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摘要 

空间机构网格与刚性折纸凭借其优异的折叠特性，在航空航天、机器人等工

程领域拥有巨大应用潜力。但是其运动的复杂性，使得寻求新型设计依然面临挑

战。本文通过研究空间机构网格、厚板折纸与刚性折纸的内在联系，提出了刚性

折纸到机构网格的基于厚板折纸的转化法和刚性折纸顶点拆分法，利用两种方法

设计新型的空间机构网格、单自由度折纸以及具有平整展开表面的厚板折纸。其

中，本文的主要研究内容如下： 
首先，以四折痕厚板折纸为桥梁，提出四折痕刚性折纸到 Bennett 机构网格

的转化法。将该方法应用至 Miura-ori 折纸和渐变的 Miura-ori 折纸中，得到由等

杆长 Bennett 机构组成的可展机构网格。在互补型折纸中应用该方法，发现其三

种不同的山谷线分布方式对应可形成拥有不同负杆长特征的 Bennett 机构网格。

进一步将该转化法应用至 identical linkage-type 折纸上，得到一种新型的 Bennett
机构网格。 

其次，基于前述转化法建立起 diamond 厚板折纸与面对称 Bricard 机构网格

的运动等价关系。通过分析从 diamond 厚板折纸转化得到的机构网格的运动协调

关系，发现两种由面对称 Bricard 机构组成的机构网格。其中一种机构网格的构

造条件可用于改变 diamond 厚板折纸的扇形角和板厚。由此设计具有平整展开表

面的厚板折纸。此外，还设计同时拥有平整展开表面和螺旋折叠构型的新型

diamond 厚板折纸，其在多单元扩展中可以保证无物理干涉。 
后，基于 diamond 折纸提出一种顶点拆分法，用于减少多自由度折纸的自

由度数。在单顶点 diamond 折纸上应用其两种拆分方式，获得三种运动等价的折

纸单元。将该方法应用至包含多顶点的 diamond 型折纸中，建立多组具有单自由

度特征的基本折纸图案和大量单自由度折纸图案，并讨论了由四折痕和六折痕顶

点组成的平面可折叠型折纸与由四折痕、五折痕和六折痕顶点组成的非平面可折

叠折纸。此外，从 Bennett 机构建立 Waldron 混联六杆机构的过程中分析其对应

厚板折纸的变化情况，提出厚板折纸去除铰链的方法。利用该方法可以去除厚板

折纸中相邻两个四折痕顶点间的共用铰链，构造与其运动等价的六折痕厚板折纸，

进一步构造出具有平整展开表面的厚板折纸。 
本文基于前述转化法和顶点拆分法的研究，揭示了空间机构网格、厚板折纸

与刚性折纸间的关系，为新型机构网格、刚性折纸和厚板折纸的设计提供新路径，

有利于它们在工程中的应用。  

关键词：刚性折纸，厚板折纸，空间机构网格，Bennett 机构，Bricard 机

构，转化法，顶点拆分法
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ABSTRACT 

Mobile assemblies of spatial linkages and rigid origami are of superiorly foldable 
properties. Therefore, they have great potential in various engineering fields, such as 
aerospace and robotics. Due to the motion complexity of them, it is a challenge to seek 
for novel designs. In this dissertation, the relationships between mobile assemblies of 
spatial linkages, thick-panel origami and rigid origami are studied. Transition technique 
based on thick-panel origami and vertex-splitting technique are proposed to design new 
mobile assemblies of spatial linkages, one-DOF (degree of freedom) origami and thick-
panel origami with flat-surface unfolded profiles. The major findings of this dissertation 
are as follows. 

Firstly, the transition technique from four-crease origami patterns to mobile 
assemblies of Bennett linkages is developed by taking the thick-panel form of an 
origami pattern as an intermediate bridge. Applying this transition technique to the 
Miura-ori and graded Miura-ori patterns, assemblies of Bennett linkages with identical 
link lengths are obtain. Three cases of mountain-valley crease assignments of 
supplementary-type origami patterns correspond to different types of Bennett linkage 
assemblies with negative link lengths. And a new assembly of Bennett linkages is 
derived from the identical linkage-type origami pattern with the application of the 
transition technique. 

Secondly, the kinematic equivalence between the diamond thick-panel origami 
and mobile assembly of plane-symmetric Bricard linkages is set up based on the 
transition technique. Two general cases of mobile assemblies of plane-symmetric 
Bricard linkages are discovered by analysing the compatibility of diamond assembly 
which is derived from a diamond thick-panel origami pattern. One of the newly-found 
mobile assemblies inspires the variation of the sector angle and thickness of diamond 
thick-panel origami pattern. Thus, new diamond thick-panel origami patterns with flat 
unfolded profiles and/or spirally folded configuration are invented, and the graded one 
can be extended infinitely without physical interference. 

Finally, to reduce the number of DOF in the multi-DOF rigid origami pattern, a 
vertex-splitting technique including two splitting schemes on the diamond vertex are 
proposed to generate three types of unit patterns. Then, the technique is applied to the 
multi-vertex diamond origami pattern to produce several one-DOF basic assemblies 
and a number of one-DOF origami patterns. Two of the one-DOF origami patterns are 
discussed. One is flat-foldable origami pattern mixed with four-crease and six-crease 
vertices, and the other is non-flat-foldable origami pattern mixed with four-crease, five-
crease, and six-crease origami vertices. Hinge-removing is proposed by analysing the 
relationship between the construction of Waldron’s hybrid 6R linkage from Bennett 
linkages and the variation of their corresponding thick-panel origami pattern. This 
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indicates the thick-panel origami pattern with two four-crease vertices can be 
transformed into a kinematically equivalent pattern with six creases by removing the 
shared hinges to construct thick-panel origami patterns with flat-surface unfolded 
profiles. 

Therefore, the research in this dissertation is based on the transition technique and 
vertex-splitting technique. It reveals the close relationships among mobile assemblies 
of spatial linkages, rigid origami and thick-panel origami, which offers approaches to 
propose the new designs, and facilitates their applications. 

 

KEYWORDS： Rigid origami, thick-panel origami, mobile assembly of spatial 
linkages, Bennett linkage, Bricard linkage, transition technique, vertex-splitting 
technique 
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iR  Offset of joint i  

( )ii 1+T  44 ×  transformation matrix from the i th coordinate 
system to the 1+i th coordinate system 

  
Symbolic Variables 

( )1+iiα  The twist or the angle from iz  to 1+iz  about axis 1+ix  

δγβα ,,,  The sector angles of origami pattern, related to the twists 
of spatial linkage

KKK ,, γβα  Twists of Bricard linkage K in the mobile assembly.  



 

 XVI

νρτσ ,,,  Revolute variables in mobile assembly derived from the 
identical linkage-type origami pattern

ii θθ ,K  Kinematic variables in the mobile assembly 

ii ϕϕ ,K  The dihedral angle between two panels joined by a crease 
or the revolute joint i  in vertex K.  

  
Abbreviations 

Be  Bennett linkage 
Br  Plane-symmetric Bricard linkage 
D-H notation Denavit-Hartenberg notation 
DOF Degree of freedom 
Wa  Waldron’s hybrid 6R linkage 
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 Introduction 

 Background and Significance 
Deployable structure is a type of transformable structures, which can vary their 

shape from a compact, packaged configuration to an operational, expanded 
configuration. In most cases, the packaged configuration is used for storage and 
transportation, while the expanded configuration is for work requirements. They are 
widely used in various engineering fields [1], such as aerospace (satellite antenna [2-7], 
solar panels [8] and wings [9]), civil engineering (shelter [10, 11], dome [12] and bridge 
[13, 14]), medical devices (origami stent graft [15], forceps [16]) and robotics [17-20]. 
According to the different morphology of their components, the structures can be 
divided into two types, the bar-like deployable structure composed of bar elements or 
lattices and the surface-like deployable structure composed of continuous surface 
elements. Among them, the mobile assembly of linkages and origami are the special 
cases of the respective types. Because of their low degrees of freedom (DOF) and 
superiorly foldable properties, they have attracted more and more attention, recently. 

A mobile assembly of linkages is a network or tessellation of unit linkages. Once 
the unit linkage has a deployable property, the corresponding mobile assembly will 
enhance the deployable advantage. A typical unit is a scissor-like unit [21, 22], which 
has reliable synchronous movement, compactness and economic use of material. Those 
advantages make it the most widely used unit in the design of large-scale deployable 
structures, such as roofs [23, 24], shelters [10], antennas [6] and so on [25]. The other 
unit is one-DOF and single-loop spatial overconstrained linkage, including Bennett 
linkage [26], Myard linkage [27], Bricard linkage [28]. The number of DOF of this type 
linkages does not obey the mobility criterion, Grübler-Kutzbach criterion. Their 
motions are due to the specific geometric conditions. As the overconstrained geometry 
of the linkages can provide extra stiffness and the linkages can generate complicated 
three-dimensional motion with small number of bars, the mobile assembly of spatial 
overconstrained linkages has been of a great research interest. The tessellation method 
[29] is a well-explored method for the construction of mobile assemblies with three-
dimensional overconstrained linkages. However, due to the highly nonlinear property 
of the compatibility conditions among the linkages in the assemblies, it is not easy to 
find a new assembly made from nesting the overconstrained linkages together while 
retaining mobility. 

On the other hand, origami is a paper folding art, which can transform a paper 
sheet into a three-dimensional structure. There are a large number of origami patterns 
to form different shapes. It can fold a large-scale surface into a smaller one, which 
makes it useful in designing deployable structures. Recent studies of origami have been 
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done in a variety of engineering fields, typically in metamaterials [30, 31] and robotics 
[32-34]. Since the traditional materials of the deployable structures are rigid, rigid 
origami, where its facets can rotate around the crease and no deformation occurs on 
facets, has received much attention. One-DOF Miura-ori [35, 36] has been extensively 
studied for the reason that it has simple structure and can be easily controlled. Multi-
DOF origami has been widely used to transformable robots due to its deployment of 
variable configurations. However, it is always a great challenge in designing of one-
DOF origami patterns and controlling the multi-DOF ones.  

In general, origami structures are with zero-thickness panels. Then, one rigid 
origami vertex can be considered as a spherical linkage by regarding the crease lines 
and the rigid panels as revolute joints and links [37, 38], respectively. Hence, a rigid 
origami pattern with multiple vertices is kinematically equivalent to a mobile assembly 
of spherical linkages [39]. Kinematic theories of mechanism can be used to analyse the 
rigid origami. Yet, some engineering applications requiring high strength or rigidity 
cannot ignore the thickness of the material. One effective method is to offset the 
revolute joints on the surfaces of thick panels so that their thickness can be 
accommodated [40]. The generated thick-panel origami has been proven kinematically 
equivalent to the overconstrained linkages. Therefore, the study of relationships 
between rigid origami and mobile assembly of spatial linkages with the thick-panel 
form as the intermediate bridge can offer a new way to design the assembly of spatial 
linkages from the origami perspective, while the analysis of assembly of linkage with 
the kinematic theory of mechanism can widen the design space of origami pattern. Such 
study will facilitate their applications. 

 Review of Previous Works 

 Kinematic Analysis Theory in Mechanism 

1.2.1.1 Matrix Method  
Matrix method was established by Denavit and Hartenberg [41], which is very 

effective in analysis of spatial linkages. The setup of each coordinate system is shown 
in Fig. 1-1 [42]. The axis iz  is along the axis of i th revolute joint (R joint); the axis 

ix  is along the common normal line from 1−iz  to iz ; the axis iy  can be determined 
by the right-hand rule; ( )1+iia  is the normal distance between axes iz  and 1+iz ; ( )1+iiα  
is the angle between iz  and 1+iz  measured from iz  to 1+iz  along the positive 
direction of 1+ix ; iR  is the normal distance between axes ix  and 1+ix , positive along 
the axis iz ; iθ  is the angle between ix  and 1+ix  measured from ix  to 1+ix  along 
the positive direction of iz . 
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Fig. 1-1 D-H notation of two links connected by a revolute joint. 

 

For a single closed loop linkage consisted of n  links, the product of the transform 
matrices equals to the 4×4 identity matrix 4Ι , which is the closure equation, as  

 41)1(3221 ΙTTTT =⋅⋅⋅ − nnn . (1-1) 

where the transformation matrix ii )1( +T  is transforming the i th coordinate system to 
the 1+i th coordinate system, as 
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When ni >+1 , it is replaced by 1. The inverse transformation can be expressed as  
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Due to the axes of revolute joints in spherical linkage intersecting at a point, the 
distances and the offsets between adjacent links are zero. Thus, Eq. (1-1) reduces to 

 31)1(3221 ΙQQQQ =⋅⋅⋅ − nnn , (1-4) 

where 3Ι  represents the 3×3 identity matrix,  
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and 
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Therefore, based on the Eq. (1-1) or Eq. (1-4), the motion behaviors of spatial 
linkages can be analysed. 

1.2.1.2 Truss Method 
Maxwell has defined a frame as ‘a system of lines connecting a number of points’ 

and a stiff frame as ‘one in which the distance between any two points cannot be altered 
without altering the length of one or more of the connecting lines of the frame’ [43]. In 
general, a stiff frame with j  nodes in three-dimensional space requires 63 −j  bars. 
The mobility of one frame with j  nodes and b  bars can be derived from  

 .63 bjm −−=  (1-7) 

However, this criterion does not contain the detailed topological and geometric 
information, which makes it difficult to calculate the accurate mobility of 
overconstrained linkages. 

Yang et al. [44] proposed the transformation method from the linkage to truss. He 
uses Maxwell’s rule and the rank of the equilibrium matrix [45] to determine the 
mobility of overconstrained linkages. The cases of truss form of one link with two R-
joints are shown in Fig. 1-2, where a straight-line represents a bar and a circle represents 
a node which is an S-joint, and a straight bar with two nodes at the ends represents an 
R-joint, such as joint A represented by AA ′ . For a generally straight bar with two R-
joints, it can be transformed into a truss tetrahedron, as shown in Fig. 1-2(a). When the 
axes of the two R-joints intersect, the equivalent truss form is a triangle, as shown in 
Fig. 1-2(b). For the two R-joints with parallel axes, all bars in the plane can generate 
instantaneous mobility, as shown in Fig. 1-2(c). An arbitrary point out of the plane is 
introduced to generate the equivalent truss form, as shown in Fig. 1-2(d).  
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Fig. 1-2 One link with two R-joints proposed by Yang et al. [44]. (a) General case; (b) two 

intersecting revolute axes; (c) two parallel revolute axes with an instantaneous mobility; (d) two 
parallel revolute axes. 

 
For a statically indeterminate truss, its mobility cannot be determined by Eq. (1-7). 

Therefore, the equilibrium equation [46] has to be considered. For a truss consisting of 
b  bars and j  joints, the equilibrium equations are obtained as  

 fAt =  (1-8) 

where A  is the bj ×3  equilibrium matrix, t  is a 1×b  vector of bar axial forces 
and f  is a 13 ×j  vector of node forces. Here, the truss does not have external forces, 
i.e., 0=f . Hence, Eq. (1-8) becomes  

 0=At  (1-9) 

If r  is the rank of matrix A , the number of self-stresses is  
 rbs −=  (1-10) 

and the number of mobility is  

 rjm −−= 63 . (1-11) 

According to the values of s  and m , a truss can be divided into four classes [44, 47]: 
0=s , 0=m : Both statically and kinematically determinate structures, a normal 

structure; 
0=s , 0>m : Statically overdeterminate and kinematically indeterminate structures, a 

non-overconstrained mechanism; 
0>s , 0=m : Statically indeterminate and kinematically overdeterminate structures; 
0>s , 0>m : Both statically and kinematically indeterminate structures, an 

overconstrained mechanism. 
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The truss method has been applied to calculate the mobility of mechanism, such as 
the mobile assemblies of spatial linkages, polyhedrons [48, 49]. As one rigid origami 
can be regarded as a mechanism, the truss method can be used to calculate the mobility 
of a rigid origami, such as the triangular Resch pattern [50]. 

