+ S-7))

F =2BCsin(a— f)tan’ %+ 2(B* —C*)sin atan% —2BCsin(a+ f),
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(B’ sin(ar— —y)— C?sin(ox — B+ 7))tan’ %
G= ,
—4BC'sin ¢ cos ﬂan%— B*sin(a+ B+ y)+C’sin(a+ S-7)

Therefore, Egs. (4-3), (4-9), (4-10) and (4-11) form the only set of explicit
solutions to closure equation of the plane-symmetric Bricard linkage when A=0.
According to the definition of term A as Eq. (4-6a), the following equation can be
obtained,

(a—b+c)sin(ax— B+ y)tan’ %+2 sin (R, sin y

) =0, (4-12)
+R, sin(y—ﬁ))tan?2+ (a+b-c)sin(a+ f-7)

Equation (4-12) should be always true for all values of 6,, so we have
(a=b+c)sin(e—f+y)=0
2sin (R, sin y+ R, sin(y—f))=0. (4-13)
(a+b—-c)sin(a+pB-y)=0
Therefore, the geometric conditions for a plane-symmetric Bricard linkage with only
one solution in this case are
a—b+c=0or a-f+y=kr
a=k,wr or R;siny+R,sin(y—f)=0, (4-14)
a+b—c=0or a+p-y=kr
where k,k,,k;€R.
2) When A#0 and A=B>-4A4C >0, the relationship between 6, and 6, are

_B+ 2 _
tan & = ZEENT A (*15)

24
Further, substituting Eq. (4-15) to Egs. (4-7) and (4-8), we have
6 HI+J
tan— = , (4-16)
2 KI+L
6, MI+N
tan—* = ) (4-17)
2 OI+P
in which

H =-2Asin ytan’ %— 2Bsin(f - y)tan%+ 24siny,

I=-B++\B*-44C,
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J= 4Atan%(A sin(B+y)-Csin(f-7)),
: , 0, : 6, :
K = Bsin(a— + y)tan ?+4Acosasm 7/tan?+Bsm(0(+,B— 7)),
L =2A((Csin(ar— B+ y)— Asin(ar— - y))tan’ %+ Csin(a+ f—y)—Asin(a+ S+7)),
M =-2Asin(c— B)tan’ %+ 2Bsin Ottan%+ 24sin(a+ ),
N=4A(A+ C)sinatan% ,
: , 0, . 6, .
O = Bsin(a— f+ y)tan ?+4Asmacos ﬂan?—Bsm(a+ﬂ— 7),

P =2A((Csin(a— 8+ y)+ Asin(a— S~ y))tan’ %—Csin(a+ﬂ— y)—Asin(a+ [ +7)).

Therefore, when 4#0 and A =0, the solutions to closure equation of the
plane-symmetric Bricard linkage are the equation set Egs. (4-3), (4-15), (4-16) and (4-
17). Applying the definition of the terms 4, B and C in Eq. (4-6) to the
discriminant A, a quartic equation with tan(&,/2) being the independent variable
can be obtained. According to the characteristics of the curve of quartic equation, the
discriminant is semi-positive only under the conditions that the highest-degree
coefficient and the minimum value of the discriminant A are non-negative.

3) When 4#0 and A<O0, there is no solution to Eq. (4-5), which means that the
linkage 1s a rigid structure.

Based on explicit solutions, the plane-symmetric Bricard linkage can be classified
by the values of 4 and A. The detailed kinematic paths and motion behaviour of the
plane-symmetric Bricard linkage with different geometrical parameters are given in
Table 4-1. Several typical cases can be seen from Table 4-1 as follows.

(a) When A =0, six cases (Cases 1 to 6 ) can be derived from Eq. (4-14) where only
one kinematic path exists.

(b) When 4#0 and A<O, there is no kinematic path, i.e., the mechanism is rigid
structure in Case 7.

(c) When A#0 and A =0, there is one kinematic path, corresponding to Case 8.

(d) When 4#0 and A >0, there are two set of solutions with &, as the input
variable. A careful check reveals that for Case 10, two sets of different kinematic
curves exists corresponding to two different linkage closures, which can switch to

each other at the collinear configurations.
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Table 4-1 The kinematic properties of the plane-symmetric Bricard linkage

C Geometric Linkage model Kinematic paths
ase .. - ;
conditions N curves Motion behaviour
61172 5113 4 e Three joint axes 6, 1
Q) g i‘% 27113 ' o
A=0, A [ND) N 6./, and 2 coincide and the
a /3 .
a=0, Geometrical parameters: o__00; linkage would rotate
1 b=c, a=0, b=c=1, 1 o along this joint as a
a=kr. a=0, f=xn/3, y=n/6, o3 whole. 6,=6,, while
0, —
R, =R, =0. 2R w3 0 A 2w 6=-26,.
1,
A = 0 N 4 9] 94
271/3
a=0, . The linkage has a 6R
b=c, | o g0 0,105 motion branch with
R, sin(y - f) I\ joint axes 6, 1 and 2
=—R,siny. . i —27/3 intersect.
Geometrical parameters: TR R AR AR A T
a=0, b=c=1, aa=nxr/3,
B=y=r/6, R,=R,=0.
1
2 6
3 5 d
A=0, 271/3 2
a=kr, 23l \& The linkage has a 6R
3 1 0 motion branch with
P-v 3 04104 joint axes 6, 1 and 2
=(k, —k)7. 4 on3 0./0; parallel.
Geometrical parameters: 4,[ .
L b2 4 0 S 2R3 730 ;3273 T
a = > = 2 c = 2 a = 2
p=1r/6, y=x/6,
R, =-1, R,=-2.
A=0, - -
b=a+c, 271/3 /
o+ ﬂ -y 7/3
) 0, .
4 —kr 1 0 Kkt The linkage has a 6R
v ~30\a0 motion branch.
R, sin(y - B) 3
—27/3
=—R,siny. : .
3 Geometrical parameters: T i O

a=c=1, b=2, R, =R, =0,
a=p=n/6, y=nr/3.
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Table 4-1 The kinematic properties of the plane-symmetric Bricard linkage (Continued.)

c Geometric Linkage model Kinematic paths
ase . - -
conditions curves Motion behaviour
— T
A=0, / ) 0.
271/3
c=a+b, o 0,/6,
a-p+y . _ ol \ 6.6 The linkage has a 6R
5 Geometrical parameters: ]
=k, b=l c=2 g=r/3 _i motion branch.
a = = N = N = N
R, sin(y — —27/3
: (7./ p) pf=r/2, y=r/6, p
=—R,siny. Tr om0 Ao
R,=R,=0.
A=0,
k,+k)
o= @ T o
2 2m/3 )
0,/0;
IB -7 /3 p
o ! The linkage has a 6R
6 (ky — k) Geometrical parameters: 0 p gb N
=0 _ motion branch.
2 a=15, b=1, ¢=2, 3 0,/0,
. -271/3
R, sin(y - f) o o oz a
= —R,siny 0{—3, T4 T g “Tr amis w3 0 3 23 T
=-R, .
R,=R,=0
16 4 12
. o) : T
36 & S 5 0,16,
[ i i 271/3
120 Geometrical parameters: /3 The mechanism is a
=0, a=c=1, b=2 08 0110 i struct q
A<O ) > rigid structure and no
' a=y=rnl6, f=r/2, s motion exists.
—2m/3
R = R = O . 93/95
203 -7 0,
W3 -7/3 0 73 273 7
T
2773 5.6,
73
4#0, 0 6:/0, The linkage has only
A=0. . , 73 0:/0: one 6R motion branch.
Geometrical parameters: /3
a=3, b=2, c=1,

27 T
a—_

T -3 0 T3 T3 T
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Table 4-1 The kinematic properties of the plane-symmetric Bricard linkage (Continued.)

C Geometric Linkage model Kinematic paths
ase .. - ;
conditions N curves Motion behaviour
T
2:; j b, 01000,
0 Joints 2 and 6 have no
s complete rotation in
on3 0, the top left figure. (So
o= i joint 1 is taken as
A4#0, T w0 7 s Jomt
AS0 Geometrical parameters: 1 input in bottom left
' a=3, b=2, c=1, MZ 0, figure.) Joint 4 rotates
pe T pe o three angular strokes
o=— ﬁ = — = — 7/3 / 3 [
12’ 3’ 4 4’ . while joints 1, 3 and 5
0./6 rotate one.
R, =R, =0. ~7/3
_om3 0./6,
- |
Sm2m3-m30 /323 T
The linkage has two
= path! =ZZpath Il different plane-
- 0,77 symmetric 6R motion
T/
: ,/’ g X branches
/3 7/ .
10 A#0, 5 Syt AP M corresponding to two
A>0. \ 03/6: e kinematic paths,
-3 N\ 7, .
\ 6,,77 shown in the
=2 b=c=1 -27/3 NS 755 . )
a=s, b=c=1, N kinematic curves as
=TT . - p v 2 . .
2 T T TR0 T3 273 T solid and dash lines,
o=— = — = —— .
3’ 6’ Y 6 respectively.
R,=R,=0

However, there is an exception as Case 9. When 4#0, A>0,taking 6, asthe
input variable, there are two sets of solutions. Yet, if converting them into the format
with 6, as the input variable, there is only one set of explicit solutions, i.e., one
kinematic path obtained. This is because that the &, has no complete rotation in the

whole path.

4.3 Derived SR/4R Linkages

The above solutions to the closure equations of the general plane-symmetric
Bricard linkage are conditional to the constraint that 6, # 7 (i =1,2,3,4,5,6). When
any one of the kinematic variable 6, is kept to 7, the linkage may degenerate to

SR/4R linkages.
1) When 6=r7
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As shown in Fig. 4-2(a), link 12 coincides with link 61 in this case, making the

resultant linkage a SR linkage. The problem is to find out when the linkage is moveable.

Substituting & =7 to the closure equation as Eq. (4-2), it is found that the linkage

is moveable only when entries (2, 3) and (2, 4) (shown in Appendix A) of Eq. (4-2),

which contain kinematic variables 6, and 6, , are linearly dependent. Thus, the

geometric condition to make the plane-symmetric Bricard linkage degenerate to a
movable 5R linkage can be derived from

sin(B—a—yym* +sin(y—a— B) | [n?

4cosasin ym n

sin(a— B—y)m’ —sin(a++y)| | 1

[R,sin(8 — ) — R,sina]m® +2(b — ¢) cos am — R.sin(a+f3) — R sina T

=k —2ccos(a— B)ym* +2ccos(a+ f3) n |,
[R,sin(B — @) — R,sina]m’ + 2(b + ¢) cos om — Rsin(a+f8) — Rysiner | | 1
(4-18)

where m=tan(6,/2), n=tan(6,/2) and ke R.

Fig. 4-2 The degenerated plane-symmetric Bricard linkage: (a) when 6,=7, (b) when
0,=6,=r,(c) when 6,=6,=7x, and (d) when 6,=7 .

The type of the degenerated linkage is depending on the choice of geometrical
parameters that meet Eq. (4-18). The plane-symmetric Bricard linkage could degenerate
to a planar 5R linkage as shown in Fig. 4-3(a) when all twist is zero whatever the values
of link lengths and offsets are. In this case, the joint 1 is disabled since 6, is kept to

7 . The resultant planar 5R linkage has two joints 2 and 6 coincide, which works as two
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separated parts including a rotation motion about joint 2/6 and a planar 4R motion

formed by joints 3, 4, 5 and 2/6.

As shown in Fig. 4-3(b), the plane-symmetric Bricard linkage could also
degenerate to a spherical 5R linkage if we set all link lengths and offsets zero. Take
a=b=c=0, a=r/4, B=n/3, y=n/5, R,=R,=0 as an example. The
resultant spherical 5R linkage also has two joints 2 and 6 coincide, so the resultant
linkage works as a spherical 4R linkage formed by joints 3, 4, 5 and 2/6 with an

additional rotation about joint 2/6.

Besides, the plane-symmetric Bricard linkage would degenerate to an equivalent
serial kinematic chain with revolute joints when the parameters areset a=b=1, c=1,
a=r/2, B=0, y=rn/2, R,=R,=0 asshown in Fig. 4-3(c). In this case, joints

2, 6 and 3, 5 coincide. The resultant linkage works as a serial kinematic chain with two

2/6

effective revolute joints 2/6 and 3/5.
4
(a)

Fig. 4-3 The plane-symmetric Bricard when 91:7[ : (a) the degenerated planar 5R linkage with

two joints 2 and 6 coincide, (b) the degenerated spherical 5R linkage with two joints 2 and 6
coincide, and (c) the degenerated serial kinematic chain with joints 2, 6 and 3, 5 both coincide.

2) When 6,=6,=x

As shown in Fig. 4-2(b), links 12 and 23 are coincident as well as links 56 and 61,
which generates a 4R linkage. In order to make the linkage moveable, we need to
substitute €,=6,=7 to the closure equation as Eq. (4-2). Taking entries (1, 3) and (1,4)
(shown in Appendix A) of Eq. (4-2), which contain kinematic variables 6, and &,

the linkage is moveable only when the following equation is satisfied.

—sin ysin 6, _ —ccosl, —b+a
sin ycos(a — ) cos G, +cos ysin(f—a) —ccos(ax— f)siné, + R;sin(f—a)— R,sinax
(4-19)
Further simplifying Eq. (4-19), we have
csinycos(ax — )+ (b—a)cos ysin(f — a)+sin Y R,sina — Rsin(f — ) ]sin 6, (4-20)

+Hccos ysin(f—a)+(b—a)sin ycos(a— )] cos 6, = 0.
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To make Eq. (4-20) always true for all values of &, all coefficients should equal
to zero, that is,
csinycos(ax— f)+(b—a)cos ysin(f—a) =0,
sin Y Rsinax — R;sin(f— )] =0, (4-21)
ccos ysin(ff—a)+(b—a)sin ycos(ax— ) =0.
By solving Eq. (4-21), the geometric condition to make the plane-symmetric Bricard
linkage degenerate to a movable 4R linkage is obtained
b—a+c=0, csin(y+a—f)=0, sin)[R,sina—R,sin(f-a)]=0, (4-22)
or

sin(f—a+y)=0, (a—b+c)sin2y=0, sin{R,sinax—R;sin(f-x)]=0. (4-23)

The type of the resultant 4R linkage depends on the choice of geometrical
parameters that meet Eq. (4-22) or (4-23). For example, if we set the geometric
conditionas a=b=c=0, R, =R, =0, the movable linkage is a spherical 4R linkage.
If the conditionis &=B=y=0, R, =R, =0, the linkage degenerates to a planar 4R
linkage. Moreover, a Bennett linkage is obtained when the condition is setas a=b+c,
B=a+y, R,=R,=0 or b=a+c, a=p+y, R,=R,=0.

3) When 6,=6,=x

Similarly, in Fig. 4-2(c) links 23 and 34 are coincident as well as links 45 and 56,
which makes the linkage generate a 4R linkage. The condition of a moveable 4R linkage
is obtained by substituting 6,=6,=7 to the closure equation as Eq. (4-2). Considering
entries (1, 3) and (1, 4) (shown in Appendix A) of Eq. (4-2), which contain kinematic
variables 6, and 6, , the linkage is moveable only when

sin(f#—7)sin 6,
cosasin(y— fB)cos 6, —sinacos(f—7)

4-24
B (b—c)cos b, + R;sinfsinf, +a (4-29)
(b—c)cosarsin @, — R,cosasinf cos 0, — Rsinacosf— R ,sina’
which can be simplified as
(b—c)cosasin(y— f)—asinacos(f—y)+sinaRsin(f - y)— R,siny]sin 6, (4-25)

Hacosasin(y— )+ (c—b)sinacos(f—y)]cosd, =0.

Since Eq. (4-25) is always true for all values of 6, , all coefficients should equal

to zero,
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(b—c)cosasin(y—fB)—asinacos(f—y)=0,
sin [ R,sin(f—y)— R;siny] =0, (4-26)
acosasin(y—fB)+(c—b)sinacos(f—y)=0,
1.e.,
a-b+c=0, asin(y—a—-LB)=0, sina[R,sin(f-y)—R,siny]=0, (4-27)
or

sin(fae—B+7)=0, (a+b—c)sin2a=0, sina[R,sin(f—-y)—R;siny]=0. (4-28)

The type of the resultant movable 4R linkage varies with the choice of geometrical
parameters according to Eq. (4-27) or (4-28). When all link lengths and offsets are set
zero, the resultant 4R linkage could be a spherical 4R linkage. When all twists and
offsets are zero, a planar 4R linkage is obtained. The condition to obtain a Bennett
linkageis b=a+c, y=a+pB, R,=R,=0 or c=a+b, f=a+y, R,=R, =0,
4) When 6,=7

As shown in Fig. 4-2(d), link 34 coincides with link 45 in this case, making the
resultant linkage a 5R linkage. Substituting 6,=7 to the closure equation as Eq. (4-2),
it is found that the linkage 1s moveable only when entries (1, 3), (1, 4) and (3, 2) (shown
in Appendix A) of Eq. (4-2), which contain kinematic variables €, 6, and &, are
linearly dependent. Thus, the geometric condition to make the plane-symmetric Bricard

linkage degenerate to a movable SR linkage can be derived as

(a—b+c)sin(a— S+ y)m’+2sin (R, sin y+ R, sin(y — 3))m
+(a+b—c)sin(a+ B-7)

2sin ¥(R, sin + R, sin(a — B))m* +2((a — ) sin(ex - y) "
—(a+c)sin(a+y))m—2sin ¥(R, sinax + R, sin(a + f3))

(a—b-c)sin(a— S —y)m’ +2sina(R, sin y+ R, sin(y+ ))m (4-29)
+(a+b+c)sin(la+ B+7)

sin(B—a— y)ym? +sin(a+ f—7) | [ n?
=k 4sin orsin ym n |,

sin(—fB—y)ym* —sin(a+B+y)| | 1

where m=tan(6,/2), n=tan(6,/2) and ke R. Considering the plane symmetry

of the Bricard linkage, the degenerated linkage is similar as the case when 6,=7 .

Moreover, when 6, is kept constant but not equal to 7, the linkage will also

degenerate to SR/4R linkages.
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4.4 Bifurcation between Plane-symmetric Bricard Linkage and
Bennett Linkage

Based on the analysis in section 4.3, the linkage could bifurcate from the plane-
symmetric Bricard linkage to the Bennett linkage. When the geometric condition is

a=b+c, B=a+y, R,=R,=0 or b=a+c, a=p+y, R,=R, =0, (4-30)

A#0 and A > 0. The linkage would have two solutions given as the equation set (4-
3), (4-15), (4-16) and (4-17). However, there is only one plane-symmetric 6R motion
branch represented by the solid line as shown in Fig. 4-4 and denoted as path I, which
corresponds to Case 9 in Table 4-1. The revolute joints &, and & have no complete
rotation.

Moreover, there is another motion branch when 6,=6,=7 , shown as the dashed
line in Fig. 4-4 and denoted as path 11, where the linkage works as a Bennett linkage
actually. The whole bifurcation process is presented in Fig. 4-4, where the actuated joint

1 is highlighted with a rotation in red.

.. .9l
viii vii 01 1
5 f 3 513
6 2 4
0, 2%6
T
iv \ |—pathl
273Ny = - path Il |——.
6 1 . 2, I P vi
& o= Y 9 A200RY
5 4 3 /3 AN
.. e \
VI[N iy
0
111 N

ix ol 73 X e iv

.. \\
> 2 y x* o8 ——la—— 2
) 2 6 —27/3 \ 5 403 ‘
: \
! \

— (7]
“T2m)3 —m3 0 w3 23 T
O]
1

Fig. 4-4 Bifurcation between the plane-symmetric Bricard linkage and the Bennett linkage when
0,=6,=r , where i-ii-iii-iv-v-vi-i correspond to configurations of the linkage along the plane-
symmetric Bricard motion branch and i-vii-viii-iv-ix-x-i correspond to configurations of the
linkage along the Bennett motion branch. Here the geometrical parameters of this linkage are

a=3,b=2, c=1, a=r/12, B=7/3, y=n/4 and R,=R,=0.
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Similarly, once the geometric conditions are
b:a+c, 7:0”‘,5, R2 :R3 =0 or C:a+b’ 'B:a+7/, R2 :R3 :0, (4-31)

A=0. The linkage would have only one 6R motion branch given as the equation set
(4-3), (4-9), (4-10) and (4-11), which is represented by the solid line shown in Fig. 4-5

where the actuated joint 2 is highlighted with a rotation in red.

