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ABSTRACT

Mobile assemblies of spatial linkages and rigid origami are of superiorly foldable
properties. Therefore, they have great potential in various engineering fields, such as
aerospace and robotics. Due to the motion complexity of them, it is a challenge to seek
for novel designs. In this dissertation, the relationships between mobile assemblies of
spatial linkages, thick-panel origami and rigid origami are studied. Transition technique
based on thick-panel origami and vertex-splitting technique are proposed to design new
mobile assemblies of spatial linkages, one-DOF (degree of freedom) origami and thick-
panel origami with flat-surface unfolded profiles. The major findings of this dissertation
are as follows.

Firstly, the transition technique from four-crease origami patterns to mobile
assemblies of Bennett linkages is developed by taking the thick-panel form of an
origami pattern as an intermediate bridge. Applying this transition technique to the
Miura-ori and graded Miura-ori patterns, assemblies of Bennett linkages with identical
link lengths are obtain. Three cases of mountain-valley crease assignments of
supplementary-type origami patterns correspond to different types of Bennett linkage
assemblies with negative link lengths. And a new assembly of Bennett linkages is
derived from the identical linkage-type origami pattern with the application of the
transition technique.

Secondly, the kinematic equivalence between the diamond thick-panel origami
and mobile assembly of plane-symmetric Bricard linkages is set up based on the
transition technique. Two general cases of mobile assemblies of plane-symmetric
Bricard linkages are discovered by analysing the compatibility of diamond assembly
which is derived from a diamond thick-panel origami pattern. One of the newly-found
mobile assemblies inspires the variation of the sector angle and thickness of diamond
thick-panel origami pattern. Thus, new diamond thick-panel origami patterns with flat
unfolded profiles and/or spirally folded configuration are invented, and the graded one
can be extended infinitely without physical interference.

Finally, to reduce the number of DOF in the multi-DOF rigid origami pattern, a
vertex-splitting technique including two splitting schemes on the diamond vertex are
proposed to generate three types of unit patterns. Then, the technique is applied to the
multi-vertex diamond origami pattern to produce several one-DOF basic assemblies
and a number of one-DOF origami patterns. Two of the one-DOF origami patterns are
discussed. One is flat-foldable origami pattern mixed with four-crease and six-crease
vertices, and the other is non-flat-foldable origami pattern mixed with four-crease, five-
crease, and six-crease origami vertices. Hinge-removing is proposed by analysing the
relationship between the construction of Waldron’s hybrid 6R linkage from Bennett
linkages and the variation of their corresponding thick-panel origami pattern. This

111



indicates the thick-panel origami pattern with two four-crease vertices can be
transformed into a kinematically equivalent pattern with six creases by removing the
shared hinges to construct thick-panel origami patterns with flat-surface unfolded
profiles.

Therefore, the research in this dissertation is based on the transition technique and
vertex-splitting technique. It reveals the close relationships among mobile assemblies
of spatial linkages, rigid origami and thick-panel origami, which offers approaches to

propose the new designs, and facilitates their applications.

KEYWORDS: Rigid origami, thick-panel origami, mobile assembly of spatial

linkages, Bennett linkage, Bricard linkage, transition technique, vertex-splitting

technique
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Notation

Parameters
Link lengths of Bennett linkage K in mobile assemblies
Link lengths of linkages between joint i and joint i+1

Number of bars in truss in Chapter 1 and 4
Creases of origami pattern or joints of linkage

Number of joints in truss in Chapter 1 and 4
Number of degrees of freedom

The thickness of special panels in Chapter 4

The thickness of panels in the single-vertex thick-panel
origami between creases k, and £,

The total thickness of panel P

Link lengths of Bricard linkage K in mobile assembly
corresponding to links with a®, A%, »*,respectively

x, y, z coordinate axis of system i

The origami vertex and its corresponding spherical
linkage; the thick-panel origami vertex and its
corresponding spatial linkage

The points at the edge of an origami pattern in Chapter 4

The points out of plane to generate the equivalent truss
form in Chapter 4

Identity matrix
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Chapter 1 Introduction

1.1 Background and Significance

Deployable structure is a type of transformable structures, which can vary their
shape from a compact, packaged configuration to an operational, expanded
configuration. In most cases, the packaged configuration is used for storage and
transportation, while the expanded configuration is for work requirements. They are
widely used in various engineering fields [1], such as aerospace (satellite antenna [2-7],
solar panels [8] and wings [9]), civil engineering (shelter [10, 11], dome [12] and bridge
[13, 14]), medical devices (origami stent graft [15], forceps [16]) and robotics [17-20].
According to the different morphology of their components, the structures can be
divided into two types, the bar-like deployable structure composed of bar elements or
lattices and the surface-like deployable structure composed of continuous surface
elements. Among them, the mobile assembly of linkages and origami are the special
cases of the respective types. Because of their low degrees of freedom (DOF) and
superiorly foldable properties, they have attracted more and more attention, recently.

A mobile assembly of linkages is a network or tessellation of unit linkages. Once
the unit linkage has a deployable property, the corresponding mobile assembly will
enhance the deployable advantage. A typical unit is a scissor-like unit [21, 22], which
has reliable synchronous movement, compactness and economic use of material. Those
advantages make it the most widely used unit in the design of large-scale deployable
structures, such as roofs [23, 24], shelters [10], antennas [6] and so on [25]. The other
unit is one-DOF and single-loop spatial overconstrained linkage, including Bennett
linkage [26], Myard linkage [27], Bricard linkage [28]. The number of DOF of this type
linkages does not obey the mobility criterion, Griibler-Kutzbach criterion. Their
motions are due to the specific geometric conditions. As the overconstrained geometry
of the linkages can provide extra stiffness and the linkages can generate complicated
three-dimensional motion with small number of bars, the mobile assembly of spatial
overconstrained linkages has been of a great research interest. The tessellation method
[29] is a well-explored method for the construction of mobile assemblies with three-
dimensional overconstrained linkages. However, due to the highly nonlinear property
of the compatibility conditions among the linkages in the assemblies, it is not easy to
find a new assembly made from nesting the overconstrained linkages together while
retaining mobility.

On the other hand, origami is a paper folding art, which can transform a paper
sheet into a three-dimensional structure. There are a large number of origami patterns
to form different shapes. It can fold a large-scale surface into a smaller one, which
makes it useful in designing deployable structures. Recent studies of origami have been
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done in a variety of engineering fields, typically in metamaterials [30, 31] and robotics
[32-34]. Since the traditional materials of the deployable structures are rigid, rigid
origami, where its facets can rotate around the crease and no deformation occurs on
facets, has received much attention. One-DOF Miura-ori [35, 36] has been extensively
studied for the reason that it has simple structure and can be easily controlled. Multi-
DOF origami has been widely used to transformable robots due to its deployment of
variable configurations. However, it is always a great challenge in designing of one-
DOF origami patterns and controlling the multi-DOF ones.

In general, origami structures are with zero-thickness panels. Then, one rigid
origami vertex can be considered as a spherical linkage by regarding the crease lines
and the rigid panels as revolute joints and links [37, 38], respectively. Hence, a rigid
origami pattern with multiple vertices is kinematically equivalent to a mobile assembly
of spherical linkages [39]. Kinematic theories of mechanism can be used to analyse the
rigid origami. Yet, some engineering applications requiring high strength or rigidity
cannot ignore the thickness of the material. One effective method is to offset the
revolute joints on the surfaces of thick panels so that their thickness can be
accommodated [40]. The generated thick-panel origami has been proven kinematically
equivalent to the overconstrained linkages. Therefore, the study of relationships
between rigid origami and mobile assembly of spatial linkages with the thick-panel
form as the intermediate bridge can offer a new way to design the assembly of spatial
linkages from the origami perspective, while the analysis of assembly of linkage with
the kinematic theory of mechanism can widen the design space of origami pattern. Such

study will facilitate their applications.
1.2 Review of Previous Works

1.2.1 Kinematic Analysis Theory in Mechanism

1.2.1.1 Matrix Method

Matrix method was established by Denavit and Hartenberg [41], which is very
effective in analysis of spatial linkages. The setup of each coordinate system is shown
in Fig. 1-1 [42]. The axis z; is along the axis of ith revolute joint (R joint); the axis
X; is along the common normal line from z,;, to z;;the axis ); can be determined
by the right-hand rule; ;) isthe normal distance between axes z, and z,;; %)
is the angle between z; and z,, measured from z; to z,, along the positive
direction of x,,,; R; isthe normal distance between axes X; and X, positive along
the axis z;; 6, is the angle between X, and x,,, measured from X, to X, along

the positive direction of z; .
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z

i+l

Joint i+1

Q- Aigivny

- \‘//x,.

Joint i

Fig. 1-1 D-H notation of two links connected by a revolute joint.

For a single closed loop linkage consisted of 7 links, the product of the transform
matrices equals to the 4 X4 identity matrix 1, , which is the closure equation, as

T21T32"'Tn(n—1)T1n =1,. (1-1)

where the transformation matrix 7,,,, is transforming the ith coordinate system to

the i+1th coordinate system, as

cosf, —cose,,sinf,  sing,,sin6,  a,,, cosé,
sind, cos«,,,,cosf. —sing,. cosb a, . sSing
e — i ' i(i+1) i i(i+1) i i(i+1) i (1_2)
0 Sin aj(j+]) COS ai(m) Ri
0 0 0 1

When i+1>n,itis replaced by 1. The inverse transformation can be expressed as

cos 6, sin 6, 0 — (i)
T, =T = —COS &,y SInG,  cosey,cos,  sing,,, —Rsing,, (13)
) D sin ¢, Sin 6,  —sin () c0s6;, €oS,, —R,cOst,
0 0 0 1

Due to the axes of revolute joints in spherical linkage intersecting at a point, the
distances and the offsets between adjacent links are zero. Thus, Eq. (1-1) reduces to

0,0; “.Qn(nfl)an =1, (1-4)

where I, represents the 3 X 3 identity matrix,

cosf, —cose,sinb, sing,,,, sinb,
Q) =| SING,  cosey,cosl,  —sing,,coso, (1-5)
0 sin gy, COS ;41

and
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i+1 i+1

cos 6, sin 6, 0
-l . .
Qi(i+1) = Q(i+1)i =| —COS &, SIN 6, cos (i) COS 6, sin Qi) | (1-6)
sin @, sinf,  —sina,,cosd, cosa;

i+1)

Therefore, based on the Eq. (1-1) or Eq. (1-4), the motion behaviors of spatial
linkages can be analysed.

1.2.1.2 Truss Method

Maxwell has defined a frame as ‘a system of lines connecting a number of points’
and a stiff frame as ‘one in which the distance between any two points cannot be altered
without altering the length of one or more of the connecting lines of the frame’ [43]. In
general, a stiff frame with / nodes in three-dimensional space requires 37 —6 bars.
The mobility of one frame with J nodes and b bars can be derived from

m=3j—-6-b. (1-7)

However, this criterion does not contain the detailed topological and geometric
information, which makes it difficult to calculate the accurate mobility of
overconstrained linkages.

Yang et al. [44] proposed the transformation method from the linkage to truss. He
uses Maxwell’s rule and the rank of the equilibrium matrix [45] to determine the
mobility of overconstrained linkages. The cases of truss form of one link with two R-
joints are shown in Fig. 1-2, where a straight-line represents a bar and a circle represents
a node which is an S-joint, and a straight bar with two nodes at the ends represents an
R-joint, such as joint A represented by AA’. For a generally straight bar with two R-
joints, it can be transformed into a truss tetrahedron, as shown in Fig. 1-2(a). When the
axes of the two R-joints intersect, the equivalent truss form is a triangle, as shown in
Fig. 1-2(b). For the two R-joints with parallel axes, all bars in the plane can generate
instantaneous mobility, as shown in Fig. 1-2(c). An arbitrary point out of the plane is

introduced to generate the equivalent truss form, as shown in Fig. 1-2(d).
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Fig. 1-2 One link with two R-joints proposed by Yang et al. [44]. (a) General case; (b) two
intersecting revolute axes; (c) two parallel revolute axes with an instantaneous mobility; (d) two

parallel revolute axes.

For a statically indeterminate truss, its mobility cannot be determined by Eq. (1-7).
Therefore, the equilibrium equation [46] has to be considered. For a truss consisting of
b barsand J joints, the equilibrium equations are obtained as

At=f (1-8)
where A is the 3jxb equilibrium matrix, ¢ is a bx1 vector of bar axial forces
and f isa 3jXx1 vector of node forces. Here, the truss does not have external forces,

re., f=0.Hence, Eq. (1-8) becomes

At =0 (1-9)
If 7 isthe rank of matrix A, the number of self-stresses is
s=b-r (1-10)
and the number of mobility is
m=3j-6-r. (1-11)

According to the values of s and m, a truss can be divided into four classes [44, 47]:
s=0, m=0: Both statically and kinematically determinate structures, a normal
structure;

s=0, m>0: Statically overdeterminate and kinematically indeterminate structures, a
non-overconstrained mechanism;

s >0, m=0: Statically indeterminate and kinematically overdeterminate structures;

s>0, m>0 : Both statically and kinematically indeterminate structures, an
overconstrained mechanism.
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The truss method has been applied to calculate the mobility of mechanism, such as
the mobile assemblies of spatial linkages, polyhedrons [48, 49]. As one rigid origami
can be regarded as a mechanism, the truss method can be used to calculate the mobility
of a rigid origami, such as the triangular Resch pattern [50].

1.2.2 Spatial Overconstrained Linkages and Mobile Assemblies

1.2.2.1 Spatial Overconstrained Linkages

Mobility or DOF of one spatial linkage is the number of independent variables that
must be considered for defining its configuration. It can be determined by the Griibler-
Kutzbach criterion [51]:

m=6(n—g—1)+ifi, (1-12)

where m is the number of DOFs, n isthe number of members of mechanism, g is
the number of joints and f, is connectivity of the i th joint. The spatial
overconstrained linkages are mobile without satisfying the mobility criterion in
Eq.(1-12). The single closed-loop overconstrained linkage is a simple type of
overconstrained mechanism. Since the first overconstrained linkage, Sarrus linkage [52,
53], was designed in 1853, the research on overconstrained mechanism has been
sustained for more than 160 years. During this period, a large number of single closed-
loop overconstrained linkages with one-DOF were constructed, including Bennett
linkage [26, 54], Myard 5R linkage [27], Goldberg 5R linkage [55], Goldberg 6R
linkage [55], Bricard 6R linkages [28, 56] and so on. These overconstrained
mechanisms can be mainly classified into Bennett linkage, Bennett-based

overconstrained linkages and Bricard 6R linkages.
(1) Bennett linkage

Bennett linkage [26] is a special overconstrained linkage with four links and four
revolute joints. The joint axes of this linkage are neither parallel nor concurrent.
According to the D-H notation [41], the coordinate systems are constructed, as shown
in Fig. 1-3. Its geometric parameters satisfy the following conditions

A =0y =a, Gy =y =D, (1-13a)

o, =0y =0, oy =a, =p, (1-13b)
a b

sina:m’ (1-13¢)

R =0(=12,34) (1-13d)

Its corresponding closure equations are
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6 +6,=2rx, 6,+6,=2r, (1-14a)
0 sinl(ﬂ+a)

tan—ltan—zzi—. (1-14b)
2 sina(ﬂ—a)

ay

Fig. 1-3 The Bennett linkage.

(2) Bennett-based overconstrained linkages

The Bennett linkage can be regarded as a building-block, which can be used to
construct new overconstrained linkages with five or six revolute joints. Goldberg 5R
linkage [55] is constructed by combing two Bennett linkages in three steps. First, a
certain link of each linkage (two links) are coincident. Second, two adjacent links are
arranged in line. Third, lock the adjacent links and remove the common link. Then, a
Goldberg 5R linkage is constructed, as shown in Fig. 1-4. By extending this method,
Goldberg 6R linkages [55, 57] are proposed. Based on the Goldberg SR linkage,
Wohlhart [58] generalised it and constructed a Wohlhart double-Goldberg linkage by
combining two properly Goldberg 5R linkages face to face and eliminating two shared
links. By combing a subtractive Goldberg 5R linkages and a Goldberg 5R linkage
through shared link-pair or shared Bennett-linkage, a family of double-Goldberg 6R
linkages [59] constructed including the double subtractive Goldberg 6R linkage [60].

Fig. 1-4 The Goldberg 5R linkage.
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Waldron’s hybrid 6R linkage [61, 62] with revolute joints is an overconstrained
linkage, which is made from two Bennet linkage arranged in space to make them share
a common axis, as the revolute joint a,/b, in Fig. 1-5. Then adding the links along the
axes of joints a,, a,, b,, b,, and adding the common-perpendicular links between
axes of joints a,, b, and a,, b,, replacing the old links connected to the shared
joint @, /b, to construct an assembly of Bennett linkages. The shared joint «, /b, and

its connected links are then removed to form a 6R overconstrained linkage.

Fig. 1-5 The Waldron’s hybrid 6R linkage from two Bennett linkages.

Recently, Song, Feng and Chen [63] proposed a network of four Bennet linkages.
The network can be reconfigured among five types of overconstrained linkages by
rigidifying some of the eight joints, including the generalized Goldberg SR linkage [58],
generalized variant of the L-shape Goldberg 6R linkage [55], Waldron’s hybrid 6R
linkage [61], isomerized case of the generalized L-shape Goldberg 6R linkage [64], and
generalized Wohlhart’s double-Goldberg 6R linkage [58]. Besides, Guo and Song [65]
designed a series of spatial single-loop overconstrained linkages by combining Bennett
linkages and use screw theory to analyse their mobility.

As the Bennett-based overconstrained linkages are constructed by regarding the
Bennett linkage as construction unit, their geometric condition should satisfy that of
Bennett linkages.

(3) Bricard 6R linkages

The family of overconstrained 6R linkages was proposed by Bricard [28, 66]
consisting of six types, as shown in Fig. 1-6. Their geometric conditions were

summarised [67] as follows.

For the general line-symmetric case,
Ay = Ays, Uy3 = Asg, A3g = dgys (1-15a)

Oy = Qs, Oyy = Ok, Qyy = Oy, (1-15b)
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R =R, R,=R., R,=R,. (1-15¢)

(© — (@)

(e)

Fig. 1-6 Bricard 6R linkages: (a) the general line-symmetric case, (b) the general plane-symmetric
case, (c) the trihedral case, (d) the line-symmetric octahedral case, (e) the plane-symmetric
octahedral case, and (f) the doubly collapsible octahedral case.