 Spatial Overconstrained Linkages and Mobile Assemblies  

1.2.2.1 Spatial Overconstrained Linkages 
Mobility or DOF of one spatial linkage is the number of independent variables that 

must be considered for defining its configuration. It can be determined by the Grübler-
Kutzbach criterion [51]:  

 
=

+−−=
g

i
ifgnm

1
)1(6 , (1-12) 

where m  is the number of DOFs, n  is the number of members of mechanism, g  is 
the number of joints and if  is connectivity of the i th joint. The spatial 
overconstrained linkages are mobile without satisfying the mobility criterion in 
Eq.(1-12). The single closed-loop overconstrained linkage is a simple type of 
overconstrained mechanism. Since the first overconstrained linkage, Sarrus linkage [52, 
53], was designed in 1853, the research on overconstrained mechanism has been 
sustained for more than 160 years. During this period, a large number of single closed-
loop overconstrained linkages with one-DOF were constructed, including Bennett 
linkage [26, 54], Myard 5R linkage [27], Goldberg 5R linkage [55], Goldberg 6R 
linkage [55], Bricard 6R linkages [28, 56] and so on. These overconstrained 
mechanisms can be mainly classified into Bennett linkage, Bennett-based 
overconstrained linkages and Bricard 6R linkages. 

(1) Bennett linkage 
Bennett linkage [26] is a special overconstrained linkage with four links and four 

revolute joints. The joint axes of this linkage are neither parallel nor concurrent. 
According to the D-H notation [41], the coordinate systems are constructed, as shown 
in Fig. 1-3. Its geometric parameters satisfy the following conditions  

 ,, 41233412 baaaaa ====  (1-13a) 

 ,, 41233412 βααααα ====  (1-13b) 

 ,
sinsin βα

ba =  (1-13c) 

 ( ).4,3,2,10 == iRi  (1-13d) 

Its corresponding closure equations are  
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 ,2,2 4231 πθθπθθ =+=+  (1-14a) 

 
( )

( )
.

2
1sin
2
1sin

2
tan

2
tan 21

αβ

αβθθ

−

+
=  (1-14b) 

 

 
Fig. 1-3 The Bennett linkage. 

 
(2) Bennett-based overconstrained linkages 
The Bennett linkage can be regarded as a building-block, which can be used to 

construct new overconstrained linkages with five or six revolute joints. Goldberg 5R 
linkage [55] is constructed by combing two Bennett linkages in three steps. First, a 
certain link of each linkage (two links) are coincident. Second, two adjacent links are 
arranged in line. Third, lock the adjacent links and remove the common link. Then, a 
Goldberg 5R linkage is constructed, as shown in Fig. 1-4. By extending this method, 
Goldberg 6R linkages [55, 57] are proposed. Based on the Goldberg 5R linkage, 
Wohlhart [58] generalised it and constructed a Wohlhart double-Goldberg linkage by 
combining two properly Goldberg 5R linkages face to face and eliminating two shared 
links. By combing a subtractive Goldberg 5R linkages and a Goldberg 5R linkage 
through shared link-pair or shared Bennett-linkage, a family of double-Goldberg 6R 
linkages [59] constructed including the double subtractive Goldberg 6R linkage [60]. 

 

 
Fig. 1-4 The Goldberg 5R linkage. 
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Waldron’s hybrid 6R linkage [61, 62] with revolute joints is an overconstrained 
linkage, which is made from two Bennet linkage arranged in space to make them share 
a common axis, as the revolute joint 11 / ba  in Fig. 1-5. Then adding the links along the 
axes of joints 2a , 4a , 2b , 4b , and adding the common-perpendicular links between 
axes of joints 2a  , 4b   and 4a  , 2b  , replacing the old links connected to the shared 
joint 11 / ba  to construct an assembly of Bennett linkages. The shared joint 11 / ba  and 
its connected links are then removed to form a 6R overconstrained linkage.  

 

 
Fig. 1-5 The Waldron’s hybrid 6R linkage from two Bennett linkages. 

 

Recently, Song, Feng and Chen [63] proposed a network of four Bennet linkages. 
The network can be reconfigured among five types of overconstrained linkages by 
rigidifying some of the eight joints, including the generalized Goldberg 5R linkage [58], 
generalized variant of the L-shape Goldberg 6R linkage [55], Waldron’s hybrid 6R 
linkage [61], isomerized case of the generalized L-shape Goldberg 6R linkage [64], and 
generalized Wohlhart’s double-Goldberg 6R linkage [58]. Besides, Guo and Song [65] 
designed a series of spatial single-loop overconstrained linkages by combining Bennett 
linkages and use screw theory to analyse their mobility. 

As the Bennett-based overconstrained linkages are constructed by regarding the 
Bennett linkage as construction unit, their geometric condition should satisfy that of 
Bennett linkages. 

(3) Bricard 6R linkages 
The family of overconstrained 6R linkages was proposed by Bricard [28, 66] 

consisting of six types, as shown in Fig. 1-6. Their geometric conditions were 
summarised [67] as follows. 

For the general line-symmetric case, 

 ,,, 613456234512 aaaaaa ===  (1-15a) 

 ,,, 613456234512 αααααα ===  (1-15b) 
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 .,, 635241 RRRRRR ===  (1-15c) 

 

 
Fig. 1-6 Bricard 6R linkages: (a) the general line-symmetric case, (b) the general plane-symmetric 

case, (c) the trihedral case, (d) the line-symmetric octahedral case, (e) the plane-symmetric 
octahedral case, and (f) the doubly collapsible octahedral case. 

 
For the general plane-symmetric case, 

 ,,, 453456236112 aaaaaa ===  (1-16a) 

 ,,, 453456236112 πααπααπαα =+=+=+  (1-16b) 

 .,,0 536241 RRRRRR ====  (1-16c) 

For the trihedral case, 

 ,2
61

2
45

2
23

2
56

2
34

2
12 aaaaaa ++=++  (1-17a) 
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 ,
2

3,
2 614523563412

παααπααα ======  (1-17b) 

 ( ).6,,2,10 == iRi  (1-17c) 

For the line-symmetric octahedral case, 

 ,0615645342312 ====== aaaaaa  (1-18a) 

 .0635241 =+=+=+ RRRRRR  (1-18b) 

For the plane-symmetric octahedral case, 

 ,0615645342312 ====== aaaaaa  (1-19a) 

 ( ) ( ) ,
sin

sin,
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sin,
3412

12
13

3412

34
1214 αα

α
αα

α
+

−=
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−=−= RRRRRR  (1-19b)
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sin

sin,
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sin
6145

45
13

6145

61
15 αα

α
αα

α
+

−=
+

−= RRRR  (1-19c) 

For the doubly collapsible octahedral case, 

 ,0615645342312 ====== aaaaaa   (1-20a) 

 .0642531 =+ RRRRRR  (1-20b) 

A systematic analysis of all the six Bricard linkages was done by Baker [56]. 
Appropriate sets of independent closure equations were constructed to delineate them. 
Phillips [68] reviewed the Bricard linkages and showed their relationship with the other 
overconstrained linkages. Wohlhart [69] concentrated on the orthogonal Bricard linkage 
and found two distinct types of this linkage. Chai and Chen [70] focused on the line-
symmetric octahedral case of Bricard linkage and generated its kinematic paths and 
structural closure by analysing its closure equation with the matrix method. In addition, 
they discussed the bifurcation of a line and plane symmetric Bricard linkage and 
provided the solution to avoid bifurcation by analysing its closure equations [71]. Song 
and Chen [72] carried out the kinematic study of the original and revised general line-
symmetric Bricard 6R linkages. Recently, Feng and Chen [73] derived the explicit 
solutions from closure equations of the plane-symmetric Bricard linkage. They 
indicated that the plane-symmetric Bricard linkage can bifurcate to the Bennett linkage, 
which expresses a comprehensive understanding of plane-symmetric Bricard linkage. 

Some other special linkages are also studied, such as Altmann linkage, Schatz 
linkage, Wohlhart 6R linkage and threefold-symmetric Bricard linkage. Altmann 
linkage [74, 75] is a special case of the line-symmetric Bricard linkage with the 
geometric conditions as follows. 

 ,,0, 613456234512 baaaaaaa ======  (1-21a) 

 ,
2

3,
2

,
2 613456234512

πααπααπαα ======  (1-21b) 
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 .0654321 ====== RRRRRR  (1-21c) 

Schatz linkage [68] was discovered by Schatz which is derived from a special case 
of the trihedral Bricard linkage with the geometric conditions, as expressed in Eqs. (1-
22a) to (1-22c). This linkage has special engineering applications whose name is 
Turbula machine for mixing fluids and powders. 

 ,3,,0 614534235612 aaaaaaaa ======  (1-22a) 

 ,0,
2 615645342312 ====== απααααα  (1-22b) 

 .0, 543261 ====−= RRRRRR  (1-22c) 

Wohlhart 6R linkage [76] can be regarded as a generalisation of trihedral Bricard 
6R linkage whose parameters satisfy 

 ,,, 615645342312 aaaaaa ===  (1-23a) 

 ,2,2,2 615645342312 απααπααπα −=−=−=  (1-23b) 

 .0, 531426 ===−−= RRRRRR  (1-23c) 

Threefold-symmetric Bricard linkage [77] is derived from combining the general 
plane-symmetric and trihedral Bricard linkages, whose geometric parameters satisfy 

 ,615645342312 aaaaaaa ======  (1-24a) 

 ,2, 614523563412 απααααααα −======  (1-24b) 

 ( ).6,,2,10 == iRi  (1-24c) 

1.2.2.2 Mobile Assemblies of Spatial Overconstrained Linkages 
Although the engineering application of spatial overconstrained linkages is limited, 

mobile assembly of spatial overconstrained linkages has been of a great research 
interest. The reasons are not only the kinematic challenge, but also the application 
potential for a deployable structure with high expansion to package ratio. The 
construction with tessellation method [29] and the mobile connections [78], provide 
effective ways for the design of large-scale mobile assemblies, such as Bennett-linkage 
assemblies [79-82], Myard-linkage assemblies [83, 84] and Bricard-linkage assemblies 
[85], which promote the development of deployable structures for engineering 
application. 

Tilling is also called tessellation. A plane tiling is a plane covered by a countable 
family of closed sets without gaps and overlaps, such as the honeycomb of bees. Chen 
[29] indicated three ways to cover the plane with identical units: tilings )3( 6 , )4( 4  
and )6( 3  which make the units spread in three, four and six directions, respectively, 
as shown in Fig. 1-7. Here, for instance, tiling )6( 3  represents each of the points is 
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surrounded by three hexagons, where 6 is the number of hexagonal sides and it also 
represents the number of spreading directions. The superscript 3 is the number of 
hexagons. The unit named tessellation unit can be a repeatable pattern or motif, which 
can be constructed by the basic linkage, e.g., Bennett linkage and Myard linkage, or the 
assembly of a set of linkages. The tessellation method for mobile assembly including 
three steps: construction of units, selection of spreading ways from three tilings and 
validation of compatibility. 

 

 
Fig. 1-7 Three types of tilings with identical units summarized by Chen [29]. 

 

Chen and You [79] have constructed unit motif of Bennett linkages with 
overlapping based on the tiling )4( 4 . They further designed a basic mobile assembly 
which can be deployed into flat or arch surfaces with different parameters, other three 
mobile assemblies of Bennett linkages [80] are derived from considering the links with 
negative lengths. The schematic diagrams of the four distinct mobile assemblies of 
Bennett linkages are shown in Fig. 1-8 and Fig. 1-9, where the black circles and black 
lines show the constructions of their corresponding mobile assemblies, while gray 
circles and gray lines show the tessellation of mobile assemblies. Their twists Kα  and 

Kβ  of each link should satisfy the conditions in Eqs. (1-25) to (1-29). 
Twists of case 1 Bennett linkage mobile assembly with type I and type II guidelines 

satisfy 
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 (1-25) 

Twists of case 2 Bennett linkage mobile assembly with type II guidelines satisfy 
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Twists of case 3 Bennett linkage mobile assembly with type I guidelines satisfy 
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  (1-27) 

 

 
Fig. 1-8 Four cases of mobile assemblies of Bennett linkage. (a) Case 1, (b) case 2 mobile 

assemblies.  
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Fig. 1-9 Four cases of mobile assemblies of Bennett linkage. (a) Case 3, (b) case 4 mobile 

assemblies. 

 



Chapter 1 Introduction 

 15

Twists of case 4 Bennett linkage mobile assembly with type I guidelines satisfy 
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Bennett linkages on the i th guideline should satisfy  

 k
i

i =
β
α

sin
sin

,  (1-29) 

where k  is a constant throughout the whole assembly. The twists of Bennett linkages 
in an assembly satisfy the twist conditions along guidelines: i.e. the adjacent Bennett 
linkages on a type I guideline are connected with Bennett linkages and all the Bennett 
linkages have the same twists with iα  and iβ . The adjacent Bennett linkages on a 
type II guideline are connected with the scissor connection and the twists of adjacent 
Bennett linkages satisfy that one has iα  , iβ   and its adjacent one has iα−  , iβ−  
which are same as iαπ − , iβπ − , where subscript i  represents the i th guideline. 
On different guidelines, the twists iα  and iβ  can be different. 

For the generation of high expansion to package ratio and demand of different 
profile for engineering, parameter analysis of the mobile assemblies of Bennett linkages 
are studied, such as the alternative form of Bennett linkage proposed by Chen and You 
[67] and it is used to construct network of alternative form of Bennett linkage, as shown 
in Fig. 1-10(a). Lu [82] proposed an assembly of the alternative form of Bennett linkage 
to approximate cylindrical surface. In addition, the mobile assembly of Bennett linkages 
can be designed in saddle surface [86] and polyhedrons [87]. Song [88] designed a 
parabolic cylindrical antenna with one-DOF. They are shown in Fig. 1-10. 

A family of mobile assemblies of Myard linkages with one-DOF has been 
developed according to the three tiling ways by Liu and Chen [83], one of which is 
shown in Fig. 1-11(a). Qi and Deng [84] developed two types of large spatial assembly 
of Myard linkages with different twist angles, one of which is shown in Fig. 1-11(b). In 
addition, Chen and You [89] designed a unit with overlapping motif of Myard 6R 
linkage, where the linkage with two zero-length links is derived from combining two 
extended Myard linkages.  
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Fig. 1-10 Mobile assemblies of alternative form of Bennett linkage. (a) Assembly with flat-

deployed configuration constructed by Chen and You [67]; (b) assembly approximating cylindrical 
surface constructed by Lu et al. [82]; (c) mobile assembly for deployable parabolic cylindrical 

antenna constructed by Song et al. [88]; (d) assembly approximating saddle surface constructed by 
Yang et al. [86]; (e) A tetrahedral linkage constructed by Kiper and Söylemez [87].  
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Fig. 1-11 Two mobile assemblies of Myard linkages. (a) assembly constructed by Liu and Chen 

[83]; (b) assembly constructed by Qi et al. [84]. 

