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A B S T R A C T   

Deployable polyhedral mechanisms (DPMs) have witnessed flourishing growth in recent years 
because of their potential applications in robotics, space exploration, structure engineering, and 
so forth. This paper firstly presents the construction, mobility and kinematics of a family of 
Sarrus-inspired deployable polyhedral mechanisms. By carrying out expansion operation and 
implanting Sarrus linkages along the straight-line motion paths, deployable tetrahedral, cubic and 
dodecahedral mechanisms are identified and constructed following tetrahedral, octahedral, and 
icosahedral symmetry, respectively. Three paired transformations with synchronized radial mo-
tion between Platonic and Archimedean polyhedrons are revealed, and their significant sym-
metric properties are perfectly remained in each work configuration. Subsequently, with assistant 
of equivalent prismatic joints, the equivalent analysis strategy for mobility of multiloop poly-
hedral mechanisms is proposed to significantly simplify the calculation process. This paper hence 
presents the construction method and equivalent analysis of the Sarrus-inspired DPMs that are not 
only valuable in theoretical investigation, but also have great potential in practical applications 
such as mechanical metamaterials, deployable architectures and space exploration.   

1. Introduction 

Deployable polyhedral mechanisms (DPMs) [1] have aroused great interest from researchers in the fields of robotics, space 
exploration, structure engineering and so on. After Verheyen [2] reported the pioneering work for the expandable polyhedral 
structures known as Jitterbug transformers [3], the construction methods of Fulleroid-like polyhedral mechanisms [4] were developed 
by Wohlhart [5], Kiper [6] and Röschel [7]. Furthermore, several overconstrained linkages [8] were adopted for the synthesis of DPMs. 
Kiper and Söylemez [9] introduced deployable polyhedrons by integrating multiple loops of equilateral Bennett linkages [10] with a 
rather small expansion ratio. Nevertheless, based on the Bennett and Bricard linkages [11], Yang et al. [12–14] realized three one-DOF 
transformations with a large volumetric ratio between Platonic and Archimedean solids, respectively. Wang and Kong [15,16] 
demonstrated a family of overconstrained multi-loop DPMs by connecting orthogonal single-loop linkages, including the Bricard 
linkage, using S-joints. Xiu et al. [17] developed a synthesis approach for generating Fulleroid-like Platonic and Archimedean DPMs 
based on the Sarrus-like overconstrained eight-bar linkages. Wang et al. [18] proposed the multilayer polyhedral mechanisms based on 
Wren parallel mechanisms which can transform among different shapes of polyhedrons. Moreover, various DPMs based on prisms and 
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antiprisms have been developed [19–23]. It can be found that, due to a large number of redundant constraints, most of them are 
multi-loop overconstrained mechanisms [24]. 

Apart from the above investigations, there is one type of DPMs that is capable of performing radial motions. A popular toy named 
Hoberman Sphere [25] with one-DOF radial motion was produced by combining Sarrus linkages [26,27] and scissor-like elements. 
Bouten [28] designed several transformable structures based on the assembly of uneven Sarrus chains, in which similar Sarrus-based 
mechanisms can also be found in [29,30]. By adding more links to synthesize the Sarrus linkages, Kiper and Söylemez [31] introduced 
more polyhedral linkages without any change in the motion of original links. Moreover, to retain the exterior shape during deploy-
ment, Agrawal et al. [32] set up the radially expanding polyhedrons by introducing prismatic joints to polyhedral edges. In addition, 
Wei et al. [33–35] proposed a synthesis mothed of plane-symmetric eight-bar linkages for constructing regular and semi-regular DPMs 
possessing one-degree-of-freedom (DOF) radially reciprocating motion. Furthermore, reconfigurable DPMs constructed by using a 
variable revolute joint were introduced by Wei [36] in 2014. Similar polyhedral mechanisms were synthesized by integrating the 
assembly of planar mechanisms into the edges [37,38] and facets [39–42] of various polyhedrons. Recently, taking the one-DOF 
polygonal prisms as basic units, a group DPMs were proposed based on an additive-then-subtractive design strategy [43]. 

Here, we aim to design DPMs based on the transformations between Platonic and Archimedean polyhedrons, as shown in Fig. 1, 
referring to the polyhedral expansion in solid geometry [44]. Taking the case shown in Fig. 1(a) as an example, during the trans-
formation, the blue facets in a Platonic polyhedron are separated and moved radially apart, and new facets in beige are formed among 
separated elements to form a corresponding Archimedean polyhedron. Due to the expansion operation, two polyhedrons in each 
transformation have identical polyhedral symmetry property, from Fig.1(a)–(c) are tetrahedral symmetry (Td), octahedral symmetry 
(Oh) and icosahedral symmetry (Ih), respectively. Yet, it is extremely challenging to accomplish such transformation from mechanism 
point of view. Therefore, this paper aims at presenting a novel synthesis method for constructing a group of Sarrus-inspired DPMs with 
symmetric transformability, in which the original symmetry is reserved in each work configuration. As the first published overcon-
strained linkage, the Sarrus linkage is adopted as the construction unit in this paper, which can generate exact straight-line motion. For 
demonstration purpose, we first construct the deployable tetrahedral mechanism that can transform a tetrahedron into a rhombite-
tratetrahedron, and verse visa, and then extend the method to the construction of deployable cubic and dodecahedral mechanisms. The 
equivalent analysis is also presented, followed by the mobility and kinematic analysis. 

2. A Sarrus-inspired deployable tetrahedral mechanism 

This section presents the construction of a deployable tetrahedral mechanism by integrating Sarrus linkages into a radially 
decomposed tetrahedron. The procedures for generating the proposed mechanism are introduced and the mobility analysis is con-
ducted and verified through the reciprocal derivation. 

Fig. 1. Three paired Platonic and Archimedean polyhedrons. (a) A tetrahedron and a rhombitetratetrahedron with tetrahedral symmetry (Td); (b) a 
cube and a rhombicuboctahedron with octahedral symmetry (Oh); (c) a dodecahedron and a rhombicosidodecahedron with icosahedral symme-
try (Ih). 
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2.1. Construction of a deployable tetrahedral mechanism 

A hollow tetrahedron with four congruous prismoid platforms A, B, C and D is given in Fig. 2(a). Its four vertices are denoted by a to 
d, six edges are ab, ac, ad, bc, cd and bd with the x-axis passing through midpoints of edges ad and bc, so do the y-axis for edges ac and 
bd, and z-axis for edges ab and cd. Here, the coordinate origin O is the centroid of this tetrahedron, and the perpendiculars of the four 
platforms intersecting at the centroid O are denoted by red dash-dot lines. Subsequently, by carrying out the expansion operation, four 
platforms are separated synchronously and moved radially along the corresponding perpendiculars, and each two adjacent triangular 
prismoid platforms a straight-line motion, see Fig. 2(b). Based on tetrahedral geometry, the angle between the bottom and side facets of 
each triangular prismoid isβ = 35.26∘, i.e., a half of the dihedral angle (70.53◦) between prismoids A and B. Moreover, any edge of the 
tetrahedron is divided into two edges, such as ab into a1b1 and a2b2. At this moment, the trends of straight-line motion occur between 
any two adjacent platforms whilst they are away from the centroid, which are represented by double arrow lines (highlighted in red). 
For instance, virtual straight-line motion path p1 between platforms A and B is parallel to the line a1a2, or b1b2. In order to enable this 
motion, the Sarrus linkage is adopted in this paper as it can generate the exact straight-line motion between two platforms. As shown in 
Fig. 2(c), one Sarrus linkage between platforms A and B consists of six rigid bodies connected by six revolute joints, three parallel joints 
with axesz1,z2andz3are implanted along line a1a2, so do the other three joints with axesz4, z5 and z6 along b1b2. Here, the angle 
between the revolute axes in two limbs in a Sarrus linkage is γ, to avoid physical interference in the fully folded configuration and 
consider the tetrahedral geometry, γ ∈ (0, 70.53∘] should be satisfied. Meanwhile, due to the radial decomposition of triangular 
prismoids, for instance, side facet of platform A is coplanar with a virtual plane of axes z3 and z6. Thus, the straight-line motion along p1 
between platforms A and B is obtained. 