For the general plane-symmetric case,

Ay = dgy> Uy3 = dsgs A3y = Ays, (1-16a)
Oyt 06 =T, Oy T 05 =T, Oy T0ys =7, (1-16b)
R =R,=0, R,=R,, R, =R;. (1-16c¢)
For the trihedral case,
al, +a;, +a =a;+ay; +a, (1-17a)
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Oy =0y = Ol =%, Oy = Olys = O, =377z, (1-17b)
R =0 (i=1,2,-,6) (1-17¢c)
For the line-symmetric octahedral case,
Ay =0y =y, =0y = Asg =g, =0, (1-18a)
R+R,=R,+R,=R,+R,=0. (1-18b)
For the plane-symmetric octahedral case,
A, =0y, =0y, =05 = A5y =dg, =0, (1-19a)
Ry==k, R, =k, sin(S(;rllza-%aM)’ K==k Sin(zio't'izam)’ (1-199)
R =-R, ﬁ% R =-R ﬁ% (1-19¢)
For the doubly collapsible octahedral case,
A, =0y, =0y, =045 = A5 =dg, =0, (1-20a)
RR.R.+R,R,R, =0. (1-20b)

A systematic analysis of all the six Bricard linkages was done by Baker [56].
Appropriate sets of independent closure equations were constructed to delineate them.
Phillips [68] reviewed the Bricard linkages and showed their relationship with the other
overconstrained linkages. Wohlhart [69] concentrated on the orthogonal Bricard linkage
and found two distinct types of this linkage. Chai and Chen [70] focused on the line-
symmetric octahedral case of Bricard linkage and generated its kinematic paths and
structural closure by analysing its closure equation with the matrix method. In addition,
they discussed the bifurcation of a line and plane symmetric Bricard linkage and
provided the solution to avoid bifurcation by analysing its closure equations [71]. Song
and Chen [72] carried out the kinematic study of the original and revised general line-
symmetric Bricard 6R linkages. Recently, Feng and Chen [73] derived the explicit
solutions from closure equations of the plane-symmetric Bricard linkage. They
indicated that the plane-symmetric Bricard linkage can bifurcate to the Bennett linkage,
which expresses a comprehensive understanding of plane-symmetric Bricard linkage.

Some other special linkages are also studied, such as Altmann linkage, Schatz
linkage, Wohlhart 6R linkage and threefold-symmetric Bricard linkage. Altmann
linkage [74, 75] is a special case of the line-symmetric Bricard linkage with the
geometric conditions as follows.

Ay =45 =a, Gy = a5, =0, a3, =ag =b, (1-21a)

V.2 T kY2
0‘12:0(45:5’ 0‘23:0(56:53 0534:0561:7’ (1-21b)

10
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R =R, =R,=R,=R, =R, =0. (1-21c)

Schatz linkage [68] was discovered by Schatz which is derived from a special case
of the trihedral Bricard linkage with the geometric conditions, as expressed in Egs. (1-
22a) to (1-22c). This linkage has special engineering applications whose name is
Turbula machine for mixing fluids and powders.

ap =ass =0, ay=ay, =a;s=a, ag = \/ga, (1-22a)
T

Oy =0 =0y =05 = Uy :E: o, =0, (1-22b)

R =-R,, R,=R,=R, =R, =0. (1-22c¢)

Wohlhart 6R linkage [76] can be regarded as a generalisation of trihedral Bricard
6R linkage whose parameters satisfy

) =Ayy, A3y =Uys, dsg = dgs (1-23a)
O =27 =0y, Oy =2 —Qys, Qs =2TT— 0, (1-23b)
R,=—R,—R,, R,=R,=R,=0. (1-23¢)

Threefold-symmetric Bricard linkage [77] is derived from combining the general
plane-symmetric and trihedral Bricard linkages, whose geometric parameters satisfy

QA =0y =03y = Ays = s = dg) = 4, (1-24a)
Oy =04y = O = O, Oy = Qs = Qg =270, (1-24b)
R =0 (i=1,2,-,6) (1-24c¢)

1.2.2.2 Mobile Assemblies of Spatial Overconstrained Linkages

Although the engineering application of spatial overconstrained linkages is limited,
mobile assembly of spatial overconstrained linkages has been of a great research
interest. The reasons are not only the kinematic challenge, but also the application
potential for a deployable structure with high expansion to package ratio. The
construction with tessellation method [29] and the mobile connections [78], provide
effective ways for the design of large-scale mobile assemblies, such as Bennett-linkage
assemblies [79-82], Myard-linkage assemblies [83, 84] and Bricard-linkage assemblies
[85], which promote the development of deployable structures for engineering

application.

Tilling is also called tessellation. A plane tiling is a plane covered by a countable
family of closed sets without gaps and overlaps, such as the honeycomb of bees. Chen
[29] indicated three ways to cover the plane with identical units: tilings (3°), (4%)
and (6°) which make the units spread in three, four and six directions, respectively,

as shown in Fig. 1-7. Here, for instance, tiling (6°) represents each of the points is

11



Doctoral Dissertation of Tianjin University

surrounded by three hexagons, where 6 is the number of hexagonal sides and it also
represents the number of spreading directions. The superscript 3 is the number of
hexagons. The unit named tessellation unit can be a repeatable pattern or motif, which
can be constructed by the basic linkage, e.g., Bennett linkage and Myard linkage, or the
assembly of a set of linkages. The tessellation method for mobile assembly including
three steps: construction of units, selection of spreading ways from three tilings and

validation of compatibility.

(3% (4) (6")
Fig. 1-7 Three types of tilings with identical units summarized by Chen [29].

Chen and You [79] have constructed unit motif of Bennett linkages with
overlapping based on the tiling (4*). They further designed a basic mobile assembly
which can be deployed into flat or arch surfaces with different parameters, other three
mobile assemblies of Bennett linkages [80] are derived from considering the links with
negative lengths. The schematic diagrams of the four distinct mobile assemblies of
Bennett linkages are shown in Fig. 1-8 and Fig. 1-9, where the black circles and black
lines show the constructions of their corresponding mobile assemblies, while gray
circles and gray lines show the tessellation of mobile assemblies. Their twists ¢ and

B of each link should satisfy the conditions in Egs. (1-25) to (1-29).
Twists of case 1 Bennett linkage mobile assembly with type I and type II guidelines
satisfy

at =-a® =a" =0, ,BA:_ﬁB:ﬁE::Bi—l’
a’=a"=a"=a, p°=p=p"=p, (1-25)
a"=-a"=a=a,, pr=-p"=5°=5,,.

Twists of case 2 Bennett linkage mobile assembly with type II guidelines satisfy

12
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a'=-a"=a"=a_, B'=-f"=p"=p_,

—aD:aC:_aF:ap _ﬂD:ﬂc :_ﬂF:ﬂi’

a"=-a"=a=a,, pr=-p"=5°=5,,.

Twists of case 3 Bennett linkage mobile assembly with type I guidelines satisfy

ot =a"=a" =0, IBA ::BB :ﬂE =P,
a’=a"=a"=a, BP =B =p" =4,

a'=a"=a"=a,, fr=p"=p°=p4,.

(1-26)

(1-27)

Fig. 1-8 Four cases of mobile assemblies of Bennett linkage. (a) Case 1, (b) case 2 mobile
assemblies.

13
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Fig. 1-9 Four cases of mobile assemblies of Bennett linkage. (a) Case 3, (b) case 4 mobile
assemblies.

14
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Twists of case 4 Bennett linkage mobile assembly with type I guidelines satisfy
at=a’=a"=-a_, pA=p"=5"=-8_,,
o =a =0 =, = =f =p, (129
a'=a"=a"=-a,,, Br=p"=p°=-5.,.

Bennett linkages on the ith guideline should satisfy

sing;
L (1-29)
singg,

where £ is a constant throughout the whole assembly. The twists of Bennett linkages

in an assembly satisfy the twist conditions along guidelines: i.e. the adjacent Bennett
linkages on a type I guideline are connected with Bennett linkages and all the Bennett
linkages have the same twists with ¢, and f, . The adjacent Bennett linkages on a
type II guideline are connected with the scissor connection and the twists of adjacent
Bennett linkages satisfy that one has ¢;,, f and its adjacent one has —¢,, — f,
which are same as 7 —¢;, 7 —f3,, where subscript i represents the ith guideline.

On different guidelines, the twists ¢, and [ can be different.

For the generation of high expansion to package ratio and demand of different
profile for engineering, parameter analysis of the mobile assemblies of Bennett linkages
are studied, such as the alternative form of Bennett linkage proposed by Chen and You
[67] and it is used to construct network of alternative form of Bennett linkage, as shown
in Fig. 1-10(a). Lu [82] proposed an assembly of the alternative form of Bennett linkage
to approximate cylindrical surface. In addition, the mobile assembly of Bennett linkages
can be designed in saddle surface [86] and polyhedrons [87]. Song [88] designed a
parabolic cylindrical antenna with one-DOF. They are shown in Fig. 1-10.

A family of mobile assemblies of Myard linkages with one-DOF has been
developed according to the three tiling ways by Liu and Chen [83], one of which is
shown in Fig. 1-11(a). Qi and Deng [84] developed two types of large spatial assembly
of Myard linkages with different twist angles, one of which is shown in Fig. 1-11(b). In
addition, Chen and You [89] designed a unit with overlapping motif of Myard 6R
linkage, where the linkage with two zero-length links is derived from combining two
extended Myard linkages.

15
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Fig. 1-10 Mobile assemblies of alternative form of Bennett linkage. (a) Assembly with flat-
deployed configuration constructed by Chen and You [67]; (b) assembly approximating cylindrical
surface constructed by Lu et al. [82]; (c) mobile assembly for deployable parabolic cylindrical
antenna constructed by Song et al. [88]; (d) assembly approximating saddle surface constructed by
Yang et al. [86]; (e) A tetrahedral linkage constructed by Kiper and S6ylemez [87].

16
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Fig. 1-11 Two mobile assemblies of Myard linkages. (a) assembly constructed by Liu and Chen
[83]; (b) assembly constructed by Qi et al. [84].

For the Bricard linkages, Chen and You [67] developed a mobile assembly of
threefold-symmetric Bricard linkages by connecting each pair of linkages with a scissor,
which can be folded to a handle and deployed to a flat surface, as shown in Fig. 1-12(a).
They also discussed the alternative form of this linkage. Based on the alternative form,
Huang and Yan [85] carried out the deployed profile synthesis; Huang and Li [90]
proposed a new family of one-DOF assemblies by replacing three alternate revolute
joints by a class of one-DOF deployable mechanisms, which can be regarded as the unit
for tessellation. Huang, Deng and Li [78] formed a deployable structure based on
Bricard linkage with scissor-like connection, as shown in Fig. 1-12(b). Song and Guo
[91] proposed a large deployable structure (Fig. 1-12(c)) constructed by assembling
Altmann linkages and proved its mobility by screw theory. Atarer and Korkmaz [92]
designed one-DOF assemblies of Altmann linkages (Fig. 1-12(d)) by assembling
linkages with common links and joints or overlapping with extra R or 2R joints.

In summary, mobile assemblies of overconstrained spatial linkages have been
constructed with different deployable configurations, e.g., flat, arch, saddle surfaces
and polyhedrons. The mobile assemblies of Bennett linkages and Myard linkages have
been studied thoroughly in the past. It is not easy to construct a new one. The number
of mobile assemblies of Bricard linkage is limited, due to the motion complexity of
both line-symmetric and plane-symmetric Bricard linkages, which makes it extremely
difficult to find the compatibility condition in forming their mobile assemblies.
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Fig. 1-12 Mobile assemblies of Bricard linkages. (a) Assembly of threefold-symmetric Bricard
linkage constructed by Chen and You [67]; (b) assembly formed by scissor-like connection
hexagon Bricard modules constructed by Huang, Deng and Li [78]; (c) the assembly of Altmann
linkages constructed by Song et al. [91]; (d) the assembly of Altmann linkages constructed by
Atarer, Korkmaz and Kiper [92].

1.2.3 Rigid Origami

Origami is a paper folding art. Each origami pattern contains creases which go into
two types: mountain creases and valley creases. Several creases can meet at a single
point called vertex, as shown in Fig. 1-13. There are a lot of origami patterns which can
be folded to form various shapes. Most of them are derived from nature and designed
by artists. Since some of them have a superior efficiency of packaging, they have been
paid huge attention by the engineers and scientists. They have great potential in
engineering applications in different areas, such as solar array [8, 93] in aerospace,
shelters [11] in civil engineering, medicines [15, 94] and robotics [95-98]. Some
applications are shown in Fig. 1-14.
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Mountain creases

\\

Valley crease

. .
Mountain crease

Fig. 1-13 A rigid origami vertex with four creases.

Fig. 1-14 Engineering applications of origami in different areas. (a) Solar panel designed by Miura
[8]; (b) solar array constructed by Zirbel et al. [93]; (c) origami shelter proposed by Lee and
Gattas [11]; (d) origami stent graft designed by Kuribayashi et al. [15]; (e) a self-folding robot
designed by Felton et al. [95]; (f) a microorigami robotic arm designed by Boyvat et al. [97].

1.2.3.1 Rigid-Foldability

Rigid origami has the property of rigid-foldability which ensures the panels of one
origami pattern do not stretch or bend during the folding process. It makes possible to
use rigid materials for designing deployable structures. To achieve rigid-foldability, the
motion of panels in an origami vertex should be compatible with the adjacent ones.
Several methods have been proposed to judge rigid-foldability. Watanabe and
Kawaguchi proposed the diagram method and the numerical method for judging rigid
foldability [99]. Tachi generalized the geometric condition of rigid-foldable origami
with quadrilateral mesh [100] and considered geometry to obtain the rigid variations
[101]. Wu and You employed quaternions and dual quaternions to study rigid foldability
of origami [102]. Cai et al. [103] combined the quaternion rotation sequence method
and the dual quaternion method to check the rigid-foldability of cylindrical foldable
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origami. The compatible analysis of mechanism theory based on D-H notation is also
an effective method to judge and design rigid origami pattern by regarding the origami
vertex as the spherical linkage [39]. Based on the mechanism theory, new rigid origami
patterns [104] and origami tubes [105, 106] were invented.

1.2.3.2 Flat-Foldability

Flat-foldability is another property for an origami to realize compact folding.
Some researches have been done on this property. Mathematical study of flat origami
was carried out by Hull. He gave necessary and sufficient conditions for an origami to
locally fold flat [107, 108]. Lang [109] made a survey of conditions for flat-foldability
of single vertex.

The first condition is the Kawasaki-Justin Theorem. Let v be a vertex with 2n

creases and let ¢, «,,---«,, be the sector angles between the creases. Then v isa

flat vertex if and only if

o=, +ay ==, =0. (1-30)
For a developable origami, the sector angles around every vertex sum to 360, that

is o, +a,+o,+---+a,, =2x. Then, a useful variation of this theory is that the vertex
can fold flat if and only if
o +o,++a, =a,+o,++a, =7. (1-31)

The second condition is Big-Little-Big Angle (BLBA) Theorem. At any vertex, the
creases on either side of any sector whose angle is smaller than those of its neighbors
must have opposite crease assignment.

The third condition is Maekawa-Justin Theorem. For any flat-foldable vertex, let
M be the number of mountain folds at the vertex and V' be the number of valley creases.
Then

M-V =12. (1-32)

1.2.3.3 The Degree of Freedom of Rigid Origami

As one rigid origami vertex can be regarded as spherical linkage, one origami can
be regarded as the mechanism. According to the mobility of the vertex, rigid origami
patterns with multiple vertices can be generally classified into two groups, one-DOF

origami and multi-DOF origami.

One-DOF origami is generally composed of four-crease vertices. As the one-DOF
origami pattern is typical and simple, patterns consisted of multiply four-crease origami
vertices has been widely studied and new one-DOF origami patterns are constructed
from the existing origamis or from quadrilateral meshes. The well-known one-DOF
origami pattern, Miura-ori, was proposed by Miura, it has been applied to the packaging
of deployable solar panels in space and the folding of maps [8, 36]. Based on the Miura-
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ori, five alterable characteristics are studied by Gattas, Wu and You to construct Miura-
base rigid origamis, such as arc-Miura pattern and tapered Miura pattern [110]. By
studying Miura-ori as a wallpaper pattern, Sareh and Guest [111, 112] constructed the
family of isomorphic and non-isomorphic variations. Based on Miura-ori and Arc-
Miura, graded origami structures are constructed by changing geometric parameters
[113]. By introducing rigidly foldable origami gadgets, new tessellations are created
[114]. One-DOF cylindrical deployable origami is constructed based on the origami
vertex with four congruent parallelograms and its mirror image [115] and cellular
structures are constructed from these cylinders [116]. Foldable Miura-based closed-
loop origami units are designed by considering the mathematical expressions [117].
Lang and Howell started from direction angles and fold angles along the arrays and
designed rigidly foldable quadrilateral meshes with one-DOF [118]. One-DOF rigid
origami with multiple states which were derived from superimposing rigid-foldable
crease patterns gives a new idea for designing one-DOF origami [119]. Even though a
number of one-DOF origami patterns have been constructed, the overconstrained nature
of a four-crease origami pattern limits its variation of sector angles. Constructing the
origami pattern only with four-crease origami vertices also limits the new design of
one-DOF origami.

When a vertex has more than four creases, it might have multi-DOF, such as the
six-crease origami vertex and the five-crease origami vertex. These vertices can form
multi-DOF origami patterns, such as diamond origami pattern (Yoshimura pattern) [109,
120], waterbomb origami pattern [121] and Resch origami patterns [122, 123]. As
multi-DOF origami patterns can be deployed to variable configurations, they have been
widely used in robotics [124-128]. However, sometimes one motion characteristic is
needed, it is a challenge to accurately control a multi-DOF origami system, such as
diamond origami pattern with multiple configurations [109] to get the desirable
symmetric motion, as shown in Fig. 1-15.

For the multi-DOF vertex of origami, its DOF can be derived by »—3, where the
n represents the number of creases meeting at the vertex [129, 130]. However, for the
multi-vertex origami pattern, its DOF can be influenced by many factors [129, 130],
such as the number of creases meeting at a vertex, the number of vertices, the
connection relationships among the vertices, the sector angles of each vertex. They
increase the difficulty of calculating the number of DOF of multi-DOF origami is
difficult to calculate, which further affects the control of the origami system. Hence,
reducing the number of DOF in origami is an emerge and practical research request.
Several methods have been proposed to do this. Offsetting the creases at one vertex is
used to maintain the symmetric folding of diamond origami pattern and to design a
foldable mobile shelter system [131]. Adding extra constraints is used to reduce the
DOF of an origami [132-134] to analyse the common motion of the origami pattern.
Chen, Peng, and You [40] replaced multi-DOF spherical linkages at origami vertices by
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one-DOF spatial linkages by thick-panel origami method to reduce the DOF of diamond
origami and waterbomb origami pattern to be one. Tachi reduced the DOF by
transforming the multi-DOF vertex into an assembly of four-crease vertices with
doubled crease lines [135]. However, there is no systematic study on how to reduce the
DOF of origami patterns while maintaining their kinematic motion characteristics.

Fig. 1-15 Two configurations of diamond origami pattern proposed by Lang [107]. (a) the

symmetric configuration and (b) the asymmetric configuration.