 
For the Bricard linkages, Chen and You [67] developed a mobile assembly of 

threefold-symmetric Bricard linkages by connecting each pair of linkages with a scissor, 
which can be folded to a handle and deployed to a flat surface, as shown in Fig. 1-12(a). 
They also discussed the alternative form of this linkage. Based on the alternative form, 
Huang and Yan [85] carried out the deployed profile synthesis; Huang and Li [90] 
proposed a new family of one-DOF assemblies by replacing three alternate revolute 
joints by a class of one-DOF deployable mechanisms, which can be regarded as the unit 
for tessellation. Huang, Deng and Li [78] formed a deployable structure based on 
Bricard linkage with scissor-like connection, as shown in Fig. 1-12(b). Song and Guo 
[91] proposed a large deployable structure (Fig. 1-12(c)) constructed by assembling 
Altmann linkages and proved its mobility by screw theory. Atarer and Korkmaz [92] 
designed one-DOF assemblies of Altmann linkages (Fig. 1-12(d)) by assembling 
linkages with common links and joints or overlapping with extra R or 2R joints. 

In summary, mobile assemblies of overconstrained spatial linkages have been 
constructed with different deployable configurations, e.g., flat, arch, saddle surfaces 
and polyhedrons. The mobile assemblies of Bennett linkages and Myard linkages have 
been studied thoroughly in the past. It is not easy to construct a new one. The number 
of mobile assemblies of Bricard linkage is limited, due to the motion complexity of 
both line-symmetric and plane-symmetric Bricard linkages, which makes it extremely 
difficult to find the compatibility condition in forming their mobile assemblies. 
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Fig. 1-12 Mobile assemblies of Bricard linkages. (a) Assembly of threefold-symmetric Bricard 

linkage constructed by Chen and You [67]; (b) assembly formed by scissor-like connection 
hexagon Bricard modules constructed by Huang, Deng and Li [78]; (c) the assembly of Altmann 

linkages constructed by Song et al. [91]; (d) the assembly of Altmann linkages constructed by 
Atarer, Korkmaz and Kiper [92]. 

 

 Rigid Origami  
Origami is a paper folding art. Each origami pattern contains creases which go into 

two types: mountain creases and valley creases. Several creases can meet at a single 
point called vertex, as shown in Fig. 1-13. There are a lot of origami patterns which can 
be folded to form various shapes. Most of them are derived from nature and designed 
by artists. Since some of them have a superior efficiency of packaging, they have been 
paid huge attention by the engineers and scientists. They have great potential in 
engineering applications in different areas, such as solar array [8, 93] in aerospace, 
shelters [11] in civil engineering, medicines [15, 94] and robotics [95-98]. Some 
applications are shown in Fig. 1-14. 
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Fig. 1-13 A rigid origami vertex with four creases. 

 

 
Fig. 1-14 Engineering applications of origami in different areas. (a) Solar panel designed by Miura 

[8]; (b) solar array constructed by Zirbel et al. [93]; (c) origami shelter proposed by Lee and 
Gattas [11]; (d) origami stent graft designed by Kuribayashi et al. [15]; (e) a self-folding robot 
designed by Felton et al. [95]; (f) a microorigami robotic arm designed by Boyvat et al. [97]. 

 

1.2.3.1 Rigid-Foldability 
Rigid origami has the property of rigid-foldability which ensures the panels of one 

origami pattern do not stretch or bend during the folding process. It makes possible to 
use rigid materials for designing deployable structures. To achieve rigid-foldability, the 
motion of panels in an origami vertex should be compatible with the adjacent ones. 
Several methods have been proposed to judge rigid-foldability. Watanabe and 
Kawaguchi proposed the diagram method and the numerical method for judging rigid 
foldability [99]. Tachi generalized the geometric condition of rigid-foldable origami 
with quadrilateral mesh [100] and considered geometry to obtain the rigid variations 
[101]. Wu and You employed quaternions and dual quaternions to study rigid foldability 
of origami [102]. Cai et al. [103] combined the quaternion rotation sequence method 
and the dual quaternion method to check the rigid-foldability of cylindrical foldable 
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origami. The compatible analysis of mechanism theory based on D-H notation is also 
an effective method to judge and design rigid origami pattern by regarding the origami 
vertex as the spherical linkage [39]. Based on the mechanism theory, new rigid origami 
patterns [104] and origami tubes [105, 106] were invented. 

1.2.3.2 Flat-Foldability 
Flat-foldability is another property for an origami to realize compact folding. 

Some researches have been done on this property. Mathematical study of flat origami 
was carried out by Hull. He gave necessary and sufficient conditions for an origami to 
locally fold flat [107, 108]. Lang [109] made a survey of conditions for flat-foldability 
of single vertex. 

The first condition is the Kawasaki-Justin Theorem. Let ν  be a vertex with n2  
creases and let n221 ,, ααα   be the sector angles between the creases. Then ν  is a 

flat vertex if and only if 

 .02321 =−−+− nαααα   (1-30) 

For a developable origami, the sector angles around every vertex sum to 360, that 
is .22321 παααα =++++ n  Then, a useful variation of this theory is that the vertex 

can fold flat if and only if 

 .24231 παααααα =+++=+++ nn   (1-31) 

The second condition is Big-Little-Big Angle (BLBA) Theorem. At any vertex, the 
creases on either side of any sector whose angle is smaller than those of its neighbors 
must have opposite crease assignment. 

The third condition is Maekawa-Justin Theorem. For any flat-foldable vertex, let 
M be the number of mountain folds at the vertex and V be the number of valley creases. 
Then 

 .2±=−VM  (1-32) 

1.2.3.3 The Degree of Freedom of Rigid Origami 
As one rigid origami vertex can be regarded as spherical linkage, one origami can 

be regarded as the mechanism. According to the mobility of the vertex, rigid origami 
patterns with multiple vertices can be generally classified into two groups, one-DOF 
origami and multi-DOF origami.  

One-DOF origami is generally composed of four-crease vertices. As the one-DOF 
origami pattern is typical and simple, patterns consisted of multiply four-crease origami 
vertices has been widely studied and new one-DOF origami patterns are constructed 
from the existing origamis or from quadrilateral meshes. The well-known one-DOF 
origami pattern, Miura-ori, was proposed by Miura, it has been applied to the packaging 
of deployable solar panels in space and the folding of maps [8, 36]. Based on the Miura-
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ori, five alterable characteristics are studied by Gattas, Wu and You to construct Miura-
base rigid origamis, such as arc-Miura pattern and tapered Miura pattern [110]. By 
studying Miura-ori as a wallpaper pattern, Sareh and Guest [111, 112] constructed the 
family of isomorphic and non-isomorphic variations. Based on Miura-ori and Arc-
Miura, graded origami structures are constructed by changing geometric parameters 
[113]. By introducing rigidly foldable origami gadgets, new tessellations are created 
[114]. One-DOF cylindrical deployable origami is constructed based on the origami 
vertex with four congruent parallelograms and its mirror image [115] and cellular 
structures are constructed from these cylinders [116]. Foldable Miura-based closed-
loop origami units are designed by considering the mathematical expressions [117]. 
Lang and Howell started from direction angles and fold angles along the arrays and 
designed rigidly foldable quadrilateral meshes with one-DOF [118]. One-DOF rigid 
origami with multiple states which were derived from superimposing rigid-foldable 
crease patterns gives a new idea for designing one-DOF origami [119]. Even though a 
number of one-DOF origami patterns have been constructed, the overconstrained nature 
of a four-crease origami pattern limits its variation of sector angles. Constructing the 
origami pattern only with four-crease origami vertices also limits the new design of 
one-DOF origami. 

When a vertex has more than four creases, it might have multi-DOF, such as the 
six-crease origami vertex and the five-crease origami vertex. These vertices can form 
multi-DOF origami patterns, such as diamond origami pattern (Yoshimura pattern) [109, 
120], waterbomb origami pattern [121] and Resch origami patterns [122, 123]. As 
multi-DOF origami patterns can be deployed to variable configurations, they have been 
widely used in robotics [124-128]. However, sometimes one motion characteristic is 
needed, it is a challenge to accurately control a multi-DOF origami system, such as 
diamond origami pattern with multiple configurations [109] to get the desirable 
symmetric motion, as shown in Fig. 1-15.  

For the multi-DOF vertex of origami, its DOF can be derived by 3−n , where the 
n represents the number of creases meeting at the vertex [129, 130]. However, for the 
multi-vertex origami pattern, its DOF can be influenced by many factors [129, 130], 
such as the number of creases meeting at a vertex, the number of vertices, the 
connection relationships among the vertices, the sector angles of each vertex. They 
increase the difficulty of calculating the number of DOF of multi-DOF origami is 
difficult to calculate, which further affects the control of the origami system. Hence, 
reducing the number of DOF in origami is an emerge and practical research request. 
Several methods have been proposed to do this. Offsetting the creases at one vertex is 
used to maintain the symmetric folding of diamond origami pattern and to design a 
foldable mobile shelter system [131]. Adding extra constraints is used to reduce the 
DOF of an origami [132-134] to analyse the common motion of the origami pattern. 
Chen, Peng, and You [40] replaced multi-DOF spherical linkages at origami vertices by 
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one-DOF spatial linkages by thick-panel origami method to reduce the DOF of diamond 
origami and waterbomb origami pattern to be one. Tachi reduced the DOF by 
transforming the multi-DOF vertex into an assembly of four-crease vertices with 
doubled crease lines [135]. However, there is no systematic study on how to reduce the 
DOF of origami patterns while maintaining their kinematic motion characteristics. 

 

 
Fig. 1-15 Two configurations of diamond origami pattern proposed by Lang [107]. (a) the 

symmetric configuration and (b) the asymmetric configuration. 

 

1.2.3.4 Thick-Panel Origami 
One rigid origami pattern is commonly regarded as ideal zero-thickness for 

analysis. However, it is no longer true, when stiffness panels are used to deployable 
structures, especially for aerospace to endure the loads or to insulate heat. So it is 
necessary to consider the accommodation of thickness for panels. Various methods [136] 
have been proposed to accommodate thickness, as shown in Fig. 1-16. Tapered panels 
technique [137] is adding the thickness to the panel, then trimming intersecting material 
between the panels without changing the mechanical behavior of ideal zero-thickness 
rigid origami or losing the flat-foldability. Membrane technique [138] was proposed to 
accommodate thickness in origami based deployable arrays by applying a membrane 
backing with the widening creases with flexible material. Offset panel technique was 
proposed by Edmondson et al. [139] who offset the panels away from the ideal zero-
thickness surface to give space to fold flat. This technique was also applied to design 
origami products by Morgan et al. [140]. Offset hinge technique [40, 141] was proposed 
by offsetting revolute joints on the surfaces of thick panels so that thickness can be 
accommodated. Doubled hinge technique was proposed by modifying the crease pattern 
that separates faces in the folded form to make room for thick panels, where the faces 
are accommodated thickness [142-144]. Besides, using synchronized offset rolling 
contact elements [145] and compliant mechanisms [146-147] can also accommodate 
thickness to origami panels. Recently, kirigami was used to design thick-panel patterns 
with flat deployed configurations [148]. 
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Fig. 1-16 Methods for thickness accommodation. (a) Model constructed by Tachi with tapered 
panels technique [137], (b) membrane technique used to a rigid-foldable six-sided flasher by 

Zirbel et al. [138], (c) offset panel technique used to Miura-ori by Edmondson et al. [139], (d) 
offset hinge technique used to a six-crease vertex by Chen, Peng and You [40], (e) doubled hinge 
technique used to a six-crease vertex by Ku and Demaine [143], (f) Square-twist with compliant 

mechanisms constructed by Pehrson et al. [146]. 
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 Spatial Linkages and Rigid Origami 

1.2.4.1 Analysis and design of rigid origami based on spatial linkages 
Motion behavior of rigid origami is an important aspect to understand and design 

origami patterns. It is an important property to be studied for engineering applications. 
Dai and Jones firstly constructed the kinematic models of carton folds by regarding 
creases and rigid panels as revolute joints and links, respectively [37]. Hence, the 
equivalent mechanisms can be used in kinematic analysis of origami with mechanism 
theory [149] and in the modeling of origami-type cartons with the stiffness of creases 
and panels [150-152]. Besides, the equivalence was also used in the analysis of pop-up 
paper [153] and kirigami [148]. As multi-creases meeting at a vertex in a rigid origami 
can be modeled as spherical linkage [38], a rigid origami pattern with a lot of vertices 
can be treated as a mobile assembly of spherical linkages. Hence, the rigid-foldable 
condition of one origami can be derived from the analysis of the compatibility condition 
of the equivalent mechanisms. Wang and Chen [39] modeled origami patterns as an 
assembly of spherical 4R linkages, and designed patterns to form the closed patterned 
cylinders. Liu and Chen [104] analysed the four-crease origami based on its equivalent 
mechanism (Fig. 1-17) and obtained four types of flat rigid origami patterns, which are 
planer-symmetric-type, supplementary-type, identical linkage-type and orthogonal type 
origami patterns, whose compatibility conditions are expressed in Eqs. (1-33) to (1-36). 
Feng et al. analysed the waterbomb origami pattern based on the equivalent 
mechanisms and found its twist motion [134]. 

The planar-symmetric type 
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The identical linkage-type 
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The orthogonal type 



Chapter 1 Introduction 

 25

 

.cos2,

,cos/coscos/cos,,

,0,0,0,0

D

BACD

CBCBDADA

DACDBCCDAB =+=

==+=+

=−=−=−=−

δ

γβδαπαβπδγ

βγγβαδδα

 (1-36) 

 

 
Fig. 1-17 An assembly of four spherical 4R linkages modeled by Liu and Chen [104]. 

 
As the thick-panel origami derived from offset hinge technique was proposed by 

Chen, Peng and You [40], the four-crease, five-crease and six-crease vertices in the 
thick-panel form are modelled as Bennett 4R linkage, Myard 5R linkage and Bricard 
6R linkage, respectively. Their folding kinematic behaviors are kept the same as that of 
zero-thickness origami. Here, we focus on the thick-panel form of four-crease vertices 
and six-crease vertices. The relationship between the zero-thickness origami and their 
corresponding thick-panel origami forms are shown in Fig. 1-18 and their 
corresponding geometric conditions are expressed in Eqs. (1-37) and (1-38). 

The geometric conditions of the four-crease origami vertex are 
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The geometric conditions of the six-crease origami vertex are 
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in which 
4

0 12
πα ≤<  to ensure that the pattern has flat foldability. 

For the multi-vertex thick-panel origami patterns derived from the offset hinge 
technique, they can be considered as mobile assemblies of spatial linkages. 
Compatibility conditions for the mobility and flat-foldability of waterbomb thick-panel 
origami pattern have been derived, whose folding process is also kinematically 
equivalent to the origami of zero-thickness sheets under the symmetric folding [133]. 

 

 
Fig. 1-18 Single vertex rigid origami patterns and the corresponding thick-panel forms. (a) Four-
crease origami vertex and (b) six-crease origami vertex proposed by Chen, Peng and You [40]. 

1.2.4.2 Linkages inspired from rigid origami 
Based on the equivalence between mechanism and rigid origami, novel 

mechanisms are derived, such as the metamorphic mechanisms [38]. Leal and Dai [154] 
designed a new class of centralixes 3-DOF parallel mechanism from origami 
pentagonal pattern. Wei and Dai [155] constructed a novel mechanism including one 
planar four-bar linkage and two spherical 4R linkages from an origami fold. Based on 
the waterbomb base, Zhang et al. designed a parallel mechanism with three-spherical 
kinematic chain and carried out the geometry and constraint analysis [156]. Two 
integrated planar-spherical overconstrained linkages were derived from origami cartons 
by modifying the linkages in the diagonal corners [157]. A novel overconstrained 6R 
linkage was inspired from triangle twist origami pattern by removing central triangle 
[42].  
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As the multi-vertex thick-panel origami patterns derived from the offset hinge 
technique [40] can be considered as mobile assemblies of the corresponding spatial 
linkages, a four-crease thick-panel origami pattern can inspire a mobile assembly of 
Bennett linkages. Six-crease thick-panel origami patterns with plane symmetry [40, 133] 
could lead to the discovery of mobile assemblies of plane-symmetric Bricard linkages. 
Therefore, the thick-panel origami can be considered as the intermediate bridge 
between a zero-thickness origami and a mobile assembly of spatial linkages. Study of 
the relationship between mobile assemblies of spatial linkages and rigid origamis with 
their corresponding thick-panel forms as the intermedium bridges can construct new 
mobile assemblies of spatial linkages. At the same time, generalisation of the 
compatibility conditions on the mobile assembly of spatial linkages, in turn, will 
improve the construct condition for the corresponding thick-panel origami patterns.  