All the revolute joints have complete rotation, and some revolute joints have
strokes more than 27 such as the stroke of 6, is 67 . And there is one more motion
branch when €,=6,=7 , as the dashed line in Fig. 4-5, in which the linkage also works

as a Bennett linkage.

X vii

T »- 92
-7 -27w/3-m/3 0 /3 1272'/3 T
[ 51

v v
500
2

i

3/5
D

Fig. 4-5 Bifurcation between the plane-symmetric Bricard linkage and the Bennett linkage when
6,=6,=7x , where i-ii-iii-iv-v-vi-i correspond to configurations of the linkage along the plane-
symmetric Bricard motion branch and i-vii-viii-iv-ix-x-i correspond to configurations of the
linkage along the Bennett motion branch. Here the geometrical parameters of this linkage are

a=1, b=3, ¢c=2, a=x/4, f=n/3, y=7x/12 and R, =R, =0.
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4.5 Other Bifurcation Behaviours

The last section deals with a special case of the bifurcation between the plane-
symmetric Bricard linkage and the Bennett linkage. Additional various bifurcation
cases depending on the different choice of geometrical parameters are revealed in this
section.

4.5.1 Bifurcation between Two 6R Motion Branches

In order to make the plane-symmetric Bricard linkage have two 6R motion
branches, 4#0 and A >0 mustbe satisfied according to the analysis in section 4.2.
If we set the geometric condition as

a=2b, c=b, a=x-2f3, y=-f, R, =R, =0, (4-32)

the linkage would have two solutions as

tan&=— ! /tanﬁ, tani:—cosﬁtamﬁ
2 cos2f 2 2 2

94:913 05:039 96:023

3

(4-33)

and

0 cos2 B tan’ %+1
tan 2 =—— 92 , 0,=0,, 6,=6,. (4-3%)
tanzﬁ(cos2 [tan’ ?2+ 2—cos’ )

As shown in Fig. 4-6, the two kinematic paths intersect at points (7, 0) and
(0, ), indicating these two points are the bifurcation points. The actuated joint is
highlighted with a rotation in red. The linkage would work along path I if we choose
joint 1 as the actuated joint, and it would change to path Il when the actuated joint is
joint 2.

Physically, the link cannot penetrate the other as shown in Fig. 4-6. Therefore, the
physical links are designed with curve profiles to avoid the collisions. A design of such
a plane-symmetric Bricard linkage with two motion branches where there is no collision
between physical links has been proposed as shown in Fig. 4-7, where the actuators are
simplified as two red blocks. It can be seen that the links defined by the D-H notation
in the blue dashed lines differ greatly from the physical links. The geometrical
parameters of this linkage are

a, =a, =160mm, a,, =a,, =80mm, a,, =a,;=80mm, (4-35a)
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o, =2r-0a,=100°, o, =2r—-a,=40°, o, =2x—-0o,, =40°, (4-35Db)
R =R, =R;=R,=R, =R =0, (4-35¢)

iii

6-3C2
4
573
i — path I v
= = path Il
2 il £
3 74 5
ii i
g2 nl_ 6
-27/3 3 74 5

[V
1
iii

573
Fig. 4-6 Bifurcation between two 6R motion branches, where i-ii-iii-iv-i correspond to
configurations of the linkage along path I and i-vi-iii-v-i correspond to configurations of the
linkage along path I1. Here the geometrical parameters of this linkage are a=2, b=1, c=1,

a=2r/3, B=n/6, y=-r/6 and R, =R, =0, which corresponds to Case 10 in Table 4-1.

Fig. 4-7 A plane-symmetric Bricard linkage with two 6R motion branches where no collision
happens
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4.5.2 Bifurcation between Kinematic Chains and a 4R Linkage

There is a special case where 4, B and C all equal to zero, where the solution
set in section 4.2 is no longer true. For example, if we set the geometrical parameters
as

V4 V4
a:35 b:25 C:4, azaa ﬁ:()a 7/:57 R2:R3:07 (4_36)
by solving Eq. (4-2), the solutions can be obtained as

2
6=-6, 0=60,=2, 0=0,="2, (4-37a)
3 3
2
6=-0, 0,=0,=-2, 6=0,=—", (4-37b)
3 3
6=0,=r, 0,=0,e(-n,7), 6,=6.€(-,1), (4-37¢)
and
0 —4tant92i\/3(7‘[an2 &+3)(7 —5tan’ &)
6,=0,=0, tan—‘= 2 ; z_
2 15tan® -2 +7
2
sin(0, +6,) =% S8 o _ (9 16,10, (4-37d)

4 )

It is found that Eq. (4-37a) and Eq. (4-37b) correspond to the cases that the linkage
degenerates to a revolute joint, where links 12, 23 and 34 work as a whole part that
rotates about joint 1, relative to the part consisting of links 45, 56 and 61. It is
represented in Fig. 4-8(a) as path I and path 111 respectively where the joint 1 is chosen
as the actuated joint highlighted with a rotation in red. Eq. (4-37¢c) corresponds to the
case that the linkage degenerates to a serial kinematic chain with two revolute joints as
shown in Fig. 4-8(a) as path Il where there are two actuated joints 2 and 3. It should be
noticed that there exists a case represented by Eq. (4-37d) that violates the plane-
symmetric motion shown as path IV along which configurations of the linkage are
shown in Fig. 4-8(b). The linkage is actually a four-bar double-rocker linkage.

The plotted paths define the values of two chosen kinematic variables at those
selected points where corresponding configurations are presented, and other kinematic
variables can be determined similarly. Once all kinematic variables are given,
configurations of the linkage at these points are definitely determined. The whole
bifurcation behaviour is presented in Fig. 4-8, where Fig. 4-8(a) shows the bifurcation
between two equivalent single-revolute-joint motion branches and a serial kinematic
chain with two revolute joints, and Fig. 4-8(b) shows the bifurcation between two
equivalent single-revolute-joint motion branches and a four-bar double-rocker linkage

motion branch.
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Fig. 4-8 Bifurcation of the plane-symmetric Bricard linkage: (a) between two equivalent single-

revolute-joint branches and a serial kinematic chain with two revolute joints branch; (b) between
two equivalent single-revolute-joint branches and a four-bar double-rocker linkage branch, where
i-ii-iii-iv correspond to configurations of the linkage along path I, iv-v-vi correspond to
configurations of the linkage along path II, vi-vii-viii-ix correspond to configurations of the
linkage along path 111, and viii-x-xi-xii-ii-Xiii-Xiv-xv correspond to configurations of the linkage
along path IV.

4.6 Conclusions

In this chapter, a thorough kinematic study of the general plane-symmetric Bricard
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linkage has been conducted. Based on the D-H matrix method, the explicit solutions to
closure equations of the plane-symmetric Bricard linkage have been derived first. Once
the geometric condition is given, the relationship between different kinematic variables
can be easily obtained. Even though Baker gave the implicit closure equations of a
general plane-symmetric Bricard linkage [116], the explicit solutions provide a more
effective way on kinematic and bifurcation analysis. Various cases of the plane-
symmetric Bricard linkage with none, one or two 6R motion paths have been compared.
Moreover, the conditions to obtain degenerated SR/4R linkages from this kind of
linkage have been elaborated.

Furthermore, various bifurcation cases of the plane-symmetric Bricard linkage
with different geometric conditions, including the bifurcation between overconstrained
6R and 4R linkages, two overconstrained 6R linkages and among equivalent kinematic
chains with single or double revolute joints and a four-bar double-rocker linkage, have
been revealed. Especially, the bifurcation from the plane-symmetric Bricard linkage to
the Bennett linkage has been proposed. Normally, Bricard-related linkages and Bennett-
based linkages [89] compose two major separated groups of single-loop spatial
overconstrained linkages. This work further reveals the intrinsic relationship between
these two groups after the proposal of the linkage that can reconfigure between Bennett

linkage and general line-symmetric Bricard linkage [71].
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Chapter 5 Symmetric Flat-foldable Waterbomb Origami

5.1 Introduction

The traditional waterbomb origami, produced from a pattern consisting of a series
of vertices where six creases meet, is one of the most widely utilized origami patterns.
Although the waterbomb pattern is of multiple degrees of freedom, the symmetric
folding is often preferred in most of research or art work, which is done by constraining
it with symmetric conditions and then controlling the motion to reach an ideal flat-
foldable state. However, the symmetric folding is hard to realize and the thickness of
the material cannot simply be ignored in most of the practical engineering applications.
Therefore, the thick-panel origami approach [29] is adopted. This chapter provides a
comprehensive kinematic analysis on foldability of the waterbomb tessellation that
made from the six-crease waterbomb bases of both a zero-thickness sheet and panels of
finite thickness. Kinematically the folding of zero-thickness sheet is modelled as
spherical 6R linkages whereas that of thick panels is treated as an assembly of the
Bricard linkages. The motion behaviour of the thick-panel waterbomb origami will be
analyzed based on the kinematics and bifurcation analysis of the plane-symmetric

Bricard linkage in Chapter 4.

The layout of this chapter is as follows. Section 5.2 setups the geometry and
kinematics of the waterbomb origami pattern. Section 5.3 presents a detailed analysis
on rigid foldability of the waterbomb tessellation for zero-thickness sheet. This is
followed by the design and kinematic behaviour of its corresponding thick-panel

origami in section 5.4. Comparisons and further discussion are made in section 5.5.

5.2 Geometry and Kinematic Setup

The six-crease waterbomb base comprises four diagonal valley creases (dashed
lines) and two co-linear mountain creases (solid lines), all of which meet at a single
vertex as shown in Fig. 5-1(a), where ¢ is the half-width of the base, @ and B are
the design angles of the base. Placing the base shown in blue side-by-side to form a row
and shifting the bases by half a base (red) on the adjacent rows, a generalized
waterbomb origami pattern is formed as shown in Fig. 5-1(b), where m and n are the
number of bases in the vertical and horizontal direction, respectively. There are three
representative vertices marked by circles, A;, B; and C;, where i is the row number that

the waterbomb base locates.
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(a) ®) R NN

S
=
N>
S&
N\,
7
\\
//
\\
//
\\

n==6

Fig. 5-1 (a) The six-crease waterbomb base, and (b) the waterbomb origami pattern formed by

tessellating the waterbomb bases

According to the kinematic equivalence between rigid origami and spherical

linkages, the motion around each vertex of the waterbomb origami pattern can be

modelled as a spherical 6R linkage where adjacent rigid links (sheets) are connected by

only revolute joints (creases) that meet at the vertex, then the pattern becomes a network

of such linkages, which can be analyzed with the matrix method in kinematics with the

D-H notation as shown in Fig. 2-. Therefore, the three vertices Ai, B; and C; in the

generalized waterbomb tube can be considered as three spherical 6R linkages, A;, Bi

and C; as shown in Fig. 5-2, where the dihedral angles between adjacent sheets

connected by the crease are defined as @, @, and @, (j=12,..,6),

respectively.

2

Z4

(a) (®)

\\¢Ci,3
\

\\
¢Ci,2 \ o

Fig. 5-2 Kinematic modelling of the generalized waterbomb tube: (a), (b) and (c), spherical

linkage A;, B; and C;, respectively.
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Substituting the geometrical parameters of each vertex into the closure equation

0,0:,0,0,0,0,=1,, (5-1)

their kinematic relationships are obtained. Since each crease links two vertices, the
dihedral angle on that crease is related to the motion of spherical linkages on both
vertices, and the compatibility between neighbouring linkages A;, B; and C; yields

¢Bi,3 =0, ¢Ci,l =0, ¢Ci,2 = ¢Bi,2 s Pna = ¢Bi,l s Pz = ¢Ci,3- (5-2)

These relationships hold for the entire waterbomb pattern. Once these compatibility
conditions are satisfied, the motion of the entire pattern would be rigid.

5.3 Symmetric Rigid Folding of Zero-thickness Waterbomb
In general, a spherical 6R linkage is of three DOFs, the whole waterbomb pattern

is therefore of multiple DOFs, but this number is reduced if only the symmetric folding
is allowed. That is, each six-crease waterbomb base has identical motion behaviour.
Therefore, linkage Ciin Fig. 5-2 is an inverted configuration of linkage B.. In such a
way, only two types of vertices, A and B, exist. Denote

=P, Poi; =, =9, J=L2,..6. (5-3)
Vertex A can be regarded as a spherical 6R linkage with the geometric parameters
O, =0y =0 =0 =0, O, =0, =7—20, where 0<a<7x/2. Imposing the
line and plane symmetry conditions, i.e., 6, =3, and 0, =0,=0J;=0;, to the

closure condition of the linkage, Eq. (5-1), we can then write the closure equations as

tan%?COS“tan% 6,=9,, 6,=6,=6=4, (5-4)

where &, is the kinematic variable of crease i in the vertex A according to the D-H

1

notation as shown in Fig. 5-3(a).

(2) (b)

Fig. 5-3 Set-up of coordinates and kinematic parameters for (a) zero-thickness, and (b) thick-

panel origami according to the D-H notation
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Similarly applying the symmetry condition to vertex B, it becomes a plane-
symmetric spherical 6R linkage with the geometric parameters &, =0 =T —0— 3,
=a,=0, o, =a,;=0,where 0<f<7/2 and

o,=0,, O=0a0,, (5-5a)

where @, is the kinematic variable of crease i in the vertex B according to the D-H
notation as shown in Fig. 5-3(a). To ensure the compatibility of the entire pattern, the
kinematic relationship between @, and @; of vertex B must be identical to that
between &, and O, of vertex A. Replacing 8, and 0, in Eq. (5-4) with @, and

@, , respectively, yields
w w
tan?l =—Cos atan?. (5-5b)

Now considering the closure condition of the linkage at vertex B, we obtain two sets of
equations. The first set is

)
tan—==—————tan—> (5-6a)
a)4 = a)l R (5'6b)
while the second one is
2sin & tan %

1)
tan —% = — p , (5-7a)
sin (8- o) tan’ 73+ sin(a+ )

and

an?3 (=2 cos arsin’ (B — ) tan’ 73 +4(sin asin 28+ cos arsin (&

o +f)sin( - «)) tan’ @ +s1n(0(+/3)(7 sin B—sin(2a + f)))
tan—* = . (5-7b)
2 2sin(f—a)(2sin (@ + ) +sin(f - @) tan* 2

+4(cos’ (a+ ) — cos2,b’)tan 2 —2sin’ (a+ )

Together with Egs. (5-4) and (5-5), the entire sets of closure equations of waterbomb
pattern have been obtained.

The kinematic variables, or rotations about each crease, can be replaced by the
dihedral angles @, and ¢ between adjacent panels connected by the crease as shown
in Fig. 5-3(a). The relationship between the kinematic variables and dihedral angels are

o=n~-¢, 6,=7+@,, 6,=n+¢,, O,=w—¢,, 6,=n+@Q;, G=n+¢, for
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vertex A and a)1:7[_¢1’ a)2:7[_¢27 a)3:7z-+¢3 9 a)4:7[_¢47 a)5:7z-+¢57
@, =7 — ¢, for vertex B. Thus the two sets of kinematic relationships of the waterbomb

pattern presented by the dihedral angels become

tanﬁ:;tanﬁ , (5-8a)
2 coso 2
‘[alnﬁzw-i_'ﬁ))‘['clnﬁ , (5-8b)
cos o 2

4h=0, 6=0,, =0, (5-8¢)
0, =0, (5-8d)

1
tanﬂ:—tan&, D=0, O =0; =P =@ ; (5-8e)

2 cosax 2
and
tanﬁ :;tanﬁ , (5-9a)
2 coso 2
é sin(a+ ) tan’ ¢;3+sin (B-o)
tan?2= p , (5-9b)
2sin o tan =2
2
& .2 4 ﬁ_ 2 _ 2 g
tan 5 (2sin” (@ + f) tan 5 4(cos” (ax+ f)—cos2f)tan 5
tanﬁ _ | 2sin(B—-a)(2sin (a+ B) +sin(f-)))
sin(a+ B)(7sin B—sin 2a+ B)) tan* %+ 4(sinasin2f | ° (5-9¢)
+cosasin(a+ B)sin(B— o)) tan’ i—Zcos asin’(f—-a)

&=0,, &=0, (5-9d)
o, =9, (5-9¢)

1
tanﬁ:—tan&, D=0, =0, =P =@, (5-91)

2 cosa 2

Considering a pattern with a=27/9, B=27/9, and taking @ as an input,
the variations of other dihedral angles at vertex B with respect to @, are plotted in Fig.
5-4(a). There are two paths with the same starting point (7, 7) and ending point
(0,0): path I based on Egs. (5-8a) — (5-8¢) and path II on Egs. (5-9a) — (5-91). It
indicates that vertex B can be folded compactly along two different paths. Since Eq. (5-
8a) and Eq. (5-9a) are identical, the two paths coincide in the @, or & vs. ¢ curve

in Fig. 5-4(a). Yet for vertex A, with @, =@, =¢,, there is only one path, see Fig. 5-
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4(b). Therefore, in general the patterns with a large number of vertices A and B will
fold in two different manners, from 1, ii, iii, iv to v, or from i, viii, vii, vi to v, as
demonstrated in Fig. 5-4(c).

There are a few special cases of the waterbomb pattern which are mostly
interesting. First, when a+ 8 =m/2 creasesalong z, and z; atvertex B shown in
Fig. 5-2(b) become collinear. As a result, they fold together like a single crease with
@ =7 .When ¢ # 7, Eq.(5-8) becomes a strainght line with @, =0 . Therefore, Path
I breaks down into two straight lines. A particular case with = B=7m/4 isshown in
Fig. 5-5. At the first folding stage, @, (and @) starts from 7 and finishes at 0 from
i, xi, x and ix, while &, @;, &, ,and @ remaintobe 7, then @, (and &) is kept
at constant 0 and @, @,, @,,and ¢ changes from 7 to 0 along ix, viii, vii, vi and
v. Both reach the compactly folded configuration. At the latter stage, vertex B behaves
like a spherical 4R linkage because @, and ¢ are frozen. The movement around

vertex B will drive vertex A to move accordingly.

Second, Egs. (5-8) or (5-9) could give negative dihedral angles, which indicates
blockage occurring during folding, because physically the dihedral angles cannot be
less than zero. By analysing Eq. (5-8b), it can be found that for path [ when
oa+pB>r/2, ¢ is always negative except at points (0,0) and (7,7). So a
blockage is always there. And from Eq. (5-9c¢), it can be found that on path II when

a # [3, a blockage will occur when

_2[cos asin(a+ f) sin(ﬁ)+\/4(sinasin 28+ cosasin (o + B)sin( B - )’
1

—a)+sinasin2f3 +2cosasin’ (S —a)sin(a+ B)(7sin B—sin Qa+ f3))

cos o sin(a+ B)(7sin f—sin Qo+ ))

\/cosz (@+ ) —cos 2ﬂ_|_\/(cosz (a+ f)—cos2f3) +(2sin(a+ f)
+sin(f - a))sin(S—a)sin’ (o + f3)

cosasin(a+ f)

<tan <
2

(5-10)
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Fig. 5-4 Kinematic behaviour of the waterbomb origami pattern with av=27/9, f=27/9.