1.2.3.4 Thick-Panel Origami

One rigid origami pattern is commonly regarded as ideal zero-thickness for
analysis. However, it is no longer true, when stiffness panels are used to deployable
structures, especially for aerospace to endure the loads or to insulate heat. So it is
necessary to consider the accommodation of thickness for panels. Various methods [136]
have been proposed to accommodate thickness, as shown in Fig. 1-16. Tapered panels
technique [137] is adding the thickness to the panel, then trimming intersecting material
between the panels without changing the mechanical behavior of ideal zero-thickness
rigid origami or losing the flat-foldability. Membrane technique [138] was proposed to
accommodate thickness in origami based deployable arrays by applying a membrane
backing with the widening creases with flexible material. Offset panel technique was
proposed by Edmondson et al. [139] who offset the panels away from the ideal zero-
thickness surface to give space to fold flat. This technique was also applied to design
origami products by Morgan et al. [140]. Offset hinge technique [40, 141] was proposed
by offsetting revolute joints on the surfaces of thick panels so that thickness can be
accommodated. Doubled hinge technique was proposed by modifying the crease pattern
that separates faces in the folded form to make room for thick panels, where the faces
are accommodated thickness [142-144]. Besides, using synchronized offset rolling
contact elements [145] and compliant mechanisms [146-147] can also accommodate
thickness to origami panels. Recently, kirigami was used to design thick-panel patterns
with flat deployed configurations [148].
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Fig. 1-16 Methods for thickness accommodation. (a) Model constructed by Tachi with tapered
panels technique [137], (b) membrane technique used to a rigid-foldable six-sided flasher by
Zirbel et al. [138], (c) offset panel technique used to Miura-ori by Edmondson et al. [139], (d)
offset hinge technique used to a six-crease vertex by Chen, Peng and You [40], (¢) doubled hinge
technique used to a six-crease vertex by Ku and Demaine [143], (f) Square-twist with compliant
mechanisms constructed by Pehrson et al. [146].
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1.2.4 Spatial Linkages and Rigid Origami

1.2.4.1 Analysis and design of rigid origami based on spatial linkages

Motion behavior of rigid origami is an important aspect to understand and design
origami patterns. It is an important property to be studied for engineering applications.
Dai and Jones firstly constructed the kinematic models of carton folds by regarding
creases and rigid panels as revolute joints and links, respectively [37]. Hence, the
equivalent mechanisms can be used in kinematic analysis of origami with mechanism
theory [149] and in the modeling of origami-type cartons with the stiffness of creases
and panels [150-152]. Besides, the equivalence was also used in the analysis of pop-up
paper [153] and kirigami [148]. As multi-creases meeting at a vertex in a rigid origami
can be modeled as spherical linkage [38], a rigid origami pattern with a lot of vertices
can be treated as a mobile assembly of spherical linkages. Hence, the rigid-foldable
condition of one origami can be derived from the analysis of the compatibility condition
of the equivalent mechanisms. Wang and Chen [39] modeled origami patterns as an
assembly of spherical 4R linkages, and designed patterns to form the closed patterned
cylinders. Liu and Chen [104] analysed the four-crease origami based on its equivalent
mechanism (Fig. 1-17) and obtained four types of flat rigid origami patterns, which are
planer-symmetric-type, supplementary-type, identical linkage-type and orthogonal type
origami patterns, whose compatibility conditions are expressed in Egs. (1-33) to (1-36).
Feng et al. analysed the waterbomb origami pattern based on the equivalent

mechanisms and found its twist motion [134].

The planar-symmetric type
aA:5D aB:5C ﬁA:yD ﬁB:yC

7/A :ﬁD, 78 :ﬁC’ 5A :aD, 5B :aC, (1_33)

|4B|=|CD|, |BC|+2|CD|coss” =|DA4

The supplementary-type
a*+6° =7, & +6 =7, pr+y=m B4+ =,
V' +p°=r, y+p=x, 6" +a’=x, S+ =r, (1-34)
|4B| =|DA|cos* +|BC|cos * +|CD

The identical linkage-type
at*=a’=a=a’, pr=p"=p"=p"
Y=yl =y"=9" 54 =5"=6"=6", (1-35)
|DA|—|AB| cosd? = |CD| coso” —|BC| COS(5D + VC)a

The orthogonal type
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aA_é‘D:()’ 5A—0{D=0, IBB_7C:0’ yB_ﬂCZO’
YP+06 =xm, B*+a® =rx, cosa/cosd=cosf3/cosy, (1-36)
|4B

=|cp

BC|+2|CDJ|cos 6 =|DA.

3

Fig. 1-17 An assembly of four spherical 4R linkages modeled by Liu and Chen [104].

As the thick-panel origami derived from offset hinge technique was proposed by
Chen, Peng and You [40], the four-crease, five-crease and six-crease vertices in the
thick-panel form are modelled as Bennett 4R linkage, Myard 5R linkage and Bricard
6R linkage, respectively. Their folding kinematic behaviors are kept the same as that of
zero-thickness origami. Here, we focus on the thick-panel form of four-crease vertices
and six-crease vertices. The relationship between the zero-thickness origami and their
corresponding thick-panel origami forms are shown in Fig. 1-18 and their
corresponding geometric conditions are expressed in Eqgs. (1-37) and (1-38).

The geometric conditions of the four-crease origami vertex are

Oy T 03, =0y + 0y =7,
all;e =0, age =0, ”_aﬁe =0y, ﬂ_afle =0y,

a¥ =alk, ok =a), a’y =al, ak =al;, (1-37)
ay sinaly
a%  sina

The geometric conditions of the six-crease origami vertex are
Qy = Oy = Olys = Oy, Oy = Olsg =T =20,
2Ty =0, O =y, Oy = Oy, 138
r—al =a, 2r—al =a,, o) =o,, (1-38)

Br __ _Br Br __ _Br Br _ _Br Br Br __ _Br
A, =Ag 5 Ay3 =Asg, Uy =Ays, G, Tdyy =0y,
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in which 0< ¢, < % to ensure that the pattern has flat foldability.

For the multi-vertex thick-panel origami patterns derived from the offset hinge
technique, they can be considered as mobile assemblies of spatial linkages.
Compatibility conditions for the mobility and flat-foldability of waterbomb thick-panel
origami pattern have been derived, whose folding process is also kinematically
equivalent to the origami of zero-thickness sheets under the symmetric folding [133].

Fig. 1-18 Single vertex rigid origami patterns and the corresponding thick-panel forms. (a) Four-
crease origami vertex and (b) six-crease origami vertex proposed by Chen, Peng and You [40].

1.2.4.2 Linkages inspired from rigid origami

Based on the equivalence between mechanism and rigid origami, novel
mechanisms are derived, such as the metamorphic mechanisms [38]. Leal and Dai [154]
designed a new class of centralixes 3-DOF parallel mechanism from origami
pentagonal pattern. Wei and Dai [155] constructed a novel mechanism including one
planar four-bar linkage and two spherical 4R linkages from an origami fold. Based on
the waterbomb base, Zhang et al. designed a parallel mechanism with three-spherical
kinematic chain and carried out the geometry and constraint analysis [156]. Two
integrated planar-spherical overconstrained linkages were derived from origami cartons
by modifying the linkages in the diagonal corners [157]. A novel overconstrained 6R
linkage was inspired from triangle twist origami pattern by removing central triangle
[42].
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As the multi-vertex thick-panel origami patterns derived from the offset hinge
technique [40] can be considered as mobile assemblies of the corresponding spatial
linkages, a four-crease thick-panel origami pattern can inspire a mobile assembly of
Bennett linkages. Six-crease thick-panel origami patterns with plane symmetry [40, 133]
could lead to the discovery of mobile assemblies of plane-symmetric Bricard linkages.
Therefore, the thick-panel origami can be considered as the intermediate bridge
between a zero-thickness origami and a mobile assembly of spatial linkages. Study of
the relationship between mobile assemblies of spatial linkages and rigid origamis with
their corresponding thick-panel forms as the intermedium bridges can construct new
mobile assemblies of spatial linkages. At the same time, generalisation of the
compatibility conditions on the mobile assembly of spatial linkages, in turn, will
improve the construct condition for the corresponding thick-panel origami patterns.

1.3 Aim and Scope

The aim of this dissertation is to study the relationship between spatial linkages
and rigid origamis based on their thick-panel origami forms to design new mobile
assemblies of spatial linkages. By analysing the general cases of the mobile assemblies
of the linkages derived from rigid origami, new origami pattern or thick-panel form will
be discovered with wide application potential. Alternatively, the origami pattern will
inspire new mobile assemblies of spatial linkages with the compatibility condition from
the thick-panel counterpart.

In this process, a transition technique is proposed and realizes the transition from
four-crease origami pattern to mobile assemblies of Bennett linkage. By applying this
technique, diamond thick-panel origami pattern is transited into new mobile assemblies
of plane-symmetric Bricard linkages which are further studied for the design of
variation of diamond thick-panel origami pattern. Finally, vertex-splitting is proposed
to reduce the DOF of multi-DOF origami pattern and hinge-removing is derived to
design thick-panel origami with flat unfolded profiles.

1.4 Outline of Dissertation
This dissertation consists of five chapters, which are outlined as follows.

Chapter 2 focus on constructing mobile assemblies of Bennett linkages from four-
crease origami patterns. Firstly, a transition technique is proposed from the four-crease
origami vertex to Bennett linkage. Then, the technique is applied to Miura-ori pattern,
graded Miura-ori pattern, supplementary-type origami patterns and identical linkage-
type origami pattern to design mobile assemblies of Bennett linkages. This chapter ends

with the conclusions.

Chapter 3 devotes to the relationship between diamond thick-panel origami pattern

and mobile assemblies of plane-symmetric Bricard linkages. First of all, a mobile
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assembly of plane-symmetric Bricard linkages is derived from the diamond thick-panel
origami pattern. This is followed by the derivation of compatibility conditions for
constructing the mobile assembly, which lead to the discovery of two general cases of
mobile assemblies. The general assembly then inspires variations of diamond thick-
panel pattern which can be with flat unfolded profiles and/or spirally folded
configuration. Conclusions are drawn in the end.

Chapter 4 is to design one-DOF origami pattern from multi-DOF origami patterns
and construct one-DOF thick-panel origami pattern with flat unfolded profiles by
removing hinges. Based on the diamond origami vertex, the vertex-splitting technique
is proposed to generate three types of unit patterns. Then it is applied to the multi-vertex
diamond origami pattern and generates one-DOF basic assemblies and one-DOF
origami patterns. Moreover, based on the construction of Waldron’s hybrid 6R linkage
from Bennett linkages by removing shared hinge, the transformation from the thick-
panel origami pattern with two four-crease vertices to the thick-panel origami pattern
with six creases is studied, which inspires the hinge-removing for the thick-panel
origami pattern. After that, thick-panel origami patterns with flat unfolded profiles are
derived from three thick-panel origami patterns by removing some hinges.

The main achievements of the research are summarized in Chapter 5, together with
suggestions for future works, which conclude this dissertation.
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Chapter 2 Mobile Assemblies of Bennett Linkages from
Four-Crease Origami Patterns

2.1 Introduction

As the thick-panel origami proposed by offset hinge technique is kinematically
equivalent to a mobile assembly of spatial linkages, the thick-panel origami can be
considered as the intermediate bridge between a zero-thickness origami and a mobile
assembly of spatial linkages. Therefore, the four distinct types of four-crease origami
patterns may be used to generate the mobile assemblies of Bennett linkages by taking
the corresponding thick-panel forms as the intermediate bridge.

This chapter is arranged with the following sections. Section 2.2 sets up the
transition technique from single-vertex four-crease origami to Bennett linkage, which
is further developed in section 2.3 for the transition from Miura-ori, graded Miura-ori
and three distinct cases of supplementary-type origami patterns to different types of
Bennett linkage assemblies. Especially, a new mobile assembly of Bennett linkages is
derived from the identical linkage-type origami pattern in section 2.4. Conclusions are

drawn in section 2.5.

2.2 Transition from Single-Vertex Four-Crease Origami to Bennett
Linkages

A general single-vertex four-crease zero-thickness origami pattern is shown in Fig.
2-1(a), where z, (i=1, 2, 3, 4) are axes of the four creases. Here solid lines are for
mountain folds, and dashed lines are for valley folds. &, [, n—a, m7—f are
sector angles to make sure this pattern is flat-foldable. From the viewpoint of rigid
origami, this four-crease pattern is rigid and kinematically can be considered as a
spherical 4R linkage by taking the crease lines as revolute joints and the rigid panels as
the rigid links, see Fig. 2-1(b), with zero link lengths. For the single-vertex four-crease
thick-panel origami in Fig. 2-1(c), the sector angles are kept as same as the previous
ones, but the crease lines or revolute joints z, are moved to top or bottom surfaces of
the thick panels. In order to accommodate the panel thickness in the folded
configuration, two panels, P,, and P,, , with larger sector angles ( >« ,
7 —o > — [3) have steps, and there are two thickness on each panel, e.g., 1,,&1,, for
panel P,, and 1,&%, for panel P, , where t,, +t,, =1, +1t,; +1;, +1,, . Obviously,
the linkage in Fig. 2-1(c) is no longer a spherical 4R linkage, because the four axes do
not intersect at a single point. Instead, it is a Bennett linkage as it is the only 4R spatial

linkage. And its link lengths are related to the panel thickness,
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Be __ ’ Be __ ’ Be __
A, =l,, Gy =ly—ly, Gy =lhy—ly,a, =1,. (2-1)

Fig. 2-1 The correspondence among the four-crease zero-thickness origami, spherical 4R linkage,

four-crease thick-panel origami and Bennett linkage at one vertex. (a) A partially folded single-
vertex four-crease origami with zero-thickness sheets; (b) the spherical 4R linkage; (c) the single-
vertex four-crease thick-panel origami; (d) the Bennett linkage at an enlarged vertex; (e) the
Bennett linkage in the traditional link form.

Due to the overconstrained condition of Bennett linkage, a =al =a”,
ax =a) =b" must be satisfied, ie., t,=t,—1t,, t,=t,—t,. Normally the
spatial linkages are analysed with D-H notation and the matrix method. The D-H
coordinates are set up in Fig. 2-1(d), which is the enlarged vertex of Fig. 2-1(c). To

make the twists of the Bennett linkages align with this traditional set-up,

: Be : Be
Be Be Be Be _ ,,Be __ Be sine S1n,
- , O3 =0y —IB > Be B (2-2)
a” b

We have to rearrange the directions of the revolute axes z, by keeping z,, z,,
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z, the same as the setup in the spherical 4R linkage, pointing away from the vertex,
and reversing z, pointing to the vertex. And axes x, are set up accordingly, thus the

twists of the Bennett linkage are

oy =og =" =r-a, oy =0y =" =1-p. (2-3)

By replacing the thick panels with the straight links connecting the adjacent
revolute joints in the shortest distance, a Bennett linkage in traditional link form is
represented in Fig. 2-1(e).

Since the zero-thickness rigid origami (or its corresponding spherical linkage) and
the thick-panel origami counterpart (or its corresponding Bennett linkage) are of the
identical topology, the linkage topological graph can be applied to link them up in a
later analysis of multi-vertex origami patterns and the mobile assemblies of linkages.
As shown in Fig. 2-2, (b) is the topological graph of the rigid origami in Fig. 2-2(a),
and Fig. 2-2(c) is the one for the Bennett linkage whose schematic diagram is given in
Fig. 2-2(d). We can tell Fig. 2-2(b) and (¢) is of the same topology but with different
linkage twists due to the different setup of the joint axes.

Fig. 2-2 Transition from a single-vertex four-crease origami to Bennett linkage with a topological
graph. (a) Single-vertex four-crease origami; (b) the corresponding topological graph of (a) with
sector angles, where each line represents a crease or revolute joint and a black solid dot represents
a panel of origami; (c) topological graph with twists for the corresponding Bennett linkage; (d)
schematic diagram of the Bennett linkage, where each line represents a link and a circle represents

a joint without showing any direction of the joint axis, which is used to present the spatial linkage

in the mobile assembly for simplicity. Here a® =7r-a, > =n-p5.

2.3 Transition from Multi-Vertex Origami Patterns to Mobile
Assemblies of Bennett Linkages

2.3.1 Mobile Assemblies Derived from a Miura-ori Pattern

Miura-ori is one of well-known traditional origami patterns formed with a number
of identical parallelogram panels connected by mountain and valley creases, as shown
in Fig. 2-3(a). This pattern consists of only four crease vertices with sector angles «

and 7 —c. For the vertices A, B, C, D in Fig. 2-3(a), their creases are a,, b,, c;, d,
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(i=1, 2, 3, 4). So the topological graph of this pattern in Fig. 2-3(a) is shown in Fig.
2-3(b). Because each vertex with sector angle & and 77— can be transited into the
thick-panel form with equilateral Bennett linkage, the pattern with four vertices should
form a mobile assembly of four such Bennett linkages. The problem is at the central
panel surrounded by the creases a,/b,, b,/c;, c,/d,, d;/a, . There are four
revolute joints connecting this rigid link with others to form the four Bennett linkages,
A, B, C, D (Fig. 2-3(b)), so how can the joint positions on the straight link be arranged

once the assembly adopts the original linkage form?

Let’s take a close look at the thick-panel Miura-ori pattern in Fig. 2-4(a). Panel P
is connected to panels P{; , PZE; , P;f‘ , Pfl, and it appears in linkages A, B, C, D in the
thick-panel form with link lengths a’, b2, cX and d;°, respectively. An enlarged
panel P is shown in Fig. 2-4(b). In thick-panel pattern, creases or revolute joints shared
by two adjacent Bennett linkages are combined into a single one, e.g., joint a, of
linkage A and d, of linkage D are combined into one. In other words, the Bennett
linages attached panel P form a closed loop starting from joint a,/d, to a,/b, via
link a;y, to joint b,/c, vialink b2, then to joint ¢,/d, vialink c2, and finally
back to joint a,/d, via link d,°. Hence, along the total thickness ¢, of panel P,
al +b¥ =ci +d) =t, with b,/c, on the top surface, a,/d, on the bottom
surface, and a,/b,, ¢,/d, onthe medium surfaces. To maintain the physical size ¢,
of panel P in the central area, a/y <d) and ci <b or ay=d; and cZ =bx
or aly >d) and ¢ >b2 canbe chosen.

When a <d} and ¢ <b% , the order of joints is b,/c,, ¢,/d,, a,/b,,
a,/d, along the thickness direction of panel P from top to bottom, as shown in Fig.
2-4(b). The same order applies to the straight link form, as shown in Fig. 2-4(c). It
should be noted that each shared revolute joint in Fig. 2-4(c) has two axis directions;
however, a revolute joint has to have only one axis direction for further confirmation of
the angles in one link of the mobile assembly. Hence, to maintain the relationships about
twists and sector angles in Egs. (2-2) and (2-3), all joint axes in linkages A and C are
kept, while all joint axes in linkages B and D are reversed; then we can obtain the mobile
assembly shown in Fig. 2-4(d). Its schematic diagram is shown in Fig. 2-3(c), where
twists can be obtained by Egs. (2-2) and (2-3) using their corresponding sector angles
in Fig. 2-3(b) and some angles are from the difference in twists, e.g. the angle between
a, and d, in Fig. 2-3(c) is obtained from twists of linkages A and D as

D A __ _
o, -0, =a—o=0.
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Fig. 2-3 Transition from a Miura-ori pattern to Bennett mobile assemblies. (a) Crease pattern with

four vertices; (b) topological graph of a Miura-ori pattern; (c) the schematic diagrams of the
corresponding mobile assembly with ay <d,¢ and ci <bi; (d) the assembly with a¥ =d*
and ¢l =b; (e) the assembly with @y >d;¢ and c2 > b2 . Here each rhombus represents a

Bennett linkage, gray circles and gray lines show the tessellation of the mobile assembly, dashed-
dot lines represent the guidelines and 1I, is the ith type II guideline.
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Fig. 2-4 Miura-ori thick-panel pattern and its mobile assembly. (a) Miura-ori thick-panel pattern
with four vertices; (b) the enlarged panel P with four attached Bennett linkages; (c) the mobile
assembly of Bennett linkages with original joint axes; (d) the mobile assembly with reversed joint
axes of Bennett linkages B and D.