 Aim and Scope 
The aim of this dissertation is to study the relationship between spatial linkages 

and rigid origamis based on their thick-panel origami forms to design new mobile 
assemblies of spatial linkages. By analysing the general cases of the mobile assemblies 
of the linkages derived from rigid origami, new origami pattern or thick-panel form will 
be discovered with wide application potential. Alternatively, the origami pattern will 
inspire new mobile assemblies of spatial linkages with the compatibility condition from 
the thick-panel counterpart. 

In this process, a transition technique is proposed and realizes the transition from 
four-crease origami pattern to mobile assemblies of Bennett linkage. By applying this 
technique, diamond thick-panel origami pattern is transited into new mobile assemblies 
of plane-symmetric Bricard linkages which are further studied for the design of 
variation of diamond thick-panel origami pattern. Finally, vertex-splitting is proposed 
to reduce the DOF of multi-DOF origami pattern and hinge-removing is derived to 
design thick-panel origami with flat unfolded profiles. 

 Outline of Dissertation 
This dissertation consists of five chapters, which are outlined as follows. 
Chapter 2 focus on constructing mobile assemblies of Bennett linkages from four-

crease origami patterns. Firstly, a transition technique is proposed from the four-crease 
origami vertex to Bennett linkage. Then, the technique is applied to Miura-ori pattern, 
graded Miura-ori pattern, supplementary-type origami patterns and identical linkage-
type origami pattern to design mobile assemblies of Bennett linkages. This chapter ends 
with the conclusions. 

Chapter 3 devotes to the relationship between diamond thick-panel origami pattern 
and mobile assemblies of plane-symmetric Bricard linkages. First of all, a mobile 
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assembly of plane-symmetric Bricard linkages is derived from the diamond thick-panel 
origami pattern. This is followed by the derivation of compatibility conditions for 
constructing the mobile assembly, which lead to the discovery of two general cases of 
mobile assemblies. The general assembly then inspires variations of diamond thick-
panel pattern which can be with flat unfolded profiles and/or spirally folded 
configuration. Conclusions are drawn in the end. 

Chapter 4 is to design one-DOF origami pattern from multi-DOF origami patterns 
and construct one-DOF thick-panel origami pattern with flat unfolded profiles by 
removing hinges. Based on the diamond origami vertex, the vertex-splitting technique 
is proposed to generate three types of unit patterns. Then it is applied to the multi-vertex 
diamond origami pattern and generates one-DOF basic assemblies and one-DOF 
origami patterns. Moreover, based on the construction of Waldron’s hybrid 6R linkage 
from Bennett linkages by removing shared hinge, the transformation from the thick-
panel origami pattern with two four-crease vertices to the thick-panel origami pattern 
with six creases is studied, which inspires the hinge-removing for the thick-panel 
origami pattern. After that, thick-panel origami patterns with flat unfolded profiles are 
derived from three thick-panel origami patterns by removing some hinges. 

The main achievements of the research are summarized in Chapter 5, together with 
suggestions for future works, which conclude this dissertation. 
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 Mobile Assemblies of Bennett Linkages from 
Four-Crease Origami Patterns 

 Introduction 
As the thick-panel origami proposed by offset hinge technique is kinematically 

equivalent to a mobile assembly of spatial linkages, the thick-panel origami can be 
considered as the intermediate bridge between a zero-thickness origami and a mobile 
assembly of spatial linkages. Therefore, the four distinct types of four-crease origami 
patterns may be used to generate the mobile assemblies of Bennett linkages by taking 
the corresponding thick-panel forms as the intermediate bridge. 

This chapter is arranged with the following sections. Section 2.2 sets up the 
transition technique from single-vertex four-crease origami to Bennett linkage, which 
is further developed in section 2.3 for the transition from Miura-ori, graded Miura-ori 
and three distinct cases of supplementary-type origami patterns to different types of 
Bennett linkage assemblies. Especially, a new mobile assembly of Bennett linkages is 
derived from the identical linkage-type origami pattern in section 2.4. Conclusions are 
drawn in section 2.5. 

 Transition from Single-Vertex Four-Crease Origami to Bennett 
Linkages 

A general single-vertex four-crease zero-thickness origami pattern is shown in Fig. 
2-1(a), where iz  ( =i 1, 2, 3, 4) are axes of the four creases. Here solid lines are for 
mountain folds, and dashed lines are for valley folds. α  , β  , απ −  , βπ −   are 
sector angles to make sure this pattern is flat-foldable. From the viewpoint of rigid 
origami, this four-crease pattern is rigid and kinematically can be considered as a 
spherical 4R linkage by taking the crease lines as revolute joints and the rigid panels as 
the rigid links, see Fig. 2-1(b), with zero link lengths. For the single-vertex four-crease 
thick-panel origami in Fig. 2-1(c), the sector angles are kept as same as the previous 
ones, but the crease lines or revolute joints iz  are moved to top or bottom surfaces of 
the thick panels. In order to accommodate the panel thickness in the folded 
configuration, two panels, 23P   and 34P  , with larger sector angles ( αβ >  , 

βπαπ −>− ) have steps, and there are two thickness on each panel, e.g., 23t & 23t′  for 
panel 23P  and 34t & 34t′  for panel 34P , where 413423123423 tttttt +′+′+=+ . Obviously, 
the linkage in Fig. 2-1(c) is no longer a spherical 4R linkage, because the four axes do 
not intersect at a single point. Instead, it is a Bennett linkage as it is the only 4R spatial 
linkage. And its link lengths are related to the panel thickness, 
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 1212 taBe = , 232323 ttaBe ′−= , 4141343434 , tatta BeBe =′−= . (2-1) 

 

 
Fig. 2-1 The correspondence among the four-crease zero-thickness origami, spherical 4R linkage, 
four-crease thick-panel origami and Bennett linkage at one vertex. (a) A partially folded single-

vertex four-crease origami with zero-thickness sheets; (b) the spherical 4R linkage; (c) the single-
vertex four-crease thick-panel origami; (d) the Bennett linkage at an enlarged vertex; (e) the 

Bennett linkage in the traditional link form. 

 

Due to the overconstrained condition of Bennett linkage, BeBeBe aaa == 3412  , 
BeBeBe baa == 4123   must be satisfied, i.e., 343412 ttt ′−=  , 232341 ttt ′−=  . Normally the 

spatial linkages are analysed with D-H notation and the matrix method. The D-H 
coordinates are set up in Fig. 2-1(d), which is the enlarged vertex of Fig. 2-1(c). To 
make the twists of the Bennett linkages align with this traditional set-up,  

 BeBeBe ααα == 3412 , BeBeBe βαα == 4123 , Be

Be

Be

Be

ba
βα sinsin = . (2-2) 

We have to rearrange the directions of the revolute axes iz  by keeping 1z , 3z , 
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4z  the same as the setup in the spherical 4R linkage, pointing away from the vertex, 
and reversing 2z  pointing to the vertex. And axes ix  are set up accordingly, thus the 
twists of the Bennett linkage are  

 απααα −=== BeBeBe
3412 , βπβαα −=== BeBeBe

4123 . (2-3) 

By replacing the thick panels with the straight links connecting the adjacent 
revolute joints in the shortest distance, a Bennett linkage in traditional link form is 
represented in Fig. 2-1(e).  

Since the zero-thickness rigid origami (or its corresponding spherical linkage) and 
the thick-panel origami counterpart (or its corresponding Bennett linkage) are of the 
identical topology, the linkage topological graph can be applied to link them up in a 
later analysis of multi-vertex origami patterns and the mobile assemblies of linkages. 
As shown in Fig. 2-2, (b) is the topological graph of the rigid origami in Fig. 2-2(a), 
and Fig. 2-2(c) is the one for the Bennett linkage whose schematic diagram is given in 
Fig. 2-2(d). We can tell Fig. 2-2(b) and (c) is of the same topology but with different 
linkage twists due to the different setup of the joint axes. 

 

 
Fig. 2-2 Transition from a single-vertex four-crease origami to Bennett linkage with a topological 
graph. (a) Single-vertex four-crease origami; (b) the corresponding topological graph of (a) with 

sector angles, where each line represents a crease or revolute joint and a black solid dot represents 
a panel of origami; (c) topological graph with twists for the corresponding Bennett linkage; (d) 

schematic diagram of the Bennett linkage, where each line represents a link and a circle represents 
a joint without showing any direction of the joint axis, which is used to present the spatial linkage 

in the mobile assembly for simplicity. Here απα −=Be , βπβ −=Be . 

 Transition from Multi-Vertex Origami Patterns to Mobile 
Assemblies of Bennett Linkages 

 Mobile Assemblies Derived from a Miura-ori Pattern 

Miura-ori is one of well-known traditional origami patterns formed with a number 
of identical parallelogram panels connected by mountain and valley creases, as shown 
in Fig. 2-3(a). This pattern consists of only four crease vertices with sector angles α  
and απ − . For the vertices A, B, C, D in Fig. 2-3(a), their creases are ia , ib , ic , id  
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( =i 1, 2, 3, 4). So the topological graph of this pattern in Fig. 2-3(a) is shown in Fig. 
2-3(b). Because each vertex with sector angle α  and απ −  can be transited into the 
thick-panel form with equilateral Bennett linkage, the pattern with four vertices should 
form a mobile assembly of four such Bennett linkages. The problem is at the central 
panel surrounded by the creases 22 / ba  , 33 / cb  , 44 / dc  , 11 / ad  . There are four 
revolute joints connecting this rigid link with others to form the four Bennett linkages, 
A, B, C, D (Fig. 2-3(b)), so how can the joint positions on the straight link be arranged 
once the assembly adopts the original linkage form? 

Let’s take a close look at the thick-panel Miura-ori pattern in Fig. 2-4(a). Panel P 
is connected to panels A

12P , B
23P , C

34P , D
41P , and it appears in linkages A, B, C, D in the 

thick-panel form with link lengths Bea12 , Beb23 , Bec34  and Bed41 , respectively. An enlarged 
panel P is shown in Fig. 2-4(b). In thick-panel pattern, creases or revolute joints shared 
by two adjacent Bennett linkages are combined into a single one, e.g., joint 1a   of 
linkage A and 1d  of linkage D are combined into one. In other words, the Bennett 
linages attached panel P form a closed loop starting from joint 11 / da  to 22 / ba  via 
link Bea12 , to joint 33 / cb  via link Beb23 , then to joint 44 / dc  via link Bec34 , and finally 
back to joint 11 / da   via link Bed41  . Hence, along the total thickness Pt   of panel P, 

P41342312 tdcba BeBeBeBe =+=+   with 33 / cb   on the top surface, 11 / da   on the bottom 
surface, and 22 / ba , 44 / dc  on the medium surfaces. To maintain the physical size pt  
of panel P in the central area, BeBe da 4112 <  and BeBe bc 2334 <  or BeBe da 4112 =  and BeBe bc 2334 =  
or BeBe da 4112 >  and BeBe bc 2334 >  can be chosen.  

When BeBe da 4112 <   and BeBe bc 2334 <  , the order of joints is 33 / cb  , 44 / dc  , 22 / ba  , 

11 / da  along the thickness direction of panel P from top to bottom, as shown in Fig. 
2-4(b). The same order applies to the straight link form, as shown in Fig. 2-4(c). It 
should be noted that each shared revolute joint in Fig. 2-4(c) has two axis directions; 
however, a revolute joint has to have only one axis direction for further confirmation of 
the angles in one link of the mobile assembly. Hence, to maintain the relationships about 
twists and sector angles in Eqs. (2-2) and (2-3), all joint axes in linkages A and C are 
kept, while all joint axes in linkages B and D are reversed; then we can obtain the mobile 
assembly shown in Fig. 2-4(d). Its schematic diagram is shown in Fig. 2-3(c), where 
twists can be obtained by Eqs. (2-2) and (2-3) using their corresponding sector angles 
in Fig. 2-3(b) and some angles are from the difference in twists, e.g. the angle between 

4a   and 2d   in Fig. 2-3(c) is obtained from twists of linkages A and D as 
0A

41
D
12 =−=− αααα .  
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Fig. 2-3 Transition from a Miura-ori pattern to Bennett mobile assemblies. (a) Crease pattern with 

four vertices; (b) topological graph of a Miura-ori pattern; (c) the schematic diagrams of the 
corresponding mobile assembly with BeBe da 4112 <  and BeBe bc 2334 < ; (d) the assembly with BeBe da 4112 =  

and BeBe bc 2334 = ; (e) the assembly with BeBe da 4112 >  and BeBe bc 2334 > . Here each rhombus represents a 

Bennett linkage, gray circles and gray lines show the tessellation of the mobile assembly, dashed-
dot lines represent the guidelines and iII  is the ith type II guideline. 
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Fig. 2-4 Miura-ori thick-panel pattern and its mobile assembly. (a) Miura-ori thick-panel pattern 
with four vertices; (b) the enlarged panel P with four attached Bennett linkages; (c) the mobile 

assembly of Bennett linkages with original joint axes; (d) the mobile assembly with reversed joint 
axes of Bennett linkages B and D. 

The case with BeBe da 4112 =  and BeBe bc 2334 =  is an assembly of Bennett linkages (Fig. 
2-3(d)), with order of joints 33 / cb  , 4422 /// dcba  , 11 / da   along the thickness 
direction of panel P. Owing to linkages A and D, B and C coincide, this assembly cannot 
be tessellated along the horizontal direction, which is a special case of assembly in Fig. 
2-3(c) consisted of all Bennett linkages with the same link lengths. The case with 

BeBe da 4112 >  and BeBe bc 2334 >  is that linkages A and C become the bigger ones and linkages 
B and D become the smaller ones with the order of joints 33 / cb  , 22 / ba  , 44 / dc  , 

11 / da  along the thickness direction of panel P, as shown in Fig. 2-3(e), which is of the 
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same type as that in Fig. 2-3(c). 
As the twists of the mobile assembly in Fig. 2-3(c) satisfy the type II guidelines, 

the Miura-ori thick-panel origami corresponds to a special case of the case 2 mobile 
assembly consisting of equilateral Bennett linkages. The prototypes of Miura-ori zero-
thickness form, thick-panel form and the corresponding mobile assembly are shown in 
Fig. 2-5. 

 

 
Fig. 2-5 Deployment sequences of prototypes. (a) Miura-ori pattern, (b) Miura-ori thick-panel 

pattern and (c) Bennett linkage mobile assembly with °= 30α . 

For the general case 2 assembly of Bennett linkages, the twists on the different 
guidelines can be different, as shown in Fig. 2-6(c), in which the twists on guideline 

iII   are α   and απ −   and those on guideline 1II +i   are β   and βπ −  . So 
correspondingly in the Miura-ori, along the different columns of vertices, the sector 
angles should also be different, as shown in Fig. 2-6(a) and (b), which is called the 

graded Miura-ori and their prototypes are shown in Fig. 2-7.  
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Fig. 2-6 Transition of graded Miura-ori pattern. (a) Crease pattern with four vertices of graded 
Miura-ori pattern; (b) topological graph of graded Miura-ori pattern; (c) the schematic diagram of 

corresponding mobile assembly of Bennett linkages. 