Furthermore, we can take the similar implantation and integrate five extra Sarrus linkages into each pair of two adjacent platforms 
along paths p2 to p6 following the procedure along p1, in which the geometric relations of all integrated Sarrus linkages are identical. 
Thus, a novel deployable tetrahedral mechanism is obtained in Fig. 2(d), which consequently leads to a transformation from a 
rhombitetratetrahedron (the deployed configuration) to a tetrahedron (the folded configuration). Moreover, we can make γmax = 70.
53∘ to obtain a planar triangle in a fully deployed configuration among three different platform vertices (such as a1, a2 and a3), which 
are composed of three limbs of three adjacent Sarrus linkages. Based on such a construction, it can be seen that the Sarrus-inspired 
deployable tetrahedron performs synchronized radial motion. The four platforms have straight-line motion along their respective 
perpendiculars relative to the centroid O while separating from each other, which mechanically presents the expansion operation in 
geometry. It should be pointed out that the four platforms A to D locate on the faces of a virtual tetrahedron during the continuous 
motion process, in which the Td symmetry of this deployable tetrahedron is completely reserved. This mechanism has one DOF which 
can be theoretically verified in the following section. 

Fig. 2. Construction of a deployable tetrahedral mechanism. (a) A tetrahedron and the Cartesian coordf4inate system; (b) the expansion of four 
triangular platforms of a tetrahedron; (c) the Sarrus linkage with platforms A and B; (d) the motion sequence (transformation) from a rhombite-
tratetrahedron (the deployed configuration) to a tetrahedron (the folded configuration). 
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2.2. Mobility analysis and the reciprocal verification 

Mobility of the proposed deployable tetrahedral mechanisms can be investigated with screw theory [45]. First, as the foundational 
element of polyhedral construction, a Sarrus linkage in an arbitrary configuration is given in Fig. 3(a) attached with a local coordinate 
frame {xi, yi, zi}, where the origin Oi locates at the centre of virtual plane between two mobile platforms, yi-axis is aligned with the 
straight-line motion direction and zi-axis is perpendicular to the virtual plane. It is well known that this linkage consists of two limbs, 
motion-screw system of limb 1 can be calculated in the associated local coordinate system as 

Sl1 =

⎧
⎪⎪⎨

⎪⎪⎩

Si1 = [ sinα 0 cosα − bcosαsinφ lcosα bsinαsinφ ]
T

Si2 = [ sinα 0 cosα 0 lcosα − bcosφ 0 ]
T

Si3 = [ sinα 0 cosα bcosαsinφ lcosα − bsinαsinφ ]
T

, (1)  

and for limb 2, 

Sl2 =

⎧
⎪⎪⎨

⎪⎪⎩

Si4 = [ − sinα 0 cosα − bcosαsinφ − lcosα − bsinαsinφ ]
T

Si5 = [ − sinα 0 cosα 0 bcosφ − lcosα 0 ]
T

Si6 = [ − sinα 0 cosα bcosαsinφ − lcosα bsinαsinφ ]
T

, (2) 

Fig. 3. Mobility analysis of the deployable tetrahedral mechanism. (a) Joint screws in a Sarrus linkage; coordinate systems in (b) deployed 
configuration of the tetrahedral mechanism and (c) its dual tetrahedron; and (d) constraint graph of this mechanism. 
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where subscript i indicates the number of Sarrus linkages involved in the integration of the proposed deployable polyhedral mech-
anisms, φ is the folding angle between a half of limb and platform, b is half of the edge length a of a regular rhombitetratetrahedron, as 
well as l = a/2 and α = γ/2. 

The reference coordinate frame {x, y, z} in a deployed configuration of the tetrahedral mechanism is established in Fig. 3(b), in 
which its reference origin O locates at the centroid of the rhombitetratetrahedron and six local origins Oi (i =1, 2, …, 6) are the centres 
of virtual planes expanded by any two adjacent platforms, respectively. Conceivably, the four platforms A, B, C and D are throughout 
located at the vertices of a virtual dual tetrahedron during the continuous motion process, thus a dual tetrahedron is introduced in 
Fig. 3(c) to conveniently describe the directions of axes yi, i.e. the direction of straight-line motion between two adjacent platforms. 
The motion screws of a Sarrus linkage element in Fig. 3(a) can be transformed to the reference coordinate system in Fig. 3(b) with the 

adjoint transformation matrix AdT =

[
Ri 0

p̃iRi Ri

]

, where Ri is the 3 × 3 rotation transformation matrix and p̃i is the skew-symmetric 

matrix of vector pi that presents the displacements of origin Oi relative to origin O. Referring to polyhedral geometry and Td symmetry 
in Fig. 3(b) and (c), Ri and pi (i =1, 2, …, 6) in deployable tetrahedral mechanism can be obtained and listed in Appendix A. Hence, the 
complete motion-screw system in the reference coordinate system can be formulated with six adjoint transformation matrices. 

Furthermore, the number of links and joints involved in the deployable tetrahedral mechanism are 28 and 36, respectively. Using 
the Euler formula [46] for a multiloop mechanism, the number of independent loops in this mechanism can be obtained as Nl = l – j + 1 
=36 – 28 + 1 = 9 (with Nl denoting the number of independent loops, l the number of links, and j the number of joints) and the 
associated constraint graph is sketched in Fig. 3(d). According to Kirchhoff’s circulation law [47] for independent loops shown in the 
constraint graph, the constraint matrix of the deployable tetrahedral mechanism is organized as 

M1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1 06 06 06 06 06
06 S2 06 06 06 06
06 06 S3 06 06 06
06 06 06 S4 06 06
06 06 06 06 S5 06
06 06 06 06 06 S6
06 − S″

2 − S′
3 06 06 − S″

6
− S″

1 − S′
2 06 06 − S″

5 06
− S′

1 06 − S″
3 − S″

4 06 06

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3)  

where Si = [Si1 Si2 Si3 Si4 Si5 Si6 ], S′
i = [ Si1 Si2 Si3 0 0 0 ] S″

i = [ 0 0 0 Si4 Si5 Si6 ] and06 = [ 0 0 0 0 0 0 ]
with 0 = [0 0 0 0 0 0 ]

T . And Sij (i = 1, 2, …, 9, and j = 1, 2, …, 9) can be obtained through Eqs. (1) and (2) together with the 
matrix AdT. 