The case with ay =d,¢ and cZ =b% isan assembly of Bennett linkages (Fig.
2-3(d)), with order of joints b,/c,, a,/b,/c,/d,, a,/d, along the thickness
direction of panel P. Owing to linkages A and D, B and C coincide, this assembly cannot
be tessellated along the horizontal direction, which is a special case of assembly in Fig.
2-3(c) consisted of all Bennett linkages with the same link lengths. The case with
al >dj and c¥ >bJ isthatlinkages A and C become the bigger ones and linkages

B and D become the smaller ones with the order of joints b,/c,, a,/b,, ¢,/d,,

a,/d, along the thickness direction of panel P, as shown in Fig. 2-3(e), which is of the
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same type as that in Fig. 2-3(c).

As the twists of the mobile assembly in Fig. 2-3(c) satisfy the type II guidelines,
the Miura-ori thick-panel origami corresponds to a special case of the case 2 mobile
assembly consisting of equilateral Bennett linkages. The prototypes of Miura-ori zero-
thickness form, thick-panel form and the corresponding mobile assembly are shown in
Fig. 2-5.

Fig. 2-5 Deployment sequences of prototypes. (a) Miura-ori pattern, (b) Miura-ori thick-panel
pattern and (c) Bennett linkage mobile assembly with o =30°.

For the general case 2 assembly of Bennett linkages, the twists on the different
guidelines can be different, as shown in Fig. 2-6(c), in which the twists on guideline
I, are ¢ and 7—a and those on guideline II,, are B and 7—f . So
correspondingly in the Miura-ori, along the different columns of vertices, the sector
angles should also be different, as shown in Fig. 2-6(a) and (b), which is called the
graded Miura-ori and their prototypes are shown in Fig. 2-7.
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Fig. 2-6 Transition of graded Miura-ori pattern. (a) Crease pattern with four vertices of graded
Miura-ori pattern; (b) topological graph of graded Miura-ori pattern; (c) the schematic diagram of

corresponding mobile assembly of Bennett linkages.

2.3.2 Mobile Assemblies Derived from Supplementary-Type Origami Patterns

As Miura-ori and graded Miura-ori patterns are special cases of supplementary
type origami patterns, mobile assembly consisting of general Bennett linkages can be
derived from supplementary type origami patterns where the sector angles are shown
schematically in Fig. 2-8(a). Three different mountain-valley crease assignments of
supplementary type origami patterns with four vertices, named MVI, MVII, MVIII, are
shown in Fig. 2-8(b) to (d). They are of identical topology to that shown in Fig. 2-8(e).
Yet, different mountain-valley crease assignments cause the corresponding Bennett
linkage assemblies to be different. With the analysed method introduced in section 2.3.1,
we have found that MVI corresponds to the case 2 assembly in Fig. 2-8(f) similar as
Miura-ori, while MVII and MVIII refer to the case 3 assembly and case 4 assembly
respectively; see Fig. 2-8(g) and (h). It should be pointed out that some patterns could
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consist of different MVI, MVII, MVIII vertices, which will mean the corresponding
Bennett linkage assembly is a mixture of cases 1-4 [80]. For example, the isomorphic
symmetric descendant and non-isomorphic symmetric descendant of the Miura-ori are
form with MVI and MVIII vertices, which was called a flat-foldable pgg,, pattern
and a flat-foldable pmg ;,2 pattern in [111, 112].

Fig. 2-7 Deployment sequences of the prototypes. (a) Graded Miura-ori pattern, (b) graded Miura-
ori thick-panel pattern and (c) its corresponding mobile assembly with sector angles in each
column being 30°, 45°, 60° and 75°.

Moreover, the twists of Bennett linkages in different guidelines have no extra
constraints when derived from the sector angles of origami patterns, i.e., the extra
condition in [80], sin¢,/sin 5, =k is unnecessary, which widens the condition for
constructing the assemblies of Bennett linkages. As the result, the guidelines cannot

always be kept parallel to each other during the motion.
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Fig. 2-8 Three mountain-valley crease assignments of supplementary type origami patterns. (a)
Sector angle relationships and three cases, (b) MVI, (¢) MVII, (d) MVIII, of supplementary type

origami patterns with four vertices according to mountain-valley crease assignments; (¢) the

topological graph; (f)-(h) the schematic diagrams of mobile assemblies corresponding to (b) M VI,
(c) MVII, (d) MVIIIL. I, and II, are the ith type I and type II guidelines, respectively.
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2.4 The New Mobile Assembly of Bennett Linkages Derived from the
Identical Linkage-Type Origami Pattern

An identical linkage-type origami pattern is a special four-crease origami pattern
consisting of identical convex quadrilateral panels with the sector angles noted in Fig.
2-9(a). With the analysed method introduced in section 2.3.1, its topological graph and
its corresponding mobile assembly of Bennett linkages are shown in Fig. 2-9(b) and (¢).

The Bennett mobile assembly is new as its twists satisfy the condition
aA/C — ﬁB/D — a’ ﬁA/C — aB/D — ﬁ ' (2_4)

Here, & and S are the same for any Bennett linkage throughout the whole assembly,
which apparently does not fit any twist condition along the guidelines in cases 1-4 of

[80]. Hence, we can tell it is a new assembly.

To confirm its kinematic mobility, we carry out an analysis for its compatible
conditions with nine Bennett linkages from A to L (Fig. 2-9(d)), whose twists are of,
B and the corresponding link lengths are a“ , b*. Set & =0, =05, and
B* =ay;=a,; for linkages B, D, F, H, while S" =¢;; =5, and & =y =
for A, C, E, G, L. Considering the links in red in Fig. 2-9(d), there are

BP+p ="+, a"+a®=a" +af,
BE+ =4+ 5%, o +a” =a" +at, (&)
bB+b" =b° +b°, a" +a® =a" +d",
" +b  =b"+b°, a“+a® =a" +a". (2-6)
We define 0, 7, P and V as revolute variables in Fig. 2-9(d); for linkage A, the

kinematic equation is

tan tan = % ) (2-7)

. B B
tanﬁ_o-tanﬁ_r—smz(a i 2-8
- 1 9 ( - )
2 2 Sinf(OCB— B)
2
. C C
tanﬂ-_o-tanﬂ._p—smz(a +/ 2-9
- 1 5 ( - )
2 2 Sina(ac—ﬁc)
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. 1( D D
_ ., sin—la"+f )
T Pan?V -2 . (2-10)
2 2 sin;(aD—ﬂD)

Combining Egs. (2-7) to (2-10) gives

sinl(aA+,BA)sinl(ac+ﬁC) sinl(aB+ﬂB)sinl(0(D+ﬂD)
g g ), gl g )
sing(aA—,BA)sinE(aC—,Bc) sinE(aB—,BB)sinE(aD—,BD)

Many solutions may exist in this nonlinear equation. By observation, three

solutions can be easily obtained, which are
at=a®, Br =P, o’ =af, B*=pC,
at=p"=a"=p", pt=a"=p"=a", (2-12)
at=-a", p*=-p° o =-a", B =-p".
Similar analysis can be applied to Bennett linkages around the other three red links

in Fig. 2-9. For Bennett linkages B, C, E, F, we can conclude twists should satisfy

aB:aC ﬁBZﬂC aE:aF ﬁE:ﬁF
aB:ﬂC:aE:ﬂF’ ﬁB:aC:ﬁE:aF, (2_13)
aB:_aE ﬂB:_ﬂE aC:_aF ,BC:—ﬂF

Twists of Bennett linkages C, F, G, H should satisfy
OKCIO{H ﬁC:ﬁH O(FZOKG ,BF:ﬂG
aC:IBF:aG:ﬂH’ ﬁczaF:ﬁG:aH) (2_14)
aC:—aF ﬂcz_ﬂF 0(G=—C¥H ﬂGz_ﬂH

Twists of Bennett linkages C, D, H, L should satisfy
ac=aH ﬂCZﬂH aDZC(L ﬂDzﬂL
aC:,BD:aH:ﬂL, ﬂC:aD:ﬂH:aL, (2_15)
aC:_aD ﬂC:_ﬂD aH:_aL ﬂH:_ﬂL

Combing Egs. (2-12) to (2-15), three solutions can be obtained to enable the

assembly in Fig. 2-9(d) to become mobile, as follows:
ot =a®=a" =5 ,BA :ﬁD :ﬂL =0,
=0 =a"=p4, B*=8=p8"=¢«, (2-16)
o =a =af =L ﬁE ::BF ::BG =y
A:ﬁB: C:ﬂD:aE:ﬂF:aG:ﬂH:aL:a{
o o

D E F G H L (2-17)
—fr=a"=p=a" =B =P,
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ot =-a"=a" =0, ﬂA :_,BB ::BE =B
o = =0 =0, B =P = " =4, (-1
a"=-a"=a=a,, pr=-p"=5°=5,,.

Fig. 2-9 Transition of identical linkage-type origami patterns. (a) Crease pattern with four vertices;
(b) topological graph; (c) schematic diagram of the mobile assembly of Bennett linkages; (d)
schematic diagram of the mobile assembly with nine linkages.

From the three solutions in Egs. (2-16) to (2-18), we find the Eq. (2-16)
corresponds to the case 3 assembly and Eq. (2-18) corresponds to the case 2 assembly.
Meanwhile Eq. (2-17) corresponding to the new mobile assembly derived from the
identical linkage-type origami pattern in Fig. 2-9(c). Its prototypes of zero-thickness
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origami pattern, thick-panel form and the corresponding mobile assembly are shown in
Fig. 2-10. Here, twists in the whole assembly are identical for any Bennett linkage and
its twist condition (2-17) is different from that in cases 1-4 in section 1.2.2.2. Moreover,
this new assembly does not have guidelines shown as dashed-dot lines in Fig. 1-8 and
Fig. 1-9.

Fig. 2-10 Deployment sequences of prototypes. (a) Identical linkage-type origami pattern, (b) its
thick-panel form and (c) mobile assembly of Bennett linkages with o =80° and £=120°.

2.5 Conclusions

In this chapter, we have proposed a transition technique for constructing the mobile
assemblies of Bennett linkages from four-crease origami patterns with their thick-panel
form as the intermediate bridge. Topological graphs are introduced to extract the
connection information from the zero-thickness rigid origami patterns (or their
corresponding mobile assemblies of spherical linkages) and their thick-panel forms (or
the corresponding mobile assemblies of Bennett linkages). By considering the

42



Chapter 2 Mobile Assemblies of Bennett Linkages from Four-Crease Origami Patterns

distribution orders of joints in each panel, the mobile assembly of the Bennett linkages
can be obtained from the topological graph of the origami pattern. Applying the
transition technique to several typical four-crease origami patterns, we found that
Miura-ori and graded Miura-ori patterns lead to mobile assemblies of equilateral
Bennett linkages; different mountain-valley crease assignments of the supplementary-
type origami patterns correspond to case 2, case 3 and case 4 assemblies of Bennett
linkages with more general construction conditions. Moreover, using the identical
linkage-type origami pattern produces a new Bennett linkage mobile assembly. It
should be noted that only supplementary-type origami patterns and the identical
linkage-type origami pattern are discussed in this chapter, as the orthogonal type and
planer-symmetric-type origami patterns for constructing tessellated thick-panel origami
patterns are special cases of supplementary-type origami patterns.
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Chapter 3 The Diamond Thick-Panel Origami and the
Corresponding Mobile Assemblies of Bricard Linkages

3.1 Introduction

As a four-crease pattern is related to a mobile assembly of Bennett linkages, which
has been studied in Chapter 2, six-crease thick-panel origami patterns with plane
symmetry, such as diamond and waterbomb thick-panel origami patterns, could lead to
the discovery of mobile assemblies of plane-symmetric Bricard linkages. At the same
time, generalisation of the compatibility conditions on the mobile assembly of such
spatial linkages, in turn, will enhance the construct condition for the corresponding
thick-panel origami patterns. Therefore, in this chapter, we are studying the diamond
thick-panel origami and the corresponding mobile assemblies of plane-symmetric

Bricard linkages.

The layout of this chapter is listed as follows. Section 3.2 presents a kinematically
equivalent assembly of plane-symmetric Bricard linkages derived from diamond thick-
panel origami. In section 3.3, compatibility analysis based on diamond assembly
generates two general cases of mobile assemblies. The general mobile assembly
inspires the variation of diamond thick-panel pattern, leading to new patterns with flat
unfolded profiles and/or spirally folded configuration, reported in section 3.4.

Conclusions in section 3.5 end the chapter.

3.2 Assembly of Plane-Symmetric Bricard Linkages Derived from
the Diamond Thick-Panel Origami

3.2.1 A Diamond Thick-Panel Origami Vertex and a Plane-Symmetric Bricard
Linkage
A single-vertex of diamond origami pattern is shown in Fig. 3-1(a), where solid
lines are mountain creases and dashed lines are valley creases. Here axes of six creases
are noted by z, (i=1, 2,..., 6) and sector angles are marked by ¢, with the
geometric condition [73]
o, =0 =0,
o,, =0, =720, (3-1)
o, =, =0,
where 0<a <7m/4, to ensure flat foldability. Its thick-panel form is presented in Fig.

3-1(b) with the plane-symmetric property, which corresponds to a plane-symmetric
Bricard linkage [73]. Hence, the panel thickness should satisfy

’ ’

Ly =1y Uy =lsg, Ty =lsg, by =1ys. (3-2)
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To achieve the compact folding without interference, the panel thickness should

also satisfy
’ ’
Lo Tl =ty + iy, Lo +lg =15 s, (3-3)

The enlarged vertex is shown in Fig. 3-1(c) with the D-H notation. And the link
lengths and twists are marked along panel thickness. Next, replacing the panels with
links which connect the adjacent revolute joints in the shortest distance, the
corresponding plane-symmetric Bricard linkage is revealed as Fig. 3-1(d). Therefore,
the thick-panel vertex in Fig. 3-1(b) and the plane-symmetric Bricard linkage in Fig.
3-1(d) are kinematically equivalent.

Fig. 3-1 The correspondence among the origami vertex, thick-panel origami vertex and plane-
symmetric Bricard linkage. (a) The crease pattern of the diamond thick-panel origami vertex; (b)
diamond thick-panel origami vertex; (c) the Bricard linkage at enlarged vertex of the thick-panel

origami; (d) the plane-symmetric Bricard linkage.
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In general, the geometric condition of a plane-symmetric Bricard linkage [73] is

Br __ Br __ Br Br __ Br __ Br Br __ Br __ 7
Q, =—0 =0, Oy =0 —IB > Oy __0{45_7/3’ (3 4)

Br Br

Br _ _Br __ Br _ _Br __ Br _ _Br __ _ Br
A =g =U , Ay =dAsg =V, Ay =Ays =W,

under the D-H coordinates in Fig. 3-1(d). Here, o, B*, y*, u®, v, w” are
taken as the geometrical parameters of the linkage. Noted in the multi-vertex pattern, if
the crease axes are set pointing away from its own vertex as Fig. 3-1(a), one crease
between two vertices is shared by two axes in opposite directions. To keep the axis of
each joint with single direction in the later analysis of its assembly, we have to rearrange
the directions of revolute axes z, by keeping z,, z,, z, pointing away from the
vertex, and reversing z,, z,, z, pointing to the vertex, as shown in Fig. 3-1(c) and
(d). Meanwhile, the axes x, can be obtained, accordingly. Then we can obtain the
relationships between the twists of linkage and sector angles of origami pattern as

allzr — _agr — aBr — _a,

ay =-al =" =2a, (3-5)

ay =-apy =y" =a,

and that between link length and panel thickness as

s

Br _ _Br __ _ B =t _t

ap =dg =U =1 =g,
Br _ _Br __ _Br __ _ _

Ayy =Ase =V Zlyy —lyy T lsg — s, (3-6)
Br _ _Br _ _. Br _ —

Ay =Ays =W =1y =15,

uBr +vBr — WBr‘

3.2.2 Transition from Diamond Thick-Panel Origami Pattern to a Mobile
Assembly

In Fig. 3-2(a), the creases of the diamond origami pattern with four vertices A, B,

C, D, are noted by «a,, b,

1

, ¢, d (i=1, 2,..., 6) and its sector angles are «,
7 —2a . The corresponding thick-panel form is shown in Fig. 3-2(b). Since each thick-
panel vertex corresponds to a plane-symmetric Bricard linkage, this thick-panel form
of the multi-vertex pattern should be a mobile assembly of plane-symmetric Bricard
linkages, which is derived next. Noted that the superscript ‘Br’ of the twist or the link
length of Bricard linkage is omitted in the later analysis of mobile assemblies.
a®, B%, ¥ and u®, v, w" represent twists and the corresponding link lengths of
Bricard linkage K in the mobile assembly, respectively, where K can be A, B, C, D, E,

F, G.
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(2) (b)

C
45+ 61

Fig. 3-2 Transition from the diamond thick-panel origami pattern to a mobile assembly of plane-
symmetric Bricard linkages. (a) The crease pattern with four vertices; (b) the corresponding thick-
panel form; (c) the enlarged central panel attached with three plane-symmetric Bricard linkages;
(d) the mobile assembly, where gray links and joints show the tessellation.
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In the thick-panel pattern (Fig. 3-2(b)), the central panel P (P} /P)/P2) is
connected to three linkages A, B, D with links a,,, b,, ds,as shown in Fig. 3-2(c).
Creases or revolute joints shared by the adjacent two linkages are combined into one,
1.e., the joint a,/d, shared by linkages A and D, the joint b,/d, shared by linkages
B and D and the joint a,/b, shared by linkages A and B. The links and joints are
formed of a loop, i.e., from joint a,/d, to a,/b vialink a,,, to joint b,/d; via
link b,,, and then back to a,/d, via link d.,. Hence, along thickness direction of
panel P, there are three joints, joint a,/b, in the bottom, joint b,/d, in the middle
and joint a,/d, on the top. Furthermore, its total thickness 7, and link lengths have

a relationship as

ty=w" =u"+v". (3-7)

Hence, the order of joints a,/b,, b,/d,, a,/d, inpanelPis obtained. Similarly,

the order of joints in the panel P,,/PS/P,. canbe obtainedas ¢, /d,, b,/c,, b,/d;.

Applying the orders of joints to the straight link forms, an assembly of plane-symmetric

Bricard linkages is constructed, as shown in Fig. 3-2(d). From Egs. (3-5) to (3-7), we

can obtain the construct condition of the new mobile assembly of plane-symmetric
Bricard linkages as

a® =a® =af :aD:_a, ,BA=ﬂB=ﬂC=,BD=—20!,

7A=}/B=}/C=}/D=0(, MK+VK=WK, MB+VD=WA, MC+VB=WD.