Kinematic relationships of vertices (a) B, and (b) A; and (¢) two folding paths with configurations
i-viii.
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iv 4
—pathl ’
— =pathll ii‘l
27/3 7 xi
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’ 7
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v 0 /3 27/3 T
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Fig. 5-5 Two-stage motion of path I with =7 /4, B=m/4. (a) Folding paths with

configurations i-xi, and (b) kinematic relationships of vertex B.

For example, when a=7x/36, B=r/4 the kinematic curve between @,
and ¢ is shown in Fig. 5-6(a) and the folding sequences are demonstrated in Fig. 5-
6(b). Along path I, the pattern can be folded from a sheet at i to fully folded
configuration at vii, whereas along path II, the folding process terminates at iii. The

framed configurations are physically impossible due to blockage because these
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becomes negative. Even if the

configurations correspond to cases where @,
penetrations were allowed, the folding along path II would end up in a fully folded

configuration at vi that differs from that at vii along path I.

(a) T
! 7
27/ 31 ’
1 //
/3t /
0 //
¢, 0 .
7
—7t/3 ,’
/
B —pathl ||
23 — —path Il
27/3 T

L1
4 /3
¢,

(b) iv iii t ! ‘ i
vi i
T T T T T T
\
\ —npath I
- —pathll ..
27/3F v L
RV A
I RS
$ |

-

/3

vi

1X
viii
27/3 V1

9 0 /3
Vil 7T
¢,
vii viii :I' 1X: gii

Fig. 5-6 Blockage of waterbomb origami pattern with a=77/36, f=m/4. (a) Kinematic
curve between ¢, and ¢ of vertex B, and (b) folding manners in which the framed

configurations are with physical blockage.
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The physical blockage can also occur when a+fB8=7/2 but o # . Figure 5-
7 shows a two-stage motion on path [ and blockage on path II for a pattern with
oa=r/6 and B=7/3.

v 111
v x1ii
vi
il“j i
/U T T
\ //
\\ ii//
. v LA L
vi 27/3 SO X4 xiii
2
/3 —parn 1 | X1
— =path Il
viii  iX X xi
0
.. vii0 /3 27/3 T
vii ¢
1
} viii i

Fig. 5-7 Two-stage motion and blockage during the folding manners of waterbomb origami

pattern with «=7/6, B=7r/3 in which the framed configurations are with physical blockage.

Based on the above analysis, the behaviour of the waterbomb tessellation can be

summarized as follows.

(a) When a+f<m/2 and a=/, there are two smooth folding paths with

neither two-stage motion nor blockage.
(b) When a+fB<nm/2 and a# [, path Il is blocked and path I is smooth.

(c) When a+fB=rn/2 and a=f, pathlisin two-stage motion while path II

is smooth;

(d) When a+fB=7/2 and a#f , both two-stage motion on path I and
blockage on path Il happen.

() When a+f>n/2 and a=/, only path II for vertex B is smooth, but
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vertex A is blocked. Thus the whole pattern is blocked from compact folding.
() When a+fB>r/2 but a# [, both paths are blocked.

Among them, only cases (a) — (c) can have one or two smooth folding paths.

5.4 Folding Thick Panels with the Waterbomb Pattern

The waterbomb tessellation can also be used to fold panels with non-zero thickness.
This is done by mapping the same pattern in Fig. 5- onto a thick panel while placing
the fold lines either on top or bottom surfaces of the panel. Now at vertices A and B,
there will still be six fold lines in places of creases, but these fold lines no longer
converge to a vertex. In other words, dissimilar to zero-thickness sheet, the distances
between the adjacent fold lines are no longer zero. The set-up of coordinates and
kinematic parameters for thick-panel origami according to the D-H notation is
presented in Fig. 5-3(b). In terms of kinematic model, the spherical 6R linkage in
section 5.3 is now replaced by spatial 6R linkages. Among all possible spatial 6R
linkages, the plane-symmetric Bricard linkage, is the most suitable one [29]. Let us
select two Bricard linkages for A and B, respectively, Fig. 5-8(a) and Fig. 5-8(b), with
their link lengths being the panel thicknesses. As the linkages are overconstrained, the
geometric conditions of the linkage at vertex A are

A

aé:am:a; :af5:(2+’u)a’, ag:a;:(), (5_113)

ot =2r—a, a=a, ay=r-20, 0,=w+2a, &,=a, os=21-a,

(5-11b)
R'=0(i=1,2,3,4,5,6), (5-11c¢)

and those at vertex B are
ap=a, =(1+wpwad, ab=a,=d, a,, =a, =ua, (5-12a)

al=r-a-B, o, =r+a+pf, =0, oh =2n-f, o, =2r-a, o, =,
(5-12b)
RP=0(i=1,2,3,4,56). (5-12¢)

@ and B are the same as the sector angles of the origami pattern in Fig. 5-2(a) and
Fig. 5-2(b), OK; and Otf are expressed using the D-H notation, while &’ is the
thickness of link 23 and # is the proportion between the thickness of link 34 and
link 23 in the vertex B of the thick-panel waterbomb pattern where a’#0 and
y7ES N
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.
(a) (b)
Fig. 5-8 Fold lines around the vertices (a) A, and (b) B in thick panels

Applying the geometric conditions of these linkages to Eq. (4-6a) in last section,
A # 0, subsequently closure equations of the plane-symmetric Bricard linkage are Eq.
(4-3), (4-15), (4-16) and (4-17). For vertex A, two set of closure equations can be

obtained, which are

’ 1 i’ 4 4 4 4 4 4 4 4
tan%:_cosatan%’ 6,=6,+x, 6,=6,, 6;=0;, 6,=0,, (5-13)

and
,  2cosotan —=
nS =2 S=rd, ==, =0, §=5], (514)
tan” —=—cos22«
2

respectively, where O, is the kinematic variable of crease i in the vertex A of the
thick-panel origami according to the D-H notation as shown in Fig. 5-3(b). The
relationship between the kinematic variables O, and dihedral angels @ at vertex A
are 6 =27—¢, 6,=¢,, S;=m+¢l, 6,=27-¢,, &=n+¢; and =¢;. By
conversion of the kinematic variables to the dihedral angels, the two sets of closure

equations can be respectively rewritten as
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/ /

tanﬂz;tanﬁ, (5-15a)
2 cosax 2
=9, G=¢=¢,=¢, (5-15b)
and
o 2cosa tan L21
tan ?1 = 5 , (5-16a)
—tan’ L2} +cos2a
P==¢,, Gi==9, =0, ¢ =9, (5-16b)
Similarly, we also have two sets of closure equations at vertex B, which are
tanﬂz— ! tan&, (5-17a)
2 cos & 2
tanﬁ—ﬂ/tanﬂg (5-17b
2 cos(a+p) 2’ -170)
a);:a)l,5 a)S,:w;’ wg:w;5 (5_170)
and
@ . , @, . .
, —tan— (usin”(a+ f)tan” —= + (u+1)(usin” f+sin” @))
tanﬂ = 2 2

2

sin(a+ B) (1 sin B+ cos(a+ ) sin &) tan” % +(u+1)*sinasin Bcos

(5-18a2)
2 usin(a+ f) 27

tan

/

o tan%(4(,u+l) sina((1+1)sin® B +sin’ (o + B)) — 4 sin asin® (e + ) tan® %)

tan7 B 2(u+1)* sin® asin 2 B+(cos(3ar + B) — 2(1+ u)* cos(ax + f3)

/

+(1+ 4+ 242 cos(ar— B))sin(a + ) tan® %
(5-18c¢)
=0, o =a, (5-18d)
where @ is the kinematic variable of crease i in the vertex B of the thick-panel

origami according to the D-H notation as shown in Fig. 5-3(b). The above two sets of

closure equations can be written in terms of dihedral angels. Noting that the relationship

between the kinematic variables @ and dihedral angels @ at vertex B are
o =2m-of, =m—¢l, &{=¢, & =27-¢, & =g and @& =7¢, the two

sets of closure equations now become
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4 1 /’
ﬁ=—tang, (5-19a)
2 cosax 2

¢ _ cos(a+f) tang,

tan

tan (5-19b)
2 cosax
G=9, K=¢, =0, (5-19¢)
and
, tang,(,usinz(05+,8)tanzﬂ3,+(,u—+—l)(,usin2 [+sin’ @)
tan 4 = 2 2 7 ,
sin(ar+ B) (1 sin B+ cos(a + ) sin &) tan® ¢23+ (1 +1)*sinarsin Bcos 8
(5-20a)
@, _usin@+pB). @
an 5 _—(,LH'I) o tan 5 (5-20b)
, tan¢23,(4,u sin azsin® (o + ) tan® ¢23,—4(,u+1) sin a((ﬂ+1) sin’ ﬂ—sinz(OH,B))j
tan =+ =
sy cosBa+ B)—2(1+ u)* cos(ar + )\ . 2
2(p+1)"sin” arsin 2,B+(+(1 s apt 210 cos(ar— ) ]s1n(0{+ ) tan 5
(5-20¢)
G=0, #=9,. (5-20d)

So far, two complete sets of closure equations have been obtained. It can be noted
from all closure equations that the motions of the linkages retain the plane symmetry.
Additional compatibility conditions between the vertices A and B need to be added,
which are

=0, &=9. (5-21)
We shall now discuss the respective motion paths provided by two sets of closure
equations.

e The first set of closure equations, Eq. (5-15), at vertex A and the first set of
closure equations, Eq. (5-19) at vertex B

Because Eqgs. (5-15a) and (5-19a) are identical, the compatibility between vertex
A and B, Eq. (5-21), is satisfied automatically. Therefore, there is always a smooth
folding path for the thick-panel origami for any 4 # 0, see Fig. 5-9(a-c), in which #
is randomly selected as 0.5. By comparing Eqs. (5-15) and (5-19) for the thick panel
with Eq. (5-8) for the zero-thickness sheet, we can conclude that the thick-panel origami
and the path I of the original waterbomb origami pattern are kinematically identical, as
demonstrated by the folding sequence of the physical models in Fig. 5-10. The motions

of both structures are line- and plane-symmetric.
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Fig. 5-9 The kinematic paths of thick-panel waterbomb when a=77/36, f=n/4, u=0.5.

Kinematic relationships at vertices (a) A, and (b) B with ¢ taken as input, where vertex B works

as a plane-symmetric Bricard linkage while vertex A works as a line- and plane-symmetric Bricard
linkage; (c) folding path of the Solidworks model of thick-panel waterbomb.
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Fig. 5-10 Deployable sequences of physical models of the waterbomb pattern with zero-thickness
sheets and thick panels when a=77/36, f=n/4, u=05.

Moreover, when a+ [ =m/2, path I becomes a two-stage motion, where @
and ¢, changing from 7 to O while ¢, ¢;, ¢#;, and ¢ keptto 7, followed by
the process that ¢/, ¢;, ¢,, and ¢ move as a spatial 4R linkage. This linkage is

actually a Bennett linkage. And it eventually reaches the compact folding position.
However, blockage could be occurred during the motion due to the panel thickness,
which makes the structure cannot be fully folded, see Fig. 5-11, in which # is
randomly selected as 0.7.
e The first set of closure equations, Eq. (5-15), at vertex A and the second set of
closure equations, Eq. (5-20) at vertex B

Consider Egs. (5-15a) and (5-20a). Under the compatibility condition given by Eq.
(5-21), there must be

_cos(a+ fB)sina
sin 3 . (5-22a)
Additionally when &= [, another solution exists, which is
u=1. (5-22b)

Under the first solution given in Eq. (5-22a), Eq. (5-20) effectively coincides with
Eq. (5-19), and thus there is only one set of closure equations for vertex B. Only one
folding path exists as shown in Fig. 5-12 for the case where a=77/36, B=r/4
and 4 =0.14 Note that this path matches that shown in Fig. 5-9(c) despite that in the
latter, H is randomly selected as 0.5. The motion behaviour of the thick-panel
waterbomb remains the same as the zero-thickness origami in path I, and thus it is

named as path I for thick panel origami. Moreover, when a+fB=7/2, =0 from
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Eq. (5-22a). So it will not be considered.

111
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b :

i

27/3 il

¢,
/3 iii
v
0 viii vii vi vVooiv
0 /3 27/3 T

vi

vii

1

viii

I

Fig. 5-11 Folding path of thick-panel waterbomb pattern with =7/6, B=n/3, £4=0.7,in

which the framed configurations are with physical blockage.

Under the second solution given by Eq. (5-22b), # =1, Eq. (5-19) and Eq. (5-20)

are different. In other words, together with Eq. (5-15), there are two sets of closure

equations for the thick-panel origami with £ =1 that result in two folding paths. The

first, based on Egs. (5-15) and (5-19), has been discussed earlier. The second, based on
Egs. (5-15) and (5-20), are actually identical to Eq. (5-9) of the zero-thickness sheet.

This shows that the corresponding folding path is kinematically identical to the path 11

of the waterbomb origami pattern of the zero-thickness sheet, and thus it is named as

path I of the thick panel origami. One of such example is shown in Fig. 5-13.
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Fig. 5-12 Folding path of thick-panel waterbomb pattern with a¢=77/36, B=7/4 and
u=cos(ax+ ) sina/sin f=0.14 ,

In thick-panel origami, there is also blockage because of collision of panels during
the folding process. Generally along path I of vertex B, the blockage would appear
when one of the dihedral angles becomes negative. The condition without blockage is
¢ >0 Considering Eq. (5-19b) leads to @+ < /2, which is the same conclusion
as zero-thickness origami pattern summarized in section 5.3. And to avoid the
interference at vertex A during the folding, 0 <a <7z /4 must be satisfied.

e The second set of closure equations, Eq. (5-16), at vertex A

The other set of closure equations given by Eq. (5-16) at vertex A signify that in

the thick-panel case, there exists a folding path that violates the line symmetry. However,
this path is practically always blocked since ¢, and @, @, and ¢ always have

opposite signs as indicated by Eq. (5-16b).
Therefore, the behaviour of the general thick-panel waterbomb can be summarized
as follows.
(a) For any ##0, when a+fB<7m/2, there is only one smooth folding path:
path I.

(b) Forany ##0, when o+ B =m/2 there is one two-stage folding path, path
I, with blockage.

(c) Forany ##0,when a+[>m/2, there is one blocked folding path.
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Fig. 5-13 Folding sequence for patterns with @ =/=27/9 and #=1.(a) Two folding paths

exist; physical models of zero- thickness sheet (top) and thick panels that fold along (b) path I, and
(c) path I1.
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(d) For =1, when a+fB<m/2, o=/, there are two smooth folding paths,
kinematically equivalent to paths I and /I in the zero-thickness origami.
(e) For #=1,when a=pB=m/4, pathlisintwo-stage motion and blocked, but

path II can achieve smooth folding.

Here, paths I and II cannot be switch from one to another once the motions are
underway. The choice of folding paths has to be made at the start and end configurations.
The detailed comparison on the kinematic behaviour of the general waterbomb
tessellation of zero-thickness sheets and thick panels for different design parameters is

given in Table 5-1.

Table 5-1 Kinematic behaviour of the general waterbomb tessellation of zero-thickness sheets and

thick panels
geometric folding  the waterbomb tessellation the waterbomb tessellation of
conditions paths of zero-thickness sheets thick panels
o= ath 1 smooth smooth
o+ < z por
2 path 11 smooth exists only when g4 =1 and
the path is smooth
a+ 3 pathl smooth smooth
path I1 blocked non-existent
n 7 oa=f pathl two-stage motion two-stage motion and blocked
oa+f==
2 path I1 smooth exists only when g4 =1 and
the path is smooth
a+ 3 pathl two-stage motion two-stage motion and blocked
path 11 blocked non-existent
N T a=p pathl blocked blocked
>— .
a+p 2 path II  blocked while the path for  exists only when 4 =1 but the
vertex B is smooth path is blocked
a+ [ pathl blocked blocked
path 11 blocked non-existent

It can be seen from Table 5-1 that there is always a bifurcation behaviour with two
different folding paths for zero-thickness waterbomb origami. However, the bifurcation
can be eliminated in the thick-panel form by properly choosing thickness, as the
thickness provides additional geometric constraints.

5.5 Conclusions and Discussion

In this chapter, the rigid origami of the waterbomb tessellation of both zero-
thickness sheet and thick panels have been analyzed under the symmetric motion
condition. By introducing the plane-symmetric Bricard linkages to replace the spherical
6R linkages in the origami pattern, the thick-panel waterbomb structure has been
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successfully formed. The rigorous enforcement of compatibility conditions ensures the
mobility and flat foldability of the thick panel. It has been proved that the thick-panel

origami and that of the zero-thickness sheet are kinematically equivalent.

Despite the fact that the thick-panel origami is born from an existing origami of
zero-thickness sheet, it has a number of advantages over its parent. First, kinematically
the thick-panel origami structure is a mobile assembly of overconstrained Bricard
linkages with only one DOF, and thus no additional constraints are required to keep its
motion symmetrical. This could be a great benefit for real engineering applications as
its control system could become much more simple and reliable. Second, in general,
the origami of waterbomb tessellation for zero-thickness sheet has kinematic singularity
when it is flat and fully compact. However, for thick-panel origami, the singularity only
appears when a very specific thickness is chosen. A suitable selection of the thickness
of the panels make the latter possible to achieve compact folding without bifurcations.
The unique motion path is certainly much desirable for most practical applications.

The waterbomb tessellation for the thick panels enables the structure to be folded
compactly. The compactness of the package depends on the thickness coefficient and
the number of vertices within the pattern. The pattern can be divided into strips formed
by vertices A in the horizontal direction. Consider a pattern consisting of 7 strips,
each with 7 vertices A as shown in Fig. 5-1. In the completely packaged configuration,
the dimension in the vertical direction will be (m+1)/2 of the height of the larger
triangles in the vertex A and the cross-section dimensions are the width of the larger
triangles in the vertex A and the overall thickness as 2n(2+2u)a’, where 7 is the
number of vertices A in the strip and #<1. #>1 is not recommended because it
results in panels with considerable thickness and in turn, the overall thickness of the
package when the panels are packaged. So the ratio between the area of a fully expanded
shape and that of completely folded is about 4# . This indicates that the concept is very
suitable to fold a structure in a long rectangular shape. On the other hand, to meet the
geometric conditions of the spatial linkages, each panel within the pattern could not be
of the same thickness. As a result, the overall structure in the fully deployed
configuration is flat but not absolutely even. However, for this waterbomb pattern, we
have manage to make sure that one side of the expanded surface is completely flat,
which enables the waterbomb origami pattern to be directly applicable to fold thick-

panel structures such as solar panels and space mirrors.
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Chapter 6 Rigid Foldability of the Waterbomb Tube

6.1 Introduction

The flat-foldable waterbomb tessellation of zero-thickness sheet is modeled as a
network of interconnected spherical 6R linkages in Chapter 5. To be further, the tubular
tessellation is discussed here. When the two vertical sides of the pattern in Fig. 5-(b)
are joined together, a waterbomb tube is formed as shown in Fig. 6-1. Since the DOF
of a spherical 6R linkage is three, the waterbomb tube is of multiple DOFs. It can also
be simplified by constraining it with symmetric conditions. In this chapter, the rigid
foldability of generalized waterbomb tube is analyzed and the dependency between its

motion behaviour and geometrical parameters is revealed.

Fig. 6-1 The generalized waterbomb tube with m =3 and n=6 formed by joining together

two vertical sides of the waterbomb origami pattern in Fig. 5-1(b).

The layout of this chapter is as follows. Section 6.2 presents a detailed kinematic
derivation of the generalized waterbomb tube under contraction motion, including the
interference and the uniform radius configuration of the tube. Section 6.3 discusses long
and truncated tubes, which indicates the effect of the number of rows on the motion
behaviour of the waterbomb tube. Section 6.4 analyzes several features in the twist
motion of the waterbomb tube, including the rigidity, trigger condition, existence, range
of the input kinematic variable and the transition of twist motion between different rows.