Mobility of this mechanism can be determined by the 54 × 36 constraint matrix as 

m = n − rank(M1) = 36 − 35 = 1, (4)  

in which m stands for the actual mobility of this mechanism and n is the number of joints. Meanwhile, all the six involved Sarrus 
linkages have identical kinematic behavior to generate the synchronized radial motion of the entire mechanism, which is revealed and 
proved in Appendix B. 

Based on the above derivation, we prove that the tetrahedral mechanism has mobility of one. Yet, the calculation and solution of 
constraint matrix are complicated due to the complexity of polyhedral geometry and a significantly large number of links and joints in 
the proposed polyhedral mechanism. To find a simple and effective analysis method for the mobility of deployable polyhedrons, we 
present the equivalent analysis strategy as follows by solving the equivalent motion screws. 

Also beginning with the construction element, the constraint screw system of limb 1 in Sarrus linkage can be obtained by solving 
the reciprocal screws of Sl1 as 

Sr
l1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sr
i1 = [ tanα 0 1 0 0 0 ]

T

Sr
i2 = [ 0 0 0 0 1 0 ]

T

Sr
i3 = [ 0 0 0 − cotα 0 1 ]

T

, (5)  

and for limb 2, it has 

Sr
l2 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Sr
i4 = [ − tanα 0 1 0 0 0 ]

T

Sr
i5 = [ 0 0 0 0 1 0 ]

T

Sr
i6 = [ 0 0 0 cotα 0 1 ]

T

. (6) 

Y. Gu et al.                                                                                                                                                                                                              



Mechanism and Machine Theory 193 (2024) 105564

6

The platform constraint-screw multiset is the combination of the above two constraint screw systems, which contains five linearly 
independent screws [48]. A non-unique basis for the subspace of constraint screw multiset can be selected as 

Sr
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sr
i1 = [ 1 0 1 0 0 0 ]

T

Sr
i2 = [ 0 0 0 0 1 0 ]

T

Sr
i3 = [ 0 0 0 − 1 0 1 ]

T

Sr
i4 = [ − 1 0 1 0 0 0 ]

T

Sr
i5 = [ 0 0 0 1 0 1 ]

T

. (7) 

By taking reciprocal screw of Sr
i , the equivalent motion screw between two platforms in a Sarrus linkage is 

Sfi = [ 0 0 0 0 1 0 ]
T
. (8)  

which indicates the straight-line motion between two platforms along yi-axis. 
Hence, we can regard a Sarrus linkage as a prismatic joint, then the tetrahedral mechanism obtained in Fig. 2 can be simplified as an 

equivalent mechanism with six prismatic joints donated by P1 to P6 as indicated in Fig. 4(a). The original six motion screws in Eqs. (1) 
and (2) can be equivalently replaced by a single motion screw in Eq. (8), thus the equivalent topological graph is given in Fig. 4(b). 
Further, the simplified mobility analysis of the tetrahedral mechanism can be carried out by redrawing the constraint graph in Fig. 4(c) 
with equivalent motion screws Sf1 to Sf6, which can also be obtained in the reference coordinate system through adjoint trans-
formation matrices. According to Fig. 4(c), the constraint matrix can be rewritten as 

Me1 =

⎡

⎣
Sf 1 Sf 2 0 0 Sf 5 0
0 − Sf 2 Sf 3 0 0 Sf 6

− Sf 1 0 − Sf 3 Sf 4 0 0

⎤

⎦, (9)  

which has the dimension of 18× 6. 
Therefore, referring to this equivalent constraint matrix, the identical conclusion that the deployable tetrahedral mechanism has 

mobility of one can be verified as 

m = ne − rank(Me1) = 6 − 5 = 1, (10)  

in which ne is the number of equivalent prismatic joints. 

2.3. Kinematics of the tetrahedral mechanism 

Due to the one-DOF synchronized radial motion with unchanged Td symmetry of this tetrahedral mechanism, both inscribed sphere 
and circumscribed sphere related to four platforms are regular spheres. When φ=0 (the folding angle in a Sarrus linkage in Fig. 3(a)), 
referring to a tetrahedron at fully folded configuration, the inscribed sphere radius (r) and circumscribed sphere radius (R) in this 
mechanism are 

̅̅̅
6

√
a/12and 

̅̅̅
6

√
a/4, respectively. Following deployed motion until φ=90◦, i.e., a completely deployable configuration 

(rhombitetratetrahedron), r increase to 
̅̅̅
6

√
a/3 and R becomes a. Thus, together with the kinematic and geometric caculation, the 

Fig. 4. Equivalent tetrahedral mechanism. (a) The schematic diagram of equivalent mechanism with prismatic joints, (b) its three-dimensional 
equivalent topological graph, and (c) the corresponding constraint graph. 
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relationships between polyhedral geometry and kinematic angle can be derived as r =
̅̅̅
6

√
a(3sinφ+1)/12 and R =

a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(3sin2φ + 2sinφ + 3)/8
√

. Similarly, for the volume (V) of deployable tetrahedron during the continuous motion, we have V =
̅̅̅
2

√
a3(sin3φ + 9sin2φ + 9sinφ + 1)/12, in which a is the edge length of a regular tetrahedron. Hence, the input-output curves between 

the polyhedral geometry and kinematic angle are illustrated in Fig. 5. 
Therefore, a novel synthesis mothed based on expansion operation and Sarrus linkages is proposed to construct the one-DOF 

deployable tetrahedral mechanism, its significant symmetry property is perfectly remained in each working configuration, whose 
corresponding prototype is fabricated, as shown in Fig. 6. The kinematic strategy of construction and mobility analysis can be readily 
extended to the deployable cubic and dodecahedral mechanisms with distinct symmetries in the following section. 

3. Deployable cubic and dodecahedral mechanisms 

Based on the construction of the tetrahedral mechanism in Section 2, in this section, the proposed method is extended to the design 
of deployable cubic and dodecahedral mechanisms in this section. 

A cube with six congruous square prismoid platforms A to F and twelve edges is given in Fig. 7(a), in which the axes in a global 
coordinate system are perpendicular to the platforms. Following the expansion operation discussed in Section 2, Fig. 7(b) presents all 
separated platforms along red dash-dot perpendiculars, and a total of twelve virtual motion paths (indicated in red lines) between each 
pair of adjacent platforms are generated in Fig. 7(c). In this case, the angle between the bottom and side facets of each square prismoid 
is β = 45∘. As a result, twelve Sarrus linkages are needed to be involved to construct a deployable cubic mechanism, in which the 
geometry and kinematics of each identical Sarrus linkage are same as the one in Fig. 2(c). Meanwhile, γ ∈ (0, 109.47∘]should be 
satisfied in this case to avoid interference, and the angle between the virtual plane (Sarrus translational platform) and polyhedral 
platform is also β = 45∘. Therefore, the transformation from a rhombicuboctahedron to a cube with synchronized radial motion is 
obtained and shown in Fig. 7(d). 