(3-8)

Prototypes of diamond thick-panel origami pattern and its corresponding mobile
assembly which is called diamond assembly, are shown in Fig. 3-3.

Fig. 3-3 Motion sequences of (a) a diamond thick-panel origami pattern and (b) its corresponding

mobile assembly of plane-symmetric Bricard linkages with o =30°.
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3.3 The Analysis of Compatibility Condition for the Mobile Assembly

The above mobile assembly consists of identical plane-symmetric Bricard linkages
with a® = f*/2=—y" =—a, which is a very special case of plane-symmetric Bricard
linkage, compared to the general geometric condition in Eq. (3-4). To obtain more
general condition for constructing the mobile assembly with plane-symmetric Bricard
linkage, the compatibility condition with seven general plane-symmetric Bricard
linkages A to G in Fig. 3-4 will be studied here.

The closure equations of the general plane-symmetric Bricard linkage [73] are

sy(c8,s6, +cBs6,ch,)+sBcysb,
(casysO,s6, —cacBsych,ch, +sasPsych, —casPcych, —socPcy) (3-9a)
w(cO,cO, —cBs0,s6,)+vch, +u ’
(W(cas8,cl, +cocBch,sb, —sasPsb,)+vcasb,)

tﬁ: s¥(c8,50, +cfPs6,ch,)+sBcysh,
2 (casys8,s6,—cocPsych,ch, +sasPsych, —casPcych, —sachcy)’
(3-9b)
ti: sa(s8,ch, +cfch,sb,)+casPsb,
2 (sacys8,s6, —sacPcych,cl, +sasPsych, —casPcych, —cocPsy)’
(3-9¢)
6,=6,, 6,=6,, (3-9d)

where t, s and c denote tangent, sine and cosine in the equations.

To make the whole assembly with the topology of assembly in Fig. 3-4 mobile,
the compatibility on each link commonly shared by three linkages should be satisfied
throughout the assembly. Taking the red link shared by linkages A, B, D as an example,
its twists and link lengths satisfy

a® =P =yr, ut v =wh, (3-10)

First, the revolution on joint a, is transmitted to joint a, through linkage A,
which can be derived from the relationships among kinematic variables 6;', 8 and
0, ,

A A A A
25(pr —at ) 1 & g O 2 O o 2 (B +a* )t ™2 0 L osart®
2 2 22 2 2

4 =

2

A A 5
R

—sle® =g+ )P
+s(a +ph ;/A)zeé +4cy sat t% teé (a +p4 +7A)
(3-11a)
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and
A R B R A S
Ht vt Kt ) B e ot 4504
#2flt = ot )+ ot 4 e Bz
(3-11b)

O

Fig. 3-4 The schematic diagram of mobile assembly with seven plane-symmetric Bricard linkages,

where the gray links and joints show the tessellation.

Second, the relationship between 6° and 6} can be setup in linkage B as
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B

t—— =
2

B B B B B
(2S(ﬂ ) 92 257Bt2622t6§+2S(ﬂB+}’B)t922+257Bt9§j

, 0F ’
)

—s(aB—ﬁBﬂ/B) 02t92_(a -p° 7)

B B

B
—s(a®+ " —;/B)t2%+4caBsth922t923—s(aB +4°+7")

(3-12a)
where 6} and 6; satisfy
HB eB B
(uB —vP +WB)S(0(B -B°+ yB)tZTth 73+(uB +v° —WB)S(aB +° —}/B)t2 73
+(uB—vB—w ) (0{ -B -y ) 92]3 (u +v% +w ) (aB+ﬂB+7/B)
2" =P )s(@® =7 )= P P )o@ + 77 )t 92? té’; 0.
(3-12b)
Third, for linkage D, the revolution between 6 and 6, is related as
) L L) St
+(uD—vD—wD)s(aD—,BD—7D)t2%+(ul)+vD+wD)s(aD+,BD+7D)
#2(1” =wP sl = 7°)=(u® + w0 )s(e® + 7))t “)j’t@; 0.
(3-13)

Moreover, from the shared joints on the red link, we find joints a, and d,, joints

b, and d,,joints a, and b, are the same joints, respectively, with relationships

0} +0) =r, (3-14a)

0, +6. =1, (3-14b)
and

0} +6°=2r. (3-14c)

Considering the symmetric property of each linkage with 85 =6, and 6f =6y,
Egs. (3-13), (3-14a) to (3-14c) become
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) L N s
P WP ) e e 4 574 )

21" =P )s(e” = 2 )= + 9P )s(e® + 7 )ﬁ%% ~0,
(3-15)
and
0r+6) =1, (3-16a)
0r+6° =1, (3-16b)
0} +6°=2r. (3-16¢)

For obtaining the compatibility condition on the red link, we should solve Egs. (3-
11a), (3-11b), (3-12a), (3-12b), (3-15), (3-16a) to (3-16¢c) by eliminating the revolute
variables @ , considering Eq. (3-10). As they compose systems of nonlinear
multivariable equations, there could be many solutions, which is difficult to be solved
directly. So here we introduce the extra conditions in thick panel origami, and the
obtained assembly will be transferred back to generating new thick-panel origami
structures. One hand, for the flat-developability, «,, +a,, +a,, = 7, considering
ol =-af =a* =-a,,
oy =—og =" =ay, -7, (3-17)
oy =—a =y" =,

we have

o =p%+ 5. (3-18)

On the other hand, for the compact flat-foldability, we have ¢, +1,, —15, =1,
according to Eq. (3-3), i.e., for a plane-symmetric linkage

uE K =k (3-19)

Substitute Egs. (3-18) and (3-19) into Egs. (3-11b), (3-12b) and (3-15), we get
A A A pA
[uAs;/At%t%—wAsaA c;/*‘t%t%—caAJ =0, (3-20a)

B
2

B B B
[uBs;/Bt%t%—wBsaB (cth%t%—caBJ:O, (3-20b)

D D D D
(uDS7Dt%t%—WDSOZD C}’Dt%t%—CdDjzo- (3-20c)
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Then the following solutions are obtained.

In linkage A
A A A
Al titﬁzca (3-21a)
2 2 ey’
or 6r wisat
All: t7t7= sy (3-21b)
In linkage B
B B B
pr. %% % (3-22a)
2 2 ¥’
6% oF  wisa”
BII: t— 5 t—— 5 uBs;/B ) (3-22b)
In linkage D
D D D
pr. &% (3-23a)
2 2 cpf

DI tgtheD wPsar®
22 uPsyP

(3-23b)

Each linkage is a plane-symmetric Bricard linkage with six active joints, so
tan(@, /2)tan(@; /2) are not always zero or infinity.

As each linkage has two relationships between 6, and 6, the assembly of the
three linkages has eight types of the combination of the relationships, which are named
motion types, i.e., AI-BI-DI, AI-BI-DII, AI-BII-DI, AlI-BI-DI, AI-BII-DII, AII-BI-DII,
AII-BII-DI, AII-BII-DII. Compatibility conditions on the red link should be analyzed

under the motion types.
For motion type AI-BI-DI and considering Eqs. (3-16a) and (3-16b), we have

B D B cof D

te—ztgizl, t%z—Bt%,
<y (3-24)

(O O _cotea’ or oy’ o

2 2 ey’ 2 o 2

By substituting Eq. (3-24) into Egs. (3-11a) and (3-12a), we get

A D D B D

A S S S S (3-25)

2 2 ¢y c;/A co®

With 6} +68° =27 in Eq. (3-16¢), we have
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ca’ca® =cyPeyt. (3-20)

Two solutions for the compatibility condition on the red link under motion type
AI-BI-DI are obtained
D B K K
= = = +
7/D a > }/A a 5 a ﬂ }/K 2 (3 _27a)

u® +v° =wh, u +* =wt,
and
P :_7A, }/D :_aB’ a® :ﬁK +}/K’
3-27b
u® +v? =wh, u® % =Wk, ( )

Similarly, compatibility conditions on the red link for the eight motion types are
obtained and expressed in the section 3.5. With the comparison among the conditions
of eight motion types, there are only five distinct motion types, as AI-BI-DI, AI-BI-DII,
AI-BII-DII, AII-BI-DII, AII-BII-DI.

To ensure the mobility of the assembly in Fig. 3-4, each of the links shared by
three linkages should satisfy the compatibility condition under a specific motion type.
When all links have same compatibility conditions to Eq. (3-27a) or (3-27b), we can
get the compatibility conditions on the other shared links as

ADE :o* =y, y* =a®, u® +v* =n",
DBA:a® =y°, y* =a®, u® +v° =w",

BCD:a® =%, ¥*=aC, u®+v° =w",

FDE:a" =9, ¥* =a®, u® +v" =w", (3-28a)
DGF :a” =", ¥* =a®, u® +v° =w",
GCD: o =%, y*=a, u® +v° =w",
and
ADE o =—y°, y* =—a®, u® +v" =w",
DBA:a” =—y", ¥° =—a®, u® +v° = w?,
BCD:a” =—y", y" =—a, u® +v" =",
(3-28b)

FDE:a" =—y*, y" =-a®, u® +v" =w",
DGF :a” =—y", y" =—a®, u® +v° =w",
GCD : o =—y°, ¥° =—af, u®+v°S =wP,
where all the linkages satisfy Egs. (3-18) and (3-19). Simplifying Egs. (3-28a) and (3-
28b), we obtain two cases, case | and case Il assemblies, as
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at=yt=a"=y"=¢_,
0{C=7C=0!D=7D=6¥E=}/E=8j,

af=y'=a=y°=¢,, B*=0, (3-29a)
u s +v5 =W, v =yt =t -,

VB =0 =P € yP = A B = F O

and

Jj° ﬁB:ﬂ 5 +5]+l’
7B:_ac :76 = J+1’ ﬁ 51+1+5/+2’

u +v - =w-,v :v:w—u,

(3-29b)

B G D c . D A B F G
VvV =V =w —-u ,v =w —u =w —u .

As ¢g,’s in Eq. (3-29a) can be different for case I assembly, all plane-symmetric
Bricard linkages on the same guideline X, such as linkage C, D, E are identical, but
the linkages on different X-guidelines can be with different twists, as shown in Fig.
3-5(a). Similarly, for case I assembly, in Fig. 3-5(b), the linkages on the same guideline
Y, are identical, while those on different Y-guidelines are of different twist &;. The
prototypes of both cases are shown in Fig. 3-6. However, those two cases cannot be
combined together to have both X-guideline and Y-guideline at the same time, which

will only lead to the assembly with all Bricard linkages identical rather than all of them

are different.
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Fig. 3-5 Schematic diagrams of (a) case I, (b) case II assemblies with vertical guidelines X; and
horizontal guidelines Y, and the crease pattern of graded diamond thick-panel pattern
corresponding to case Il assembly. Here same colored angles in (b) and (c) have relationships
expressed in Eq. (3-30).
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Fig. 3-6 Motion sequences of (a) case I and (b) case Il mobile assemblies of plane-symmetric
Bricard linkages with guidelines X; and Y/, respectively.

3.4 Variation of the Diamond Thick-Panel Origami Patterns

Cases I and II extend the construct condition of mobile assembly of plane-
symmetric Bricard linkages. Considering the kinematic equivalence between the
mobile assembly and thick-panel origami, they should subsequently enhance the

geometric variation in the diamond thick-panel origami.

For case I, X-guideline cannot apply to diamond thick-panel origami, as the twists
of linkage lead to negative sector angles of origami from Eq. (3-17). Meanwhile,
applying X-guideline would destroy the plane-symmetric property of diamond thick-
panel origami. For case II, twists of Bricard linkages on different Y-guidelines can be
different (Fig. 3-5(b)). So correspondingly, in the diamond thick-panel pattern, sector
angles can be different along different rows of vertices, see Fig. 3-5(c), which is called
the graded diamond thick-panel origami pattern. The geometric condition for

constructing graded diamond thick-panel origami pattern is derived from Eqgs. (3-17)
and (3-29b)

Oy ==8, 0 B, =0,,+0,,+1.
@1 = _51'—1’ ﬁj—l = 5j—1 +§j +7,

@; =_5j’ 'Bj = 5]’ +5j+1 T,

P S SR S S T (3-30)

A

K K K F E D
us v =w, vi=v o =w o —u -,

B G D C D A B F G
vi=vi=w o —u ,v =w —u =w —u’,
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where —7/4<6, <0, to satisfy the flat foldability in every origami vertex. «; and

B; are the sector angles in the diamond origami pattern in Fig. 3-5(c).

On the other hand, Fig. 3-3(a) shows that the diamond thick-panel origami is not
completely flat but with stairs in the fully unfolded configuration due to the thickness
arrangement. However, the thick-panel pattern with flat unfolded profiles is more useful
in terms of application. Referring back to the general mobile assembly of plane-
symmetric Bricard linkages in case II, it is possible to remove the stairs. Taking a close
look at the diamond thick-panel origami vertex in Fig. 3-1(c), stairs are caused by the

panels P, and P,  whose sizes correspond to link lengths

7 4 Br
by =l = s —lse = Qs

=al’ =v" . To obtain panels with flat unfolded profiles, we set
link lengths v*" =0 and u” =w" . Ifall plane-symmetric Bricard linkages of mobile
assembly in Fig. 3-2(c) satisfy v* =0 and u* =w", its corresponding diamond
thick-panel pattern would have a flat unfolded profile. Such diamond thick-panel
pattern and its corresponding mobile assembly are shown in Fig. 3-7, in which the
mobile assembly of Bricard linkages is very different from that one in Fig. 3-3(b) due

to the zero link length.

Fig. 3-7 Motion sequences of (a) a diamond thick-panel origami pattern with flat unfolded profiles

and (b) its corresponding mobile assembly with o® =-30°, vE=0, o =wk.

As this diamond thick-panel origami pattern is folded to an arch, the tessellation
along the axial direction can be infinitely extended. But infinite tessellation along the
circumferential direction would cause interference during folding, which can be

avoided by setting sector angles of the diamond thick-panel origami along the
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circumferential direction, i.e., the Y-guideline direction in Fig. 3-5(c), changing
gradually. They should satisfy the condition of the graded diamond thick-panel origami
pattern for mobility in Eq. (3-30). By setting v =0 and u* =w" of case Il mobile
assembly, a graded diamond thick-panel pattern with flat unfolded profiles can be

generated, as shown in Fig. 3-8, which is folded spirally.

Fig. 3-8 Motion sequences of (a) a graded diamond thick-panel origami pattern with flat unfolded
profiles and (b) its corresponding mobile assembly of plane-symmetric Bricard linkages with

K K K
vio=0, u-=w-.

3.5 Solutions of Motion Types

Compatibility conditions on the red link of eight motion types are expressed in this
part, which are derived from the similar method in section 3.3, as AI-BI-DI, AI-BI-DII,
AI-BII-DI, AIl-BI-DI, AI-BII-DII, AII-BI-DII, AII-BII-DI, AII-BII-DII.

For the motion type AI-BI-DI, we have two solutions,

aD:_yA, 7/D=_0{B’ aKZﬁK_l_yK’

B D A K K K
u v o =wt, u v =w,

(3-31a)

and

Y=, vy =a", o =" +95,
u® +v° =wh, u® o =wk

(3-31b)

Its corresponding models are the parts with linkages A, B and D of case I and case II
assemblies in Fig. 3-6.

For the motion type AI-BI-DII, we have one solution,
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O(B:ﬂD+7A, aK:ﬂK+7K,
u®+v° = WA, uk +v5 = wK, (3_32)
w” S}/D C;/A

pr=" _
u®  sa® ca

5
When we choose the following parameters in Eq. (3-33), where the unit of the link
lengths is millimeter, a model of motion type AI-BI-DII is constructed, as shown in Fig.

3-9.

a® =-30°, B =-75° y* =45° ut =4, w* =11.464,
a®=175°, B*=45° y*=30° u®=4, w° =3, (3-33)
a® =-30°, B°=30° y°=-60°, u® =2, 2°=4.732.

Fig. 3-9 (a)-(c) The motion sequence of a model of motion type AI-BI-DII.

For the motion type AI-BII-DI, we have two special solutions,

aD:_yA’ 7/D=_0{B) aK:ﬁK_i_;/K’

B D_ A K K _ . K
u +v =w,u +v =w, (3-34a)
B B
ﬂB_w _t}/
-~ B, B’
u tox

and
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Y=o, v =a", o =% +95,
uB+vD=wA, uK+vK=wK,
(3-34b)

pY W

u®  ta®’

The Egs. (3-34a) and (3-34b) are special cases of AI-BI-DI in Eq. (3-31a) and Eq. (3-
31b), respectively.

For the motion type AII-BI-DI, we have two special solutions, as

aD:_yA’ 7D:_aB’ aK:ﬂK+7K,
A

B D _ K K _ K
u +v =w, u +v: =w-, (3-352)
A
ﬂA—W _t;/A
T A T, A
u ta
and
7/D:aD 7A:aB aK: K+7/K
uB+vD=wA, uK+vK=wK,
(3-35b)
A
,1A—W _t;/A
NN
u ta

The Egs. (3-352a) and (3-35b) are special cases of AI-BI-DI in Egs. (3-31a) and (3-31b),
respectively.
For the motion type AI-BII-DII, we have
P =at=al P, B =t -
w? =", w® = u”, (3-36)

A B D D K K K
whi=u —u +w, v =w —u.,

where A4° and A° have three special cases, as

sy”

A== ,
5 o (o |
c—s| ——
2 2 4

(3-37a)
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2 = 7
5 o8 (Y
STC 7—7
o (3-37b)
c(aD —a® -y )s;/Dc{— ;/B]
A= 2
= — ,
cl@®-7* )" saP
2
and
p=
ta®’

(3-37¢)

N C(aD_aB_yD)SyD
A= -
ccosa sa

According to the following parameters in Eqgs. (3-38a) to (3-38c), models of motion
type AI-BII-DII are constructed, as shown in Fig. 3-10 to Fig. 3-12.

a’ =-30°, B =—-60°, " =30° u" =4, w*=8,

a® =-120°, f% =150°, y® =30°, u® =4, 2*=1/2, (3-382)

o ==30°, f° =-150°, y° =120°, u® =4, 1 =2;

a’ =45°, B =15°, y* =30°, u* =6, w* =38,

a® =60°, B°=-30° y°=30° u®=12, A*=1/2, (3-38b)

a® =60°, B°=-30° y°=30° u®=12, 2°=2/3;

at =-30°, B =—60°, y* =30° ut =4, w" =12,
a® =—120°, B°=150° ¥°=30° u®=4, 2°=1/3, (3-38¢)
a® =-30°, B°=-150° y° =120°, u® =4, A° =3.

Fig. 3-10 The motion sequence of a model of motion type AI-BII-DII according to the Eq. (3-38a).
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Fig. 3-11 The motion sequence of a model of motion type AI-BII-DII according to the Eq. (3-38b).

Fig. 3-12 The motion sequence of a model of motion type AI-BII-DII according to the Eq. (3-38c).