Final conclusions are drawn in Section 6.5.

6.2 Contraction Motion

The behaviour of the waterbomb tube is best explained by a representative model
with n=6, m=7, a==45" and a=23mm as shown in Fig. 6-2. First, a
waterbomb tube is created of uniform radius, Fig. 6-2(i) (It will be demonstrated later
that such a configuration exists in this case). When the tube contracts slightly along its

longitudinal axis, both its radius and length reduce, Fig. 6-2(ii). With further contraction,
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the tube develops a pineapple shape, Fig. 6-2 (iii) and (iv), and subsequently the tube
regains uniform radius, Fig. 6-2(v). This is followed by a shrinkage in radius at the
equatorial row of the tube. It then reaches a stage where longitudinal contraction is no
longer possible following the same kind of movement, Fig. 6-2(vi), as some facets have
collided with their neighbouring ones. This signals the end of a motion sequence
referred to as the contraction phase. However, the tube’s motion does not stop there.
At the end of the contraction phase, a twist motion, starting at the equatorial row of the
tube, can be activated with a small perturbation, Fig. 6-2(vii). The twist motion
successively spreads to the neighbouring rows of the tube, and the bases on these rows
turn either clockwise or counter-clockwise about the longitudinal axis. This motion,
referred to as the twist phase, further reduces the length of the tube, but its diameter

slightly increases, Fig. 6-2(viii). In both phases of motion, the tube generally maintains

its symmetry.
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Fig. 6-2 Card model of a waterbomb tube from the expanded configuration (i) to the fully
contracted configuration (vi). Additional twist is possible (vii and viii) that further shortens the
model.

Based on our observation, the following assumptions of symmetry are made in the
subsequent analysis. First, all of the bases on the same row behave in an identical
manner, and they are placed side-by-side circumferentially. This is different from the
case in Chapter 5 where all waterbomb bases have identical motion behaviour. Second,
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during the contraction phase, each individual base is plane-symmetric, i.e., it is
symmetric about a plane formed by two mid mountain creases. This plane also passes
through the longitudinal axis of the tube. When the twist of a base occurs during the
twist phase, the base is line-symmetric, i.e., the upper half of the base is in rotational
symmetry to the lower half about a line that passes through the central vertex of the
base and is perpendicular to the axis of the tube. Finally the top and bottom halves of
the tube have the same motion behaviour, and the plane that divides the tube into two
equal halves is termed the equatorial plane (EP).

6.2.1 Kinematics of Linkages A, B, C

Based on the assumptions, all linkages A;, B: and C; (Fig. 5-2) work in a plane-
symmetric way during the contraction phase. Different from the flat-foldable case, the
linkage A is regarded as a spherical 6R linkage with only plane symmetry here. Its
geometrical parameters are oy = e =7 —20 and &) =&, = oy = &, = &, see Fig.
5-2(a). Because of plane symmetry, there are

5‘,5 = 51‘,3 s 51’,6 = 51',2 s (6-1)

1

where 5,, (i indicates the row number where the base locates, and j=1,2,...,6)are

the kinematic variables of the linkage A; defined according to the D-H notation.
Applying the closure equation as Eq. (5-1) to this linkage and considering Eq. (6-1), the
following equations are obtained,

{cos a(cos arsin 20 cos &, , —sin & cos 20r) —sin ax(cos rsin 6, sin }
9, ,

+cosrcos20:c0s J, , €os 0, , +sinarsin 2acos b, ;)

tanT ~ sina(sin 0,5 €080, , —cos2asin d,, cos 0, ;) +cos asin 2asin g,
(6-2a)
cos a(cos &'sin 20¢cos 0, , —sin &£ cos 2 €os &, , oS 0,
0,4 [— sin &/sin &, , sin d, ;) —sin a(sin ersin 2¢¢cos &, , +cos ¢ cos 20{)} :
fan 2 sin a(sin §, , cos &, ; —cos 2arsin J, ; cos 4, ,) +cos asin 2asin 6,

(6-2b)

The kinematic variables can be replaced by the dihedral angels @,; (/=12,...,6)as
shown in Fig. 5-2(a). Noting that 5,~,1 =nT—=¢,, 5;,2 =7T+Q, 5,»,3 =rT+Q,,
0,,=T—@,, 0,5=7+@; and 0, =7T+¢ Egs.(6-1), (6-2a) and (6-2b) become
Ps =03, Pre=Puas (6-3a)

an D Sin (Sing, ;c08 @Y, , — €O 281N Y, ,CO8 P, ;) — COs ' sin 208N, ,
2 sin o(sin @/sin 20(cos @, ; — COS SING, ,SIN @, 5 —COS &/ COS 20(COS P, ,COS P, 3) | |

—COs a(Cos o sin 2acos @, , +sin &/ cos 2¢Y)
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(6-3b)
o, sin (sing, ,cos @, ; —cos 2asing, ,cos Y, ,) —cos asin 2asing, ,

tan —==— — .
2 {sm o(sin asin 2Q(cos ¢, , —cos & cos 2¢) — cos (cos & sin 20cos @, 3} _

+sin asing, ,sing, ; +Sin £ cos 20(COS P, ,COS P, ;)

(6-3¢)
For the linkage B (Fig. 5-2(b)), its kinematic twists are &, =&, =7x—0a— /3,
b =ab =0 and o, =0, =0o.We have
Wy s = Why5, Whio=hy,, (6-4a)
cos(sin(a + ) cos B —cos(a + 3)sin 5 cos @y, , ) —sin a(sin SFsin(or
an By _ {+ﬂ) COS @y, 5 — cos(a + ) sin @y, , sin @y, ; +cos(a + B) cos Bcos a, , cos a)Bm)}
2 sin ¢/(sin @, 5 COS Wy, , +cos Bsin @y, , cos Wy, ;) +cosasin Bsin ay, , ’
(6-4b)
cos a(sin(a + B)(cos B cos ay, , cos @y, 5 —Sin @y, , sin @, ;) —cos(a
n By _ {+ﬁ) sin 3 cos @, ;) —sin a(sin(e + f)sin B cos @, , +cos(a + B) cos ,B)}
2 sin(a+ f)(sin@,, , cos @, ; +cos fsin @y, cos @, ,)—cos(er+ f)sin Bsinay,,
(6-4c)

where @, ; (i indicates the row number where the base locates, and j=1,2,...,6)
are the kinematic variables of the linkage B: defined according to the D-H notation.
Again replace the kinematic variables with dihedral angels using @y, =7 —@y, ,
Wy, = 7[_¢Bi,2 , Whis= 7[+¢Bi,3 , Whis= ”_¢Bi,4 , Whis= ”+¢Bi,5 , Whig= 7[_¢B[,6 .
Equations (6-4a), (6-4b) and (6-4c) become
Bais = Daizs Pois = Puia,s (6-5a)
P sin a(sin @y, , COs @y, , —Cos fsind,, , cos @, ;)+cosasin fsing,, ,
an —- = ’ : : ’ ’ ,
2 cosa(sin(a + fB)cos B+ cos(a + fB)sin cos gy, ,)+sin o(sin Bsin(a
+/)cos @y, 5 —cos(ar+ B)sin gy, , sin gy, ; —cos(ar+ ) cos fcos @y, , cos @y, )
(6-5b)
Gya _ sin(a+ B)(cos Bsingy, ; cos@y, , —singy, , c0s @y, ;) +cos(ar+ f)sin fsing,,
an —= = : : : ’ =
2 {cos a(sin(a + B)(cos fcos @y, , cos @y, 5 +sin @y, , sin @y, ;) + cos(a }

t

t

+f)sin Bcos @, ;) +sin a(sin(a + ) sin S cos @y, , —cos( + ) cos )

(6-5¢)
Similarly for the linkage C; (Fig. 5-2(c)), we have

Peis =Peiss Pois =Pz, (6-6a)
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o Peiy sin /(sin @, 5 cos @, , —cos Bsin @, , cos @, ;)+cosarsin Bsing, ,

2 {cos a(sin(e + ) cos f+cos(a + B)sin fcos @, ,) +sin a(sin Fsin(c

+)cos @, —cos(a + f)sin @, , sin @, ; —cos(ex + ) cos fcos @, , cos @, ;)

t

},

(6-6b)
¢ Peia _ Sin(a + f)(cos fsingy,; cos ., , —singy, , C0s @, ;) + cos(a + f)sin fsin g
an —= = ’ ’ ’ ’ =
2 cos a(sin(a + B)(cos fcos @, , cos @, , +sin @, , sin @, ;) +cos(ax
+B)sin Bcos @, ;) +sin a(sin(a + ) sin S cos @, , —cos(a + ) cos )
(6-6¢)

The compatibility between neighbouring linkages A;, B; and C; is given in Eq. (5-
2), which holds for the entire tube. In order to further solve the kinematics of the pattern,
two cases, where the number of rows for the generalized waterbomb tube, m, is odd or

even, are discussed separately as follows.

6.2.2 Contraction of a Tube with an Odd Number of Rows

We start by the tube consisting of an odd number of rows (m is odd), where the EP
slices through the centre of the equotorial row (known as Row 0). In general, each
spherical 6R linkage would have three DOFs. However, since linkage A;, the linkage at
the central vertex A; of each base, preserves plane symmetry in the contraction phase,
its DOF is reduced to two. Moreover, linkages Ao, the linkage on the Row O, is
symmetric about the EP, which further cuts the DOF of linkage Ao to one as it is both
plane- and line-symmetric.

A strip out of the origami pattern with an odd m is shown in Fig. 6-3(a). If we take
the dihedral angle of the top mountain crease ¢,; as the input (Fig. 6-3(b)), the other
five dihedral angles of the linkage Ao can be obtained,

tan% = oS Oftan% s Pos=P1s Por=Posz=Pos=Ps- (6-7)

The projection of Row 0 onto the EP is presented in Fig. 6-3(c), where
B,F, LAF, and B(F, LA F, with F, as the feet of the perpendiculars. Since

EE'=B,B], EE'=2rsin, B, :2tsm%, (6-8)

0=, (6-9)

where 6 is the dihedral angle between two largest triangular facets of the base with
Aoy as its central vertex. Moreover, as the inter-connected bases on Row 0 complete a

circle (Fig. 6-3(c)), the dihedral angle about crease B;C’, that is shared by
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neighbouring two bases on Row 0, ¢BO,4, is

o,

Paos = 2(7—;j . (6-10)

(a) ) o)
B(m—])/z \(%
\ Ve
N\ Ve
\><[: Row (m —1)/2
N (End row)
7/ N\
7/ \
C(«H)/z e—71%——

B(m%)/Z

B.

><A2 Row 2
" (¢)

A K A Rowl

Row 0O
g’ EP

Cil /’\\

Fig. 6-3 (a) Top half of a longitudinal strip in a waterbomb tube. Vertices are marked as A, B and
C. E—E’ is the equator of the tube. (b) A 3D view of a waterbomb tube with equatorial row
(Row 0) and rows immediately adjacent to it. One of the base on Row 0 is shown in blue. (c) The
projection view of the waterbomb tube with only Row 0 shown. Qg is the centre of the tube. EP is

short for equatorial plane.

All angles obtained are subsequently used as input angles for adjacent linkages
such as Bo and Co. Using the closure equations of these linkages, their motions,
described by their respective dihedral angles, can be found. The process is repeated
until all of the dihedral angles are determined. In short, the motion of the entire tube is
driven by the motion of Row 0 spreading simultaneously through the neighbouring rows
until the ends of the tube. The kinematic relationships presented by the dihedral angle
are as follows.

For linkage B,
¢Bi,3 = ¢Bi,5 =0, ¢Bi,4 = ¢C(i—l),4 , ¢Bi,6 = ¢Bi,2 ) (6-11a)
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¢Bi,4 ¢Bi,4

sin(a+f)(cosatan 5 singy, ; +cos @y, ;) —{sinafcosartan 5

(cos ¢Bi,3

+1) —sing,, , ][cosasin(a+2f)tan ¢;’4 cos @y, 5 —sin(a+2B)sing,, ,

—sinacos(a+23)tan Pova J+sin®(a+B)(cosartan Povs singy, 5 +cosdy, ;)° 1"

. 2 2
tan ¢Bz”2 == 7 -
singcosartan E; £ (cos@y, ; +1)—singy, ;]
(6-11b)
Py 3 sin (sin Py 3 COS Py, , —COS Bsin Py 2 COS Py, 5 )+cosasin fsin Pyi 2

t =
. 2 cos a(sin(e + ) cos f+cos(a + B)sin B cos @y, ,) +sin a(sin Bsin(a

+/3)cos @y, 5 —cos(a + ) sin @, , sin @y, ; —cos(ex + F) cos fcos @y, , cos @y, ;)

(6-11c¢)
for linkage C;,
¢c;,1 =0, ¢c1‘,2 = ¢Ci,6 = ¢Bi,2 s ¢C[,5 = ¢C[,3 5 (6-12a)
sinorcos(o+f3)tan ¢C2i’l singy, , +sinacosg,, , —{[sinacosg, ,
+sinorcos(o+f3)sing, ,tan ¢C; T’ —sin(a+p)[sin(a+)cos(fB
—)tan ¢C2” +cos(a+B)sin(f - or)tan ¢C2i’1 cosd, , —sin(f
4. —a)sing,, , |[cos(a+f)tan ¢3’1 (cos@e,, +1)—sing,, , I}
tan C2”3 == p =, (6-12b)
sin(a+/)[cos(ar+f3)tan (;1 (cos@;, +1)—sing,, |
. @4 sin(a+ B)(cos Bsing,, ; cos@., , —sing, , cos @, ;) +cos(a+ B)sin Bsing,, ,
an—== ’ ; e =
2 cos a(sin(a + B)(cos fcos @, , cos @, , +sin @, , sin @, ;) +cos(ax
+f)sin Bcos @, ;) +sin a(sin(ax + ) sin S cos @, , —cos(a + ) cos )
(6-12c¢)
and for linkage A1,
Dyg = ¢Bi,1 s Pz =@Ps = ¢c,~,3 s Do = Ps, (6-13a)
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Pt o Pt oot o 2 |
cos@,, s +tan 5 cosasing,,, s —{(cos@,, ; +tan 5 cosasing,, ;)
. (2
—(2cos’a +cos 2a)[sing,,, s — tan ’;’4 cosa(cos@,, s +1)I
o) t Piira . t D14 N2
—2cosotan——=[sing,  ; —tan——=cos(cos @, s +1)]}
Das | 2 _
tan = s
2 . ¢i+1,4
sing,,, s —tan cosa(cos@,, s +1)
(6-13b)
an Poarr _ sin(sing,,, cos @, ( —cos2asing,, (cos@,,, ;) —cosasin2osing,
2 sin ¢r(sin ¢ sin 20cos @, s — oS ¢ cos 2¢¢) — cos &(cos &'sin 20(cos @, ¢

+sinasing,, Sing,, ( +sin & cos 2QCos P, ;COSP,,, )

(6-13c)
Egs. (6-11), (6-12) and (6-13) hold for i=1,2,...,(m—3)/2 except that @y, is
obtained by Eq. (6-10). Because the top and bottom halves of the tube have the same
motion, hereafter only the equations for top half are given. Therefore, the whole
kinematic set of the waterbomb tube is formed by Egs. (6-7) and (6-10) to (6-13). Only
®. 1s needed to determine the motion of the entire waterbomb tube, which
demonstrates that the DOF of the tube under circumferential and longitudinal symmetry
is one.

e Rigid motion range and interferences at both ends of a tube

Two limiting values of &, 6. and 6,, , exist. They are determined by three
constraints. First, the tube will not be further contracted when it arrives at the most
compact-folding cylindrical configuration where linkage Bo is fully folded with
$s04 =0, ie., two triangular facets on either side of the shared crease B,C_,
connecting two adjacent bases of Row 0 completely overlap. By using Eq. (6-10), we
have

Prima = (614

Second, the tube will not be further expanded when it arrives at the most deployed
configuration in which top sides of the bases on Row (m-1)/2 form an n-sided regular
polygon with a side length of 2¢. That is, the linkage A(m-1)2 on Row (m-1)/2 is fully
deployed with @,,,;),, =7 . In this case, by making the square root in the expression

of tan(@,,_;,,6/2) in Eq. (6-13b) zero, i.e.,
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D1y . )
(COS@,,_, 5 +tan DA cos asing,,, ,,,,5)° —(2cos’a+cos 2a)[sing,, ., 5
¢ Din-1y12.4 N ¢ Din-1)2.4 - . -0
—tan ————cosa(co8 @, .5 + D] —2cosatan———=[sing,,, , =Y,
¢ Din-1y2,4 n
—tan ————cosa(1+cos@,, ), )]
(6-15)

Po1max 18 Obtained. However, due to the highly nonlinear property of Eq. (6-15), there
are up to three solutions for @,;. @i 1s the smallest of the solutions that are larger
than 27z /n whereas @ ... is the largest.

Moreover, in order to avoid the interference of facets during the contraction

folding of the generalized waterbomb tube, the equation below holds

1
Bys 20, i=0, 1’”T (6-16)

Substituting Egs. (6-7) and (6-10) to (6-13) into Eq. (6-16), the solutions of Eq. (6-16)
can be obtained. Therefore, the range of the input kinematic variable ¢,; under the
rigid contraction folding is the intersection of those solutions of Egs. (6-14), (6-15) and
(6-16).

Because of Eq. (6-9), the limits for @,, are also limits for &. Hence, within the
range from 6, to 6, , the folding of the waterbomb tube is rigid motion wihout
kinematic interference, and its kinematic relationship is given by Egs. (6-7) and (6-10)
to (6-13). Take a tube with n=6, m=3 and o= =45 as an example. The
motion of the tube is given in Fig. 6-4. 6, =60° and 6__ =147.96°. Its kinematic
paths are plotted as Fig. 6-5.

M
%

1. 0 =60° 11: 6 = 65.88° II: 6 = 120° IV: 0 =144° V:0=147.96°

Fig. 6-4 3D and projected views of a tube with m=3, n=6 and o= =45 deploying from

configurations I to V. The corresponding folding angles € are listed below the motion sequence.
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Fig. 6-5 Kinematic paths of a waterbomb tube when n=6, m=3 and o= =45 for (a)
linkages Ao and A1, and (b) linkages Bo and Co. At configurations I: ¢,, =60°,1I: ¢,, =65.88°,
I ¢, =120°, 1V, @, =144°,V: ¢, =147.96°.
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When o+ f=7/2 the cylindrical coordinates of each vertex in the longitudinal

strip as shown in Fig. 6-3(a) can be calculated as

tsin%’1 P
T ZBi:ZAi+\/(1+C0t2a)tz_rBzi_r/fi-i_erirBicos_’ (6-17a)
. n
sSin—
n
tsinm
_ 2 =z +AJE cot? a—(r — 1)’ (6-17b)
Tei = T Za T Zai co Tei =Tai) > }
s —
n
@. T
\/tz cos’ 2 — (7, — 1, €08 )’
rAi_rCi q) ) ZA()— )
cos ! tan o
B Ltcot? N —r? — 12 42 il 6-17
Zpeny = Zop Ha|(LHCOU O =15, — 1) + 20070 COS;’ (6-17¢)

where i=0,1,...,(m—1)/2. And the overall length of the tube is
L =22y 1. (6-18)

According to Egs. (6-17) and (6-18), »/t and L/t are plotted against € in Fig. 6-
6(a) and Fig. 6-6(b), respectively.

(a) 2 (b)

I 90° A%
0

Fig. 6-6 Variation of (a) radii of vertices A, B and C, and (b) the length of the tube with respect to
€ when n=6, m=3 and a=[=45".

The motion goes through a number of stages. It can be seen from Fig. 6-6 that at
configurations II and IV, all radii of vertices B and C reach the same value, so do those
of vertices A. In fact, at both configurations, each row of the tube has an identical shape

and all of the bases take the same configuration, resulting in a tube of uniform radius.