Without loss of generality, the equivalent mobility analysis method can be effectively applied to this deployable cubic mechanism 
involved with twelve Sarrus linkages. Similarly, by regarding a Sarrus linkage as a prismatic joint, the equivalent motion screws can be 

Fig. 5. Kinematic curves of (a) inscribed sphere radius r and circumscribed sphere radius R and (b) the volume V vs. folding angle φ. When φ varies 
from 0 to 90◦, r is from 

̅̅̅
6

√
a/12to

̅̅̅
6

√
a/3, R is from 

̅̅̅
6

√
a/4toa, V is from 

̅̅̅
2

√
a3/12to5

̅̅̅
2

√
a3/3. 

Fig. 6. Motion sequence of the tetrahedral mechanism.  
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calculated based on the reference coordinate frame in Fig. 8(a) and its dual octahedron in Fig. 8(b), in which the details of adjoint 
transformation matrices can be found in Appendix C. Thus, the equivalent mechanism of the proposed cubic mechanism can be ob-
tained in Fig. 8(c) with prismatic joints P1 to P12, which has a base of its dual octahedron. Inspired by Sclegel diagram [49] for 
polyhedral representation, i.e., a planar projection of a polyhedron, Fig. 8(d) illustrates the constraint graph of equivalent mechanism 
with Sf1 to Sf12, then the constraint matrix can be derived as 

Me2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 Sf 7 0 0 0 Sf 11 Sf 12
0 0 Sf 3 Sf 4 0 0 − Sf 7 0 0 0 0 0
0 0 0 0 0 Sf 6 0 0 0 Sf 10 − Sf 11 0
0 0 0 0 0 0 0 Sf 8 Sf 9 0 0 − Sf 12

Sf 1 0 0 − Sf 4 0 0 0 − Sf 8 0 0 0 0
0 Sf 2 − Sf 3 0 0 − Sf 6 0 0 0 0 0 0
0 0 0 0 Sf 5 0 0 0 − Sf 9 − Sf 10 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (11) 

The rank of this 42 × 12 constraint matrix is 11, hence m = ne − rank(Me2) = 12 − 11 = 1, indicating that the deployable cubic 
mechanism has mobility of one. To verify the equivalent analysis result, the original constraint graph and an 114 × 72 original 
constraint matrix M2 are given in Appendix C, from which the fact that the Sarrus-inspired deployable cubic mechanism has mobility of 
one is further derived. 

Furthermore, we also can create a deployable dodecahedral mechanism following Ih symmetry with the proposed construction 
strategy. A dodecahedron with twelve congruous pentagonal platforms and thirty edges is given in Fig. 9(a), after the expansion 
operation of pentagonal prismoids with β = 58.28∘ (a half of dihedral angle between two adjacent pentagonal platforms), thirty red 
straight-line motion paths are illustrated in Fig. 9(b). Taking the similar implantation of Sarrus linkages as given in Fig. 2(c), the 
deployable dodecahedron based on thirty identical Sarrus linkages is constructed in Fig. 9(c), in which γ ∈ (0, 138.19∘] should be 
considered in this mechanism Meanwhile, the radial transformation from a rhombicosidodecahedron to a dodecahedron is obtained. 

By following the equivalent analysis approach, the reference coordinate system of the deployable dodecahedral mechanism is 
established in Fig. 10(a) and (b), thirty motion screws can be derived referring to the details listed in Appendix D. Hence, we obtain an 
equivalent mechanism with thirty prismatic joints on a base of dual icosahedron, see Fig. 10(c). Together with the Schlegel diagram of 
its dual icosahedron, the equivalent constraint graph with thirty motion screws Sf1 to Sf30 is sketched in Fig. 10(d), then an 114 ×30 
equivalent constraint matrix Me3 can be organized as 

Fig. 7. Construction of the deployable cubic mechanism. (a) A cube and the Cartesian coordinate system; (b) the expansion of six square platforms 
of a cube; (c) straight-line motion paths between two adjacent platforms; (d) the motion sequence from a rhombicuboctahedron (the deployed 
configuration) to a cube (the folded configuration). 

Y. Gu et al.                                                                                                                                                                                                              



Mechanism and Machine Theory 193 (2024) 105564

9

Me3 =

⎡

⎣
06×6 06×6 M13 M14 M15
06×6 M22 M23 M24 M25
M31 M32 M33 07×6 07×6

⎤

⎦, (12)  

in which its submatrices are given in Appendix D. 
The rank of this constraint matrix can be calculated as 29. Therefore, the mobility of the deployable dodecahedral mechanism is m 

= ne − rank(Me3) = 30 − 29 = 1. Furthermore, the original constraint graph and a 294 × 180 original constraint matrix M3 can be 
found in Appendix D, as well as the same conclusion about mobility of one. 

Although only three platonic polyhedrons are investigated in this paper due to their regular transformability, such construction 
methods can be adapted to explore the design of other one-DOF deployable polyhedrons such as Archimedean polyhedrons and prisms. 
The details of Sarrus-inspired DPMs that can be constructed with the proposed method are listed in Table 1, including the number of 
Sarrus linkages (NSarrus), links (Nlink) and joints (Njoint) as well as the angle β(M,N) for radially decomposed prismoids, and the angle γmax 
to avoid interference. Here, as an example to demonstrate the extension of proposed method, a Sarrus-inspired triangular-prism 
mechanism is constructed as illustrated in Fig. 11, which synthesizes nine Sarrus linkages with total 41 links and 54 joints. Following 
the expansion operation and construction conditions, there further exists β(3,4)=45◦, β(4,4)=60◦ as well as γmax=98.21◦ in this 
deployable triangular prism. 

Fig. 8. Mobility analysis of deployable cubic mechanism. Coordinate system in (a) deployed configuration of cubic mechanism (rhombicubocta-
hedron) and (b) its dual octahedron (yi present the direction of straight-line motion); (c) the equivalent mechanism with twelve prismatic joints and 
(d) its constraint graph. 

Y. Gu et al.                                                                                                                                                                                                              



Mechanism and Machine Theory 193 (2024) 105564

10

Fig. 9. Construction of the deployable dodecahedral mechanism. (a) A dodecahedron and the Cartesian coordinate system; (b) straight-line motion 
paths between two adjacent pentagonal platforms; (c) the motion sequence from a rhombicosidodecahedron (the deployed configuration) to a 
dodecahedron (the folded configuration). 
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4. Discussions and Conclusions 

This paper proposed an innovative approach for constructing Sarrus-inspired deployable polyhedral mechanisms based on three 
Platonic polyhedrons. Through integrating the Sarrus linkages into Platonic polyhedrons after expansion operation, the deployable 
tetrahedral, cubic and dodecahedral mechanisms were synthesized and constructed that enable the one-DOF synchronized radial 
motion, in which three paired polyhedral transformations between Platonic and Archimedean polyhedrons were identified and 
revealed. Note that, to realise such one-DOF polyhedral construction, three adjacent platforms in a polyhedron should surround at a 
common vertex to derive a one-DOF assembly of three Sarrus linkages acting as the mechanism unit, as similar as the synthesis 

Fig. 10. Mobility analysis of deployable dodecahedral mechanism. Coordinate system in (a) deployed configuration of the dodecahedron (rhom-
bicosidodecahedron) and (b) its dual icosahedron (yi present the direction of straight-line motion); (c) the equivalent mechanism with thirty 
prismatic joints and (d) its constraint graph. 