For the motion type AII-BI-DII, we have
0{B=0{D—7D+7/A, ﬁK:aK_yK’
wh = ut, wP = 2u®, (3-39)

B A D D K K K
u=wttu —w, v =w —u-,
A D 3
where A" and A° have three special cases, as

A CKS D
57" pL @ -r) 2 . (3-40a)
c(aD -7+ ;/A)c(a*‘ —ZAJsaD

A =1-cy* + ,
7 ta®
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S A

4
A =l+cyt - ,
Y e

7/A
cla® =yt )sLsyP (3-40b)
= 2
ola® ="+ )s[aA —JsaD
P
ta™’
C}/AS7/D (3-40c¢)

A= cla® —y° + 9 Jsa®”

Models of motion type AII-BI-DII are constructed with the parameters in Egs. (3-41a)
to (3-41c¢), as shown in Fig. 3-13 to Fig. 3-15.
a® =30°, B*=-30° y*=60° ut=4, =2,
a® =30°, B°=-15° y®=45° u" =6, w’ =10,
a® =30°, B°=-30° y"=60° u®=4, 1°=3/2.

(3-41a)

at =-30°, % =-150°, y* =120°, u" =4, A* =2,

a® =-30°, B°=-60°, y*=30° u"=10, w® =16, (3-41b)
a® =-120°, B° =150°, y° =30°, u® =4, A°=1/2.

at =-30°, p* =-150°, y* =120°, u* =4, A* =3,

a® =-30°, B®=-60° y"=30° u®=44/3, w’ =16, (3-41c)
a® =-120°, B° =150°, y° =30°, u® =4, A" =1/3.

Fig. 3-13 The motion sequence of a model of motion type AII-BI-DII according to the Eq. (3-41a).
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Fig. 3-14 The motion sequence of a model of motion type AII-BI-DII according to the Eq. (3-41b).

Fig. 3-15 The motion sequence of a model of motion type AII-BI-DII according to the Eq. (3-41c).

For the motion type AII-BII-DI, we have two special solutions, as

aD :_7D :aB :_}/A’ 7B :_aA, aK :ﬁK+7K,
. (3-42a)
u® =wh +u® —wP, V=W -y, ZB=/1—A,

and
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aD:7D’ aBzyA’ 7B:aA’ aK:ﬂK‘i‘}/K,
1 (3-42b)

B A D D K K K B
u =wrtu —w,vo=w —u, 4

As the parameters in Egs. (3-43a) and (3-43b) satisfy Eqs. (3-42a) and (3-42b),

respectively, two models of motion type AII-BII-DI are constructed, as shown in Fig.
3-16 and Fig. 3-17.

Fig. 3-16 (a)-(c) The motion sequence of a model of motion type AII-BII-DI according to Eq. (3-
43a).

Fig. 3-17 (a)-(c) The motion sequence of a model of motion type AII-BII-DI according to Eq. (3-
43b).
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a® =-120°, B* =150°, y* =30°, u"* =8, A*=1/2,
aB :_300’ ﬁB :_1500, 7B :1200, uB :4, ﬂB :2’ (3_433)
o =-30°, B° =—60°, y° =30° u® =12, w° =12.

at =30°, pr=-60°, y* =-30°, u™ =16, A* =1/2,
a® =-30°, B°=-60° y°=30° u"=4, 1°=2, (3-43b)
a® =-30°, B°=0° y°=-30° u" =4, w’=8.
For the motion type AII-BII-DII, we get solutions which are the special cases of
AI-BI-DI, as
o ==y, PP =—a®, o = BF 49K,

B A D D _K K K
u =witu —w, v =w —u-,

(3-44a)
P WK_'[}/K
u® _taK’
and
aD=7/D, aB:yA’ aK=ﬁK+}/K,
B_ A D D K _ K K
u =w +u —w,v =w —u-,
(3-44b)
ﬂK_wK_t}/K
_uK _taK'

From the eight motion types, we find five types are different, i.e., AI-BI-DI, Al-
BI-DII, AI-BII-DII, AII-BI-DII, AII-BII-DI. Compatibility condition of a mobile
assembly can be derived from the combination of compatibility conditions on all links
under the selected motion types.

3.6 Conclusions

In this chapter, the mobile assemblies of plane-symmetric Bricard linkages have
been constructed from the diamond thick-panel origami based on their kinematic
equivalence. The compatibility analysis on the diamond assembly extends the construct
condition of the two newly-found mobile assemblies of plane-symmetric Bricard
linkages with X-guidelines and Y-guidelines. By transferring the general construct
condition of mobile assemblies back to diamond thick-panel origami, thickness and
sector angles of diamond thick-panel origami can be varied according to the condition
of case Il assembly. Then a diamond thick-panel origami with flat unfolded profiles and
a graded diamond thick-panel origami pattern with spirally folded configuration are
inspired from the case I assembly. The graded diamond thick-panel origami pattern is

more potential in engineering applications, such as solar panels.
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Chapter 4 Vertex-Splitting on Rigid Origami

4.1 Introduction

There are many multi-DOF rigid origami patterns which have large potentials in
engineering applications. Yet it is generally difficult to fully control the motion in the
desired manner. In this chapter, a vertex-splitting technique is proposed to reduce the
DOF of diamond origami pattern and obtain one-DOF origami patterns with kinematic
equivalence. As some applications are sensitive to the flat unfolded state, the
relationship between variations of the mobile assembly of two Bennett linkages and
that of corresponding thick-panel origami will be studied to construct thick-panel
origami patterns with flat-surface unfolded profiles by removing some hinges.

The layout of the chapter is as follows. Two vertex-splitting schemes are proposed
on the diamond vertex and generate three types of unit patterns in section 4.2 with
analysis of their kinematic behaviours. The technique is applied to the multi-vertex
diamond origami pattern to produce one-DOF basic assemblies and one-DOF origami
patterns in section 4.3. Hinge-removing is proposed by analysing relationships between
the construction of Waldron’s hybrid 6R linkage from the assembly of two Bennett
linkages and the variation of their corresponding thick-panel origami pattern, which is
applied to construct thick-panel origami with flat unfolded profiles in section 4.4.

Finally, conclusions are drawn in section 4.5.

4.2 Vertex-Splitting on the Diamond Vertex

A diamond vertex has six creases meeting at one point, as shown in Fig. 4-1. z,
(i=1,2,3,4,5, 6) are axes of the six creases and &, are sector angles with the
geometric conditions

o, =0 =Q,

o,, =0, =1 —20, (4-1)

Oy =0 =0,

where 0<a<7/4, to ensure flat foldability. @* represent angles of rotation
between two panels joined by a crease and ¢ represent dihedral angle between two
panels joined by a crease. Taking creases and rigid panels as revolute joints and links,
respectively, the diamond vertex can be considered as a spherical 6R linkage with three
DOFs.

Imposing the line- and plane-symmetric conditions to the diamond vertex in Fig.
4-1, ie. 6*=6} and 6} =6)=06) =6 [133], the kinematic equations of

spherical 6R linkage can be derived from matrix method in section 1.2.1.1, as
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o* 0y
tanL:—cosatané, 6" =6, 6} =6, =6,=6., (4-2)

in which " is the kinematic variables set up with D-H notation. In origami study,
dihedral angles ¢ are preferred to have a direct presentation of the folding process.
The dihedral angles and kinematic variables have the following relationship [42],
O =n—9t, 0 =rw+¢}, 6 =rw+9¢}, (4-3)
O0) =r—9., 0) =7+, 6] =w+¢],

Eq. (4-2) becomes

(DlA 1 %A A A A A A A
tan = tan s Oy =Py, O =05 =P5 =@ -
2  cosax 2

(4-4)

Hence, the diamond vertex exhibits one-DOF in symmetric folding, whose motion is
shown in Fig. 4-2.

Fig. 4-1 A diamond vertex.

Fig. 4-2 The motion sequence of diamond vertex in symmetric folding.

As the diamond vertex is plane-symmetric about the central creases g, and a,

(Fig. 4-3a), two vertex-splitting schemes are proposed, SI is splitting towards the
direction parallel to the central creases to get pattern DI and SII is towards the direction
perpendicular to the central creases to obtain pattern DII, see Fig. 4-3(b) and (c). Two
schemes acting on the diamond vertex at the same time produce pattern DI-II in Fig.
4-3(d).
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(a) (b) (c) (d)
Ffl & G
~Pi P
fv \I;%:—]?.—/%G/ &
A 184185
Lflll—;;;-léH
12//:% a\\”\}\lz
P, / hlpp

Fig. 4-3 The crease patterns of a diamond vertex and its corresponding patterns by splitting vertices. (a)
Diamond vertex; (b) pattern DI, (¢) pattern DII and (d) pattern DI-II. Here, the blue lines represent the
added creases for splitting the vertex.

Pattern DI (Fig. 4-3(b)) consists of two four-crease vertices B and C, which can be
regarded as two spherical 4R linkages connected in series with one DOF. The kinematic

equations of spherical 4R linkages B and C can be derived, as

B 1 B
tan P —an 2 of = gf, oF = ¢f, (4-52)
2  cosox 2
C 1 C )
tan?=——an P, of =gf, of =g (4-3b)
2  cosa 2

The shared crease b,/c, satisfies angular relation @ = ¢! . When giving an input

dihedral angle, all the other angles will be determined, according to Egs. (4-5a) and (4-

5b). For the original diamond vertex in Fig. 4-3(a) and pattern DI in Fig. 4-3(b), setting

input @' = @), from Egs. (4-4), (4-5a) and (4-5b), the relationship of the other dihedral
angles can be obtained as

ol =gt =0} =) =95 =0, (4-6a)

ol =0 =¢’ =9 . (4-6b)

Hence, pattern DI is kinematically equivalent to the original diamond vertex in line-

and plane-symmetric conditions. It is flat-foldable, whose motion sequence is shown in
Fig. 4-4.

Fig. 4-4 The motion sequence of pattern DI.
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Pattern DII (Fig. 4-3(c)) has two five-crease vertices with shared crease d/e;.
As each five-crease vertex has two DOFs, this pattern has multiple DOFs. As each
vertex is plane-symmetric about crease d/e;, symmetric folding of each vertex is

allowed by introducing symmetric conditions of dihedral angles, i.e.,

o) =P, ) =p”" to vertices D and E. The following kinematic equations are
obtained.
¢D
D D D D D
tan @, :—cosacot%, o, =0, 0, =@,
¢ ¢ )

cos @y =8sin’ o —8sin* ¥ —8sin’ ersin’® ~2+8sin” arsin’ “2+2sin* arsin’ 5 -1,
(4-7a)

¢ E_ P (02 E_ _E _E_ E

an @, =-—Ccosoco s O3 =0y O =0,
cos @ =8sin’ ¢ —8sin* & —8sin” asin® 2 o +8sin’ arsin® 22 o) +2sin* arsin® 2= o —1.

(4-7b)

With @2 =@ at the shared crease d,/e, , one input dihedral angle will

determine the configuration of pattern DII in symmetric conditions, i.e., it has one-DOF.
Taking @, =@, into Egs. (4-4), (4-7a) and (4-7b), we obtain

ol =gl =0} =) =00 =9} =g}, (4-82)

ot =} =2gP ~n/2)=20p} ~n/2)=2{p ~/2)=2{p ~7/2). (4-8b)

Thus, the dihedral angles of the valley creases d,, d,, e,, e; are equal to that of
creases a,, d,, ds, a, indiamond vertex. The dihedral angles between the panels Pi
PJ and P., the panels PJ, and P} in Fig. 4-3(d) are equal to ¢ . This also
indicates pattern DII is kinematically equivalent to diamond vertex which is under
line- and plane-symmetric conditions. Its motion sequence is shown in Fig. 4-5. It

should be noted that pattern DII loses flat-foldability due to the five-crease vertex.

Fig. 4-5 The motion sequence of pattern DII in symmetric conditions.
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Applying the two above-introduced vertex-splitting methods to the diamond
vertex at the same time, a plane-symmetric pattern DI-1I, with four four-crease origami
vertices is constructed, as shown in Fig. 4-3(d). Based on the truss method [44], we first
trim the edge facets to triangular or quadrilateral shapes, as shown in Fig. 4-6(a). The
pattern is then converted to a truss form by replacing creases with bars and vertices by
nodes. For triangular facets, three bars will make a facet rigid; for quadrilateral facets,
an arbitrary point out of the facets can be introduced to generate the truss form, such as

the facet GHV,V, in Fig. 4-6(a) to tetrahedrons W,GHV, and W,HV.V, in Fig.
4-6(b).

(a)

Vv, V,

V, V,
N (/)g/
\H e

\\____/
Fr=1G
Lj-4H
7

v, v
AT

Fig. 4-6 Pattern DI-II. (a) pattern DI-II with the edge facets trimmed to triangular or quadrilateral
shapes; (b) the corresponding truss form. Here, the origin of the Cartesian coordinate system is a
node G, the z-axis is along the direction of the bar GH, the x-axis is perpendicular to z-axis on the

plane GHV,V, and y-axis is determined by the right-hand rule.

By counting, the truss form of pattern DI-II in Fig. 4-6(b) contains j =17 nodes,
b=45 bars. When taking a=45° and ¢} =120° in pattern DI-II, the coordinate
of nodes can be obtained as expressed in Eq. (4-9a) in a Cartesian coordinate system
noted in Fig. 4-6(b). The equilibrium matrix of pattern DI-II can be established
according to [44]. Then, the rank of the matrix » =44 is obtained. The numbers of
self-stresses and mobility in pattern DI-II are s=1, m=1 derived from Eqgs. (1-10)
and (1-11). Hence, the pattern DI-II is overconstrained with one-DOF.

W, =[2.99482507, 60.25081951, —19.17794444]",

W, =[35.35533906, —35.35533906, 0]", (4-9a)
W, =[-14.01357621, 18.58891502, 88.86421410 [',

W, =[-68.51379857, 7.04905881, 0 |',

W, =|-7.17746781, 35.33389245, 10 |,
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F =[-1851640200, 755928946, 0], G =[0, 0, 0]", H =[0, 0, 30][",
L =[-18.51640200, 7.55928946, 30]",

V, =[-43.77021561, 32.30287243, —35.35533906]",

V, =[-5.50937557, 39.41986727, —39.02107927]",

V, =[13.00702642, 31.86057781, —39.02107927]",

Vv, =[35.35533906, 0, —35.35533906]",

V. =[35.35533906, 0, 65.35533906]",

v, =[13.00702642, 31.86057781, 69.02107927]",

V, =[-5.50937557, 39.41986727, 69.02107927],

V, =[-43.77021561, 32.30287243, 65.35533906] .

(4-9b)

With the symmetric condition that linkages F, G, H, L are symmetric about x-axis
and y-axis, these vertices have equivalent motions, as follows

i

tan @ = —cosacot%,

sin ¢} = cos ¢, sin ¢ —cos &sin @] sin ¢}, (4-10)
. q)i

cos @, =2sin’ azcos’ ~=—1,

i=F, G, H, L.
Because of the dihedral angles satisfying

0 =0, 07 =0, o, =0, ¢i =05 (4-11)
Taking @) =¢; into Egs. (4-4), (4-10) and (4-11), we can obtain

Pl =0l =0l =0, =0, =@,

o =0t =2lg ~212)=20g ~12)=2lg ~z12)=2lgt ~mr2) T

Similar to patterns DI and DII, diamond vertex under line- and plane-symmetric
conditions is kinematically equivalent to pattern DI-II. Because the sum of the alternate
angles about each vertex is not equal to 7, this pattern is non-flat-foldable [107]. The

motion sequence of this pattern is shown in Fig. 4-7.

Fig. 4-7 The motion sequence of pattern DI-II.
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4.3 Vertex-Splitting on Multi-Vertex Diamond Origami Pattern

A multi-DOF diamond origami pattern with six identical six-crease vertices is
shown in Fig. 4-8. These vertices can be divided into four rows and three columns. Each
vertex is noted A, B, C, D, E, F. According to the truss analogy, we obtain this pattern
has nine DOFs with j =18 nodes, b =39 bars. Thus, the motion of this pattern is
much difficult to be fully controlled. In order to maintain the symmetrically geometrical
characteristics and avoid the non-rigid origami patterns, the vertices of the diamond
origami pattern are split in whole row or column. SI can be applied to vertices in a
whole row to produce pattern DI. Four rows generate fifteen cases of vertex-splitting
SI, to SI,,;, in Table 4-1. Here, SI, means applying the vertex-splitting method
SI to split the vertices in rows i (i=1, 2, 3, 4). SII can be applied to vertices in a whole
column, which leads to five cases SII, to SII,,, inTable 4-1. Therefore, the mix of
the two methods SI and SII can generate 5X15=75 cases. SI, and SII, mean
no vertex-splitting on rows and columns, correspondingly. So the number of all the
cases including the original one is (5+1)x(15+1)=96. The corresponding origami
patterns are shown in appendix A, whose DOF can be determined by the one-DOF basic
assemblies in the patterns. Next, those basic assemblies of four-crease, five-crease,

and/or six-crease vertices are discussed.

Basic assemblies of four-crease vertices A, B, C, D are shown in Fig. 4-9(a) to (f)
which can be denoted by the diagram with quadrilateral loops of four spherical 4R
linkages in Fig. 4-9(g). They are overconstrained with one-DOF due to the plane-

symmetric conditions [104].

Columns I1 2 3
Fig. 4-8 A diamond origami pattern with six vertices.
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Table 4-1 Cases of vertex-splitting on multi-vertex diamond origami pattern in Fig. 4-8

SII,

SII,

SII,

W

SII,.

()

SII,.

SII,,

[
[N

SI,
I,
SI,
SI,
SI,
ST,
ST, 5
ST,
SI, 5
ST, 4
SI,,
STiss
ST, 4
ST, 5.4
ST 54
STissa

~ 3 3 3 § 3 3

— =~ 3 3 3 3
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-~ 3 § 8 8 8 8
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The ‘m’ means multi-DOF and ‘1’ means one-DOF.
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Fig. 4-9 Basic assemblies of four-crease vertices. (a)-(f) One-DOF assemblies of four crease
vertices and (g) their corresponding diagram where S4R represents a spherical 4R linkage.

Basic assemblies of four-crease vertices and one five-crease vertex are shown in
Fig. 4-10(a) to (d). For the pattern in Fig. 4-10(a), the motion of five-crease vertex B
with two DOFs can be determined by two input dihedral angles ¢ and ¢!. The
kinematic equations can be represented by

08 = f2 (0%, 98) o = 2P, °) 0P = fE(pF, oP) (4-13)

where f,” represents the function to determine ¢”. From the assembly of two four-
crease vertices A and C sharing a crease, we can construct a relationship between ¢
and o7,

0" = f2(F), (4-14)
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which give a constraint to the Eq. (4-13). So one input ¢ can determine the motion
of the pattern in Fig. 4-10(a) and the pattern is one-DOF. According to the truss method,
this pattern contains j =11 nodes and b=26 bars. The rank of its equilibrium
matrix is 7=26. The result s=0 and m=1 ensures that this pattern is non-
overconstrained with one-DOF. Similarly, the pattern in Fig. 4-10(b) is non-
overconstrained with one-DOF. For the patterns in Fig. 4-10(c) to (d), the motion of
five-crease vertex can be determined by setting the dihedral angles ¢ and @) . As
the relationship between ¢ and @) is constructed by the one-DOF assembly of
four-crease vertices E, F and G, the motion of this pattern can be determined by giving
(olD , 1.€., this pattern has one-DOF. Truss method also verifies the result. Those four
patterns can be represented by the diagram of Fig. 4-10(e) which indicates that the
pattern with one-DOF assembly connecting to a spherical SR linkage by two creases

which makes the pattern one-DOF.