 Mobile Assemblies Derived from Supplementary-Type Origami Patterns 

As Miura-ori and graded Miura-ori patterns are special cases of supplementary 
type origami patterns, mobile assembly consisting of general Bennett linkages can be 
derived from supplementary type origami patterns where the sector angles are shown 
schematically in Fig. 2-8(a). Three different mountain-valley crease assignments of 
supplementary type origami patterns with four vertices, named MVI, MVII, MVIII, are 
shown in Fig. 2-8(b) to (d). They are of identical topology to that shown in Fig. 2-8(e). 
Yet, different mountain-valley crease assignments cause the corresponding Bennett 
linkage assemblies to be different. With the analysed method introduced in section 2.3.1, 
we have found that MVI corresponds to the case 2 assembly in Fig. 2-8(f) similar as 
Miura-ori, while MVII and MVIII refer to the case 3 assembly and case 4 assembly 
respectively; see Fig. 2-8(g) and (h). It should be pointed out that some patterns could 
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consist of different MVI, MVII, MVIII vertices, which will mean the corresponding 
Bennett linkage assembly is a mixture of cases 1-4 [80]. For example, the isomorphic 
symmetric descendant and non-isomorphic symmetric descendant of the Miura-ori are 
form with MVI and MVIII vertices, which was called a flat-foldable 2,6pgg  pattern 
and a flat-foldable +

2,6pmg  pattern in [111, 112].  
 

 
Fig. 2-7 Deployment sequences of the prototypes. (a) Graded Miura-ori pattern, (b) graded Miura-

ori thick-panel pattern and (c) its corresponding mobile assembly with sector angles in each 
column being °30 , °45 , °60  and °75 . 

 

Moreover, the twists of Bennett linkages in different guidelines have no extra 
constraints when derived from the sector angles of origami patterns, i.e., the extra 
condition in [80], kii =βα sin/sin   is unnecessary, which widens the condition for 
constructing the assemblies of Bennett linkages. As the result, the guidelines cannot 
always be kept parallel to each other during the motion. 
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Fig. 2-8 Three mountain-valley crease assignments of supplementary type origami patterns. (a) 

Sector angle relationships and three cases, (b) MVI, (c) MVII, (d) MVIII, of supplementary type 
origami patterns with four vertices according to mountain-valley crease assignments; (e) the 

topological graph; (f)-(h) the schematic diagrams of mobile assemblies corresponding to (b) MVI, 
(c) MVII, (d) MVIII. iI  and iII  are the ith type I and type II guidelines, respectively. 
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 The New Mobile Assembly of Bennett Linkages Derived from the 
Identical Linkage-Type Origami Pattern 

An identical linkage-type origami pattern is a special four-crease origami pattern 
consisting of identical convex quadrilateral panels with the sector angles noted in Fig. 
2-9(a). With the analysed method introduced in section 2.3.1, its topological graph and 
its corresponding mobile assembly of Bennett linkages are shown in Fig. 2-9(b) and (c). 
The Bennett mobile assembly is new as its twists satisfy the condition 

 αβα == B/DA/C , βαβ == B/DA/C . (2-4) 

Here, α  and β  are the same for any Bennett linkage throughout the whole assembly, 
which apparently does not fit any twist condition along the guidelines in cases 1-4 of 
[80]. Hence, we can tell it is a new assembly. 

To confirm its kinematic mobility, we carry out an analysis for its compatible 
conditions with nine Bennett linkages from A to L (Fig. 2-9(d)), whose twists are Kα , 

Kβ   and the corresponding link lengths are Ka  , Kb  . Set K
34

K
12

K ααα ==   and 
K
41

K
23

K ααβ ==   for linkages B, D, F, H, while K
34

K
12

K ααβ ==   and K
41

K
23

K ααα ==  
for A, C, E, G, L. Considering the links in red in Fig. 2-9(d), there are 
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We define σ , τ , ρ  and ν  as revolute variables in Fig. 2-9(d); for linkage A, the 
kinematic equation is  
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Similarly, for linkages B, C, D, we have  
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Combining Eqs. (2-7) to (2-10) gives  
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Many solutions may exist in this nonlinear equation. By observation, three 
solutions can be easily obtained, which are  
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Similar analysis can be applied to Bennett linkages around the other three red links 
in Fig. 2-9. For Bennett linkages B, C, E, F, we can conclude twists should satisfy 
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Twists of Bennett linkages C, F, G, H should satisfy 
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Twists of Bennett linkages C, D, H, L should satisfy 
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Combing Eqs. (2-12) to (2-15), three solutions can be obtained to enable the 
assembly in Fig. 2-9(d) to become mobile, as follows: 
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Fig. 2-9 Transition of identical linkage-type origami patterns. (a) Crease pattern with four vertices; 

(b) topological graph; (c) schematic diagram of the mobile assembly of Bennett linkages; (d) 
schematic diagram of the mobile assembly with nine linkages. 

 
From the three solutions in Eqs. (2-16) to (2-18), we find the Eq. (2-16) 

corresponds to the case 3 assembly and Eq. (2-18) corresponds to the case 2 assembly. 
Meanwhile Eq. (2-17) corresponding to the new mobile assembly derived from the 
identical linkage-type origami pattern in Fig. 2-9(c). Its prototypes of zero-thickness 
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origami pattern, thick-panel form and the corresponding mobile assembly are shown in 
Fig. 2-10. Here, twists in the whole assembly are identical for any Bennett linkage and 
its twist condition (2-17) is different from that in cases 1-4 in section 1.2.2.2. Moreover, 
this new assembly does not have guidelines shown as dashed-dot lines in Fig. 1-8 and 
Fig. 1-9. 

 

 
Fig. 2-10 Deployment sequences of prototypes. (a) Identical linkage-type origami pattern, (b) its 

thick-panel form and (c) mobile assembly of Bennett linkages with °= 80α  and °= 120β . 

 Conclusions  
In this chapter, we have proposed a transition technique for constructing the mobile 

assemblies of Bennett linkages from four-crease origami patterns with their thick-panel 
form as the intermediate bridge. Topological graphs are introduced to extract the 
connection information from the zero-thickness rigid origami patterns (or their 
corresponding mobile assemblies of spherical linkages) and their thick-panel forms (or 
the corresponding mobile assemblies of Bennett linkages). By considering the 
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distribution orders of joints in each panel, the mobile assembly of the Bennett linkages 
can be obtained from the topological graph of the origami pattern. Applying the 
transition technique to several typical four-crease origami patterns, we found that 
Miura-ori and graded Miura-ori patterns lead to mobile assemblies of equilateral 
Bennett linkages; different mountain-valley crease assignments of the supplementary-
type origami patterns correspond to case 2, case 3 and case 4 assemblies of Bennett 
linkages with more general construction conditions. Moreover, using the identical 
linkage-type origami pattern produces a new Bennett linkage mobile assembly. It 
should be noted that only supplementary-type origami patterns and the identical 
linkage-type origami pattern are discussed in this chapter, as the orthogonal type and 
planer-symmetric-type origami patterns for constructing tessellated thick-panel origami 
patterns are special cases of supplementary-type origami patterns. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Doctoral Dissertation of Tianjin University 

 44

 
 
 
 
 
 
 
 
 
 
 
 
 

 



Chapter 3 The Diamond Thick-Panel Origami and the Corresponding Mobile Assemblies of 
Bricard Linkages 

 45

 The Diamond Thick-Panel Origami and the 
Corresponding Mobile Assemblies of Bricard Linkages 

 Introduction 
As a four-crease pattern is related to a mobile assembly of Bennett linkages, which 

has been studied in Chapter 2, six-crease thick-panel origami patterns with plane 
symmetry, such as diamond and waterbomb thick-panel origami patterns, could lead to 
the discovery of mobile assemblies of plane-symmetric Bricard linkages. At the same 
time, generalisation of the compatibility conditions on the mobile assembly of such 
spatial linkages, in turn, will enhance the construct condition for the corresponding 
thick-panel origami patterns. Therefore, in this chapter, we are studying the diamond 
thick-panel origami and the corresponding mobile assemblies of plane-symmetric 
Bricard linkages. 

The layout of this chapter is listed as follows. Section 3.2 presents a kinematically 
equivalent assembly of plane-symmetric Bricard linkages derived from diamond thick-
panel origami. In section 3.3, compatibility analysis based on diamond assembly 
generates two general cases of mobile assemblies. The general mobile assembly 
inspires the variation of diamond thick-panel pattern, leading to new patterns with flat 
unfolded profiles and/or spirally folded configuration, reported in section 3.4. 
Conclusions in section 3.5 end the chapter. 

 Assembly of Plane-Symmetric Bricard Linkages Derived from 
the Diamond Thick-Panel Origami 

 A Diamond Thick-Panel Origami Vertex and a Plane-Symmetric Bricard 
Linkage 

A single-vertex of diamond origami pattern is shown in Fig. 3-1(a), where solid 
lines are mountain creases and dashed lines are valley creases. Here axes of six creases 
are noted by iz   ( =i  1, 2,…, 6) and sector angles are marked by ( )1+iiα   with the 
geometric condition [73] 

 
,

,2
,

4534

5623

6112

ααα
απαα

ααα

==

−==

==

 (3-1) 

where 4/0 πα ≤< , to ensure flat foldability. Its thick-panel form is presented in Fig. 
3-1(b) with the plane-symmetric property, which corresponds to a plane-symmetric 
Bricard linkage [73]. Hence, the panel thickness should satisfy  

 .,,, 4534562356236112 tttttttt =′=′==  (3-2) 
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To achieve the compact folding without interference, the panel thickness should 
also satisfy 

 ., 5645615634232312 tttttttt ′+=++′=+  (3-3) 

The enlarged vertex is shown in Fig. 3-1(c) with the D-H notation. And the link 
lengths and twists are marked along panel thickness. Next, replacing the panels with 
links which connect the adjacent revolute joints in the shortest distance, the 
corresponding plane-symmetric Bricard linkage is revealed as Fig. 3-1(d). Therefore, 
the thick-panel vertex in Fig. 3-1(b) and the plane-symmetric Bricard linkage in Fig. 
3-1(d) are kinematically equivalent.  

 

 
Fig. 3-1 The correspondence among the origami vertex, thick-panel origami vertex and plane-

symmetric Bricard linkage. (a) The crease pattern of the diamond thick-panel origami vertex; (b) 
diamond thick-panel origami vertex; (c) the Bricard linkage at enlarged vertex of the thick-panel 

origami; (d) the plane-symmetric Bricard linkage. 
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In general, the geometric condition of a plane-symmetric Bricard linkage [73] is 
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under the D-H coordinates in Fig. 3-1(d). Here, BrBrBrBrBrBr wvu ,,,,, γβα   are 
taken as the geometrical parameters of the linkage. Noted in the multi-vertex pattern, if 
the crease axes are set pointing away from its own vertex as Fig. 3-1(a), one crease 
between two vertices is shared by two axes in opposite directions. To keep the axis of 
each joint with single direction in the later analysis of its assembly, we have to rearrange 
the directions of revolute axes iz  by keeping 1z , 2z , 6z  pointing away from the 
vertex, and reversing 3z , 4z , 5z  pointing to the vertex, as shown in Fig. 3-1(c) and 
(d). Meanwhile, the axes ix  can be obtained, accordingly. Then we can obtain the 
relationships between the twists of linkage and sector angles of origami pattern as  
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and that between link length and panel thickness as  
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 Transition from Diamond Thick-Panel Origami Pattern to a Mobile 
Assembly 

In Fig. 3-2(a), the creases of the diamond origami pattern with four vertices A, B, 
C, D, are noted by ia  , ib  , ic  , id   ( =i  1, 2,…, 6) and its sector angles are α  , 

απ 2− . The corresponding thick-panel form is shown in Fig. 3-2(b). Since each thick-
panel vertex corresponds to a plane-symmetric Bricard linkage, this thick-panel form 
of the multi-vertex pattern should be a mobile assembly of plane-symmetric Bricard 
linkages, which is derived next. Noted that the superscript ‘Br’ of the twist or the link 
length of Bricard linkage is omitted in the later analysis of mobile assemblies. 

KKK ,, γβα  and KKK ,, wvu  represent twists and the corresponding link lengths of 
Bricard linkage K in the mobile assembly, respectively, where K can be A, B, C, D, E, 
F, G.  
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Fig. 3-2 Transition from the diamond thick-panel origami pattern to a mobile assembly of plane-

symmetric Bricard linkages. (a) The crease pattern with four vertices; (b) the corresponding thick-
panel form; (c) the enlarged central panel attached with three plane-symmetric Bricard linkages; 

(d) the mobile assembly, where gray links and joints show the tessellation.  
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In the thick-panel pattern (Fig. 3-2(b)), the central panel P  ( A
34P  / B

12P  / D
56P ) is 

connected to three linkages A, B, D with links 34a , 12b , 56d , as shown in Fig. 3-2(c). 
Creases or revolute joints shared by the adjacent two linkages are combined into one, 
i.e., the joint 63 / da  shared by linkages A and D, the joint 52 / db  shared by linkages 
B and D and the joint 14 / ba  shared by linkages A and B. The links and joints are 
formed of a loop, i.e., from joint 63 / da  to 14 / ba  via link 34a , to joint 52 / db  via 
link 12b , and then back to 63 / da  via link 56d . Hence, along thickness direction of 
panel P, there are three joints, joint 14 / ba  in the bottom, joint 52 / db  in the middle 
and joint 63 / da  on the top. Furthermore, its total thickness Pt  and link lengths have 
a relationship as  

 DBA
P vuwt +== . (3-7) 

Hence, the order of joints 14 / ba , 52 / db , 63 / da  in panel P is obtained. Similarly, 
the order of joints in the panel B

23P / C
61P / D

45P  can be obtained as 41 / dc , 63 / cb , 52 / db . 
Applying the orders of joints to the straight link forms, an assembly of plane-symmetric 
Bricard linkages is constructed, as shown in Fig. 3-2(d). From Eqs. (3-5) to (3-7), we 
can obtain the construct condition of the new mobile assembly of plane-symmetric 
Bricard linkages as  
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Prototypes of diamond thick-panel origami pattern and its corresponding mobile 
assembly which is called diamond assembly, are shown in Fig. 3-3. 

 
Fig. 3-3 Motion sequences of (a) a diamond thick-panel origami pattern and (b) its corresponding 

mobile assembly of plane-symmetric Bricard linkages with °= 30α . 
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 The Analysis of Compatibility Condition for the Mobile Assembly 

The above mobile assembly consists of identical plane-symmetric Bricard linkages 
with αγβα −=−== KKK 2/ , which is a very special case of plane-symmetric Bricard 
linkage, compared to the general geometric condition in Eq. (3-4). To obtain more 
general condition for constructing the mobile assembly with plane-symmetric Bricard 
linkage, the compatibility condition with seven general plane-symmetric Bricard 
linkages A to G in Fig. 3-4 will be studied here.  