Table 1 
Sarrus-inspired DPMs in different polyhedral groups.  

Polyhedral groups Deployable mechanisms NSarrus Nlink Njoint β (M,N) (◦) γmax (◦) 

Platonic polyhedrons Tetrahedron 6 28 36 35.26 (3,3) 70.53 
Cube 12 54 72 45 (4,4) 109.47 
Dodecahedron 30 132 180 58.28 (5,5) 139.18 

Archimedean polyhedrons Truncated tetrahedron 18 80 108 54.74 (3,6) , 35.26 (6,6) 129.52 
Truncated cube 36 158 216 62.63 (3,8), 45 (8,8) 147.35 
Truncated octahedron 36 158 216 62.63 (4,6),54.74 (6,6) 143.13 
Truncated cuboctahedron 72 314 432 72.37 (4,6), 67.5 (4,8), 62.63 (6,8) 155.09 
Truncated dodecahedron 90 392 540 71.31 (3,10), 58.28 (10,10) 160.61 
Truncated icosahedron 90 392 540 69.09 (6,6), 71.31 (5,6) 156.72 
Truncated icosidodecahedron 180 782 1080 79.55 (4,6), 74.14 (4,10), 71.31 (6,10) 164.89 

Prisms N-prism (N ≥ 3) 3N 13N+2 18N 90(N-2)/N (4,4), 45 (N,4) 2arccos(1+csc2(π/N))− 1/2 

* M and N in β (M, N) stand for two adjacent M-polygon and N-polygon. 
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principle of the proposed tetrahedral, cubic and dodecahedral mechanisms. However, if four or more platforms meet at one common 
vertex in a polyhedron, the DOF of the corresponding mechanism will increase. For example, the Sarrus-inspired octahedral mech-
anism will have three DOFs due to its two-DOF unit assembled by four Sarrus linkages at one vertex. Furthermore, the equivalent 
analysis strategy for multiloop polyhedral mechanisms was proposed by means of the equivalent prismatic joint, which brings 
simplicity and high-efficiency in mobility analysis. 

The proposed construction and analysis strategy can be adapted to design other deployable structures in various regular and 
irregular polyhedral groups that could facilitate their applications in various engineering fields. The construction method in this work 
can realise the regular configurations at both deployed and folded states, in which all mechanism units involved in the radial con-
struction have the identical motion that can facilitate manufacture and actuation. Furthermore, based on the construction method in 
this paper, we also can realise all nine paired transformations reported in our previous work [50], where structural variations with 
mechanism topology isomorphism need to be carried out. Note that the proposed polyhedrons are multiloop mechanisms with a great 
number of overconstraints, the constraint reduction method for such multiloop mechanisms should be further investigated, in which 
the detailed analysis is left for another paper in the near future. Furthermore, due to the synchronized radial motion of the deployable 
polyhedrons, this work also paves the way to design the kinematic cell for metastructures and metamaterials, especially in octahedral 
symmetry, by means of the special design of the links and joints to realise the metamaterial characteristics such as bi-stability. We 
expect the proposed Sarrus-inspired deployable polyhedrons and their tessellation could facilitate their applications in various en-
gineering fields such as multifunctional metamaterials, deployable structures for architectures as well as space exploration. 
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Appendix A 

Ri and pi (i =1, 2, …, 6) of adjoint transformation matrices in deployable tetrahedral mechanism (Fig. 3) are listed as 

R1 =

⎡

⎣

−
̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2 0

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2 0

0 0 1

⎤

⎦, p1 = d1[ 0 0 1 ]T  

Fig. 11. Motion sequence of the deployable triangular-prism mechanism.  
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R2 =

⎡

⎣

0 0 − 1
−

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2 0

−
̅̅̅
2

√ /
2

̅̅̅
2

√ /
2 0

⎤

⎦, p2 = d1[ − 1 0 0 ]T  

R3 =

⎡

⎣

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2 0

0 0 − 1̅̅̅
2

√ /
2

̅̅̅
2

√ /
2 0

⎤

⎦, p3 = d1[ 0 − 1 0 ]T,

R4 =

⎡

⎣

0 0 1
−

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2 0

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2 0

⎤

⎦, p4 = d1[ 1 0 0 ]T,

R5 =

⎡

⎣
−

̅̅̅
2

√ /
2

̅̅̅
2

√ /
2 0

0 0 1̅̅̅
2

√ /
2

̅̅̅
2

√ /
2 0

⎤

⎦, p5 = d1[ 0 1 0 ]T,

R6 =

⎡

⎣

−
̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2 0

−
̅̅̅
2

√ /
2

̅̅̅
2

√ /
2 0

0 0 − 1

⎤

⎦, p6 = d1[ 0 0 − 1 ]T, (A1)  

Appendix B 

As shown in Fig. B1, taking the Sarrus linkage between platforms A and B as an example, φ1 and φ′
1 are two related kinematic 

variables (also see Fig. 3a), and φ′
1 = 2φ1 can be easily obtained. Meanwhile, for all the six involved Sarrus linkages, φ′

i = 2φi(i=1 to 
6). Next, among platforms A, B and C, a spatial 9R linkage can be identified as an assembly of three limbs of three corresponding Sarrus 
linkages, in which the revolute axes z1 to z9 are highlighted in red. Similarly, a general kinematic solution of this spatial 9R linkage is 
revealed in our previous work [50], including the matrices operation process based on D-H matrix method [51]. 

In this tetrahedral mechanism, for the spatial 9R linkage among platforms A, B and C, we have the motion constraint relationships 
as 

φ′
1 = 2φ1,φ′

3 = 2φ3,φ′
4 = 2φ4 (B1)  

Substituting this constraint condition into kinematic solution of this 9R linkage yields 

φ1 = φ3 = φ4,φ′
1 = φ′

3 = φ′
4, (B2)  

Carrying out the similar calculation procedure, other constraint conditions for the rest three 9R linkages are 

φ′
1 = 2φ1,φ

′
2 = 2φ2,φ

′
5 = 2φ5  

φ′
2 = 2φ2,φ

′
3 = 2φ3,φ

′
6 = 2φ6  

φ′
4 = 2φ4,φ

′
5 = 2φ5,φ

′
6 = 2φ6 (B3)  

Further, we can obtain the kinematic relationships in the entire tetrahedral mechanism as 

φ1 = φ2 = φ3 = φ4 = φ5 = φ6,φ′
1 = φ′

2 = φ′
3 = φ′

4 = φ′
5 = φ′

6, (B4)  

Therefore, all the six involved Sarrus linkages have the identical kinematic behavior that can generate the one-DOF synchronized 
radial motion of the entire tetrahedral mechanism. 
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Fig. B1. Analysis of kinematic variables in the tetrahedral mechanism.  

Appendix C 

The number of links and revolute joints in the deployable cubic mechanism are 54 and 72, respectively, in which the independent 
loops of this mechanism are 19. Based on the reference coordinate frame in Fig. 8 in Section 3, Fig. C1 shows the original constraint 
graph with 72 joint screws in the deployable cubic mechanism. 