The pattern in Fig. 4-10(f) contains two five-crease vertices sharing a crease.
Giving angles @) and ¢. can determine the motion of vertex N and produce an
input @ =@ to vertex L. By introducing ¢; , the motion of vertex L can be
determined. So the dihedral angles of vertices N and L can be derived by ¢}, @) and
@y, that is

o =g =N o) o = 1Mol o) o =10 o)
e A O B A R N S A AN
From the two four-crease vertices H and M, we can obtain
o = 1 (ok) o = £ (ob) (4-16)
Combining Egs. (4-15) and (4-16), all the dihedral angles of this pattern can be derived

(4-15)
)

by giving ¢! . So this pattern is non-overconstrained with one-DOF, which is verified

by the truss method. This pattern is represented by the diagram of Fig. 4-10(g).

Basic assemblies of four-crease and six-crease vertices shown in Fig. 4-11(a) to (e)
are the same type which can be represented by the diagram in Fig. 4-11(f). In Fig. 4-11(a)
to (c), giving one input ¢, dihedral angles @, and @} can be derived from the
one-DOF assembly of four-crease vertices B, C, D, E, F. The three angles can be inputs
to determine the motion of vertex A. Similarly, giving one input, the one-DOF
assemblies of four-crease vertices H, L, M, N in Fig. 4-11(d) and (e) can provide three
inputs @Y, @7, ¢° to determine the motion of the six-crease vertex G. So these

patterns are non-overconstrained with one DOF, which are confirmed by the truss
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method. In Fig. 4-11(g), two constraints about the relationships of ¢ & ¢ and @2
& ¢ derived from the one-DOF assemblies of vertices Q&R and T&S, respectively,
can determine the motion of six-crease vertex O. So this pattern is non-overconstrained
with one-DOF. Similarly, patterns in Fig. 4-11(h) to (i) are non-overconstrained with

one-DOF, which can be represented by the diagram in Fig. 4-11(j).

(a) (b) (c) (d) (e) () (2)
A: B __A_: @P 0P I/ o> /" H:___ N
/| \\(pB & Y ¢B ’ ,(27? ,’2/75[) One-DOF (0)‘\ V. S5R
AN L 4 DY DY assembly s « ZI\ ,
S0 \B \B ([T |95 Ner NP5l |S4R | S4R
—= =% % Pox (2
“\ // o ,’/ ' o3 N[ o ) E | B SSIR - ‘6‘0\? “NIZ
N |SPs Pl 'E ! N o oo S5R
| W A (7 \F P17y i 2N
c G /|F oy | L
/"' \\\\ 'lll lll, ¢‘i‘
Gt G! M

Fig. 4-10 Basic assemblies of four-crease and five-crease vertices. (a)-(d) one-DOF basic
assemblies with one five-crease vertex and (e) their corresponding diagram; (f) one-DOF basic
assembly with two five-crease vertices and (g) its corresponding diagram. Here, S5R represents a

spherical 5R linkage.
(a) (b) (c) (d) (e) ()
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Fig. 4-11 Basic assemblies of four-crease and six-crease vertices. (a)-(e) The one-DOF basic
assemblies with three creases connecting the six-crease vertex and four-crease vertices, and (f)
their corresponding diagram; (g)-(i) one-DOF basic assemblies with four creases connecting the
six-crease vertex and four-crease vertices and (j) their corresponding diagram. Here, S6R
represents a spherical 6R linkage.
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In Fig. 4-12, a basic assembly of four-crease, five-crease and six-crease vertices is

founded from the pattern by splitting vertices with SI,, and SII, ;, as shown in Fig.

Al. According to the truss analogy, it contains ;=22 mnodes, b=59 bars.
Considering the rank of its equilibrium matrix » =59, it is found that the pattern is

non-overconstrained with one-DOF.

(a) (b)
: or
“het [ s | |
N | S4R S4R —
\ | N |/
WA | “ser” |
P37 [N SSR/ | \SSR—
II \\ | |
2NN S4R
Bh P AT |
1D

Fig. 4-12 A basic assembly of four-crease, five-crease, and six-crease vertices. (a) The one-DOF

basic assembly and (b) its corresponding diagram.

The one-DOF assemblies in Fig. 4-10(e) and Fig. 4-11(f) can be replaced by any
pattern in the figures above, as long as the two connected vertices satisfy motion
compatibility. Those one-DOF basic assemblies are used to determine that 42 of 96
cases in appendix A and Table 4-1 are of one-DOF, such as the two patterns in Fig. 4-13.
The remaining patterns are multi-DOF, due to their one-DOF basic assemblies cannot
provide enough constraints to determine the motion of all the vertices.

(2) (b)
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Fig. 4-13 One-DOF origami patterns verified by one-DOF basic assemblies. (a) The flat-foldable
origami pattern; (b) the non-flat-foldable origami pattern.
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The pattern (Fig. 4-13(a)) derived by splitting vertices with SI,, and SII; has
the one-DOF basic assembly of vertices A, C, D, H, L which is identical to the pattern
in Fig. 4-11(g). Four-crease vertices E and G connecting to the one-DOF basic assembly
construct a new one-DOF assembly of A, C, D, E, G, H, L. This assembly gives three
inputs to the spherical 6R linkage F and fully determines its motion, according to the
diagram in Fig. 4-11(f). Hence, this pattern can be considered as the combination of
four-crease vertices B, M and basic assemblies in Fig. 4-11(f), (g) to obtain one-DOF

with flat-foldability, whose motion sequence is shown in Fig. 4-14(a).

Fig. 4-14 Motion sequences of rigid origami. (a) The flat-foldable origami pattern and (b) the non-
flat-foldable origami pattern derived from splitting vertices; (c) the multi-vertex diamond origami

pattern in symmetric folding.

By splitting vertices with SI,, and SII, ;, the pattern in Fig. 4-13(b) can be
obtained. The assemblies of vertices B, C, D, E and vertices O, Q, R, S are the same as

the one-DOF basic assembly in Fig. 4-9(a). The assembly of vertices A, B, G, H, M, S
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is identical to the one-DOF basic assembly in Fig. 4-12(a). The combination of the three
basic assemblies can be regarded as the one-DOF assembly in Fig. 4-10(e) and gives
two inputs to the five-crease vertices N and F. So this pattern is considered as the
combination of four-crease vertex L and basic assemblies in Fig. 4-9(a), Fig. 4-10(e)
and Fig. 4-12 (a) with one-DOF, whose motion sequence is shown in Fig. 4-14(b). Due
to the five-crease vertex, this pattern is non-flat-foldable. As two one-DOF patterns can
be considered as the assembly of kinematically equivalent diamond vertex and patterns
DI, DII, DI-II, they will retain the motion with all vertices in symmetric folding. Hence,
they are kinematically equivalent to original diamond origami pattern with symmetric

folding shown in Fig. 4-14(c).

4.4 Hinge-Removing on Thick-Panel Origami

An origami pattern with two flat-foldable four-crease origami vertices shared a
crease a,/b, isshown in Fig. 4-15(a). In this pattern, the sector angles satisfy > o
and &> y. The distance between the vertices, d,, >7" cos(S—a)+r"cos(6-7),

ensures the pattern being fully flat-foldable. Its thick-panel form is constructed by

A
ii+1

applying the offsetting hinge technique, as shown in Fig. 4-15(b), where ¢;,,, and
ti}?m) (=1, 2, 3, 4; when i=4, i+1=1) represent the thickness of panels corresponding to
vertices A and B. Its corresponding mobile assembly of two Bennett linkages shared a
hinge is derived from connecting the adjacent hinge axes along the nearest distance
with bars according to section 2.3, as shown in Fig. 4-15(c). Here, twists of Bennett
linkages A and B are noted by alffﬂ) and ﬂflﬂl) , respectively; link lengths of them are
noted by af(?fﬂ) and bffﬂ) , respectively. The twists and link lengths satisfy
a¥ =al=nr-a, ak =a =1-p,

o =Py =m—y, By =By =7-9, (4-17)
al =ak =a*, ay =al =b",

b5 =bl =a®, bk =b) =b",

Here, link lengths a® >b", b® >a" are chosen. As the link lengths of the mobile

assembly correspond to the thickness of panels, they satisfy the following conditions

A A A A

— — A A _ —
_112_134’ b _t23_t41’

Q

(4-18)
B_,B_ B 2B_ B _ B
a’ =ty =ty, b"=t;=1,.

Due to t5+1t) =t +th, )+, =ty +1y, this thick-panel origami can be compactly

folded into a configuration that dihedral angles of creases are zero and panels P, P;,
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P, P, are stored in the gap between panels P, /P, and P, /Pj . It should be
noted that the thickness of other panels should satisfy #,>0, 7,>0 to form a

continuously movable thick-panel origami structure.

By removing the common hinge a, /b, in the assembly of two Bennett linkages
(Fig. 4-15(c)) and the two links with lengths a2y and a.f connected by this hinge,
the Waldron’s hybrid 6R linkage is obtained, as shown in Fig. 4-15(d). Here, O‘%H)

and a”“. (=1, 2, 3...., 6; when j=6, j+1=1) represent the twists and link lengths of

JU+D
Waldron’s hybrid 6R linkage, and they satisfy
alvga = aée =r-a, aga = 3? _age =p-7,
oy =i =m=0, o =By =7 -7,
oy =Py —0 =a—0, oy =a =1 f3, (4-19)
el =all =a®, f =b% —alk =a®-b",
C;/Za :bfle :bB, cZI;a :bll;e — aB’

Wa __ 3. Be Be _ 1B __ A Wa __ _Be __ 1A
Csq =by —ay =b"—a”, ¢’ =a, =b".

Correspondingly, removing both the hinge a,b, in Fig. 4-15(b) and the stairs of
panels which are with thickness ¢,; and ¢, a thick-panel origami pattern with six
creases corresponding to the Waldron’s hybrid 6R linkage is constructed, as shown in
Fig. 4-15(e) where t%m represent the thickness of panels and satisfies

Wa _ Wa _ _A Wa _ Wa _ B 1A
Ly =c¢, =a’, by =cyy =a —b",

Wa _ Wa _ 3B ,Wa _ Wa _ _B 4-20
Ly =Cy =b", 1,5 =c,;5 =a, ( )
Wa _ Wa _ 1B __ A Wa _ Wa __ 1. A
tig =Cso =b" —a”, 15" =cg' =b".

Since the assembly of two Bennett linkages is kinematically equivalent to the Waldron’s
hybrid 6R linkage, the thick-panel origami with two four-crease vertices and the
generated thick-panel origami pattern with six creases also have equivalent motion.
Back on the zero-thickness origami pattern, one slit can be made at the crease a,/b,
to remove the shared hinge. Then, a pattern with six creases is obtained, which is

actually Bennett 6R hybrid linkage with one-DOF.
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Fig. 4-15 Correspondence between the construction of Waldron’s hybrid 6R linkage and the hinge-
removing on thick-panel origami. (a) An origami pattern with two four-crease vertices; (b) the
corresponding thick-panel origami pattern; (c) the assembly of two Bennett linkages; (d) the
Waldron’s hybrid 6R linkage; (e) the thick-panel origami pattern with six creases derived from (b)
by removing the shared hinges and stairs; (f) the origami pattern with a slit at the shared crease.
The slit is purposely made larger to highlight their presence.
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For the origami pattern mixed with four-crease and six-crease vertices shown in
Fig. 4-13(a), its corresponding thick-panel origami pattern is constructed by applying
the offset hinge technique, as shown in Fig. 4-16(a). To obtain the thick-panel origami
pattern with flat-surface unfolded profiles, panels forming the six-crease vertex should
have equal thickness according to the study of section 3.4. Every two adjacent four-
crease vertices B&C, D&E, G&H, L&M correspond to an assembly of two Bennett
linkages by sharing a hinge, whose shared panels and hinge forms the stairs. According
to construction of thick-panel origami in Fig. 4-15(e), the shared hinges can be removed.
Taking a=7n—-fB=y=7-6 and )7 =t." =0 to Egs. (4-20), and considering Eq.
(1-13c¢),

o= = =il = a = b = a® =" (4-21)

is derived to obtain the thick-panel origami pattern with flat-surface unfolded profiles.
Hence, the four-crease vertices should correspond to Bennett linkages with identical
link lengths. When the thickness of shared panels between every two vertices B&C,
D&E, G&H, L&M are equal to that of other panels, the thick-panel origami pattern
with flat-surface unfolded profiles can be obtained, as shown in Fig. 4-16(b). This
pattern can be regarded as an assembly of Waldron’s hybrid 6R linkages and plane-
symmetric Bricard linkages with one DOF. It also can be regarded as the vertex-splitting

technique applied on the thick-panel model shown in Fig. 3-7(a).

(b)

Fig. 4-16 Hinge-removing on a hybrid thick-panel origami with four-crease and six-crease
vertices. (a) The thick-panel origami pattern; (b) the thick-panel origami with flat-surface unfolded
profiles.

Hinge-removing can be used to other four-crease origami patterns, such as the
Tachi-Miura origami pattern and the identical linkage-type origami pattern to construct
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thick-panel origami pattern with flat-surface unfolded profiles.

Tachi-Miura origami is a Miura-base rigid origami, whose crease pattern with
sector angles «, Z—a is shown in Fig. 4-17(a). By applying the offset hinge
technique, its corresponding thick-panel origami pattern is constructed, as shown in Fig.
4-17(b). Hinge-removing can be carried out to these hinges connecting panels with
stairs. After removing the hinges and stairs, the thick-panel origami pattern in Fig.
4-17(c) with flat-surface unfolded profiles is obtained. In this thick-panel origami, four-
crease vertices A and B, C and D, L and M, N and O are transformed into Waldron’s
hybrid 6R linkage. Hence, this pattern is related to an assembly of Waldron’s hybrid 6R
linkages and Bennett linkages with one-DOF. This thick-panel origami can be folded
on a flat surface, so that large deployable structures can use this origami which can be

expanded infinitely with reasonable parameters.

@ , (b)

Fig. 4-17 Hinge-removing on Tachi-Miura thick-panel origami. (a) Crease pattern of Tachi-Miura
thick-panel origami pattern; (b) the thick-panel form; (c) the thick-panel origami with flat-surface
unfolded profiles.
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Identical linkage-type origami pattern with eight identical vertices is shown in Fig.
4-18, where each vertex has sector angles «, £, n—/f, 7w—o. According to the

thick-panel method, its corresponding thick-panel origami pattern by replacing the
spherical 4R linkages by identical Bennett linkages can be constructed, as shown in Fig.
4-18(b). As the panels connected by hinges at the red creases cause stairs, the hinges
can be removed to transform the assemblies of two Bennett linkages at vertices A and
B, vertices C and D, vertices E and F, vertices G and H into Waldron’s hybrid 6R
linkages with one-DOF. By varying the thickness of these panels to be equal, a thick-
panel origami pattern with flat-surface unfolded profiles is constructed, as shown in Fig.
4-18(c).

(a)

Fig. 4-18 Hinge-removing on identical linkage-type thick-panel origami. (a) Crease pattern of
identical linkage-type thick-panel origami pattern; (b) the corresponding thick-panel form; (c) the
identical linkage-type thick-panel origami with flat-surface unfolded profiles.

4.5 Conclusions

This chapter presents a vertex-splitting technique to reduce the DOF of the
diamond origami and construct one-DOF origami patterns. Two vertex-splitting
schemes are proposed from the diamond vertex and three types of unit patterns are
generated. The kinematic analysis indicates that the three patterns are equivalent to the
diamond vertex with symmetric folding. By applying vertex-splitting to multi-vertex
diamond origami pattern, a large number of rigid origami patterns are constructed. Six
types of one-DOF basic assemblies are discussed, which ensure the one-DOF cases of
those origami patterns. Among them, two one-DOF origami patterns mixed with four-
crease, six-crease and/or five-crease vertices are discussed, one of which is flat-foldable
and the other is non-flat-foldable. They maintain the kinematic motion characteristics
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of diamond origami pattern with symmetric folding. Meanwhile, the vertex-splitting
technique can be applied to other multi-DOF origami patterns, such as waterbomb
pattern and Resch patterns. The one-DOF basic assemblies form a new rule in the one-
DOF determination in complex origami patterns.

Variations of thick-panel origami corresponding to the construction of Waldron’s
hybrid 6R linkage from Bennett linkages are studied, which displays a kinematically
equivalent crease thick-panel origami pattern with six creases can be derived from
thick-panel origami pattern with two four-crease vertices by removing the shared hinge.
This inspires hinge-removing which is used to construct three thick-panel origami
patterns with flat-surface unfolded profiles from the four- and six-crease thick-panel
origami pattern, Tachi-Miura origami pattern, and identical linkage-type thick-panel

origami pattern.
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Chapter 5 Achievements and Future Works

The aim of this dissertation is to study the relationship between spatial linkages
and rigid origami by taking their thick-panel origami forms as the intermediate bridges
to design mobile assemblies of spatial linkages, rigid origami and the thick-panel
origami patterns. In this chapter, the main achievements followed by an overview of

further works are summarised.

5.1 Main Achievements

*  Mobile assemblies of Bennett linkages from four-crease origami patterns

First, a transition technique is proposed to realize the mobile assemblies of Bennett
linkages from four-crease origami patterns by taking their thick-panel forms as the
intermedium. Mobile assemblies of equilateral Bennett linkages have been derived by
applying the technique to Miura-ori and graded Miura-ori pattern. Different mountain-
valley crease assignments of the supplementary-type origami patterns have been
confirmed to correspond to mobile assemblies of Bennett linkages with negative link
lengths. Applying the technique to the identical linkage-type origami pattern produces
a new Bennett linkage mobile assembly.

The technique presented in Chapter 2 offers a new approach to construct mobile
assemblies of spatial linkages from origami patterns. The outcomes widen the existing
geometric conditions to design mobile assemblies of Bennett linkages.

* Diamond thick-panel origami and mobile assemblies of Bricard linkages

Second, equivalence between the diamond thick-panel origami and mobile
assembly of plane-symmetric Bricard linkages has been studied to design new of both.
Diamond assembly has been constructed from the diamond thick-panel origami based
on their kinematic equivalence, whose construction conditions have been extended to
two new mobile assemblies of plane-symmetric Bricard linkages with compatibility
analysis. According to the condition of one assembly, a diamond thick-panel origami
with flat-surface unfolded profiles, and a graded diamond thick-panel origami pattern
with flat-surface unfolded profiles and spirally folded configuration are generated by
varying the thickness and sector angles of panels.

A prototype of the graded diamond thick-panel origami pattern without physical
interference has been constructed in Chapter 3, which is more potential in engineering
applications, such as solar panels.