The closure equations of the general plane-symmetric Bricard linkage [73] are  
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 ,, 2635 θθθθ ==  (3-9d) 

where t , s  and c  denote tangent, sine and cosine in the equations. 
To make the whole assembly with the topology of assembly in Fig. 3-4 mobile, 

the compatibility on each link commonly shared by three linkages should be satisfied 
throughout the assembly. Taking the red link shared by linkages A, B, D as an example, 
its twists and link lengths satisfy  

 ADBADB , wvu =+=− γβα . (3-10) 

First, the revolution on joint 3a   is transmitted to joint 4a   through linkage A, 
which can be derived from the relationships among kinematic variables A

2θ , A
3θ  and 
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4θ , 

( ) ( )

( ) ( )

( ) ( )

,

s
2

t
2

tsc4
2

ts

2
ts

2
t

2
ts

2
ts2

2
ts2

2
t

2
ts2

2
t

2
ts2

2
t

AAA
A
3

A
2AA

A
32AAA

A
22AAA

A
32

A
22AAA

A
2A

A
3AA

A
32

A
2A

A
3

A
22AA

A
4



















++−+−++

−−++−−









+++−−

=

γβαθθαγθγβα

θγβαθθγβα

θαθαβθθαθθαβ
θ

 

(3-11a) 
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and 
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(3-11b) 
 

  
Fig. 3-4 The schematic diagram of mobile assembly with seven plane-symmetric Bricard linkages, 

where the gray links and joints show the tessellation. 

 

Second, the relationship between B
1θ  and B

2θ  can be setup in linkage B as  
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where B
2θ  and B

3θ  satisfy 
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(3-12b) 

Third, for linkage D, the revolution between D
5θ  and D

6θ  is related as 
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(3-13) 

Moreover, from the shared joints on the red link, we find joints 3a  and 6d , joints 

2b  and 5d , joints 4a  and 1b  are the same joints, respectively, with relationships 
 πθθ =+ D

6
A
3 ,  (3-14a) 

 πθθ =+ D
5

B
2 ,  (3-14b) 

and 

 πθθ 2B
1

A
4 =+ . (3-14c) 

Considering the symmetric property of each linkage with K
2

K
6 θθ =  and K

3
K
5 θθ = , 

Eqs. (3-13), (3-14a) to (3-14c) become 
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(3-15) 
and 

 πθθ =+ D
2

A
3 , (3-16a) 

 πθθ =+ D
3

B
2 , (3-16b) 

 πθθ 2B
1

A
4 =+ . (3-16c) 

For obtaining the compatibility condition on the red link, we should solve Eqs. (3-
11a), (3-11b), (3-12a), (3-12b), (3-15), (3-16a) to (3-16c) by eliminating the revolute 
variables K

iθ  , considering Eq. (3-10). As they compose systems of nonlinear 
multivariable equations, there could be many solutions, which is difficult to be solved 
directly. So here we introduce the extra conditions in thick panel origami, and the 
obtained assembly will be transferred back to generating new thick-panel origami 
structures. One hand, for the flat-developability, πααα =++ 342312 , considering  
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we have  

 KKK γβα += . (3-18) 

On the other hand, for the compact flat-foldability, we have 34232312 tttt =′−+  
according to Eq. (3-3), i.e., for a plane-symmetric linkage  

 KKK wvu =+ . (3-19) 

Substitute Eqs. (3-18) and (3-19) into Eqs. (3-11b), (3-12b) and (3-15), we get  
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Then the following solutions are obtained. 
In linkage A  
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In linkage B  
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In linkage D  
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Each linkage is a plane-symmetric Bricard linkage with six active joints, so 
)2/tan()2/tan( K

3
K
2 θθ  are not always zero or infinity. 

As each linkage has two relationships between K
2θ  and K

3θ , the assembly of the 
three linkages has eight types of the combination of the relationships, which are named 
motion types, i.e., AI-BI-DI, AI-BI-DII, AI-BII-DI, AII-BI-DI, AI-BII-DII, AII-BI-DII, 
AII-BII-DI, AII-BII-DII. Compatibility conditions on the red link should be analyzed 
under the motion types. 

For motion type AI-BI-DI and considering Eqs. (3-16a) and (3-16b), we have 
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By substituting Eq. (3-24) into Eqs. (3-11a) and (3-12a), we get 
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With πθθ 2B
1

A
4 =+  in Eq. (3-16c), we have  
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 .cccc ADBD γγαα =  (3-26) 

Two solutions for the compatibility condition on the red link under motion type 
AI-BI-DI are obtained  
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Similarly, compatibility conditions on the red link for the eight motion types are 
obtained and expressed in the section 3.5. With the comparison among the conditions 
of eight motion types, there are only five distinct motion types, as AI-BI-DI, AI-BI-DII, 
AI-BII-DII, AII-BI-DII, AII-BII-DI. 

To ensure the mobility of the assembly in Fig. 3-4, each of the links shared by 
three linkages should satisfy the compatibility condition under a specific motion type. 
When all links have same compatibility conditions to Eq. (3-27a) or (3-27b), we can 
get the compatibility conditions on the other shared links as  
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where all the linkages satisfy Eqs. (3-18) and (3-19). Simplifying Eqs. (3-28a) and (3-
28b), we obtain two cases, case I and case II assemblies, as 
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As jε ’s in Eq. (3-29a) can be different for case I assembly, all plane-symmetric 
Bricard linkages on the same guideline jX , such as linkage C, D, E are identical, but 
the linkages on different X-guidelines can be with different twists, as shown in Fig. 
3-5(a). Similarly, for case II assembly, in Fig. 3-5(b), the linkages on the same guideline 

jY  are identical, while those on different Y-guidelines are of different twist jδ . The 
prototypes of both cases are shown in Fig. 3-6. However, those two cases cannot be 
combined together to have both X-guideline and Y-guideline at the same time, which 
will only lead to the assembly with all Bricard linkages identical rather than all of them 
are different. 
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Fig. 3-5 Schematic diagrams of (a) case I, (b) case II assemblies with vertical guidelines jX  and 

horizontal guidelines jY  and the crease pattern of graded diamond thick-panel pattern 
corresponding to case II assembly. Here same colored angles in (b) and (c) have relationships 

expressed in Eq. (3-30). 
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Fig. 3-6 Motion sequences of (a) case I and (b) case II mobile assemblies of plane-symmetric 

Bricard linkages with guidelines jX  and jY , respectively. 
 

 Variation of the Diamond Thick-Panel Origami Patterns 
Cases I and II extend the construct condition of mobile assembly of plane-

symmetric Bricard linkages. Considering the kinematic equivalence between the 
mobile assembly and thick-panel origami, they should subsequently enhance the 
geometric variation in the diamond thick-panel origami. 

For case I, X-guideline cannot apply to diamond thick-panel origami, as the twists 
of linkage lead to negative sector angles of origami from Eq. (3-17). Meanwhile, 
applying X-guideline would destroy the plane-symmetric property of diamond thick-
panel origami. For case II, twists of Bricard linkages on different Y-guidelines can be 
different (Fig. 3-5(b)). So correspondingly, in the diamond thick-panel pattern, sector 
angles can be different along different rows of vertices, see Fig. 3-5(c), which is called 
the graded diamond thick-panel origami pattern. The geometric condition for 
constructing graded diamond thick-panel origami pattern is derived from Eqs. (3-17) 
and (3-29b)  
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where 04/ <≤− jδπ , to satisfy the flat foldability in every origami vertex. jα  and 

jβ  are the sector angles in the diamond origami pattern in Fig. 3-5(c). 

On the other hand, Fig. 3-3(a) shows that the diamond thick-panel origami is not 
completely flat but with stairs in the fully unfolded configuration due to the thickness 
arrangement. However, the thick-panel pattern with flat unfolded profiles is more useful 
in terms of application. Referring back to the general mobile assembly of plane-
symmetric Bricard linkages in case II, it is possible to remove the stairs. Taking a close 
look at the diamond thick-panel origami vertex in Fig. 3-1(c), stairs are caused by the 
panels 23P   and 56P   whose sizes correspond to link lengths 

BrBrBr vaatttt ===′−=′− 562356562323 . To obtain panels with flat unfolded profiles, we set 
link lengths 0=Brv  and BrBr wu = . If all plane-symmetric Bricard linkages of mobile 
assembly in Fig. 3-2(c) satisfy 0K =v   and KK wu =  , its corresponding diamond 
thick-panel pattern would have a flat unfolded profile. Such diamond thick-panel 
pattern and its corresponding mobile assembly are shown in Fig. 3-7, in which the 
mobile assembly of Bricard linkages is very different from that one in Fig. 3-3(b) due 
to the zero link length. 

 

 
Fig. 3-7 Motion sequences of (a) a diamond thick-panel origami pattern with flat unfolded profiles 

and (b) its corresponding mobile assembly with °−= 30Kα , 0K =v , KK wu = .  

 

As this diamond thick-panel origami pattern is folded to an arch, the tessellation 
along the axial direction can be infinitely extended. But infinite tessellation along the 
circumferential direction would cause interference during folding, which can be 
avoided by setting sector angles of the diamond thick-panel origami along the 
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circumferential direction, i.e., the Y-guideline direction in Fig. 3-5(c), changing 
gradually. They should satisfy the condition of the graded diamond thick-panel origami 
pattern for mobility in Eq. (3-30). By setting 0K =v  and KK wu =  of case II mobile 
assembly, a graded diamond thick-panel pattern with flat unfolded profiles can be 
generated, as shown in Fig. 3-8, which is folded spirally. 

 

 
Fig. 3-8 Motion sequences of (a) a graded diamond thick-panel origami pattern with flat unfolded 

profiles and (b) its corresponding mobile assembly of plane-symmetric Bricard linkages with 

0K =v , KK wu = . 

 Solutions of Motion Types 
Compatibility conditions on the red link of eight motion types are expressed in this 

part, which are derived from the similar method in section 3.3, as AI-BI-DI, AI-BI-DII, 
AI-BII-DI, AII-BI-DI, AI-BII-DII, AII-BI-DII, AII-BII-DI, AII-BII-DII. 

For the motion type AI-BI-DI, we have two solutions,  
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 (3-31a) 

and 
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+=== γβααγαγ
 (3-31b) 

Its corresponding models are the parts with linkages A, B and D of case I and case II 
assemblies in Fig. 3-6. 

For the motion type AI-BI-DII, we have one solution,  
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When we choose the following parameters in Eq. (3-33), where the unit of the link 
lengths is millimeter, a model of motion type AI-BI-DII is constructed, as shown in Fig. 
3-9. 
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Fig. 3-9 (a)-(c) The motion sequence of a model of motion type AI-BI-DII. 

 
For the motion type AI-BII-DI, we have two special solutions,  
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and 
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The Eqs. (3-34a) and (3-34b) are special cases of AI-BI-DI in Eq. (3-31a) and Eq. (3-
31b), respectively.  

For the motion type AII-BI-DI, we have two special solutions, as  
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and 
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The Eqs. (3-35a) and (3-35b) are special cases of AI-BI-DI in Eqs. (3-31a) and (3-31b), 
respectively.  

For the motion type AI-BII-DII, we have  
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where Bλ  and Dλ  have three special cases, as  
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According to the following parameters in Eqs. (3-38a) to (3-38c), models of motion 
type AI-BII-DII are constructed, as shown in Fig. 3-10 to Fig. 3-12. 
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Fig. 3-10 The motion sequence of a model of motion type AI-BII-DII according to the Eq. (3-38a).  
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Fig. 3-11 The motion sequence of a model of motion type AI-BII-DII according to the Eq. (3-38b).  

 

 
Fig. 3-12 The motion sequence of a model of motion type AI-BII-DII according to the Eq. (3-38c).  

 
For the motion type AII-BI-DII, we have  
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where Aλ  and Dλ  have three special cases, as  
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Models of motion type AII-BI-DII are constructed with the parameters in Eqs. (3-41a) 
to (3-41c), as shown in Fig. 3-13 to Fig. 3-15. 
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Fig. 3-13 The motion sequence of a model of motion type AII-BI-DII according to the Eq. (3-41a). 
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Fig. 3-14 The motion sequence of a model of motion type AII-BI-DII according to the Eq. (3-41b). 

 

 
Fig. 3-15 The motion sequence of a model of motion type AII-BI-DII according to the Eq. (3-41c). 

 

For the motion type AII-BII-DI, we have two special solutions, as 
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and 
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As the parameters in Eqs. (3-43a) and (3-43b) satisfy Eqs. (3-42a) and (3-42b), 
respectively, two models of motion type AII-BII-DI are constructed, as shown in Fig. 
3-16 and Fig. 3-17. 

 

 
Fig. 3-16 (a)-(c) The motion sequence of a model of motion type AII-BII-DI according to Eq. (3-

43a). 

 

 
Fig. 3-17 (a)-(c) The motion sequence of a model of motion type AII-BII-DI according to Eq. (3-

43b). 
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For the motion type AII-BII-DII, we get solutions which are the special cases of 
AI-BI-DI, as 
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and 
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From the eight motion types, we find five types are different, i.e., AI-BI-DI, AI-
BI-DII, AI-BII-DII, AII-BI-DII, AII-BII-DI. Compatibility condition of a mobile 
assembly can be derived from the combination of compatibility conditions on all links 
under the selected motion types. 

 Conclusions 
In this chapter, the mobile assemblies of plane-symmetric Bricard linkages have 

been constructed from the diamond thick-panel origami based on their kinematic 
equivalence. The compatibility analysis on the diamond assembly extends the construct 
condition of the two newly-found mobile assemblies of plane-symmetric Bricard 
linkages with X-guidelines and Y-guidelines. By transferring the general construct 
condition of mobile assemblies back to diamond thick-panel origami, thickness and 
sector angles of diamond thick-panel origami can be varied according to the condition 
of case II assembly. Then a diamond thick-panel origami with flat unfolded profiles and 
a graded diamond thick-panel origami pattern with spirally folded configuration are 
inspired from the case II assembly. The graded diamond thick-panel origami pattern is 
more potential in engineering applications, such as solar panels. 
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 Vertex-Splitting on Rigid Origami 

 Introduction 
There are many multi-DOF rigid origami patterns which have large potentials in 

engineering applications. Yet it is generally difficult to fully control the motion in the 
desired manner. In this chapter, a vertex-splitting technique is proposed to reduce the 
DOF of diamond origami pattern and obtain one-DOF origami patterns with kinematic 
equivalence. As some applications are sensitive to the flat unfolded state, the 
relationship between variations of the mobile assembly of two Bennett linkages and 
that of corresponding thick-panel origami will be studied to construct thick-panel 
origami patterns with flat-surface unfolded profiles by removing some hinges. 

The layout of the chapter is as follows. Two vertex-splitting schemes are proposed 
on the diamond vertex and generate three types of unit patterns in section 4.2 with 
analysis of their kinematic behaviours. The technique is applied to the multi-vertex 
diamond origami pattern to produce one-DOF basic assemblies and one-DOF origami 
patterns in section 4.3. Hinge-removing is proposed by analysing relationships between 
the construction of Waldron’s hybrid 6R linkage from the assembly of two Bennett 
linkages and the variation of their corresponding thick-panel origami pattern, which is 
applied to construct thick-panel origami with flat unfolded profiles in section 4.4. 
Finally, conclusions are drawn in section 4.5.  

 Vertex-Splitting on the Diamond Vertex 

A diamond vertex has six creases meeting at one point, as shown in Fig. 4-1. iz  
( =i 1, 2, 3, 4, 5, 6) are axes of the six creases and ( )1+iiα  are sector angles with the 
geometric conditions 

 
,

,2
,

4534

5623

6112

ααα
απαα

ααα

==

−==

==

 (4-1) 

where 4/0 πα ≤<  , to ensure flat foldability. A
iθ   represent angles of rotation 

between two panels joined by a crease and A
iϕ  represent dihedral angle between two 

panels joined by a crease. Taking creases and rigid panels as revolute joints and links, 
respectively, the diamond vertex can be considered as a spherical 6R linkage with three 
DOFs.  