The details of adjoint transformation matrices are 

R1 =

⎡

⎣
0 −

̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

1 0 0
0

̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

⎤

⎦, p1 = d2[ 1 0 1 ]T  

R2 =

⎡

⎣
− 1 0 0
0 −

̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

0
̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

⎤

⎦, p2 = d2[ 0 1 1 ]T  

R3 =

⎡

⎣
0

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

− 1 0 0
0

̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

⎤

⎦, p3 = d2[ − 1 0 1 ]T   

Fig. C1. Original constraint graph of the deployable cubic mechanism.  

Y. Gu et al.                                                                                                                                                                                                              



Mechanism and Machine Theory 193 (2024) 105564

15

R4 =

⎡

⎣
1 0 0
0

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

0
̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

⎤

⎦, p4 = d2[ 0 − 1 1 ]T,

R5 =

⎡

⎣
0

̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

0 −
̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

1 0 0

⎤

⎦, p5 = d2[ 1 0 1 ]T  

R6 =

⎡

⎣
0

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

0
̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

1 0 0

⎤

⎦, p6 = d2[ − 1 1 0 ]T  

R7 =

⎡

⎣
0 −

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

0
̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

1 0 0

⎤

⎦, p7 = d2[ − 1 − 1 0 ]T,

R8 =

⎡

⎣
0 −

̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

0 −
̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

1 0 0

⎤

⎦, p8 = d2[ 1 − 1 0 ]T,

R9 =

⎡

⎣
0

̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

1 0 0
0

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

⎤

⎦, p9 = d2[ 1 0 − 1 ]T,

R10 =

⎡

⎣
− 1 0 0
0

̅̅̅
2

√ /
2

̅̅̅
2

√ /
2

0
̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

⎤

⎦, p10 = d2[ 0 1 − 1 ]T,

R11 =

⎡

⎣
0 −

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

− 1 0 0
0

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

⎤

⎦, p11 = d2[ − 1 0 − 1 ]T,

R12 =

⎡

⎣
1 0 0
0 −

̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

0
̅̅̅
2

√ /
2 −

̅̅̅
2

√ /
2

⎤

⎦, p12 = d2[ 0 − 1 − 1 ]T (C1)  

and the 114 × 72 original constraint matrix M2 can be expressed as 

M2 =

⎡

⎣
M11 06×36
06×36 M22
M31 M32

⎤

⎦, (C2)  

where 

06×36 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

06 06 06 06 06 06
06 06 06 06 06 06
06 06 06 06 06 06
06 06 06 06 06 06
06 06 06 06 06 06
06 06 06 06 06 06

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,M11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1 06 06 06 06 06
06 S2 06 06 06 06
06 06 S3 06 06 06
06 06 06 S4 06 06
06 06 06 06 S5 06
06 06 06 06 06 S6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M22 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

S7 06 06 06 06 06
06 S8 06 06 06 06
06 06 S9 06 06 06
06 06 06 S10 06 06
06 06 06 06 S11 06
06 06 06 06 06 S12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,M31 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

06 06 06 06 06 06
06 06 06 06 06 06
06 06 − S′

3 − S″
4 06 06

06 06 06 06 06 − S″
6

06 − S′
2 − S″

3 06 06 − S′
6

06 06 06 06 − S″
5 06

− S″
1 06 06 − S′

4 06 06

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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M32 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− S″
7 06 06 06 − S′

11 − S″
12

06 − S″
8 − S″

9 06 06 − S′
12

− S′
7 06 06 06 06 06

06 06 06 − S′
10 − S″

11 06
06 06 06 06 06 06
06 06 − S′

9 − S″
10 06 06

06 − S′
8 06 06 06 06

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Thus, the rank of the original constraint matrix M2is 71, which indicates the mobility of the deployable cubic mechanism as m = n 
− rank(M2) = 72 − 71 = 1. 

Appendix D 

Firstly, the details of submatrices of Me3 (Eq. (12) in Section 3) can be listed as 

M13 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0

0 0 0 0 0 Sf 18

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 Sf 16 Sf 17 0

0 Sf 14 Sf 15 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M14 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 Sf 24

Sf 19 0 0 0 0 − Sf 24

0 0 0 0 0 0

0 0 0 0 Sf 23 0

0 0 0 0 − Sf 23 0

0 0 0 Sf 22 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M15 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 Sf 29 Sf 30

0 0 0 0 0 0

Sf 25 Sf 26 0 0 0 − Sf 30

0 0 0 Sf 28 − Sf 29 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M22 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 Sf 10 0 0
0 0 0 0 Sf 11 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 Sf 9 0 0 0
0 0 0 0 0 Sf 12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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M23 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 − Sf 17 − Sf 18 0

Sf 13 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M24 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− Sf 19 Sf 20 0 0 0 0
0 − Sf 20 0 0 0 0
0 0 Sf 21 0 0 0
0 0 0 − Sf 22 0 0
0 0 0 0 0 0
0 0 − Sf 21 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M25 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
− Sf 25 0 0 0 0 0

0 − Sf 26 Sf 27 0 0 0
0 0 − Sf 27 − Sf 28 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M31 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 Sf 3 Sf 4 0 0

0 0 0 − Sf 4 − Sf 5 0

0 0 0 0 0 Sf 6

0 0 0 0 0 0

0 0 0 0 0 0

0 Sf 2 − Sf 3 0 0 0

Sf 1 0 0 0 − Sf 5 − Sf 6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M32 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 − Sf 9 0 0 0

0 0 0 − Sf 10 0 0

0 0 0 0 − Sf 11 − Sf 12

0 Sf 8 0 0 0 0

Sf 7 0 0 0 0 0

0 − Sf 8 0 0 0 0

0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M33 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 − Sf 15 − Sf 16 0 0

− Sf 13 − Sf 14 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Next, the deployable dodecahedral mechanism consists of 132 links and 180 revolute joints, and the independent loops of this 
mechanism are 49. Referring to the reference coordinate frame in Fig. 10 in Section 3, the original constraint graph with 180 joint 
screws is shown in Fig. D1. 

The details of adjoint transformation matrices in this mechanism are 

R1 =

⎡

⎢
⎢
⎣

−
( ̅̅̅

5
√

+ 1
)/

4 − 1/2 −
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4 1/2

− 1/2
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4

⎤

⎥
⎥
⎦, p1 = d3

⎡

⎢
⎣

−
( ̅̅̅

5
√

− 1
)/

4
1/2( ̅̅̅

5
√

+ 1
)/

4

⎤

⎥
⎦
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Fig. D1. Original constraint graph of the deployable dodecahedral mechanism.  