*  Vertex-Splitting on Multi-DOF Origami Pattern

Third, vertex-splitting technique is proposed to reduce the DOF of diamond
origami pattern. We also have constructed one-DOF thick-panel origami pattern with
flat-surface unfold profile by removing hinges. Two vertex-splitting schemes have been
proposed to generate three types of unit patterns with equivalently symmetric folding
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from the diamond vertex. A number of origami patterns are generated by applying
vertex-splitting to multi-vertex diamond origami pattern. One-DOF basic assemblies
are discussed to ensure the one-DOF origami patterns which can be mixed with four-

crease, five-crease and six-crease vertices.

The construction of the Waldron’s hybrid 6R linkage from an assembly of two
Bennett linkages by removing the shared hinge, and the variation of their corresponding
thick-panel origami pattern are studied. Hinge-removing of thick-panel origami pattern
with two four-crease vertices is proposed, which has been used to the four- and six-
crease thick-panel origami pattern, Tachi-Miura thick-panel origami pattern and
identical linkage-type thick-panel origami pattern to construct three thick-panel origami
patterns with one-DOF and flat-surface unfolded profiles.

The newly-found one-DOF origami patterns in Chapter 4 will facilitate
engineering applications of rigid origami. The vertex-splitting technique paves a way
to construct one-DOF origami patterns. The hinge-removing not only constructs the
flat-surface unfold thick-panel origami pattern for application, but also indicates the
relationship between the constructions of Bennett-based linkages and variations of
corresponding thick-panel origami patterns.

5.2 Future Works

The research reported in this dissertation provides many opportunities to study
further.

Firstly, the transition technique is used to construct mobile assemblies of spatial
overconstrained linkages from rigid origami patterns based on their thick-panel origami
forms. As there are multiply rigid origami patterns, such as waterbomb origami pattern
and Resch pattern, each rigid origami pattern can be furtherly studied to find mobile
assemblies of spatial overconstrained linkages. In addition, multi-layer origami patterns,
such as Miura-ori, can be used to construct mobile assemblies of multi-layer Bennett
linkages. As none of the discussed origami patterns can transit to the case 1 mobile
assembly of the Bennett linkages, we conjuncture that this mobile assembly may
correspond to an origami pattern that differs from commonly known ones. It would be

extremely interesting to find out what it is.

Secondly, in the research of diamond thick-panel origami pattern and
corresponding mobile assemblies of plane-symmetric Bricard linkages, it should be
noted that diamond vertex of six creases has three degrees of freedom. Due to the
geometric condition with both line and plane symmetry, line-symmetric constraints can
be applied to transfer it into the thick-panel forms, which will lead to the new mobile

assemblies of line-symmetric Bricard linkages.

Thirdly, in the work on vertex-splitting, two schemes are proposed to construct

one-DOF rigid origami patterns with equivalently symmetric folding to diamond
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origami pattern. How to widen the vertex-splitting technique to reduce other multi-DOF
origami patterns to construct one-DOF origami patterns is an interesting research
subject. First, the direction of splitting vertex and the added creases can become more
general. Second, how to determine the DOF of newly-generated origami by splitting
vertices. Third, supposing that the obtained origami is non-rigid, the relationships
between adding creases or slice creases and the number of DOF of an origami pattern
may be studied to transform it into one-DOF origami.

Fourthly, the hinge-removing on thick-panel origami pattern indicates the
relationship between the construction of Waldron’s hybrid linkages and variations of
four-crease thick-panel origami pattern. Therefore, further study on the relationship of
other Bennett-based linkages, such as Goldberg 5R and Goldberg 6R linkages, may
bring new possibilities of the construction of thick-panel origami.

Finally, in this dissertation, we have only done some theoretical research on the
mobile assemblies of spatial linkages and rigid origami. We do not take the following
features into consideration. One is the section area of the bar and the number of hinges
connected by two panels which can influence the strength and rigidity of a thick-panel
origami pattern. The other is the influence of the manufacturing errors on the movement
of the mechanism. In addition, the target configuration and package volume are two
important factors to design a deployable structure in engineering applications. Hence,
the relationship between the design parameters of the deployable structures and the

target configuration and package volume needs further study.
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Appendix

Appendix

A. Vertex-splitting on diamond origami pattern corresponding to section 4.3
SII, SII, SII, SII, SII,, S, ,

\
\

\ 7| s ’
’ \ ’ \

Fig. A1 Cases of vertex-splitting on diamond origami pattern with six vertices.
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Fig. A1 Cases of vertex-splitting on diamond origami pattern with six vertices (Continued).
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Fig. A1 Cases of vertex-splitting on diamond origami pattern with six vertices (Continued).
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Fig. A1 Cases of vertex-splitting on diamond origami pattern with six vertices (Continued).
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T A AZ B AT, DRI P JEEAR AT AR A Bt 9 2 5 R DA 47 AR5 1 LA X A 5%
FHIBGE o AN N ER DY A DY IR 47 24K e 22 H gt S HAH 7 () JE AR A AR A,
THEHCH Bennett #1442 B AT R ALAL A% o

ASCE B AT VIPIRITAC. BRI EAR T 4R L & Bennett HLA4 11123
SRR, ST T DU HTIRYTARE] Bennett AU IFEALTEL . Bz e ALk B
T2 R YR Arai, 13381 17— &% i Bennett H1A 20 5 KT AT AL P45 o

ST IR AT Y 1 AT 4 R K B TR DY A IR AT AR BT T R o %A ARAH T
IS BT 2 R0 180 B2 o 1 A i 4% ) 3 I A A T 53 Sl 409 % ) il RO A
1, Hizsh SR U S . 285, RIS SRR 18 H %4 4000 B I &
PO, WS R IR AR VY S B A A T AE T — r, DRz B AR 40T #1
JIRFK S TR FEAH JC ) Bennett HLAY . 18I #70& 4 1) D-H Anid, 3R1GERAT
RN RIS BZE Bennett HIA A . FKZ BRI RECRR. 25, IRHHAR
TR 2 AR 277 18 FH BB AE A R, JER R R SR BB, M
7 5EE BRI AE s . B FAE U Bennett 1A, Hit, fRH T
VUFrIR 4% 2] Bennett AL I3 A01E . jeAh, F )R FERIPEST ARG AR B ER THATLAE)
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H SR

AT ARGLAH RN Bennett AR R A M RIS, SO 5] AR ER A
AT Z BRI ARG FR, IR N T 2 TS 4 4R o i 5 84k b .

T2 TRk, B LEE A YIRS Miura-ori FT4NE], 7
FLJEART ALY o @ik 3 A7 DU AN THL RS0 B Bennett HLASZH % P IR R AE XTI R R,
W T 25 JEAR O B B A L R B 7 ) B AR T o W JEAR A AT, %
P A AT B BAH LA b, @A T 5 BRI AGE S0 I B PY S Bennett
B B PT AR IAG o AT iz IS TR AT LML A G &R, K IR Miura-ori JE AR
kxR 2: BB ST KAFIE 1 Bennett HUA 2L S T AU IR . 2 J5 K 3
T EAR AT AR AR N 21 B AN AR, I B AN RS AT AR ) = AN R 1L 2
A HRAT I 22 T 73 0145 2 AN [F] A RFAE ) Bennett H1LAA 25 6T AT REATLAG) RX A%
#5J5 LA identical linkage-type #TAWRT AR, N 4t ARSI LAY A& 1R 22T SR AR 3T 4%
FEATE, TER T — i AL Bennett LA R . X T RE 32 Bl B R 4 25 dr i3k
— B ARIUE T H AT B R

7R DY IR I 3T 48 5] Bennett ALA4 PR 15 T JEARAT AR e A0, 9N
AR A BT AT AL A St 7 — P LBk . B FE3RA5 Bennett AL A% 1)
BB KAy R T AT AL A 5Tt 2 T

e Diamond EMRFT4R I XTI B Bricard AL B AT AL MR

R AT AR BN B 5= T SRR S AR Ak T73%, MDY HT IR JEAR 3T 4% Kk AT i

t H Bennett ML AT ARG IAS s 0T BAT TR FRRFAE I 75 1 R JE AR A 4%

(AL diamond 1 waterbomb JEARHTAR), HAFATH S K)IE ) 5 — NI FR
Bricard HUAIE BN, RIHAT LA B FH 2 1 JE AR A AR 5 A0 v Ky 3d e TRTR
PR Bricard LA ZH B T AL INAS . S0 EIN, XXM P& iz 3 b v
] DU SR 30 58 JEAR I 4R v AT 523 1]

FEE =, TATE Jeonr BA TN FREFAE K H 10 5 diamond JEAR 7 408 FH &
TEMRATARH LA, R IR A A AR N B, A s B A
(R THI XS #R Bricard ALA4 . 7E1&E 241 D-H Anid &, @7 7 B IR S R R 40T
FIEA S RESTHXIHR Bricard AUAHHA . FHKEIRIRRTTHE. R SEXEEA 1Y
AT diamond JEARHTAR, 70 B HL A& T s Ab T X AR Bricard ML IFIEH R R,
1 5 TE B BB AE AR 7 18] R 3 AT MG e g DG A A0 Dy B, 5 DO A T TR FR
Bricard L4 diamond HLAAMH%, HiZMH#ELE diamond JEMRFT4EshE M. 1R
I JEAR SV A S NG R, 25t T A ad S XA ()38 30 Bl 26 4F

MR XS FR Bricard HLAA B AR 7 F2 B R, 38 BUCEL & AN 6 FR Bricard #l
F1) diamond LA MRS AR FEN R, A Hiash it . ARIEHLAE B 20 A s s
PRI (R — FF R 09 = AT XN FR Bricard AT BT 414 34T 38 sh B0 0 2644 1
BT, G5 RFW = HXTFR Bricard FU A NG TE A\ Fliazh 88 . RAH Hd—
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FZANR, SR T PRSI Bricard MUK (22 & LE, IF it
B L 7R LA 2 I TRERR Bricard LI i

f# B diamond JEAR #7455 IR Bricard HLIY JUITSH0I % 27 FE, M—2A
Bricard UMK (323 B3 4 1 b 7 S M diamond JSERRAFAR T — i LT 2
o RIS diamond EERGARARI TLIT SR, Haits T RSN 5
ik, Forb, SO AR AR BT A B T B BT HEERY diamond 2
BRATAR AR 28 1 o 36T HUMIT K15 AR AT 46 52 W 9 7 R, i s
BRAFAR AR T, Mo HY LA 7 38 J JF T 1 diamond JERRAFAR . 56 ek S H7 406
T A0 R M EH— 0 £ LA T 88 T 2 T A 37 5 M 2 ) AR A7 46 . %2
SR T DT & B S A AR AT B R B . IR R T IR M, A5
T IERRATAEE TR R«

AL, S AHT = NTINHR Bricard HUKIRIZLE, 358\ FHZZRA FI0IE
A, o AR R R, B RS, M T e
R LA R R . ek ] LUK 75 B 4 e, L S B B
T LA A MR 3 76— 25 Haits KRG Bricard HUFII S .

. ETRIMTR A AR

45 T FRAS B  diamond AR AT AR T LS I AL 4 B REE S, FOREREMY
T SRR LA BN TR T AT DA = Bl ORI A AT ALK, R EL 5 %
TH 952 JELE diamond BTG % 1 HERG . T KA AR . SR MR 8 HH s
R T 40 LA 5 1 o FEE R S, TR AR AT 5 PO T 6 R B0 P A E R«
=20 diamond AT R, B T Rl b B B RERUA TSR A
TEL T diamond 74 %7 3848 T — R FIIE BN s 1 g3 37
Y%, NFAEREA TR TT R AT 4%, 35T Waldron IR S FEHLMI My it i
P, 5 E DU R JEEAR 4 46 T LA 3ot 2 23 B SR B2 1 N TR R
YR, Mt T S Fh B TR R T R AL 4.

MEBTH 5 diamond FHTARH R , HEHE G 1L A SHEA (O RREF IR L T TR IR
S ITFT R ST W TAT TR BRI TR ARSI W3R BT XTI 7 1 3
Jro BRI SR B TS diamond AT 4T 334 = 2 (4T 4% 26T
W PAT TR FRHTIR [ 97 40 T A 4 0 M R DU R T A1 DI B4, I3 1
RIS 6 4 T e 4 1A MR 47 S0 A5 19 DI B4 48, T894 77 4
SR 45 1T DABRAR6, 445 DU IR DU B T A DI-IL 294774€, oo DI A DI-IT 2
SFFAR AT B I EE L A, 24 DIT 4746 b 1 T BRI 31 N TR SR I
5 = AR SRR A T 9B TR A diamond 37246 LA S5 0 O T R
SERTHE

ot A3 A A A ISR diamond H74%, 4% TTUS K AT 7 PR T 77 43
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L% DI DI Al DI = 2847405 0. TS BINIEST4AC, 433K SIL ST 772k
P BA7 . BRI, A2 96 FARIF a5 R . W g, Mk
5 7 AE PUHIR T A AT IR T A S S AT IR TR (1) 2 5 Bl PRI (1) B AR 47 4%
%, DA PO IO R B T R AREAE A S A4 AR S ] LA 2 i
DY AN BR 1 DU ZEAT A UR 2R ) 58 1 F T PR A i 0 25 DU TR T A R — AN 4t
PRI () B AHT AR 58, DUHT IR T AT RLUOAZ T IR T R (A 24 S (s 8 A
AATARE A B B3 HERAE . Ak, B DU IR TS 5 PR AN A IR ToL A e 1)
AR A F S YIRS — D SPrIR T A 25 0l 38 e = 254 RN DY 25 4 IR A4
B AT AR 22« B YR T A 5 A IR T A -5 75 4 IR T b J R B AR 3 4K
K%, KA 4%rh A T s (s sh A AT DLl IS 45 € — MK e, PRth, X e
I 22302 F PR P R AT AR R 22 R IR 28 AT B | ] FE PR I 2R A4 AR 2%
A LR E 96 FRAS A (4R 70 65 SR P 42 Pl 2 5 B i . R ath, %
PraHI L H AT AR A e R AL 9% F 15 € I T RUs ) 2401, (R
#e % HHER,.

H 5 A B A T T ] R I A DU S R T i AN [E) 2R AL 3 TR 2
AT AR, o] LA FH O B B0 B VR AR A X B () JEAR AT 4R o 12 JEAR T 4R AL & A DU TR
T s, A DA FH 2T SRR ) 5 A0 5459 31 B S 1> Bennett AL @ — MR BEZERE (1)
MM H A . R4 Waldron VRIEK/SHAL A IE T73, ZBRIZNE A & HH A
Bennett HLI4 LRSS, 192830550 Waldron VRIS ZBREAR AT
4% EPRASDY IR Tl 3 FH A A EAR BRI & By, 7242 75 Waldron 1G85 HF
WURIIZEN M /ST IR AR - kg2 7 DO 9T R JEAR 3T 4% 25 BR R B i 1G a8 3h 5
INHTIR EAR AT ARA T FEA & TR S5 /8 FrIR T 1) AR A 4k, AHSEPU 47 IR
T st 1) ) PR B L SRR B 1 % JE AR T ARAE R FRIRZS I R S By« 38 22 B4R
B, FIRRYE Waldron JRIB/SAFATLAY (A4 25 A LA AH R (O AROSE, AT ARG & — Fl B
AR R IR R 1 5 R AR T 4R Bh Ak, @it 245 Tachi-Miura 24 JEARHT 4K
identical linkage-type JEAR T AR 0Bk, F 29 BAE 5O B JEAR IR S 22 Bk JE AR
G By, HiE AR B A T8 e T 3R 1 X 5 B R AR AT 4R

IS FH IO SR AR T AR ARAE ST AR FRIZ 3 I AT HE 5 A diamond 247 4K 14 i
TR A BREAR. S5 HENIRE. HIRMSTIR ISR AR 8 i
Prafy A s 3l AT AR v R AR TR RS . AL, S 2 R G B
PR FE TR THI (1) 5 pR B JEAR T 4R, AT AR T 4R T2

- HR5REHE

KR R T WA Z 5 4R 1028 SR, @k i 78 25 RN LA WA« JEAR T
AENIPESTACZ B I NESR R, 1R H T Fral R mT LA A% 1 25k T IR AR A 4R ) %
iE s AT AR E BT R AR o 7, NIRRT A e R LA A . IR AR
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JER A AR AL [T AT
A, ARSCHI ST TARIR W] CAFEGn L5 T3 AT i3 — 28 IR AW L«

(1) WIS AR E AT R HLAL) XA 110 5 T JEE AR AT AR R e ALk T LY g B FH AE B
Z IR A4S, U waterbomb FT4CHT Resch #7148, M4 56 22 (1) B =5 (8] 2
AN H B AT EN LR XA o 1AL, 2B A2 mT LA FEAE 22 JE NIPE A 4831 7] e AL
Ry A, LAERAS i 2 IEA LA A LA A%, sz T 22 )2 Miura-ori 4
g T gt MR 4, KIAFAE—HF Bennett AL RS CLE0
PrACHXT N, PRI, LA PR AT XS B — Ao B 4T A8, 5 82 mT LUK I T R
— BT .

(2) 7ERFFE diamond JE-AR A7 4% S Houf B I [ XS % Bricard L4 IIA% Hh, BLTH
MNTTIR Y diamond Fr4A =~ o BEAE HDN AR o SCrp R 1 407
TR RIS B 26 A T B ER T AR e iz 40T NA RIS BN 26 R, FLEMR AT
B AT L2 A 250 FR Bricard HLAA P o

(3) ESF Prak Il siod /> B A Fe, EFX diamond #r 4RG3 H T A
PR 75 2, [FIR#iE T — R %15 diamond $T4C R A M X FRIZ 3 A H H
FEAr ke WA RIdF vk i N A Ja B, 4 — R B T 4 232 Ao b e
Prakm B B TR 2 — P T, BAREHE: 55—, SCBIR TR 7 A R b
PRI 2B, THENH AR TSR 23RS AT 4l B A 58 =,
BTG NI IR S 94k B HEEBIOC R, 47 25 T 3RS 1 FE M 3 4R 5%
PR B R AT AR

(4) 7 JE R4k bimad 25 BRSO 2 B P8 T 3R 1 1 JEAR B T
FH 1~ Bennett HLA4 412 Waldron R IH /S AFATLAY (1372 AT BLSZMa AR 4 AR TEAR 1)
Ao KT H BT Bennett HUAHE AL, 41 Goldberg TLAFHLAFI Goldberg
INFFHLAL,  HoRa G R T e 2 7 AR o 2 1R 2 JEE AR AT AR

(5) ASCALFEN AL WS RN 3 4077 TR R B Fi . FFR B B M A%
RO A BRI T AR 55 AR AT & 2 2 Ak ) B SO0 TR AN i R M B2 PR s, DA % o]
RNV IZ BN . thAh, £ TRENHY, AR B ir TAERSMAT
SR BT S S AL, U mT AL A& SNIPE AU ot 2805 His 1
VEIRZS AT S AR TR B SRR OC R 7 2t — P A 7t

KR WIPEITAC, JERGTAL, HLRIMHS, Bennett MUK, Bricard Hl
¥, Ak, TSRk
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