101



Doctoral Dissertation of Tianjin University and Clermont Auvergne University

If this waterbomb tube is constructed from a flat but rigid sheet, the pattern has to be
partially folded in order for its left and right edges to be joined together. It is most likely
to reach configuration IV, as it has a larger overall radius. Between these two
configurations, the radii of vertices are no longer the same, resulting in a pineapple
shape (Fig. 6-3 III) with the largest radius attained at By (and C.;). Likewise,
transforming outside of these two configurations, the tube assumes a dog-bone shape
(Fig. 6-3 I) with a smallest radius reached at Bo (and C.;). Throughout the deployment,
the radius of Ao never reaches zero except when & is at its lower bound 6, ,
indicating that there is no collision of the vertices or facets during the motion. At 6, ,
the folding of the tube in the contraction phase ceases, as vertices Ao have reached the

centre of the tube. Any further contraction becomes impossible for it would lead to

collision of these vertices.

When the number of rows increases, Row 0, and the rows just above and below it,
will exhibit the same motion as that of the tube with m =3, whereas the newly added
rows will be concurrently driven by them. However, the motion terminates earlier as
the upper sides of the bases on the top row become an n-sided regular polygon. For
instance, if m is increased to 7, it can be determined that €., remains to be 60° but
0, is now reduced to 144.24°. The motion sequence of such a tube is shown in Fig.
6-7, where configurations I and V correspond to cases where € is at its lower and

upper bounds, respectively.

I A
>N 4]
S

7

ZN\

~—7

=4

N/
<
g

*

L6=60" 11:0=065.881I1:0=90.72° IlI:0 =120 1I1,:0 = 128.52° IV: 0 = 144° V:0 = 144.24°

Fig. 6-7 3D and projected views of the tube with n=6, m=7 and o= =45° deploying
from configurations I to V. The corresponding folding angles € are listed below the motion
sequence. The tube is completely concealed at configurations Il and IIIr at which the radii of

vertices A on top and bottom rows reach 0.

Figures 6-8 and 6-9 plot the dihedral angles of linkage A; between adjacent bases
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ni» Ty and

of Row i (i=0,1,2,3), Biand C; (=0,1,2), against #,,, respectively.
T.;, the radii of the vertices A;, B, and C;, vs. @ 1is given in Fig. 6-10. Similar to the
case of m =3, all curves intersect at two points, which are referred to as configurations
IT and IV, indicating that the tube again has uniform radii. A careful comparison reveals
that these two configurations appear at exactly the same € as those of tubes with
m =3 . This is intuitively correct as more rows can always be added in configurations
IT and IV when all of the bases on those rows are in the identical configuration. They

can be connected in a geometrically compatible manner without altering the overall

configuration.

180°r= 180"
—_ =0 — i=0
- =1 -—i=1
----- i=2 //..] —eme (=2
/ ) S A 0
= L 7| ! — i
SY I - ; o 1 7 ,"
60° PT e e S 60° = ,-’ __________ et
e
0° 0°
I1I I, OIiL, 1vv 111 111, mrir, 1vv
(pO,l g001
180" 180°=
— =0
——i=1
----- i=2
. 120° i=3 / 120°
S <
— e ," )
o rd - 0' S‘
« = - “//
S 60| | g 60" ]
e
OO OO
I1I I, OIi, 1vv 11 I, mrir, 1vv
(PO‘I

P,

Fig. 6-8 Kinematic paths of a waterbomb tube with n=6, m=7 and a= =45 for linkages

Ai At configurations I: ¢, =60°, II: ¢,, =65.88°  IlIL: ¢,, =90.72° /1II: ¢,, =120°, IIr:
@py =128.52° [ 1V: @, =144° | V: @, =144.24°
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Fig. 6-9 Kinematic paths of a waterbomb tube with n=6, m=7 and a= =45 for linkages

(a) B;, and (b) C:. At configurations I: ¢,, =60°,II: ¢,, =65.88° III.: ¢,, =90.72° 1II:
@y, =120°  1lIr: @, =128.52° ,1V: @, =144° | V: @, =144.24°

104



Chapter 6 Rigid Foldability of the Waterbomb Tube

-1
I1I 111, i, Ivv
0

Fig. 6-10 The radii of vertices A, B and C vs. 8 of a waterbomb tube with n=6, m=7 and

o = [f=45°. The red curve shows 7,, <0 between configurations III and ITI.

Close inspection of Fig. 6-9(b), reveals that there is a region of € bounded by
configurations Il and Illr where one of the dihedral angles, ¢C2,4 <0. A similar
occurance for 7,; <0 is seen in Fig. 6-10 for the same region. This indicates that
interference among the facets on Row 3 occurs in this region, and thus the rigid motion
becomes physically impossible, i.e., facets would need to penetrate each other.
Meanwhile, the central vertices of the bases on Row 3 also collide with each other. To
find out the precise boundary angles, a detailed derivation is as follows. On the verge
of interference, 7,; =0. Figure 6-3 shows that when 7,, =0, @, =0. This can be

generalized to other vertices Ai. Hence, if 7,; =0, the corresponding

P30 =0, (6-19)
Using Eq. (6-11a), we have @, ,=@;,=0, and thus, tan(@.,,/2)=0. Substituting it
into Eq. (6-12c) yields

tan ¢C2,2

: (6-20a)
sSino

tan ¢cz,3 =

Replacing i with 2 in Eq. (6-12b) gives

¢C2,]

—sin acos g, , +\/sin 2asing,., ,tan > +sin” cos’ @, , —cos 2asin’ @, ,
¢C2,3 _ ’ ’ 2 ' ’
tan = -

2 sing., ,

(6-20b)
In these equations, ¢c252 and ¢C2,1 are functions of ¢,; because of Egs. (6-11) to (6-

13). So two unknowns, @5 and @,, atthe verge of interference, can be obtained by

solving simultaneously Egs. (6-20a) and (6-20b). Three solutions for ,; are obtained:
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41.20°, 90.72° and 128.52°. Among them, two are located in the range between
Dyimin =60° and @ 1. =144.24° | s0 interference exists at 90.72° < ¢ | <128.52°
i.e., 90.72° <@<128.52°. The boundaries of this region are named as configurations
Il and IlIg, with 6, =90.72° and 6, =128.52°.

e Mechanism-structure-mechanism transition

Based on the above analysis, this tube can only have rigid origami motion within
two distinct regions in terms of 6: 60° <§<90.72° and 128.52° <@ <144.24°. At
configurations III;, and Illr, the ends of the cylinder close, forming a concealed
polyhedron. Between configurations III;. and Illr, panel intersection occurs at the two
end rows, which is clearly shown in configuration III in Fig. 6-7. Thus, a real tube made
from a non-rigid sheet has to deform as a structure, instead of a mechanism, in order to
move from one rigidly foldable region to the other. The tube must therefore undergo a
mechanism-structure-mechanism transition.

When a tube undergoes a mechanism-structure-mechanism transition, rigid
origami no longer applies in the structural range. Instead, material deformation in the
facets and along the creases has to take place for the tube to change its shape. In fact,
when the vertices Az meet, the tube is concealed. Any change in a concealed volumn
requires structural deformation. The existance of such a transition enables the tube be
designed to achieve a programmable stiffness. If appropriate materials are used to create
very flexible creases and rigid facets, the tube could have reduced stiffness under
compression in the rigid origami range, but significantly increased stiffness when its
motion enters the so-called structural range. The precise variation of the stiffness
depends on the materials used to construct the tube.

The existence of the mechanism-structure-mechanism transition depends on the
geometrical parameters @, B, m and 7 of the waterbomb tube. Take m=7,
n=6, o+fB=m/2 as an example. Figure 6-11 presents 7,;/t vs. @ for various
o . It can be seen that the transition occurs only when 44.63°<a <45.46°. When
o > 45.46° , the entire motion of the tube from 6,,, to 6, is rigid origami. The
motion range is restricted because 6, and 6, are also related to @ . If
o < 44.63°, the tube only experiences a mechanism-structure transition. That is, it can
shrink from configuration V, but the motion range is curtailed due to physical

interference and the fact that there is no second rigid origami region. For instance, when

o = 40", the motion region is limited to 142.97° <9 <146.54°.
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60°35°

Fig. 6-11 Relationship among r,, /¢, radius of vertices A3, € and &.Some values of & are
listed alongside their corresponding curves. The shaded plane is where r,; =0. Blue solid lines

are for r,; >0 and the grey dashed line for 7,; <0 . Physical interference happens when r,, <0.

e Uniform radius configuration of a tube

Now we are going to check the existence and number of uniform radius
configurations for the waterbomb tube. It can be calculated by the kinematics of flat-
foldable waterbomb pattern as in Eq. (5-9). When we fold the flat paper into the
waterbomb tube, all the waterbomb bases are folded in the identical manner, i.e., all
linkages A; are in the same motion, so do linkages B: and C.. The relationship between

the dihedral angles @4 and ®,; can be calculated as

2 tanq)g’l(cos4 asin® (a+ ) tan* (020' —2cos” a(cos’ (a+ fB)
4 —cos2/3) tan’ Por _ sin(f—a)(2sin(a+ f) +sin(f—@)))
fan 2204 — 2 (6-21)

cos® asin (a+ B)(7sin f—sin Qa+ fB)) tan* q’gw A(sinazsin 23

+cosarsin (a+ B)sin(B - &) cos o tan” q);’l—2sin2 (f-a)

Once both Egs. (6-10) and (6-21) are satistied, the flat paper would fold to a
waterbomb tube with a uniform radius. Take n=6 and o= f=45° as an example.

Substituting Eq. (6-21) into Eq. (6-10) gives
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¢0 1 ¢0 1

tan® 2L J3 tan 20 1
2 2

2 ¢§’1 +4  J3+tan ¢;,1

(6-22)
3tan

which yields two solutions for ¢,; (or €, due to Eq. (6-9)): 65.88° and 144°.
These solutions correspond to configurations II and IV, respectively, given in Fig. 6-4
to Fig. 6-10. When a flat sheet of paper is folded according to the waterbomb pattern,
the dihedral angle ¢,, will be reduced from 180°. The first reached cylindrical shape

will be the configuration IV as it has a larger radius than that of configuration II.

It should be pointed out that the existence of tube configurations with uniform
radius is solely decided by parameters @, B and n. It is not related to m. Moreover,
the tube with a uniform radius can be obtained only when n>5 for a=f=45°.
Figure 6-12 shows @y, /2—@5,/2 vs. @, based on Eq. (6-21). It can be seen that

there is no intersection between line 180°/n and curve @, / 2= Py 4 /2 vs. Do

when n<5.
50 ‘ ’ .
. N
! : n=>5
30° V \I n==~6
%_gb;m 20° } }
‘ ‘ — Eq.(6-10)
10° _ .
! ‘ —— Eq.(6-21)
. | |
o 60° 11 120° IV 180°
Py

Fig. 6-12 The configuration of tube with a uniform radius to be obtained by folding the flat

origami pattern into the tube presenting with curve of ¢, /2—¢,,,/2 against ¢, when

oa=[=45.

The intersection of Egs. (6-10) and (6-21) varies with the tube geometries. Take
the case of n=6, m=7 and o+B=7/2 as an instance. Figure 6-13 presents
0y, /2—@y4/2 against @,; for various @ . To find out the number of uniform
radius configurations, the intersection point should be within the rigid motion range of

tube.
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150

100

50

¢o,1/2 4(|)B0.4/2( ’ )

=50

-100
200

Fig. 6-13 Relationship among ¢, /2=y, /2, ¢, and & when n=6, m=7 and
o+ =90°.

When ¢ =50.9°, there are two intersection points between @y, /2—@5,/2 and
180° /n as presented in Fig. 6-14(a) by the blue line and the black line respectively,
meaning that the tube has uniform radius configuration at these two points. However,
only the larger point is within the rigid motion range of the tube which is represented
by the positive part of curve 7,,/t as drawn by the red line in Fig. 6-14(a), and
therefore only one uniform radius configuration exists.

When o >50.9°, only one solution of @, /2—¢,,/2=180°/n exists, which
1s beyond the rigid motion range of the tube. Therefore, when ¢ >50.9°, no uniform
radius configuration can be obtained. An instance of ¢ =51.5° is presented in Fig. 6-
14(b). Notice that when ¢ >51.5°, no rigid motion of the tube exists, which
automatically results in the non-existence of the uniform radius configuration.

When 45.46° < <50.9°, there are three solutions of @y, /2—@y,,/2=180°/n,
two of which are within the rigid motion range, so two uniform radius configurations
can be obtained. An instance of this case with o =47° is presented in Fig. 6-14(c).

When 44.63° < o < 45.46°, three solutions of @, /2—¢y,,/2=180"/n exist
as well, among which the smallest one is beyond the range of rigid motion. As a result,
two uniform radius configuration can be achieved with the mechanism-structure-

mechanism transition. Figure 6-14(d) presents the case when o =44.8°.
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Fig. 6-14 The curves of @, /2~ @5, /2 (blue lines), 180° / n ( black lines) and r,; /t (red
lines) against @, when n=6, m=7, o+ =90° and (a) ¢=50.9°, (b) @ =51.5°,(c)
a=47°,d) a=44.8°,(e) a¢=44°,and (f) ax=40°.

When 43.92° < or < 44.63°, three solutions of @, /2—@y,,/2=180°/n exist.
However, two of them are beyond the range of rigid motion. Therefore, only one

uniform radius configuration exists. The case when ¢ =44° is presented in Fig. 6-
14(e).
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When ¢ <43.92°, there is only one solution of @,,/2—@,,/2=180"/n
which is within the rigid folding motion range, indicating that there is also one uniform

radius configuration. Figure 6-14(f) shows an instance in this case with o =40°.

6.2.3 Contraction of a Tube with an Even Number of Rows

For a waterbomb tube made of an even number of rows (i.e., m is even), there is
no equatorial row that is both line- and plane-symmetric. As a result, the EP slices
through the middle points of the respective top and bottom edges of the bases on two
rows immediately above and below the plane. To facilitate the derivation, the row below
is named as Row 0, and the row above as Row 1, see Fig. 6-15(a). The plane symmetry
remains for all the bases. Equations (6-11), (6-12) and (6-13) still hold where
i=1,2,..,m/2—-1. Once the motion of Row 0 and Row 1 is determined, the motion of

all the other rows can be obtained accordingly.

(a)

Row 1

EP——

Row 0

Fig. 6-15 Projection of Row 1 of the waterbomb tube onto the EP when m is even: (a) 3D view,
and (b) top view.

Different from the odd-row case, the linkage Ao is no longer line- and plane-
symmetric. As the top and bottom halves of the tube moves in the same manner,
linkages By and Cy are identical considering the half-a-base shift between adjacent rows,
leading to

Doy =Pa. (6-23)

The projection of Row 1 onto the EP is presented in Fig. 6-15(b). In order to
complete a cylindrical tessellation, the following equation should be satisfied,

2 2 72 ’ 2
"+t —A A APA’P
COS Py 4 = COS Py 4 = > D1 —1- 12121

—1-2(aygin2 2, (6-24)
t n

where
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[cot o —cot(a + )] cos (Pz \/t [cot’ (a+ )+ cos’ P, ] 15 (1—cos Ty
Tar™ a0 B0 — P r,
cot’(a+ f3) +cos’ %
(6-252)
o=t sm(p—/ sinZ . (6-25b)
2 n

Substituting Eq. (6-25) into Eq. (6-24) yields
2 ¢01

2sin? % (cot(ar + B) — cot @) cos? T2 (cot? (ar + B)
n
tcos? o1 _gin2 Dot i 2—”)
COS @y, 4 = COSP, | — 2 L n
[cot’(a+ f3) +cos’ ;1 I

2sin [cot or — cot(ar+ )] sm(pm\/cot (o + B)+cos’ (pgl smz(p;ltanzﬂ
n

n

2

+

cot’(a+ B)+cos’ (pgl

(6-26)
which gives @4 in terms of @, .
Due to the identity of linkages Bo and Co, we have
Pa01 = ooy = Doy - (6-27)
Substituting Eq. (6-27) into Eq. (6-5), the following equations can be obtained,

can Do _ sin ¢/(sin @y ; cOs @y, , —cos Bsin g, , cos @y, )+ cosasin Bsin gy,

2 cos a(sin(er + fB) cos f+cos(a + B)sin B cos @, ,) +sin a(sin B cos @y, , sin(r ,
+) —cos(a + B)sin @y , sin @y, 5 —cos(a + ) cos Fcos @y, , COS Py 5)

(6-28a)
. Pooa  Sin(a+ B)(cos Bsin gy, , cos @y, , —sin @y, , COS Gy, ;) +cos(axr + B)sin Bsin gy, ,
an—-— = ’ ’ ’ ’ =,
2 cos a(sin(a + B)(cos B cos @y, , cos @y, , +sin @y, sin @y, ;) +cos(ex
+/3)sin fcos @y, ;) +sin a(sin(er + ) sin B cos @y, , —cos(a + ) cos f5)
(6-28b)
from which we can obtain @5, and @5 intermsof @, and @,.
Eliminating @5 in Egs. (6-28a) and (6-28b) give the following equation,
U, tan® ¢]3202 +U, tan ¢32()2 +U, tan* —¢32()’2 +U, tan’ ¢E‘20’2
4 4 =0, (6-29)
+U, tan’ 12”2 +U, tan—22 + U,
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where
U, = 4sin asin 2¢/(tan” == ¢B°4 tanz% ’
U, :16sin20{sinﬂtan ! (tan? 204 ¢BO4 ).
—{16sin2asin Bcos(ax + ) tan® —= Po 1 1cosar 45 cos3a

U, =| +cos(Bax+28)—7cos(ax—23)—10cos(a +2 )] tan’ ¢BO4 ,

—32cosasin’

—2sin [ 5sin 2(ar + B) +sin 2« + 3sin 2 3] tan’ (pgl

U, =16sin Ssin(a + B)[3cos(a+ )+ cos(a — ﬁ)]tan&(t ¢20’4

—4{[4sin 2 cos(a + ) sin(2a + [§) tan® % —sin2asin(a+2 )

U, =| -2sin2(a + f)sin(r—2 )] tan ¢BO4 222 4 2sin(ar+28)[sin 2(a+ ) |,
+sin azcos o] tan® =L (/)01 +4sin fsin2 B cos(a+ B)}
¢01 2 ¢B04
U, =16sin2fsin(a+2B)cos(a + ) tan— 5 (tan"—=+1), and

—8cos Bcos(a+ B){[sin 2(a+ ) sin Btan’ %— sin’ o] tan’ ¢B° u
U, = :
+sin’(a+2) tan> 2L Pos

-

which are all functions of @, and @g.
Thus @50, can be obtained by solving Eq. (6-29). Using Egs. (6-28a) and (6-28b)
again, we find

y ¢Bzo ! tan Pon. )—cosasingy, ,
0,3 ’ ’ _ —
tan —= = ) ¢B0,5 _¢Bo,3 ) ¢B0,6 _¢B0,2 ;
2 . Pro4
2

sin @y, ,tan
(6-30a)
Doy =P = ¢B0,3 s Do3=Ps5
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cos@, ¢ +tan (p;lcosasm(ao s —1(cos@, ; +tan 4051 cosasing, ;)

P

—(2cos’a + cos2a)[sing, ; —tan 21 cosa(cos@, s +1)I°

—2cosatan (p;l [sing, ; —tan (02 cosa(cos@, , +1)]}"

2 sing, , — tan (p;l cosa(cos@,, +1)

tan Poa _ sin a(sing, (Cos @, ; —cos2asing, ;cos@, () —cosasin2asing, 5 (6-30)
2 —CoSQ(SINCos20/c08 P, (COS @, 5 +sinasing, Sing, ’

+cosasin2acos @, ) +sina(sinasin20rcos @, ; — coscos2q)

¢co,1 = ¢BO,1 > ¢C0,2 = ¢CO,6 = ¢BO,2 > ¢C0,3 = ¢co,5 = ¢B0,3 > ¢c0,4 = ¢BO,4 ; (6-300)
D1=Ps> Po=06=Ps> Ps=Ps=Poss Pa=%,- (6-30d)

Therefore, Egs. (6-11) to (6-13), (6-26), (6-27), (6-29) and (6-30) form the kinematic
set of the generalized waterbomb tube with even-number row. It can be seen that only
one free variable @, is needed to determine the motion of the waterbomb tube,
meaning the DOF of the tube in this case is again one. The general behaviour of these

tubes turned out to be similar to those when m is odd.