Imposing the line- and plane-symmetric conditions to the diamond vertex in Fig. 
4-1, i.e. A

4
A

1 θθ =   and A
6

A
5

A
3

A
2 θθθθ ===   [133], the kinematic equations of 

spherical 6R linkage can be derived from matrix method in section 1.2.1.1, as 



Doctoral Dissertation of Tianjin University 

 70

 A
6

A
5

A
3

A
2

A
4

A
1

A
2

A
1 ,,

2
tancos

2
tan θθθθθθα ====−= θθ , (4-2) 

in which A
iθ  is the kinematic variables set up with D-H notation. In origami study, 

dihedral angles A
iϕ  are preferred to have a direct presentation of the folding process. 

The dihedral angles and kinematic variables have the following relationship [42], 
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Eq. (4-2) becomes  
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Hence, the diamond vertex exhibits one-DOF in symmetric folding, whose motion is 
shown in Fig. 4-2. 

 

 
Fig. 4-1 A diamond vertex. 

 

 
Fig. 4-2 The motion sequence of diamond vertex in symmetric folding. 

 

As the diamond vertex is plane-symmetric about the central creases 1a  and 4a
(Fig. 4-3a), two vertex-splitting schemes are proposed, SI is splitting towards the 
direction parallel to the central creases to get pattern DI and SII is towards the direction 
perpendicular to the central creases to obtain pattern DII, see Fig. 4-3(b) and (c). Two 
schemes acting on the diamond vertex at the same time produce pattern DI-II in Fig. 
4-3(d).  
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Fig. 4-3 The crease patterns of a diamond vertex and its corresponding patterns by splitting vertices. (a) 
Diamond vertex; (b) pattern DI, (c) pattern DII and (d) pattern DI-II. Here, the blue lines represent the 

added creases for splitting the vertex. 

 

Pattern DI (Fig. 4-3(b)) consists of two four-crease vertices B and C, which can be 
regarded as two spherical 4R linkages connected in series with one DOF. The kinematic 
equations of spherical 4R linkages B and C can be derived, as  
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The shared crease 33 / cb   satisfies angular relation C
3

B
3 ϕϕ =  . When giving an input 

dihedral angle, all the other angles will be determined, according to Eqs. (4-5a) and (4-
5b). For the original diamond vertex in Fig. 4-3(a) and pattern DI in Fig. 4-3(b), setting 
input B

2
A
2 ϕϕ = , from Eqs. (4-4), (4-5a) and (4-5b), the relationship of the other dihedral 

angles can be obtained as 

 C
4

C
2

B
4

A
6

A
5

A
3 ϕϕϕϕϕϕ ===== , (4-6a) 

 C
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A
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A
1 ϕϕϕϕ === . (4-6b) 

Hence, pattern DI is kinematically equivalent to the original diamond vertex in line- 
and plane-symmetric conditions. It is flat-foldable, whose motion sequence is shown in 
Fig. 4-4.  
 

 
Fig. 4-4 The motion sequence of pattern DI. 
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Pattern DII (Fig. 4-3(c)) has two five-crease vertices with shared crease 55 / ed . 
As each five-crease vertex has two DOFs, this pattern has multiple DOFs. As each 
vertex is plane-symmetric about crease 55 / ed  , symmetric folding of each vertex is 
allowed by introducing symmetric conditions of dihedral angles, i.e., 

D/E
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D/E
4
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3 , ϕϕϕϕ ==  to vertices D and E. The following kinematic equations are 

obtained. 
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With E
5

D
5 ϕϕ =   at the shared crease 55 / ed  , one input dihedral angle will 

determine the configuration of pattern DII in symmetric conditions, i.e., it has one-DOF. 
Taking D

2
A
2 ϕϕ =  into Eqs. (4-4), (4-7a) and (4-7b), we obtain  
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Thus, the dihedral angles of the valley creases 3232 ,,, eedd  are equal to that of 
creases 6532 ,,, aaaa  in diamond vertex. The dihedral angles between the panels P1

D
12P   and E

12P  , the panels D
34P   and E

34P   in Fig. 4-3(d) are equal to A
1ϕ  . This also 

indicates pattern DII is kinematically equivalent to diamond vertex which is under 
line- and plane-symmetric conditions. Its motion sequence is shown in Fig. 4-5. It 
should be noted that pattern DII loses flat-foldability due to the five-crease vertex.  

 

 
Fig. 4-5 The motion sequence of pattern DII in symmetric conditions. 
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Applying the two above-introduced vertex-splitting methods to the diamond 
vertex at the same time, a plane-symmetric pattern DI-II, with four four-crease origami 
vertices is constructed, as shown in Fig. 4-3(d). Based on the truss method [44], we first 
trim the edge facets to triangular or quadrilateral shapes, as shown in Fig. 4-6(a). The 
pattern is then converted to a truss form by replacing creases with bars and vertices by 
nodes. For triangular facets, three bars will make a facet rigid; for quadrilateral facets, 
an arbitrary point out of the facets can be introduced to generate the truss form, such as 
the facet 45VGHV  in Fig. 4-6(a) to tetrahedrons 42GHVW  and 452 VHVW  in Fig. 
4-6(b).  

 

 
Fig. 4-6 Pattern DI-II. (a) pattern DI-II with the edge facets trimmed to triangular or quadrilateral 
shapes; (b) the corresponding truss form. Here, the origin of the Cartesian coordinate system is a 
node G, the z-axis is along the direction of the bar GH, the x-axis is perpendicular to z-axis on the 

plane 45VGHV  and y-axis is determined by the right-hand rule. 

 

By counting, the truss form of pattern DI-II in Fig. 4-6(b) contains 17=j  nodes, 
45=b  bars. When taking °= 45α  and °= 120G

2ϕ  in pattern DI-II, the coordinate 
of nodes can be obtained as expressed in Eq. (4-9a) in a Cartesian coordinate system 
noted in Fig. 4-6(b). The equilibrium matrix of pattern DI-II can be established 
according to [44]. Then, the rank of the matrix 44=r  is obtained. The numbers of 
self-stresses and mobility in pattern DI-II are 1,1 == ms  derived from Eqs. (1-10) 
and (1-11). Hence, the pattern DI-II is overconstrained with one-DOF. 
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With the symmetric condition that linkages F, G, H, L are symmetric about x-axis 
and y-axis, these vertices have equivalent motions, as follows  
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Because of the dihedral angles satisfying  
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Taking G
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A
2 ϕϕ =  into Eqs. (4-4), (4-10) and (4-11), we can obtain  

 ( ) ( ) ( ) ( ).2/22/22/22/2
,

L
1

H
1

G
1

F
1

A
4

A
1

L
2

H
2

F
2

A
6

A
5

A
3

πϕπϕπϕπϕϕϕ
ϕϕϕϕϕϕ

−=−=−=−==

=====
 (4-12) 

Similar to patterns DI and DII, diamond vertex under line- and plane-symmetric 
conditions is kinematically equivalent to pattern DI-II. Because the sum of the alternate 
angles about each vertex is not equal to π , this pattern is non-flat-foldable [107]. The 
motion sequence of this pattern is shown in Fig. 4-7. 

 

 
Fig. 4-7 The motion sequence of pattern DI-II. 
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 Vertex-Splitting on Multi-Vertex Diamond Origami Pattern 

A multi-DOF diamond origami pattern with six identical six-crease vertices is 
shown in Fig. 4-8. These vertices can be divided into four rows and three columns. Each 
vertex is noted A, B, C, D, E, F. According to the truss analogy, we obtain this pattern 
has nine DOFs with 18=j  nodes, 39=b  bars. Thus, the motion of this pattern is 
much difficult to be fully controlled. In order to maintain the symmetrically geometrical 
characteristics and avoid the non-rigid origami patterns, the vertices of the diamond 
origami pattern are split in whole row or column. SI can be applied to vertices in a 
whole row to produce pattern DI. Four rows generate fifteen cases of vertex-splitting 

1SI  to 4,3,2,1SI  in Table 4-1. Here, iSI  means applying the vertex-splitting method 
SI to split the vertices in rows i (i=1, 2, 3, 4). SII can be applied to vertices in a whole 
column, which leads to five cases 1SII  to 3,2,1SII  in Table 4-1. Therefore, the mix of 
the two methods SI  and SII can generate 75155 =×  cases. 0SI  and 0SII  mean 
no vertex-splitting on rows and columns, correspondingly. So the number of all the 
cases including the original one is 96)115()15( =+×+  . The corresponding origami 
patterns are shown in appendix A, whose DOF can be determined by the one-DOF basic 
assemblies in the patterns. Next, those basic assemblies of four-crease, five-crease, 
and/or six-crease vertices are discussed. 

Basic assemblies of four-crease vertices A, B, C, D are shown in Fig. 4-9(a) to (f) 
which can be denoted by the diagram with quadrilateral loops of four spherical 4R 
linkages in Fig. 4-9(g). They are overconstrained with one-DOF due to the plane-
symmetric conditions [104]. 

 

 
Fig. 4-8 A diamond origami pattern with six vertices. 
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Table 4-1 Cases of vertex-splitting on multi-vertex diamond origami pattern in Fig. 4-8  

 0SII  1SII  2SII  3,1SII  2,1SII  3,2,1SII  

0SI  m m m m m m 
1SI  m m m m m m 
2SI  m m m m m m 
3SI  m m m m m m 
4SI  m m m m m m 
2,1SI  m m m 1 1 1 
3,1SI  1 1 1 1 1 1 
4,1SI  m m m 1 1 1 
3,2SI  m m m 1 m 1 
4,2SI  m m m m m m 
4,3SI  m m m 1 m 1 
3,2,1SI  1 1 1 1 1 1 
4,2,1SI  1 1 1 1 1 1 
4,3,1SI  1 1 1 1 1 1 
4,3,2SI  m m m 1 m 1 
4,3,2,1SI  1 1 1 1 1 1 

The ‘m’ means multi-DOF and ‘1’ means one-DOF. 
 

 
Fig. 4-9 Basic assemblies of four-crease vertices. (a)-(f) One-DOF assemblies of four crease 
vertices and (g) their corresponding diagram where S4R represents a spherical 4R linkage. 

 

Basic assemblies of four-crease vertices and one five-crease vertex are shown in 
Fig. 4-10(a) to (d). For the pattern in Fig. 4-10(a), the motion of five-crease vertex B 
with two DOFs can be determined by two input dihedral angles B

1ϕ   and B
5ϕ  . The 

kinematic equations can be represented by 
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where B
if  represents the function to determine B

iϕ . From the assembly of two four-
crease vertices A and C sharing a crease, we can construct a relationship between B

1ϕ  
and B

5ϕ ,  
 ( )B

1
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5
B
5 ϕϕ f= , (4-14) 
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which give a constraint to the Eq. (4-13). So one input B
1ϕ  can determine the motion 

of the pattern in Fig. 4-10(a) and the pattern is one-DOF. According to the truss method, 
this pattern contains 11=j   nodes and 26=b   bars. The rank of its equilibrium 
matrix is 26=r  . The result 0=s   and 1=m   ensures that this pattern is non-
overconstrained with one-DOF. Similarly, the pattern in Fig. 4-10(b) is non-
overconstrained with one-DOF. For the patterns in Fig. 4-10(c) to (d), the motion of 
five-crease vertex can be determined by setting the dihedral angles D

1ϕ  and D
2ϕ . As 

the relationship between D
1ϕ   and D

2ϕ   is constructed by the one-DOF assembly of 
four-crease vertices E, F and G, the motion of this pattern can be determined by giving 

D
1ϕ , i.e., this pattern has one-DOF. Truss method also verifies the result. Those four 

patterns can be represented by the diagram of Fig. 4-10(e) which indicates that the 
pattern with one-DOF assembly connecting to a spherical 5R linkage by two creases 
which makes the pattern one-DOF. 

The pattern in Fig. 4-10(f) contains two five-crease vertices sharing a crease. 
Giving angles N

2ϕ   and N
5ϕ   can determine the motion of vertex N and produce an 

input N
1

L
1 ϕϕ =   to vertex L. By introducing L

5ϕ  , the motion of vertex L can be 
determined. So the dihedral angles of vertices N and L can be derived by N

2ϕ , N
5ϕ  and 

L
5ϕ , that is 
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From the two four-crease vertices H and M, we can obtain 
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Combining Eqs. (4-15) and (4-16), all the dihedral angles of this pattern can be derived 
by giving L

5ϕ . So this pattern is non-overconstrained with one-DOF, which is verified 

by the truss method. This pattern is represented by the diagram of Fig. 4-10(g). 

Basic assemblies of four-crease and six-crease vertices shown in Fig. 4-11(a) to (e) 
are the same type which can be represented by the diagram in Fig. 4-11(f). In Fig. 4-11(a) 
to (c), giving one input A

3ϕ , dihedral angles A
4ϕ  and A

5ϕ  can be derived from the 
one-DOF assembly of four-crease vertices B, C, D, E, F. The three angles can be inputs 
to determine the motion of vertex A. Similarly, giving one input, the one-DOF 
assemblies of four-crease vertices H, L, M, N in Fig. 4-11(d) and (e) can provide three 
inputs G

5ϕ  , G
6ϕ  , G

1ϕ   to determine the motion of the six-crease vertex G. So these 
patterns are non-overconstrained with one DOF, which are confirmed by the truss 
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method. In Fig. 4-11(g), two constraints about the relationships of O
2ϕ & O

3ϕ  and O
5ϕ

& O
6ϕ  derived from the one-DOF assemblies of vertices Q&R and T&S, respectively, 

can determine the motion of six-crease vertex O. So this pattern is non-overconstrained 
with one-DOF. Similarly, patterns in Fig. 4-11(h) to (i) are non-overconstrained with 
one-DOF, which can be represented by the diagram in Fig. 4-11(j). 

 

 
Fig. 4-10 Basic assemblies of four-crease and five-crease vertices. (a)-(d) one-DOF basic 

assemblies with one five-crease vertex and (e) their corresponding diagram; (f) one-DOF basic 
assembly with two five-crease vertices and (g) its corresponding diagram. Here, S5R represents a 

spherical 5R linkage. 
 

 
Fig. 4-11 Basic assemblies of four-crease and six-crease vertices. (a)-(e) The one-DOF basic 

assemblies with three creases connecting the six-crease vertex and four-crease vertices, and (f) 
their corresponding diagram; (g)-(i) one-DOF basic assemblies with four creases connecting the 

six-crease vertex and four-crease vertices and (j) their corresponding diagram. Here, S6R 
represents a spherical 6R linkage. 
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In Fig. 4-12, a basic assembly of four-crease, five-crease and six-crease vertices is 
founded from the pattern by splitting vertices with 4,1SI  and 3,1SII , as shown in Fig. 
A1. According to the truss analogy, it contains 22=j   nodes, 59=b   bars. 
Considering the rank of its equilibrium matrix 59=r , it is found that the pattern is 
non-overconstrained with one-DOF. 

 

 
Fig. 4-12 A basic assembly of four-crease, five-crease, and six-crease vertices. (a) The one-DOF 

basic assembly and (b) its corresponding diagram. 

 
The one-DOF assemblies in Fig. 4-10(e) and Fig. 4-11(f) can be replaced by any 

pattern in the figures above, as long as the two connected vertices satisfy motion 
compatibility. Those one-DOF basic assemblies are used to determine that 42 of 96 
cases in appendix A and Table 4-1 are of one-DOF, such as the two patterns in Fig. 4-13. 
The remaining patterns are multi-DOF, due to their one-DOF basic assemblies cannot 
provide enough constraints to determine the motion of all the vertices. 