R2 =

⎡

⎣
0 − 1 0
1 0 0
0 0 1

⎤

⎦, p2 = d3

⎡

⎣
0
0
1

⎤

⎦,

R3 =

⎡

⎢
⎢
⎣

( ̅̅̅
5

√
+ 1

)/
4 − 1/2 −

( ̅̅̅
5

√
− 1

)/
4

( ̅̅̅
5

√
− 1

)/
4

( ̅̅̅
5

√
+ 1

)/
4 − 1/2

1/2
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4

⎤

⎥
⎥
⎦, p3 = d3

⎡

⎢
⎣

−
( ̅̅̅

5
√

− 1
)/

4
− 1/2( ̅̅̅

5
√

+ 1
)/

4

⎤

⎥
⎦

R4 =

⎡

⎢
⎢
⎣

1/2
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4
−
( ̅̅̅

5
√

+ 1
)/

4 1/2 −
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 1/2

⎤

⎥
⎥
⎦, p4 = d3

⎡

⎢
⎣

−
( ̅̅̅

5
√

+ 1
)/

4

−
( ̅̅̅

5
√

− 1
)/

4
1/2

⎤

⎥
⎦,

R5 =

⎡

⎢
⎢
⎣

− 1/2
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4
−
( ̅̅̅

5
√

+ 1
)/

4 − 1/2
( ̅̅̅

5
√

− 1
)/

4

−
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 1/2

⎤

⎥
⎥
⎦, p5 = d3

⎡

⎢
⎣

−
( ̅̅̅

5
√

+ 1
)/

4
( ̅̅̅

5
√

− 1
)/

4
1/2

⎤

⎥
⎦

R6 =

⎡

⎢
⎢
⎣

−
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 − 1/2

− 1/2
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 1/2
( ̅̅̅

5
√

− 1
)/

4

⎤

⎥
⎥
⎦, p6 = d3

⎡

⎢
⎢
⎣

− 1/2( ̅̅̅
5

√
+ 1

)/
4

( ̅̅̅
5

√
− 1

)/
4

⎤

⎥
⎥
⎦,

R7 =

⎡

⎢
⎢
⎣

−
( ̅̅̅

5
√

+ 1
)/

4 1/2
( ̅̅̅

5
√

− 1
)/

4

−
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4 1/2

1/2
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4

⎤

⎥
⎥
⎦, p7 = d3

⎡

⎢
⎣

( ̅̅̅
5

√
− 1

)/
4

1/2( ̅̅̅
5

√
+ 1

)/
4

⎤

⎥
⎦

R8 =

⎡

⎢
⎢
⎣

−
( ̅̅̅

5
√

+ 1
)/

4 − 1/2
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4 − 1/2

1/2 −
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4

⎤

⎥
⎥
⎦, p8 = d3

⎡

⎢
⎣

( ̅̅̅
5

√
− 1

)/
4

− 1/2( ̅̅̅
5

√
+ 1

)/
4

⎤

⎥
⎦,

R9 =

⎡

⎢
⎢
⎣

−
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4 − 1/2

1/2
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 − 1/2
( ̅̅̅

5
√

− 1
)/

4

⎤

⎥
⎥
⎦, p9 = d3

⎡

⎢
⎢
⎣

− 1/2
−
( ̅̅̅

5
√

+ 1
)/

4
( ̅̅̅

5
√

− 1
)/

4

⎤

⎥
⎥
⎦
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R10 =

⎡

⎣
0 0 − 1
0 1 0
1 0 0

⎤

⎦, p10 = d3

⎡

⎣
− 1
0
0

⎤

⎦,

R11 =

⎡

⎢
⎢
⎣

( ̅̅̅
5

√
− 1

)/
4

( ̅̅̅
5

√
+ 1

)/
4 − 1/2

1/2
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 − 1/2 −
( ̅̅̅

5
√

− 1
)/

4

⎤

⎥
⎥
⎦, p11 = d3

⎡

⎢
⎢
⎣

− 1/2( ̅̅̅
5

√
+ 1

)/
4

−
( ̅̅̅

5
√

− 1
)/

4

⎤

⎥
⎥
⎦

R13 =

⎡

⎢
⎢
⎣

( ̅̅̅
5

√
− 1

)/
4

( ̅̅̅
5

√
+ 1

)/
4 1/2

− 1/2 −
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 − 1/2
( ̅̅̅

5
√

− 1
)/

4

⎤

⎥
⎥
⎦, p13 = d3

⎡

⎢
⎢
⎣

1/2( ̅̅̅
5

√
+ 1

)/
4

( ̅̅̅
5

√
− 1

)/
4

⎤

⎥
⎥
⎦,

R14 =

⎡

⎢
⎢
⎣

− 1/2 −
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 − 1/2
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 1/2

⎤

⎥
⎥
⎦, p14 = d3

⎡

⎢
⎣

( ̅̅̅
5

√
+ 1

)/
4

( ̅̅̅
5

√
− 1

)/
4

1/2

⎤

⎥
⎦

R15 =

⎡

⎢
⎢
⎣

− 1/2
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4
−
( ̅̅̅

5
√

+ 1
)/

4 − 1/2 −
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4 1/2

⎤

⎥
⎥
⎦, p15 = d3

⎡

⎢
⎣

( ̅̅̅
5

√
+ 1

)/
4

−
( ̅̅̅

5
√

− 1
)/

4
1/2

⎤

⎥
⎦,

R16 =

⎡

⎢
⎢
⎣

( ̅̅̅
5

√
− 1

)/
4 −

( ̅̅̅
5

√
+ 1

)/
4 1/2

1/2 −
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 − 1/2
( ̅̅̅

5
√

− 1
)/

4

⎤

⎥
⎥
⎦, p16 = d3

⎡

⎢
⎢
⎣

1/2
−
( ̅̅̅

5
√

+ 1
)/

4
( ̅̅̅

5
√

− 1
)/

4

⎤

⎥
⎥
⎦

R17 =

⎡

⎣
− 1 0 0
0 0 − 1
0 − 1 0

⎤

⎦, p17 = d3

⎡

⎣
0
− 1
0

⎤

⎦

R18 =

⎡

⎢
⎢
⎣

( ̅̅̅
5

√
− 1

)/
4 −

( ̅̅̅
5

√
+ 1

)/
4 − 1/2

− 1/2
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 1/2 −
( ̅̅̅

5
√

− 1
)/

4

⎤

⎥
⎥
⎦, p18 = d3

⎡

⎢
⎢
⎣

− 1/2
−
( ̅̅̅

5
√

+ 1
)/

4

−
( ̅̅̅

5
√

− 1
)/

4

⎤

⎥
⎥
⎦,

R19 =

⎡

⎢
⎢
⎣

− 1/2
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 1/2 −
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4 − 1/2

⎤

⎥
⎥
⎦, p19 = d3

⎡

⎢
⎣

−
( ̅̅̅

5
√

+ 1
)/

4

−
( ̅̅̅

5
√

− 1
)/

4
− 1/2

⎤

⎥
⎦

R20 =

⎡

⎢
⎢
⎣

− 1/2 −
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√
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)/
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( ̅̅̅
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√
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)/
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( ̅̅̅
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√

− 1
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( ̅̅̅
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√
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( ̅̅̅
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√
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⎡

⎢
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5
√

+ 1
)/

4
( ̅̅̅
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√

− 1
)/
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− 1/2

⎤

⎥
⎦,

R21 =

⎡
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⎢
⎣

−
( ̅̅̅
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√
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1/2 −
( ̅̅̅

5
√
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4
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√
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)/
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√
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5
√
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4