Different from the odd-row case, only two constraints hold for the rigid motion of
the waterbomb tube without interference: @,,, =7 and &,20({=0,1,..,m/2).
This is due to that Row 0 and Row 1 are in general impossible to be fully squeezed
simultaneously. One exception is all rows being fully squeezed with some specific
geometrical parameters. This is not taken into consideration since the number of rows
makes no sense in this case. @i, can be found from Eq. (6-26) for ¢B0,4 >0, On the
other hand, when @,,,, =7, letting the square root of tan(@,,./2) in Eq. (6-13b)

be zero leads to

(cos ®,,5 +tan ¢m2/2’4 cosS Otsin(pm/z’5 )2 — (2005205 +cos 201)[sin¢)m/2’5 —(cos [
=0,
(o Dppa . Drina
+1)cosortan 5 —122 ) — 2 cos artan 22 [sing), s —tan——=cos(1+cos@, , ;)]
(6-31)

Since @,,s and @,,, are functions of #,;, because of Egs. (6-11) to (6-13),
Do 1max can now be obtained. Intersecting with the solutions of
G4 20({=0,1,..,m/2) | the range of rigid motion without interference can be

obtained. To acquire the corresponding @,; when physical interference occurs, let
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Chapter 6 Rigid Foldability of the Waterbomb Tube

Pomma =0, which is equivalent to @14 =0 from Eq. (6-11a). We can recycle
simultaneous equations in Egs. (6-11) to (6-13) to obtain ¢,,, where the row number

I in those equation is replaced by m/2—1. Now there are

sin(a + f3)(cos fsin P13 €OS Py

—SiN @512 COS Beiyny3) +COS(AX + B)sin Bsin Bemin-1)3

=0, (6-32a)

¢C(m/2—l),l

sinarcos(or+f)tan sin¢c(m nz t sinacos ¢C(m /212

¢C(m/271 )1

. . . 2
—{[s1nacos¢)c(m et sinacos(a+/f)tan s1n¢c(m /271),2]

—sin(a+p)[sin(a+f)cos(f — a)tan ¢C(m/22_1>1 +cos(a+f)sin(f

Peimia-ia . .
—o)tan —_—=COS @, 5 1), —SIN(B - a)sing,, ), 1[cos(a

¢C( /2-1),1 . 12
+[)tan 7'”2 (COSPeinnyn + 1)— SINGe /212 1}

¢C /2-1),3
an Ce2n3 _ L

. ¢C(m/2—l)l .
sin(a+f)[cos(a+f)tan T, = (COSBrinryr 1) —SINPe, 0 15 ]

(6-32b)

t

2

from which we obtain @,; on the verge of interference.

Taking n=6, m=8 and a=[=45" as an example, @, =59.22° and
Dpimex = 144.09° from Egs. (6-26) and (6-31), and the corresponding configurations of
the tube are named as configurations I and V, respectively. By solving simultaneous
equations as Egs. (6-32a) and (6-32b) with @4 =¢@5,, =0, two solutions of @, can
be obtained: 81° and 140.94° , indicating that interferences exist when

81° < ¢, , <140.94° . The boundaries are referred to as configurations Il and IlIg.

Figure 6-16(a-b) shows the kinematic relationships of the dihedral angles @,
and radii of vertices with respect to @,,, respectively. At configurations II and 1V,
corresponding to @,, =65.88° and 144°, respectively, linkages A;, B; or C; are all in
the identical configurations, which are configurations corresponding to the tube with a
uniform radius. These configurations are the same as those of a tube with odd rows.
Between configurations III. and IIlg, it is clear that both @3, , and 7., are negative.
Hence, the mechanism-structure-mechanism transition also exists for tubes made from

an even number of rows.
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[:¢,,=59.22°11:9,,= 65.88° I11,:¢,,= 81° 111: ¢, , = 88.84° I11,: @, = 140.94° IV: @, ,= 144° V.9, , = 144.09°
Fig. 6-16 A waterbomb tube with n=6, m=8 and o= =45°. (a) The kinematic path @, ,
vs. @, with @, <0 between configurations Il and IIIr marked as red line; (b) the radii of

vertices A, B and C during the motion, where r,, <0 between configurations III. and ITIr

highlighted with blue line in red shadow; (c) 3D and top views of the tube in the typical
configurations I-V.

Similar to the case of an odd m, the radii of vertex A; rise with the increase of .
For instance, by preserving m =8, the mechanism-structure-mechanism transition
occurs only when 44.66° <o <46.26°.1f o >46.26°, I, are positive and the rigid
origami range of the tube decreases when @ gets larger. When o <44.66°, the range
of rigid origami range shrinks when @ decreases.

Therefore, once the geometrical parameters are given, the range of the input
kinematic variable ¢,; under rigid contraction folding can be figured out definitely,
which is not only related to the design angles @ and [, but also to m and n. On the
other hand, the geometric conditions of @ and [ for the generalized waterbomb
tube with rigid foldability can be obtained by making the solutions of the kinematic

equation set be a non-void set.
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6.3 Long and Truncated Tubes

6.3.1 Long Tubes

For longer tubes with additional rows, a number of conclusions can be drawn based
on the previous analysis. First, for the same pattern with larger m, 6,,. will be further
reduced when more rows are added. Second, some tubes will exhibit a mechanism-
structure-mechanism transition depending on pattern parameters ¢ and [ . It is
particularly interesting to consider a tube with n=6 and o =/f=45°. The
interference at the two ends of the tube occurs sooner with an increase in the row
number m. For instance, when m =13, there are two rigid origami regions around the
two uniform radius configurations: 60° <@<71.64° and 143.94° <0<144.06°. In
the subsequent discussions, the focus is only put on the first range as the second range

is rather narrow.

For the first range, the radius of each vertex on the equatorial row (7,, 739, 7o
o, Ye.)and the end row (7ye, Tse, 7o, s, Tcs) Where interference may occur vs.
@ are plotted as in Fig. 6-17(a), where the blue, black and red lines represent the radii
of vertices A, B and C, respectively. It can be seen from Fig. 6-17(a) that r,, =0 at
configuration I and 7, =0 at configuration III.. The curves of 7y, and 7,
coincide, so do the curves of 7., and 73,, which means the equatorial row is in both
line and plane symmetry and creases B_,C, and B C_, are parallel to the axis of the
tube. However, the curves of 735 and 7.; approximate to the curves of 7., and 7,
respectively, meaning that the creases B;C, and B,C, on two sides of bases on Row
6 (Fig. 6-18) become almost parallel to the axis of the tube. This particular configuration
indicates that more rows can be added to the tube, but the fundamental behaviour of the
tube is governed by a tube with 13 consecutive rows. Any additional rows simply repeat
the motion of all or part of 13 rows. As a result, a tube with m >13 will assume a
periodic wave shape and its motion range is identical to that of a tube with 13 rows.
This is verified by a tube with 25 rows. The radius of vertex A; (plotted in Fig. 6-17(b))
shows that at the configuration I, it increases from i=0 to i=6 and subsequently
decreases from i=7 to i=12, which reveals the wave-like shape of the tube. So do
other configurations for 60° <8< 71.64°. The tube with two completed waves is

presented in Fig. 6-18.

The waterbomb tubes with wave-like shape exist for various # and «@. QIHL ,

angle 6 at configuration IIIL can be obtained where 7, =0.When a=/=45°,the
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wave-shaped tube with rigid foldability exists only when »n =5, as there is no uniform
radius configuration for the tube when n<35. The changes of 6, 6, (angles 6
corresponding to configurations I, II, respectively) and 6 are plotted in Fig. 6-19(a)
with 7 taken from 5 to 20. On the other hand, 6, €, and 6 vs. @ when
o+ =7m/2 areplotted in Fig. 6-19(b) where 7 is chosen to be 6.

Meanwhile, when 7 varies, ¢, , the minimum value of & is obtained by
letting 6, = 6, , which gives

T T T
(—tan* =+4tan® = +4)cos’ ¢, —2tan’ —cos’ &, —1=0, (6-33)
n n n

If o<c,,,,the wave-shaped tube without interference does not exist. Similarly, &,,,,

the maximum value of ¢, can be obtained by letting 6 =6y, .

For the tubes with even number of rows, the middle two rows are in plane
symmetry, and the top and bottom halves of the tube, partitioned by the EP, have the
same motion. When n=6, a=/[=45°, and m=12, the creases connecting the
adjacent two bases on Rows —5, 0, 1 and 6 are all nearly parallel to the axis of the tube.
As a result, more rows can be added to the tube, and the fundamental behaviour of the

tube is governed by a tube with 12 consecutive rows.

@) = ——— % ®) 6.1
1 “:fﬁ"—\:-——— \@sH 0~18:i\
Br[|CU -
ol BiIC, W 0.15[~
0.12] A
X 0.6 AN CA e
= S 0.09) A,
0.4F
0.06|.
02— A | T 0.03[A
A, T~ s ‘
0 Le==" 0
I 62 64 I 68 70° IIL I 68 70° 11,
0 0

Fig. 6-17 Radii of some vertices of the tube vs.8 when n=6 and a==45".Atl: 9=60°;
I: 9=65.88°;II.: @=71.64°. (a) Radius of vertex on the equatorial row (%, 7y, Foo»> ais
7o) and the end row (g, Tye, Tcg» Yps» tes) When m=13. (b) The radius of vertex A, fora

longer tube when m =25.
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Row 12

Row 6

Row 0

Row —6

Row —12

I I 0 =71.64
Fig. 6-18 Three configurations of a long tube with =6, m=25 and o= £=45" when it

undergoes rigid motion.
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Fig. 6-19 The changes of 6, 6, and 6, vs. (a) various n when « = #=45°, and (b) various

O when n=6 and o+ [=90°.
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6.3.2 Truncated Tubes

It is particularly interesting to note that a shorter tube can also be obtained by
truncating a number of rows off a long tube shown in Fig. 6-18. Not only can we obtain
a tube whose top and bottom halves mirror each other, but it is also possible to have
one with more rows above the EP than below it, or vice versa. Figure 6-20(a) shows
such a truncated tube of 8 rows, 5 above and 2 below Row 0. This 8-row tube is actually
able to follow the motion of an odd row tube (m =11) during the contraction phase,
with bases on Row 0 being kept in both plane and line symmetry. Moreover, the same
8-row tube may also track the motion of an even row tube as shown in Fig. 6-20(b), this
particular tube can in fact switch from an odd row tube motion to an even row tube
motion at the configurations where it has the uniform radius. For instance, the tube can
also expand from configuration I, to II (the middle configurations in Figs. 6-20(a-b)),
and then further to Iy (Fig. 6-20(b)). In the language of kinematics, a bifurcation of

motion exists, and the uniform radius configuration is the bifurcation configuration.

i

II: ¢,, = 65.88° III’L:

%
Eﬁ
|

I: ¢,,=59.22° II: ¢,,= 65.88° 1I: ¢,, =81°

~T = ~—TJ= ~~—TJL= T\

<— Row -2

JT=N

I

J L

J L=

Fig. 6-20 (a)Three configurations of an 8-row tube obtained by truncating a long tube. It keeps on
the motion path of an odd row tube. (b) Three configurations of the same tube if it tracks the
motion of an even-row tube (This is in fact a reproduction of first three configurations of Fig. 6-

16(c)).
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6.4 Twist Motion

6.4.1 Rigid Twist Motion

Now we examine the motion of the tube during the twist phase. For tubes made of
an odd number of rows, it is found that the contraction phase of the tube motion
terminates at the fully squeezed configuration where all vertices A, coincide, see Fig.
6-21(a), that is, 7,,, the radius of the circle formed by all vertices A, about the axis
of waterbomb tube, becomes 0. Consequently, the dihedral angle ¢BO,4 reaches zero.
Every crease B(C_, is parallel to the axis of the tube. For this instance, the spherical
6R linkage at the central vertex Ao of a base on Row 0 has just completed its motion
with both plane and line symmetry, whereas the spherical 6R linkage at the central
vertex of bases on other rows has only plane symmetry. To facilitate the twist motion,
the plane- and line-symmetric spherical 6R linkage at vertex Ao needs to activate its
tilting motion with only line symmetry (i.e., a rotational symmetry where bottom half
of the linkage reproduces the motion of the top half about an axis passing through Ao
and perpendicular to the axis of the tube), see Fig. 6-21(b), where the tube is partially
twisted. Due to the line symmetry, we have

50,1 = 50,4, 50,2 = 50,5 , 50,3 = 50,6- (6-34)
(b)

Row 1

Fig. 6-21 The twist phase of the waterbomb tube. (a) 3D view of a portion of tube when it
completes the the contraction phase. Some of the representative vertices and dihedral angles are
marked. Only three rows of the tube are shown: the equatorial row and two rows immediately
adjacent to it. (b) Partially twist configuration of the tube.
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By applying Eq. (6-34) to the closure equation (Eq. (5-1)), the following equation can
be obtained

2cosafsin 8, , +sin 6, ; —sin (6, + 6, ;)]

tano, , = .
0,1 . .
1+ 2C0820! c0sd, ,co8d, , —sin o, , sinJ, , — 2COSZOf c0S0, , + €089, . )+ cos2x
0,2 0,3 0,2 0,3 0,2 0,3

(6-35)
Applying the relationship between the kinematic variables and dihedral angels to Egs.

(6-34) and (6-35), the kinematic relationship of the generalized waterbomb base
presented by the dihedral angels is

2cosafsin @, + sin Dozt sin ((po’2 + 95 )]

tang, , = > - ‘ - ,
(I+2cos @)cos @, ,co8 @, ; —sin @, , sin @, , +2cos”A(cos P, , +cos@, ;) +cos2a
(6-36a)
@O,l = ¢0,4 > ¢0,2 = ¢0,5 s @0,3 = ¢0,6 . (6'36b)

At the fully squeezed configuration as shown in Fig. 6-21(b), all the vertices A,
at the middle row meet at a single point on the axis of the waterbomb tube, and all
points E and E’ in the same row form a circle with point A, as the centre and
angle ZEAE" as one of the sector angles, where E and E’ are the midpoints of
edges B,C_, and B;C’, respectively. Since each waterbomb base in the same row
has identical motion, angle ZEAE" should be equal to 27 /n. Now let us set up a
coordinate system as shown in Fig. 6-22 with its origin at Ao, x along the direction of
A, E , and z perpendicular to the plane EA E’. Take points D and D’ as the feet of
the perpendiculars of creases A B, and AB; passing through points E and E’,
respectively. Making DF L A B; and D’F LA B with F as the point on crease
A,C,, the following relationship can be obtained

@, =<£FD'E" and @,,=<£FDE (6-37)

Since ZEAE =27/n | the coordinates of E and E are (¢, 0, 0) and
(tcos(27 / n), tsin(27/n), 0) | respectively. Should the coordinates of B,, D, F,
B, and D’ are denoted by (g Vuos Zgo) » (¥p» Yoo Z) 5 (X Ve» Z6)

(Xg0» Vros Zso) and (Xy, Vs Zpy), the following vectors can be obtained

ED=(x, —t, ¥y, zp), FD=(xp =X, Yo — Vp» 2p —25),

e 2 . 2 —
E'D" = (xy —tcos—, y,, —tsin—, z), FD = (x, =Xz, Yy — Vi» Viy —Zp) - (6-38)
n n
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Fig. 6-22 The geometry of the line-symmetric linkage Ao on the equatorial row

According to the space geometry, the length of each segment can be calculated as

A,D=AD =tsine, DE =DE =rcosa

B,F = BF =tv/1-3sin> '+ 3sin* a/sinazcosr, DF = D'F = tsin’ a/cosar

A.B, = AB, = /sine, AF = ttana. (6-39)
So we have
X+ yp+zh =t sina, x+yh +zh =t'sin’ @,
(xp—a) +yi+z, =t cos’ ar, (x —tcos27ﬂ)2 +(y —tsinz?ﬂ-)2 +z, =t cos’ «,
2 2

t
2 2 2 _
3 Yo T Vo T Iz T3
Sin” & Sin" &

: (6-40a)

2 2 2
Xpo + Vo T 250 =

XpXp + VpVp +2pzp =10 SINC &, XpXp + Yy Yy + 2z, =27 sin’ &,
2 2
XpoXp T Vo Ve +ZpoZr =175 XpoXp + VpoVe + ZpoZp =17 (6-40b)
Additionally, since AE LBE and B,E =B E" =rcosa/sin, there are

2r .21
Xg =t and COSTXB»O +s1n7yB,0 =t. (6-41)

According to the line symmetry of the waterbomb base, the relationship between y
coordinates of B, and Bj is
2r

.2
Vo = (Vo —tsin —7[) /cos—. (6-42)
n n

Substituting Egs. (6-41) and (6-42) to Eq. (6-40) yields
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.2 2 )
\/—yé,0 +2tsin =%y, +12 (cos” X /sin® ar— 1)
n n

Zpo = Zpo = 7 >
COs —
n
2 .2 2 .2
[(1=cos Yy, —tsin X1y, =[(1—cos Dyt —sin =y v, (6-43)
n n n n
Combining Egs. (6-40) to (6-43) and applying the law of cosines give
x, =tsin’ a(cos @, +1), (6-44a)
yp =tsin’ (cos @, , — cos B cos @, +1—cos 2—ﬂ-) /sin =2 , (6-44b)
' n ’ n n

: : 2
tsin o —sin” a(cos’ @, , +cos’ @, , —2c0s —— oS @, , COS P, ;)

+(I—cos 2—7[)(005 200cos @, +cos2acos @y +2 cos’ &)]
zZp = > L > — .(6-44c)
(1=cos )[(cos 20 — cos ~)(cos? @, +cos’ @,  )+4cos’ a(cos @, ,
n n

+cos @, ,F1)(1—cos 2—ﬂ-) +2(1—cos2acos 2—7[) COS ¢, , COS P, ]

Noting A F =ttana, we can now establish the relationship between ¢,, and @

as
¥, cos’ Pos +V> cos’ PostVs cos Pyt Vico80,+Vs=0, (6-45)
where

V. =sin’ azcos’ o,

V,=2sin’ azcos’ af(1—cos 2 cos 2—ﬂ-) cos @, , +2cos” a(1-cos 2—7[)] ,
n n

. . 2r 2r .
2sin’ ercos” a(cos” o —2sin” rcos” =———2cos——)cos” @, , +4sin” arcos” (1
n n ’
2r 2 . 2r
V,=| —cos==)(1+cos” & —cos 2axcos —) cos ¢, , +sin’ a(4 cos’ ar+1) cos® =
n n ' n

2r
+2(6c0s® r—5cos* ¢ —cos 2¢r) cos———8cos’ v +10cos* ¢ —3cos” o +1
n
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. 2r .
2sin” arcos” (1 - cos 2axcos=—) cos’ @, , +4sin® arcos” a(cos® o
" ,

+1—-cos2acos 2—ﬂ-)(l —Cos 2—ﬂ-) cos’ ®), +2[sin” (8 cos* ¢ —1) cos’ 2z
n n

n
V= :
6 4 2 2r 6 4 2
+2(6¢cos’ @ —Tcos" ax+2cos” @—1)cos— —4cos” a+2cos” +3cos”
n
. 2r 2r
—1]cos @, , +4sin’ arcos® ex(1—cos 7)[cos 2a—(1+2cos” &) cos 7]
.2 4 4 2 4 2 3 .2 4
sin” orcos” axcos” @, , +4sin” acos” a(l—cos—)cos” @, , +[sin” a(4cos” &
, " ,
2r 2
+1)cos® ==+ 2(6cos’ @ —cos 2 —5cos* ar) cos = —8cos’ a+10cos* ¢ —3cos’ &
V,= " n
5 b

+1]cos’ @,,+4 sin® azcos’® (1 —cos 2—”)[(:03 20— (1+2cos’ &) cos 2—”] cos @, ,
n n

. 2 2 .
—4sin” arcos” a(1—cos —72-)[(cos2 a+l) cos 2% +sin? o]
n n

which are all functions of @, ,. Therefore, only one kinematic variable ¢,, is needed
to determine the motion of the equatorial row (Row 0) under line symmetry.

Since @54 =0, linkage By degenerates to a spherical 4R linkage with joint 4

frozen and joints 3 and 5 combining into one joint. The geometrical parameters of this

linkage are o =o' =m—a—f3, o =ar = f3. So its closure equations are
: c 2 : : 2 2 ¢B0 3 ¢B0 5
4 —sin(a + )+ ,[sin” (a + ) +sin asin(er + 2 f)tan

02

2 sin ortan 03 T PBos Pa0.3 + Pao s

2
tan Poo. _ sin fsin Poo2
2 sin(a+pB)cosf+sin Bcos(a+B)cosdy,,
¢B0,6 = ¢B0,2 s ¢B0,3 =0, ¢B0,5 =0, . (6-46)

Linkage Co remains to be a spherical 6R linkage and the closure equation is the
same as Eq. (6-12), which reveals that it is plane-symmetric. Closure equations of other
vertices can also be set up. Motions of those linkages on rest of the rows are plane-
symmetric and their kinematic relationships are given in Egs. (6-11), (6-12) and (6-13).

Hence, Egs. (6-36), (6-45), (6-46) and (6-11) to (6-13) complete the set of
kinematic relationships of the entire tube. Only one variable, @, , is needed to
determine the motion of the tube, i.e., the tube is rigidly foldable with one DOF. The
kinematic paths of the tube with n=6 and a==45" are plotted as shown in Fig.

6-23, where the range of @, is determined by the two limiting positions: ¢,, =0°
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and ¢,,=90° | which correspond to counter-clockwise and clockwise twist,

respectively.
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Fig. 6-23 Twist motion on the equatorial row of a waterbomb tube with n=6 and o= =45".
Kinematic paths of (a) linkages Ao and A1, and (b) linkages Bo and Co in the twist phase (blue)
and in the contraction phase (grey). @, is taken as input. The bifurcation points are marked by

small grey circles.
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In Fig. 6-23(a), the blue lines show the kinematic paths of linkage Ao (in blue solid
lines) and A (in blue dash lines) in the twist motion, which presents that linkage Ay is
in the line-symmetric motion, yet linkage A; is still in the plane-symmetric motion
similar to the tube contraction motion. In Fig. 6-23(b), blue lines show the kinematic
paths of linkages By (in blue solid lines) and Cy (in blue dash lines) in the twist motion,
which presents @54 =0 for the whole twist motion. It can be seen that @, is

always positive during the twist phase.

Furthermore, the switch from the contraction to the twist motion is, in fact, a
motion bifurcation of linkage Ao from a line- and plane-symmetric motion to a line-
symmetric motion. This can be clearly demonstrated by plotting the kinematic paths of
the contraction motion in the same diagrams given in Figs. 6-23(a-b) (grey and grey
dash lines), in which those bifurcation points are marked by shaded circles. The twist
motion further shortens the overall length of the tube (Fig. 6-24(a)), but the radii of the
vertices become slightly larger (Fig. 6-24(b)). It enables all the bases on Row 0 to reach

its most compact folding configuration at either @,, =0° or ¢,, =90°.
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Fig. 6-24 Twist motion on the equatorial row of a waterbomb tube with n=6, m=3 and

o = 3 =45°. (a) Length of the tube vs. @, . (b) Radii of vertices A, B, and C vs. @, , .

Having demonstrated from the kinematic analysis that the twist of Row 0 is a rigid
motion, next we investigate the existence of rigid twist motion and the range of the
input kinematic variable ¢,, under rigid twist folding of waterbomb tubes with
different geometrical parameters.

e Existence of rigid twist motion

The existence condition of the rigid twist folding is that there exists a fully
squeezed row with both line and plane symmetry. It is related to the geometrical

parameters @, [, n and m.When M isodd, there is an equatorial row with both
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line and plane symmetry, so we need to check the existence of fully squeezed
configuration. Thus 7,, =0 and 7,; 20 should be satisfied. With a given value of 7,
two conditions limit the range of @ . The two points C, and B_, (Fig. 6-25) get
closer when & increases. Considering the interference between the two halves of the
waterbomb base cut by the EP, @ achieves the limitation when the crease A,C,
coincides with A(B_, as shown in Fig. 6-25, so the angle ZEAC; should equal to

w/n.

Fig. 6-25 The limitation of @ obtained when the creases A,C, and A,B_, coincide, where f

is randomly chosen as 40° .

Since AE=t, C,E= t\/sin2 a—cos’ asin’(a+ ) /[sinasin(a+ )] , and
A,C, =tsin B /[sinasin(a+ )], the following equation can be obtained according to

the law of cosines

tanar =1/ cosz, (6-47)
n

where the value of & is only relatedto 7.

The other condition is obtained when linkage Am-1y2 on Row (m-1)/2 is fully
deployed with @, 1,,; =7 while the equatorial row is fully squeezed with @4 =0.
Substituting Egs. (6-11) - (6-13) into Eq. (6-15), another & is obtained, which is not
only related to 7 butalsoto B and m . The maximum of &, «,,., is the smaller
one obtained by Egs. (6-15) and (6-47). Therefore, the range of & for the generalized
waterbomb tube with rigid twist folding is O0<a<«,,, .

Once @ is determined, the radius of the adjacent rows to the equatorial row

decreases with the increase of . When all radius of point A; are set zero, i.e., 7,=0,
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B reaches the maximum. In this instant, we have for linkage Ao,

2

tan (0;’2 =cos atan% s Do =P, —77[ =0, (6-48a)

for linkage By,
—sin(a + fB) ++/sin*(a + ) +sin asin(a + 2 f)tan’
o Pz _ S0@+ B)+ sin*(@+ B) @ 2pan’y, o
2 sinotang, ,
for linkage Co,
2 2sin Btan Poo.2
tan —L = 2 e (6-48¢)
sin (a+28) +sin o tan® 2%

Therefore, [, is obtained by

cos’ arsin®(a+ ) tan* 7 1 2cos? ofcos 28—cos’(a+ f3)]tan’ z
" n|=0. (6-49)

+sin’(a+ ) —4cos” asin®

It should be noticed that all rows are in the fully squeezed configuration with both
line and plane symmetry, indicating that the rigid twist folding can begin from any row
in this case. When B> B, , 7, <0, there is interference in Row 1 and no rigid twist
folding exists. When B<pB,.., 7., >0, the existence of rigid twist folding is
determined by the most deployed configuration when linkage Agm-1)2 on Row (m-1)/2
is fully deployed with @121 =7 . The minimum of B, B..,is obtained by Eq. (6-
15), which isrelatedto @, m and 7 .Therefore, the range of B for the generalized
waterbomb tube with rigid twist folding is B, <8< B -

When m is even, except the case where all 7,,=0, there exists no row with line
and plane symmetry and therefore no rigid twist folding occurs. Once the geometrical
parameters @, [, n and m are given, the existence of rigid twist motion is
determined.

e Range of rigid twist motion
Now we are going to find out the range of folding angle @,, if the existence of
rigid twist folding is certain. Firstly, the range of ¢, is determined by the two limiting

positions where ¢,, =0° and ¢,; =0° which correspond to counter-clockwise and

clockwise twist respectively as shown in Fig. 6-26.
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Fig. 6-26 Limiting positions of the twisted case: (a) ¢,, =0°, and (b) ¢,5=0°.

Substituting ¢@,; =0° into Eq. (6-45), the limit for ¢, in Fig. 6-26(b) can be
obtained by
W, cos* @, +W, cos’ @, ,+W, cos’ @, , + W, cos@,, +W; =0, (6-50)
where

W, =sin’ arcos’ &,

W, =2sin” arcos” af(1—4cos” &) cos 27 142 cos’ ],
n

(—=16cos’ a+24cos* ¢ —9cos’ a+1)cos’ 2—ﬂ-+2(12cos6 a—9cos’ o
n

2z
~4cos” a+l)cos———14cos’ a+12cos”* a+cos* ar +1
n

- 2[sin” ar(16cos*a —1)cos 2—ﬂ-+(28c05605— 31cos*ar +5cos’aor — 2)cosz—”
= n n |,

| —10cos’a+7cos* o +4cos’ar 1]

2
(=16 cos® a+8cos* a+ 7 cos” a+1)cos’ L2 2(20cos’ @ —19cos* &
n

2
—cos2q) cos—”— 25cos® ar+35cos* ¢ —11cos” a+1
n

which are all functions of & and #.

On the other hand, by analyzing the set of kinematic relationships of the entire
tube as Egs. (6-37), (6-45), (6-46) and (6-11) to (6-13), the tube become expanded when
it twists. So the other limitation to ,, is the linkage Agm-1)2 on Row (m-1)/2 being
fully deployed with @,,1),; =7 . With Eq. (6-15), the solutions for ¢, in this case

can be obtained. Comparing these solutions with the two limits in Fig. 6-26, the range
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of folding angle ¢, under rigid twist folding is determined.

To be noticed, other rows except the twisted one move with plane symmetry
similar as the contraction folding of the tube, and therefore interferences of facets
should be taken into account when determining the range of folding angle under rigid
twist motion. 7,;, 20 and @420 should always be satisfied during the motion. By
solving the equation set (Egs. (6-37), (6-45), (6-46) and (6-11) to (6-13)), the value
range of @, is further restricted.

e Twist angle per axial strain

With the range of the input kinematic variable ¢,,, the maximum twist angle
between two ends, BjB,B; and C",C_C’,, of Row 0 along tube axis in Fig. 6-21(b),

6, , can be calculated

COs ¢0,2 min Cos ¢0,6 max
tan— =
2

6-51
tan (COS Py 5 min +COS Py e +2) (6-51)
n ,
where @,,,;, 1s the minimum value of ¢,,, and @, is calculated by Eq. (6-45)

when ¢,, istakenas ¢, . .

Since only Row 0 of a tube generates rigid twist motion while all the other rows
keep plane symmetry, the twist angle 6, between two ends of the tube is independent
of the number of rows m, while affected only by the number of bases in a row n. We
take o= =45 and m=3 to demonstrate the relationship between 6, and n, see
Fig. 6-27(a). Here n is taken from 4 to 40 since no rigid twist motion exists when n<4.
It can be seen that 6, increases when n increases from 4 to 5. This is due to the fact
that when »n =4, the twist angle 6, is obtained where Row 1 is fully expanded with
@, =180° . The tube cannot reach the most compact folding configuration with
@, =0° (Fig. 6-26(a)) as the case of n =35, leading to a smaller twist angle. When n
surpasses 4, 6, monotonically reduces with n for the reason that Eq. (6-51)
degenerates to 6, =360° /n in this case. The maximum value of 6, is reached when
n=>5,where 6, =72°.

The rigid twist degree of freedom of the waterbomb tube makes it a suitable
candidate for the design of chiral mechanical metamaterials which twist when axially
deformed. This property can be characterized by the twist angle per axial strain, 6, /¢,
[216]. The axial strain, & , considering compression strain as positive, can be

calculated as
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(6-52)

where L, and L, arethe overall length of the tube at the fully squeezed configuration
with @, , =0 and at the fully twisted configuration with ¢,, =@, ..., respectively.
They can be calculated by Egs. (6-17) and (6-18).

It is obvious from Egs. (6-52), (6-17) and (6-18) that &, is dependent on m, and
therefore @, /&, is tunable by both m and n. First consider the effects of n by taking
m =3 and n from 4 to 40. The relationship between &, and n is presented in Fig. 6-
27(b). The change tendency of &, 1issimilaras 6, vs.n, but it varies more rapidly. As
a result, except for the special case n=4, 6 /¢ 1is in general increased with the
increase in n as shown in Fig. 6-27(c), which shows a completely different trend from
6,. Aminimum of 6, /& =5.8°/% isobtained when n =35, which is almost triple of

the maximum one in reference [216].
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Fig. 6-27 Rigid twist of the waterbomb tube with o = §=45°. (a) The twist angle between two
ends of a tube, &, vs. the number of bases in a row, n, when the number of rows m =3. (b) The
axial strain of the tube & vs.n when m=3. (c) The twist angle per axial strain 6, /& vs.n

when m=3.(d) 6,/¢ vs.mwhen n=6.The twist angle here is calculated as the maximum

rigid twist between two ends of a tube, and the axial strain is calculated as the strain when the

maximum rigid twist is reached.
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The correlation between 6, /&, and m, is less clear, as can be seen in Fig. 6-27(d)
in which 7 is fixed to 6. In this case the twist angle remains constant as 60° whereas
the axial strain is changed with m, leading to the variation of 6,/&,. A maximum of
6, /& =372°/% 1is obtained when m =7 . Therefore, we can design mechanical
metamaterials with a wide range of twist angle per axial strain by fine-tuning the
geometrical parameters m and n. And such twist can be materialized with minimum
efforts as it is a purely rigid motion.

e Bifurcation of rigid twist motion in different rows

The rigid twist motion occurs in the fully squeezed row with both line and plane
symmetry. Once the tube begins to twist, the adjacent rows to the fully squeezed one
expands and therefore no other rows satisfy the twist trigger condition. The rigid twist
motion will not transfer to the other rows without deformation. Kinematically,
Ps0.4 =0 holds for the whole twist folding, while ¢, is always positive during the
motion. Taking m=5 and n=6 as an instance, three cases with ¢« =40°,
o, =45 and a,=50° are discussed. By solving Eq. (6-49), the critical conditions
are obtained as f,, =42.01°, f, . =4559° and 4, =49.17° , which

corresponds to the tube with uniform radius where all rows are fully squeezed.

Figure 6-28(a) shows kinematic paths of the dihedral angles @, and @,
against ¢,, when [ =40°, where the blue lines represent the case with ¢, =40°,
the red lines with @, =45° while the grey lines with &; =50°. It can be found that
Deia >0, so there is no rigid twist motion in other rows. There exists another
phenomenon that the range of folding angle #,, under twist folding decreases with

@ increasing when [ is set identical.
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Fig. 6-28 Kinematic paths of the dihedral angles ¢, and ¢, against ¢,, during the twist
motion on the equatorial row of a waterbomb tube in three cases with m=5, n=6, o, =40°
(blue), o, =45° (red), o, =50° (grey) when (a) all =40, and (b) B, =42.01°, B, =45.59°,
B, =49.17°.
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Maintaining the values of @, m and 7 identical, the minimum of @,
decreases with the increase of B . When f reaches the maximum, all @, =0
holds in the configuration with uniform radius as presented by the dot in Fig. 6-28(b).
It indicates that the rigid twist folding can occurs in any row at this configuration, i.e.,

it is a bifurcation point.

Therefore, with defined values of @ and 7, the condition of J to obtain fully
squeezed waterbomb tube with identical radius is given by Eq. (6-49). In this case, the
twist folding can transfer from the equatorial row to other rows through the bifurcation
point. For example, when m=3, n=6 and o =40°, this kind of bifurcation occurs
with B being 42.01°. The bifurcation behaviour of the waterbomb tube is presented
in Fig. 6-29, where kinematic paths of the dihedral angle @, against @,, are
plotted by paths I, II and 11 when the rigid twist folding occurs in the top, middle and

below rows respectively.
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Fig. 6-29 Bifurcation behaviour during the twist motion of the fully squeezed waterbomb tube
with uniform radius satisfying Eq. (6-49) where twist motion can occur from any row. Here the

geometrical parameters are m=3, n=6, ¢=40° and S=42.01°.
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As shown in Fig. 6-29, configurations i, i1, 1ii, iv and v represent the motion process
of the waterbomb tube when the rigid twist folding occurs in the top row, and it can
bifurcate either to path II (the rigid twist folding occurs in the middle row with
below row with configurations x, xi, iii, Xii, Xiii) at the configuration iii, a configuration

with uniform radius where all rows are fully squeezed.

6.4.2 Non-rigid Twist Motion

The sufficient condition of the rigid twist motion has been proved to be that the
twisted row is fully squeezed with both line and plane symmetry. Now we are going to
check its necessity. Firstly, we need to figure out whether the rigid twist motion will
start if the line- and plane- symmetric spherical 6R linkage Ao is not fully squeezed,
thatis, @, , #0, see Fig. 6-30(a). Two adjacent bases on Row 0 of such a waterbomb
tube is presented in Fig. 6-30(b), where the coordinate system is the same as that in Fig.
6-22. According to the spatial analytical geometry, the angle between the crease B;C’,
and the coordinate axis z, 77, can be calculated
tan o \/—yé,0 +2tyy, sin ZEA E'— ¢ N ¢

t cos” ZEA E’ sina

cosn = (6-53)

As both planes AE’A; and EAE" are perpendicular to the crease B;C’, and the
axis z, respectively, the angle between the two planes EAE” and A E’Aj isalso 7.

So the vertical distance between the vertices A, and A, is

¢B0,4

Zao —Zao = —A A sinn =—2¢sin sin7 . (6-54)

If $g4#0, z,,—2,, #0 . According to the recursion formula in Eq. (6-54), the
vertical distance between the vertex A; and the plane XA,y becomes larger and
larger with the increase of the number of the bases on Row 0, which makes the vertex
C’, of the nth base that obtained after twist cannot match the vertex C_, of the first
base, so that the bases on Row 0 cannot complete a cylindrical tessellation. Therefore,
no rigid twist motion occurs when the line- and plane- symmetric row of the tube is not
fully squeezed. To this point, we can conclude that only the twist of the fully squeezed
row in the middle of the tube in Figure 1b is a rigid motion.

Secondly, the necessity of line and plane symmetry is studied, that is, whether the
twist motion is rigid if the twisted row is fully squeezed without line and plane
symmetry. Figure 6-30(c) shows such a case that the Row 3 is fully squeezed with only
plane symmetry. Due to the lack of two-fold symmetry necessary to reach the
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bifurcation configuration, the plane-symmetric linkage Az cannot bifurcate to a tilting
motion. That is, the twist motion on the fully squeezed row without both line and plane
symmetry is not rigid.

(a) E&M ‘
igﬁ%
D

Fig. 6-30 Non-rigid twist of the waterbomb tube when n=6. (a) 3D view of a waterbomb tube
with m =3 when twist starts from the not-fully-squeezed line- and plane-symmetric row (Row 0)
with ¢, , # 0. (b) Geometry of two adjacent bases on such not-fully-squeezed Row 0. (¢) 3D
view of a waterbomb tube with m =7 where the Row 3 is fully squeezed with only plane
symmetry. (d) 3D view of a waterbomb tube when twist starts from a pair of rows, set as Row 0
and Row 1. Only the twisted rows and those immediately adjacent to them are presented. EP is

short for equatorial plane.