⎤

⎥
⎥
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⎡

⎢
⎢
⎣
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5

√
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)/
4

−
( ̅̅̅

5
√

− 1
)/

4

⎤

⎥
⎥
⎦,

R22 =

⎡

⎣
0 0 1
0 − 1 0
1 0 0

⎤

⎦, p22 = d3

⎡

⎣
1
0
0

⎤

⎦

R23 =
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⎢
⎢
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5
√
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4 −
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√

+ 1
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√
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4

⎤

⎥
⎥
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⎡

⎢
⎢
⎣
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5
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−
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5
√

− 1
)/
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⎤

⎥
⎥
⎦,

Y. Gu et al.                                                                                                                                                                                                              



Mechanism and Machine Theory 193 (2024) 105564

20

R24 =

⎡

⎢
⎢
⎣

−
( ̅̅̅

5
√

+ 1
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4 − 1/2 −
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4

−
( ̅̅̅
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√

− 1
)/

4
( ̅̅̅

5
√
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1/2 −
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√
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)/

4 −
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5
√
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)/

4

⎤

⎥
⎥
⎦, p24 = d3

⎡

⎢
⎣
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5
√
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4
− 1/2

−
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5
√
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4

⎤

⎥
⎦

R25 =

⎡

⎢
⎢
⎣

−
( ̅̅̅

5
√
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4 1/2 −
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5
√
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5
√

− 1
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4
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5
√
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4 1/2

1/2
( ̅̅̅

5
√
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4 −
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5
√

+ 1
)/

4

⎤

⎥
⎥
⎦, p25 = d3

⎡

⎢
⎣

−
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5
√
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4
1/2

−
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5
√
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4

⎤

⎥
⎦,
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⎡

⎢
⎢
⎣
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4
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5
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5
√

− 1
)/

4 −
( ̅̅̅
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⎤

⎥
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⎢
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5
√
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4

⎤

⎥
⎦
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⎡

⎢
⎢
⎣
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√
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√
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4
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5
√
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( ̅̅̅

5
√
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⎤

⎥
⎥
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⎡

⎢
⎣

( ̅̅̅
5

√
+ 1

)/
4

( ̅̅̅
5

√
− 1

)/
4

− 1/2

⎤

⎥
⎦,

R28 =

⎡

⎢
⎢
⎣

− 1/2 −
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4
−
( ̅̅̅

5
√

+ 1
)/

4 1/2 −
( ̅̅̅

5
√

− 1
)/

4

−
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4 − 1/2

⎤

⎥
⎥
⎦, p28 = d3

⎡

⎢
⎣

( ̅̅̅
5

√
+ 1

)/
4

−
( ̅̅̅

5
√

− 1
)/

4
− 1/2

⎤

⎥
⎦

R29 =

⎡

⎢
⎢
⎣

−
( ̅̅̅

5
√

+ 1
)/

4 1/2
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

− 1
)/

4
( ̅̅̅

5
√

+ 1
)/

4 − 1/2

− 1/2 −
( ̅̅̅

5
√

− 1
)/

4 −
( ̅̅̅

5
√

+ 1
)/

4

⎤

⎥
⎥
⎦, p29 = d3

⎡

⎢
⎣

( ̅̅̅
5

√
− 1

)/
4

− 1/2
−
( ̅̅̅

5
√

+ 1
)/

4

⎤

⎥
⎦,

R30 =

⎡

⎣
0 1 0
1 0 0
0 0 − 1

⎤

⎦, p30 = d3

⎡

⎣
0
0
− 1

⎤

⎦, (D1) 

Subsequently, referring to the constraint graph in Fig. D1, the 294 × 180 original constraint matrix M3 can be derived as 

M3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M11 06×36 06×36 06×36 06×36
06×36 M22 06×36 06×36 06×36
06×36 06×36 M33 06×36 06×36
06×36 06×36 06×36 M44 06×36
06×36 06×36 06×36 06×36 M55
06×36 M62 06×36 M64 M65
06×36 M72 M73 M74 06×36
M81 M82 M83 07×36 07×36

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (D2)  

and the corresponding submatrices are 

M11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

S1 06 06 06 06 06
06 S2 06 06 06 06
06 06 S3 06 06 06
06 06 06 S4 06 06
06 06 06 06 S5 06
06 06 06 06 06 S6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,M22 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

S7 06 06 06 06 06
06 S8 06 06 06 06
06 06 S9 06 06 06
06 06 06 S10 06 06
06 06 06 06 S11 06
06 06 06 06 06 S12

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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M33 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S13 06 06 06 06 06

06 S14 06 06 06 06

06 06 S15 06 06 06

06 06 06 S16 06 06

06 06 06 06 S17 06

06 06 06 06 06 S18

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,M44 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S19 06 06 06 06 06

06 S20 06 06 06 06

06 06 S21 06 06 06

06 06 06 S22 06 06

06 06 06 06 S23 06

06 06 06 06 06 S24

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

M44 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

S25 06 06 06 06 06

06 S26 06 06 06 06

06 06 S27 06 06 06

06 06 06 S28 06 06

06 06 06 06 S29 06

06 06 06 06 06 S30

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,M62 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

06 06 06 06 06 06

06 06 06 06 − S″
11 06

06 06 06 06 06 06

06 06 06 06 06 06

06 06 06 06 06 06

06 06 06 06 06 06

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

M64 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

06 06 06 06 06 − S″
24

06 − S″
20 06 06 06 06

06 06 06 06 06 06
06 06 06 06 − S″

23 06
06 06 − S″

21 06 06 06
06 06 06 − S″

22 06 06

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

M65 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

06 06 06 06 − S″
29 − S′

30
− S′

25 06 06 06 06 06
− S″

25 − S″
26 06 06 06 − S″

30
06 06 06 − S′

28 − S′
29 06

06 − S′
26 − S″

27 06 06 06
06 06 − S′

27 − S″
28 06 06

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M72 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

06 06 06 − S″
10 06 06

06 06 06 06 06 06
06 06 06 06 06 06
06 06 − S″

9 06 06 06
06 06 06 06 06 06
06 06 06 06 06 − S″
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⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,M73 =

⎡
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⎢
⎢
⎢
⎢
⎢
⎣

06 06 06 06 06 06
06 06 06 06 06 − S″

18
06 06 06 − S″

16 − S″
17 06

06 06 06 06 − S′
17 − S′

18
06 − S″

14 − S″
15 06 06 06

− S″
13 06 06 06 06 06

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M74 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− S′
19 − S′

20 06 06 06 06
− S″

19 06 06 06 06 − S′
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06 06 06 06 − S′
23 06

06 06 06 06 06 06
06 06 06 − S′

22 06 06
06 06 − S′

21 06 06 06

⎤
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⎥
⎥
⎥
⎥
⎦
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5 06
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6
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

M82 =

⎡
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06 06 − S′
9 06 06 06
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,M83 =
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⎢
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⎢
⎢
⎢
⎢
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06 06 06 06 06 06
06 06 06 06 06 06
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06 06 − S′

15 − S′
16 06 06
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13 − S′

14 06 06 06 06
06 06 06 06 06 06
06 06 06 06 06 06

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Finally, the rank of the original constraint matrix M3 is 179, the conclusion that the deployable dodecahedral mechanism has one 
mobility can be generated as m = n − rank(M3) = 180 − 179 = 1. 
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