Therefore, both the fully squeezed configuration and the line and plane symmetry
are necessary for a rigid twist motion. Should either one be violated, the twist motion
requires material deformation. Obviously, the twist motion with neither fully squeezed
configuration nor line and plane symmetry is not rigid. There are two cases of such non-
rigid twist motion. First, when the twist occurs on the fully squeezed row, the bases on
the other rows is only plane-symmetric and not fully squeezed, so the successive twist
of other rows after Row 0 reaches its limit positions (Fig. 6-26) is non-rigid and it cannot
occur without material deformation. Second, when the twist motion occurs from a pair
of rows near the equatorial plane, which are set as Rows 0 and 1 as shown in Fig. 6-
30(d), the bases on all rows are not fully squeezed and have only plane symmetry. As a
result, there is no rigid twist motion. However, playing with the physical model shows
that twist exists in this case as well, and such a process is transmitted from row to row
towards the ends of the tube. So we can safely conclude that, the entire twist motion is
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due to material deformation. Notice that some rows twist clockwise while the others
twist counter-clockwise. The reason is that in such a way, the relative rotation of the
two ends of the tube can be cancelled out.

The discovery of the twist motion enables design of origami structures and
mechanical metamaterials with graded stiffness through a combination of contraction
and twist. To demonstrate the graded stiffness of the waterbomb tube, a tube made from
ENDURO Ice material with 0.29mm in thickness and m =8, was compressed in the
longitudinal direction from the larger uniform radius configuration with an initial
dihedral angle @ =144°. It has the following geometrical parameters: o = ff=45°,
n=6 and a=22.5mm. The experiment was conducted on an Instron 5982 testing
machine with a load cell of 100 N. The loading speed was chosen as 5 mm/min so that
material strain rate effects could be safely neglected. Regarding boundary conditions,
it was determined after several rounds of trial-and-errors that placing foams of 15mm
in thickness at each end of the tube, as shown in Fig. 6-31(a), was able to generate a

roughly symmetric and stable deformation.

As can be seen in Fig. 6-31(a), a radial contraction occurs at the beginning of the
compression, with a larger shrinkage in the middle than both ends due to boundary
constraints, see configuration B. The contraction phase ceases when Row 0 and Row 1
are fully contracted in configuration C, followed by a simultaneous twist of both rows
in opposite directions as seen in configuration D. It is known from the analysis above
that the twist is structural deformation instead rigid motion. The twist phase proceeds
as Row 2 and Row -1 twist successively (configurations E and F), after which local
material damages appear and the experiment is terminated (configuration G). Regarding
stiffness, the force vs. displacement curve in Fig. 6-31(b) indicates that the force is low
during the contraction phase before configuration C. With the occurrence of twist, the
force level is raised significantly as shown in the shaded region of Fig. 6-31(b), which
demonstrates a periodic manner corresponding to the successive twist motion. The local
peaks in the twist stage are approximately doubled in comparison with that in the
contraction stage. Such graded stiffness would enable the structure/metamaterial to
autonomously adapt to non-uniform loading environment. And this adaption is
achieved purely through a structural transition of deformation phase, without

requirement of gradation in the geometric or material dimensions.

137



Doctoral Dissertation of Tianjin University and Clermont Auvergne University

(b)

Force(N)

0 L L 1 L
0 25 50 75 100 125 146.2

Displacement(mm)

Fig. 6-31 Axial compression experiment of the waterbomb tube. (a) Compression process of the
tube. (b) Reaction force of the tube vs. axial displacement curve. The tube in the experiment took a
uniform radius with the following geometrical parameters: o= =45, n=6, m=8,
a=22.5mm, and initial dihedral angle & =144°. ENDURO Ice material with 0.29mm in
thickness was used to construct the tube. The compression test was conducted on an Instron

machine at the loading rate of 5 mm/min.

6.5 Conclusions

In this chapter, a thorough kinematic study of the generalized waterbomb tube has
been conducted. By using the D-H matrix method and considering the equivalence of
spherical linkages and vertices in rigid origami, the kinematic relationship between
different dihedral angles at the creases has been figured out for the waterbomb tubes
with both odd and even rows. The contraction folding of the generalized waterbomb
tube under both circumferential and longitudinal symmetry has been proved to be rigid
with one DOF. Moreover, the relationship between those geometrical parameters and
the range of folding angle under rigid contraction folding has been analyzed. The
existence of uniform radius configuration has been discussed based on the flat-foldable
case. A wave-like profile of the long tube has been revealed, and the corresponding
rigid origami region has been given. A bifurcation at the uniform radius configuration

of the truncated tube has been discovered.

Furthermore, a twist motion has been found in some specific waterbomb tubes.

The rigidity of the twist folding has been explored. Through a detailed kinematic
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analysis, the sufficient and necessary condition of a rigid twist motion has been revealed
at the fully squeezed line- and plane- symmetric row in the end of contraction. The
geometric conditions concerning @ and S to make the waterbomb tube with rigid
twist folding have been derived. In addition, the rigid twist motion range with given
geometrical parameters has also been determined, which is related to both the left/right
handed twist and the most expanded configuration at the end rows. The twist angle per
axial strain of the waterbomb tube with rigid twist motion has been analyzed, which
generally increases with the number of bases in a row. In addition, the behaviours of
non-rigid twist motions have been studied. The significant difference in stiffness of the
waterbomb tube with and without twist has also been verified by experiments. Except
for the bifurcation between the contraction phase and the twist phase, another

bifurcation among rigid twist motion in different rows has been revealed.
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Chapter 7 Final Remarks

The aim of this dissertation was to explore the kinematics of spatial linkages
ranging from spherical linkages to overconstrained linkages, and apply it to the analysis
of rigid origami. The main achievements are summarized and the future works are
highlighted in this chapter.

7.1 Main Achievements

* Generalized triangle twist and its derived overconstrained 6R linkages

First, a systematic method to analyze the rigid foldability and motion behaviour of
the generalized triangle twist pattern has been presented using the kinematic
equivalence between rigid origami and spherical linkages. All schemes of M-V
assignment have been derived based on the flat-foldable conditions of four-crease
vertex, among which rigidly foldable ones have been identified. The compatible
conditions have also been derived for these types of triangle twist. It has been found
that the triangle twist is rigidly foldable only when at least one crease-pair is not parallel.
Moreover, a new type of overconstrained 6R linkage and a variation of doubly
collapsible octahedral Bricard have been developed by applying kirigami technique to
the rigidly foldable pattern without changing its DOF.

The kinematics of a modular origami unit with four-crease vertices and its
corresponding network of spherical 4R linkages has been presented in Chapter 3. The
proposed method opens up a new way to generate spatial overconstrained linkage from
the network of spherical linkages. It can be readily extended to other types of origami
patterns. A journal paper concerning on this work titled “Rigid foldability of
generalized triangle twist origami pattern and its derived 6R linkages” has been
accepted to be published on Journal of Mechanisms and Robotics.

¢  General plane-symmetric Bricard linkage

Second, the explicit solutions to closure equations of the plane-symmetric Bricard
linkage have been derived and a thorough kinematic study of the general plane-
symmetric Bricard linkage has been conducted with D-H matrix method. The derived
SR/4R linkages from this Bricard linkage and their corresponding geometric conditions
have been introduced. Various bifurcation cases of the plane-symmetric Bricard linkage
with different geometric conditions have been discussed, such as the bifurcation
between the plane-symmetric Bricard linkage and the Bennett linkage, the bifurcation
between two plane-symmetric Bricard linkage motion branches, and the bifurcation
between equivalent serial kinematic chains with revolute joints and a four-bar double-
rocker linkage.

The kinematics of an existing spatial overconstrained linkage has been presented
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in Chapter 4. The findings not only offer an in-depth understanding about the
kinematics of the general plane-symmetric Bricard linkage, but also bridge two
overconstrained linkage groups, i.e., the Bennett-based linkages and Bricard-related
ones, to reveal their intrinsic relationship. A journal paper concerning on this work titled
“Kinematic study of the general plane-symmetric Bricard linkage and its bifurcation
variations” has been published on Mechanism and Machine Theory.

*  Symmetric flat-foldable waterbomb origami

Third, a thorough kinematic investigation on symmetric folding of the flat-foldable
waterbomb pattern has been presented. It has been found that the pattern can have two
folding paths for the zero-thickness case with singularity at the fully expanded or
compact configuration. Moreover, the pattern has been used to fold thick panels, where
the vertices are modelled as plane-symmetric Bricard linkages instead of spherical 6R
linkages. Not only do the additional constraints imposed to fold the thick panels lead to
one-DOF folding, but the folding process is kinematically equivalent to the origami of
zero-thickness sheet.

The kinematics of a planar origami tessellation with six-crease vertices and its
corresponding mobile assemblies of spherical 6R linkages and spatial overconstrained
6R linkages, have been presented in Chapter 5. The findings pave the way for the
waterbomb pattern being readily used to fold deployable structures ranging from flat
roofs to large solar panels. A journal paper concerning on this work titled “Symmetric
waterbomb origami” has been published on Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Science.

* The waterbomb tube

Finally, the folding behaviour of the waterbomb tube under certain symmetry has
been analyzed. Through a detailed kinematic analysis, the dependency between its
motion and geometrical parameters of the origami pattern has been uncovered. It has
been demonstrated that the contraction folding of the generalized waterbomb tube under
both circumferential and longitudinal symmetry is rigid with one DOF. Some tubes
have been found to be capable of pure rigid origami, whilst others will experience
structural deformation in-between rigid origami motions. With parametric study, the
waterbomb with wave-like profile has been discovered.

Moreover, a twist motion of the waterbomb tube has been reported for the first
time. It has been proved that the trigger condition of the rigid twist motion is the
corresponding row of the tube under twist being fully squeezed with both line and plane
symmetry, whereas all the subsequent twist motion requires material deformation. The
existence of rigid twist motion for waterbomb tubes with various geometric conditions
has been discussed. The rigid twist motion range has also been determined, which is
related to both the left/right handed twist and the most expanded configuration at the
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end rows. The twist angle per axial strain of the waterbomb tube with rigid twist motion
has been analyzed, which generally increases with the number of bases in a row. In
addition, the behaviours of non-rigid twist motions have been studied. The significant
difference in stiffness of the waterbomb tube with and without twist has also been

verified by experiments.

Three bifurcations have been found during the motion of the waterbomb tube. The
first one is the switch of the waterbomb tube from the contraction phase to the twist
phase. The second one is the bifurcation of a waterbomb tube during the contraction
phase at the uniform radius configuration between the motion of a truncated tube and
that of an even-row tube. The last one is the bifurcation during the twist phase of a
fully-squeezed waterbomb tube with uniform radius configuration, which have

bifurcated twist motion in different rows.

The kinematics of a closed cylindrical origami tessellation with six-crease vertices
and its corresponding tubular network of spherical 6R linkages have been presented in
Chapter 6. Our results reveal the kinematic properties of the waterbomb tube, and how
certain behaviour can be achieved by fine-tuning the pattern parameters. The results
will provide a solid foundation for full exploitation of this ancient but fascinating
origami object to create novel shape changing structures and metamaterials. A journal
paper concerning on this work titled “Twist of tubular mechanical metamaterials based
on waterbomb origami” has been submitted to Scientific Reports and is now under
revision review. Two other journal papers titled “A unified kinematic framework for
rigid-foldable waterbomb origami” and “Rigid-foldability of the generalized
waterbomb tube” have been ready to submit.

7.2 Future Works

The research reported in this dissertation provides us with several topics to be

further explored.

First, the potential applications and adaptations of the foldable triangle twist
origami pattern in the tessellation as a modular unit, or in the design of bionic
deployable structures and origami robots are to be explored. The kinematics of spherical
4R linkage network can be further used to analyze the rigid foldability of other existing
origami patterns such as hexagon twists, or to generate new origami patterns. The
proposed method to generate spatial overconstrained linkage from the network of
spherical linkages by the kirigami technique is capable to be extended to other types of
origami patterns for the discovery of novel mechanisms.

Second, the bifurcation behaviour of the plane-symmetric Bricard linkage can be
utilized in the design of reconfigurable mechanisms. And the kinematics of the plane-
symmetric Bricard linkage can be applied to other types of thick-panel origami patterns
composed of six-crease vertices, such as the diamond pattern and the Resch pattern, etc.
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More work of the waterbomb pattern can also be done on its engineering applications

such as solar panels.

Third, tubular waterbomb-based engineering devices and metamaterials with
programmable stiffness and shape control are to be designed based on the rigid or non-
rigid case of the tube. Taking advantage of the wave-like profile, a worm robot can be
designed. The control strategy to maintain symmetry or accomplish transition between
the waterbomb’s multitude behaviours is to be sought for facilitating its applications.
The analysis on the thick-panel origami tube may also be conducted together with the

tubular network of spatial overconstrained linkages.

In total, the work in this dissertation focuses on the theoretical study on the spatial
linkage kinematics and its applications to rigid origami, ranging from the mobile
assembly of spherical 4R linkages to the spatial overconstrained 6R linkage, then to the
mobile assembly of spherical 6R linkages and that of spatial overconstrained 6R
linkages, and finally to the closed-loop network of spherical 6R linkages. The future
work can be concentrated on the engineering applications of these spatial linkages as

well as rigid origami patterns.
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Appendix

Appendix

A. Entries of Closure Equations of the Plane-symmetric Bricard
Linkages
In general case:
(1, 3):
sin 6 (cos asin ysin @, sin @, —cos & cos S sin ycos 6, cos 6,
+sin asin fsin ycos @, —cos asin B cos ycos 6, —sin a cos S cos )
= (14 cos 6)(sin ycos &, sin 6, + cos Ssin ysin 6, cos &, +sin S cos ysin G,)
(1, 4):
sin & [c(cos arsin @, cos &, + cos axcos B cos B, sin 6, —sin arsin Bsin 6;)
+bcosasin@, — R, cosarsin fcosb, — R, sina— R, sinacos 3]
= (1+cos8)[c(cos b, cos @, —cos Ssin b, sinb,)+bcos b, +a+ R, sin Ssin b, ]
@3, )
(1+cos8,)(sinarsin G, cos &, +sin xcos S cos 6, sin G, + cos asin Ssin ;)
=sin @,[cos y(sin rsin 6, sin &, —sin &z cos B cos B, cos &, — cos arsin Fcos b,)
+sin y(sin arsin S cos 8, —cosacos )]
When 6,=7,
(2,3):
cos asin ysin 6, sin 6, — cos & cos Ssin y cos &, cos @, + sin asin Ssin ycos 6,
—cosasin S cos ycos 8, —sin o cos B cos y=0
(2, 4):
c(cosarsin @, cos €, +cos axcos B cos 6, sin 6, —sin asin Bsin ;)
+bcosarsin @, — R, cos arsin fcos 6, — R, sinx — R, sin x cos =0
When 6,=6,=r,
(1, 3):
sin @, (cos @ cos B sin ycos 6, + sin arsin fsin ycos @, + cos asin fcos y
—sinacos fcos y) =—sinysin6,(1+cos )
(1, 4):
sin @ [—ccos axcos fsin G, —csin arsin Bsin 6, + R, cos orsin 3
—R, sina— R, sinacos f]=(1+cosb,)(—ccosb, —b+a)

When 6,=60.=r,
(1, 3):
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sin @, (cos &z cos fsin ycos @, —sin asin Bsin y —cos arsin S cos ycos b,

—sinacos Bcos ¥) = (1+cos 6, )(—cos Bsin ysin 6, +sin S cos ysin,)
(1, 4):

sin @ [—-ccosasin @, +bcosasing, — R, cosarsin fcosb, — R, sinx

—R, sinacos f]=(1+cos 6, )(—ccosb, +bcos, +a+ R, sin sin6,)
When 6,=r,
(1, 3):

sin @, (cos ersin ysin 6, sin @, — cos & cos Bsin y cos 6, cos b,

+sin arsin Ssin ycos 6, —cos asin S cos y cos &, —sin ¢ cos cos )

= (14+cos8)(sin ycos &, sin G, + cos Bsin ysin 6, cos &, +sin S cos ysin b,)
(1, 4):

sin & [c(cos arsin 6, cos &, + cos xcos B cos b, sin 6, —sin asin Bsin 6,)

+bcosasin @, — R, cosasin fcos 6, — R, sinax— R, sin @ cos 3]

=(14+co0s8)[c(cos b, cos 8, —cos Bsin b, sin6,)+bcos @, +a+ R, sin Ssin b, ]
(3, 2):

cos y(sinrsin @, sin @, —sin ax cos S cos @, cos &, —cos asin S cos b;)

+sin y(sin arsin S cos 6, — cos o cos f)=0
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REFR B ARIE s R RN 2 Bl RS RE 2. Miura 4026145,
T H I AR ) L, HAZsh A2 T o A aRas # IO HULIE RE, dndfa bl
WIS . RS TAREE M A A AR R 2 2 WIVE Y, (A NI RS 4RAE TRE P AR
EORHIN T, IR0 7 AT E . R — R R T 4Ry, mlidad i 7
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NHUR AR S WIS 4R 3T IR AT S R U (R R sh A, 4R ) 220
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VT I8 3 22 1 R HE « SR, FES TR A, ORI R B AN RER 2
g, HAEr & BT RN SEENET . N7 ihEX s
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SERMIMIS BN, ARINAR Y T EAR ST AR IR R . DRI, St BRI ATLAA A 2 )i 24 3R
WA 138 B 27 3 A R MV 3 ARz B 40 B (R Rtk %t 788 1 1k — R 4 4R )
THEMNH .

KRB AE R GEHER T A LAL A B 2 B FLAE I 3 4653 B v i R FE o R AT N
PEST AR 73 (RG] I8 B A 0 2R, 8k 70 A BRI LA A0 2 (8] 0 29 AL ()32
BN ST WIS AR v] 37 B A ST AT

AR AR 32 A A 7 (B 7S AT AL B 2 PR I 1A 3 R 28544 1R 32 50 27 7 THT
ARCE ek T BRI PUFF B A% I8 3 70 M 1 triangle twist 148576 HNIPE AT
Pr 2 BTN, FERIHBTARTT R R I T — i (1) 25 [ i 29 SRS LA
Fk, 438 T HDNAR Bricard ALK — MU 7 ()5 2 RS AL 12 8)) 2 Ky
FAT N, NIEENIVETr AR B E 1A . R)E, BRI KA T Y
waterbomb JEMRHTACEERUK 1 X FR Bricard AL R WIAS IEXT Hdt 4T T 123
YT FHRIHE, ZJEL R waterbomb it 2R U4 S5 S50 T X FREK T 7S AT HLAL 2H R 1)
WA HEAT 08T Ta, o drd R 2] waterbomb EPIRIT4REE M, FFREETERE /S
FERURE ZH B T PA I A& 1 33 3 2 AT 1 iz 8 e h S Eit 7t . Bk TR 45
PAR YA

*  Triangle twist #7485 7 B NI ] 47 &M K& HATA B 241 3R S AFHLA

triangle twist & —FhHE WL EEA =N FR TS AT 4R s, B H—HE
=AM =HMZ=HATE LA RSB IR A R T H B R 4%
P SR FECR AT R B, FE 07 A= 4 R S5 i I e o5 J7 T B T el PR . FH i %
SR, H TSN triangle twist $T ST TR T ] = AT 2 S0 = AT
ERAMEITIR I -FAT ST, A4S JLRIE AT 4 S SR R K2 BR

AR =F LM triangle twist HT4CERTT T G0 A 1 NI AT 47 S A
BEAT N FET WIS A0S 2 AN s sh S0 1, ATz el — N =
ANBRIE VYA DU LR R P AS 24T 508« SR D-H SR FEIE #7178 T0 AR 3K E
VUAFHLAI IS Bh %, FFE5 Gz A& a8 s i 26 A8 1 S oo I T 4 S
W R, RA M =HINE IR 2 DH —HAFATE, A4l oo ae 2 A W
PERT A &b, [FISR T WIS B 18 G0 T 37 IR e T8 A ST 2 1 264

FH T 4R o 1 B LA 1S L2 e o Z R o IR T 4 B e, TR 46 H %8
JCHTA AT BE I LA e HEAT 7 58 AT U7 58 BB E HE DU 3 4R R e P T AT 9 B 2%
1, BPEAE — AN PUHT IR T R R T B — 9K~ 4R, Bl LR 464 1D iy
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