 

 
Fig. 4-13 One-DOF origami patterns verified by one-DOF basic assemblies. (a) The flat-foldable 

origami pattern; (b) the non-flat-foldable origami pattern. 
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The pattern (Fig. 4-13(a)) derived by splitting vertices with 3,1SI  and 0SII  has 
the one-DOF basic assembly of vertices A, C, D, H, L which is identical to the pattern 
in Fig. 4-11(g). Four-crease vertices E and G connecting to the one-DOF basic assembly 
construct a new one-DOF assembly of A, C, D, E, G, H, L. This assembly gives three 
inputs to the spherical 6R linkage F and fully determines its motion, according to the 
diagram in Fig. 4-11(f). Hence, this pattern can be considered as the combination of 
four-crease vertices B, M and basic assemblies in Fig. 4-11(f), (g) to obtain one-DOF 
with flat-foldability, whose motion sequence is shown in Fig. 4-14(a). 

 

 
Fig. 4-14 Motion sequences of rigid origami. (a) The flat-foldable origami pattern and (b) the non-
flat-foldable origami pattern derived from splitting vertices; (c) the multi-vertex diamond origami 

pattern in symmetric folding. 
 

By splitting vertices with 4,1SI   and 3,1SII  , the pattern in Fig. 4-13(b) can be 
obtained. The assemblies of vertices B, C, D, E and vertices O, Q, R, S are the same as 
the one-DOF basic assembly in Fig. 4-9(a). The assembly of vertices A, B, G, H, M, S 
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is identical to the one-DOF basic assembly in Fig. 4-12(a). The combination of the three 
basic assemblies can be regarded as the one-DOF assembly in Fig. 4-10(e) and gives 
two inputs to the five-crease vertices N and F. So this pattern is considered as the 
combination of four-crease vertex L and basic assemblies in Fig. 4-9(a), Fig. 4-10(e) 
and Fig. 4-12 (a) with one-DOF, whose motion sequence is shown in Fig. 4-14(b). Due 
to the five-crease vertex, this pattern is non-flat-foldable. As two one-DOF patterns can 
be considered as the assembly of kinematically equivalent diamond vertex and patterns 
DI, DII, DI-II, they will retain the motion with all vertices in symmetric folding. Hence, 
they are kinematically equivalent to original diamond origami pattern with symmetric 
folding shown in Fig. 4-14(c). 

 Hinge-Removing on Thick-Panel Origami  

An origami pattern with two flat-foldable four-crease origami vertices shared a 
crease 33 / ba  is shown in Fig. 4-15(a). In this pattern, the sector angles satisfy αβ >  
and γδ >  . The distance between the vertices, )cos()cos( BA

AB γδαβ −+−≥ rrd  , 
ensures the pattern being fully flat-foldable. Its thick-panel form is constructed by 
applying the offsetting hinge technique, as shown in Fig. 4-15(b), where A

)1( +iit   and 
B

)1( +iit  (i=1, 2, 3, 4; when i=4, i+1=1) represent the thickness of panels corresponding to 
vertices A and B. Its corresponding mobile assembly of two Bennett linkages shared a 
hinge is derived from connecting the adjacent hinge axes along the nearest distance 
with bars according to section 2.3, as shown in Fig. 4-15(c). Here, twists of Bennett 
linkages A and B are noted by Be

ii )1( +α  and Be
ii )1( +β , respectively; link lengths of them are 

noted by Be
iia )1( +  and Be

iib )1( + , respectively. The twists and link lengths satisfy 
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Here, link lengths ABAB , abba >>   are chosen. As the link lengths of the mobile 

assembly correspond to the thickness of panels, they satisfy the following conditions  

 
.,

,,
B
41

B
23

BB
34

B
12

B

A
41

A
23

AA
34

A
12

A

ttbtta

ttbtta

====

====
 (4-18) 

Due to B
34

B
23

B
41

B
12

A
34

A
23

A
41

A
12 , tttttttt +=++=+ , this thick-panel origami can be compactly 

folded into a configuration that dihedral angles of creases are zero and panels A
12P , A

41P , 
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B
12P  , B

41P   are stored in the gap between panels B
34

A
23 P/P   and A

34
B
23 P/P  . It should be 

noted that the thickness of other panels should satisfy 0,0 00 >′> tt   to form a 
continuously movable thick-panel origami structure. 

By removing the common hinge 33 / ba  in the assembly of two Bennett linkages 
(Fig. 4-15(c)) and the two links with lengths Bea23  and Bea34  connected by this hinge, 
the Waldron’s hybrid 6R linkage is obtained, as shown in Fig. 4-15(d). Here, Wa

jj )1( +α  
and Wa

jja )1( +  (j=1, 2, 3,..., 6; when j=6, j+1=1) represent the twists and link lengths of 
Waldron’s hybrid 6R linkage, and they satisfy  
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Correspondingly, removing both the hinge 33ba  in Fig. 4-15(b) and the stairs of 
panels which are with thickness A

23t  and A
34t , a thick-panel origami pattern with six 

creases corresponding to the Waldron’s hybrid 6R linkage is constructed, as shown in 
Fig. 4-15(e) where Wa

jjt )1( +  represent the thickness of panels and satisfies 

 
.,

,,
,,

A
6161

AB
5656

B
4545

B
3434

AB
2323

A
1212

bctabct
actbct

bactact

WaWaWaWa

WaWaWaWa

WaWaWaWa

==−==

====

−====

 (4-20) 

Since the assembly of two Bennett linkages is kinematically equivalent to the Waldron’s 
hybrid 6R linkage, the thick-panel origami with two four-crease vertices and the 
generated thick-panel origami pattern with six creases also have equivalent motion. 
Back on the zero-thickness origami pattern, one slit can be made at the crease 33 / ba  
to remove the shared hinge. Then, a pattern with six creases is obtained, which is 
actually Bennett 6R hybrid linkage with one-DOF.  
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Fig. 4-15 Correspondence between the construction of Waldron’s hybrid 6R linkage and the hinge-

removing on thick-panel origami. (a) An origami pattern with two four-crease vertices; (b) the 
corresponding thick-panel origami pattern; (c) the assembly of two Bennett linkages; (d) the 

Waldron’s hybrid 6R linkage; (e) the thick-panel origami pattern with six creases derived from (b) 
by removing the shared hinges and stairs; (f) the origami pattern with a slit at the shared crease. 

The slit is purposely made larger to highlight their presence. 
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For the origami pattern mixed with four-crease and six-crease vertices shown in 
Fig. 4-13(a), its corresponding thick-panel origami pattern is constructed by applying 
the offset hinge technique, as shown in Fig. 4-16(a). To obtain the thick-panel origami 
pattern with flat-surface unfolded profiles, panels forming the six-crease vertex should 
have equal thickness according to the study of section 3.4. Every two adjacent four-
crease vertices B&C, D&E, G&H, L&M correspond to an assembly of two Bennett 
linkages by sharing a hinge, whose shared panels and hinge forms the stairs. According 
to construction of thick-panel origami in Fig. 4-15(e), the shared hinges can be removed. 
Taking δπγβπα −==−=  and 05623 == WaWa tt  to Eqs. (4-20), and considering Eq. 
(1-13c), 

 BBAA
61453412 babatttt WaWaWaWa =======  (4-21) 

is derived to obtain the thick-panel origami pattern with flat-surface unfolded profiles. 
Hence, the four-crease vertices should correspond to Bennett linkages with identical 
link lengths. When the thickness of shared panels between every two vertices B&C, 
D&E, G&H, L&M are equal to that of other panels, the thick-panel origami pattern 
with flat-surface unfolded profiles can be obtained, as shown in Fig. 4-16(b). This 
pattern can be regarded as an assembly of Waldron’s hybrid 6R linkages and plane-
symmetric Bricard linkages with one DOF. It also can be regarded as the vertex-splitting 
technique applied on the thick-panel model shown in Fig. 3-7(a). 

 

 
Fig. 4-16 Hinge-removing on a hybrid thick-panel origami with four-crease and six-crease 

vertices. (a) The thick-panel origami pattern; (b) the thick-panel origami with flat-surface unfolded 
profiles. 

 

Hinge-removing can be used to other four-crease origami patterns, such as the 
Tachi-Miura origami pattern and the identical linkage-type origami pattern to construct 
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thick-panel origami pattern with flat-surface unfolded profiles.  

Tachi-Miura origami is a Miura-base rigid origami, whose crease pattern with 
sector angles α  , απ −   is shown in Fig. 4-17(a). By applying the offset hinge 
technique, its corresponding thick-panel origami pattern is constructed, as shown in Fig. 
4-17(b). Hinge-removing can be carried out to these hinges connecting panels with 
stairs. After removing the hinges and stairs, the thick-panel origami pattern in Fig. 
4-17(c) with flat-surface unfolded profiles is obtained. In this thick-panel origami, four-
crease vertices A and B, C and D, L and M, N and O are transformed into Waldron’s 
hybrid 6R linkage. Hence, this pattern is related to an assembly of Waldron’s hybrid 6R 
linkages and Bennett linkages with one-DOF. This thick-panel origami can be folded 
on a flat surface, so that large deployable structures can use this origami which can be 
expanded infinitely with reasonable parameters. 

 

 
Fig. 4-17 Hinge-removing on Tachi-Miura thick-panel origami. (a) Crease pattern of Tachi-Miura 
thick-panel origami pattern; (b) the thick-panel form; (c) the thick-panel origami with flat-surface 

unfolded profiles. 
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Identical linkage-type origami pattern with eight identical vertices is shown in Fig. 
4-18, where each vertex has sector angles α , β , βπ − , απ − . According to the 
thick-panel method, its corresponding thick-panel origami pattern by replacing the 
spherical 4R linkages by identical Bennett linkages can be constructed, as shown in Fig. 
4-18(b). As the panels connected by hinges at the red creases cause stairs, the hinges 
can be removed to transform the assemblies of two Bennett linkages at vertices A and 
B, vertices C and D, vertices E and F, vertices G and H into Waldron’s hybrid 6R 
linkages with one-DOF. By varying the thickness of these panels to be equal, a thick-
panel origami pattern with flat-surface unfolded profiles is constructed, as shown in Fig. 
4-18(c). 

 

 
Fig. 4-18 Hinge-removing on identical linkage-type thick-panel origami. (a) Crease pattern of 

identical linkage-type thick-panel origami pattern; (b) the corresponding thick-panel form; (c) the 
identical linkage-type thick-panel origami with flat-surface unfolded profiles. 

 

 Conclusions 
This chapter presents a vertex-splitting technique to reduce the DOF of the 

diamond origami and construct one-DOF origami patterns. Two vertex-splitting 
schemes are proposed from the diamond vertex and three types of unit patterns are 
generated. The kinematic analysis indicates that the three patterns are equivalent to the 
diamond vertex with symmetric folding. By applying vertex-splitting to multi-vertex 
diamond origami pattern, a large number of rigid origami patterns are constructed. Six 
types of one-DOF basic assemblies are discussed, which ensure the one-DOF cases of 
those origami patterns. Among them, two one-DOF origami patterns mixed with four-
crease, six-crease and/or five-crease vertices are discussed, one of which is flat-foldable 
and the other is non-flat-foldable. They maintain the kinematic motion characteristics 
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of diamond origami pattern with symmetric folding. Meanwhile, the vertex-splitting 
technique can be applied to other multi-DOF origami patterns, such as waterbomb 
pattern and Resch patterns. The one-DOF basic assemblies form a new rule in the one-
DOF determination in complex origami patterns. 

Variations of thick-panel origami corresponding to the construction of Waldron’s 
hybrid 6R linkage from Bennett linkages are studied, which displays a kinematically 
equivalent crease thick-panel origami pattern with six creases can be derived from 
thick-panel origami pattern with two four-crease vertices by removing the shared hinge. 
This inspires hinge-removing which is used to construct three thick-panel origami 
patterns with flat-surface unfolded profiles from the four- and six-crease thick-panel 
origami pattern, Tachi-Miura origami pattern, and identical linkage-type thick-panel 
origami pattern. 
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 Achievements and Future Works 

The aim of this dissertation is to study the relationship between spatial linkages 
and rigid origami by taking their thick-panel origami forms as the intermediate bridges 
to design mobile assemblies of spatial linkages, rigid origami and the thick-panel 
origami patterns. In this chapter, the main achievements followed by an overview of 
further works are summarised. 

 Main Achievements 
 Mobile assemblies of Bennett linkages from four-crease origami patterns 
First, a transition technique is proposed to realize the mobile assemblies of Bennett 

linkages from four-crease origami patterns by taking their thick-panel forms as the 
intermedium. Mobile assemblies of equilateral Bennett linkages have been derived by 
applying the technique to Miura-ori and graded Miura-ori pattern. Different mountain-
valley crease assignments of the supplementary-type origami patterns have been 
confirmed to correspond to mobile assemblies of Bennett linkages with negative link 
lengths. Applying the technique to the identical linkage-type origami pattern produces 
a new Bennett linkage mobile assembly. 

The technique presented in Chapter 2 offers a new approach to construct mobile 
assemblies of spatial linkages from origami patterns. The outcomes widen the existing 
geometric conditions to design mobile assemblies of Bennett linkages. 

 Diamond thick-panel origami and mobile assemblies of Bricard linkages 
Second, equivalence between the diamond thick-panel origami and mobile 

assembly of plane-symmetric Bricard linkages has been studied to design new of both. 
Diamond assembly has been constructed from the diamond thick-panel origami based 
on their kinematic equivalence, whose construction conditions have been extended to 
two new mobile assemblies of plane-symmetric Bricard linkages with compatibility 
analysis. According to the condition of one assembly, a diamond thick-panel origami 
with flat-surface unfolded profiles, and a graded diamond thick-panel origami pattern 
with flat-surface unfolded profiles and spirally folded configuration are generated by 
varying the thickness and sector angles of panels.  

A prototype of the graded diamond thick-panel origami pattern without physical 
interference has been constructed in Chapter 3, which is more potential in engineering 
applications, such as solar panels. 

 Vertex-Splitting on Multi-DOF Origami Pattern 
Third, vertex-splitting technique is proposed to reduce the DOF of diamond 

origami pattern. We also have constructed one-DOF thick-panel origami pattern with 
flat-surface unfold profile by removing hinges. Two vertex-splitting schemes have been 
proposed to generate three types of unit patterns with equivalently symmetric folding 
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from the diamond vertex. A number of origami patterns are generated by applying 
vertex-splitting to multi-vertex diamond origami pattern. One-DOF basic assemblies 
are discussed to ensure the one-DOF origami patterns which can be mixed with four-
crease, five-crease and six-crease vertices.  

The construction of the Waldron’s hybrid 6R linkage from an assembly of two 
Bennett linkages by removing the shared hinge, and the variation of their corresponding 
thick-panel origami pattern are studied. Hinge-removing of thick-panel origami pattern 
with two four-crease vertices is proposed, which has been used to the four- and six-
crease thick-panel origami pattern, Tachi-Miura thick-panel origami pattern and 
identical linkage-type thick-panel origami pattern to construct three thick-panel origami 
patterns with one-DOF and flat-surface unfolded profiles. 

The newly-found one-DOF origami patterns in Chapter 4 will facilitate 
engineering applications of rigid origami. The vertex-splitting technique paves a way 
to construct one-DOF origami patterns. The hinge-removing not only constructs the 
flat-surface unfold thick-panel origami pattern for application, but also indicates the 
relationship between the constructions of Bennett-based linkages and variations of 
corresponding thick-panel origami patterns.  

 Future Works 
The research reported in this dissertation provides many opportunities to study 

further. 
Firstly, the transition technique is used to construct mobile assemblies of spatial 

overconstrained linkages from rigid origami patterns based on their thick-panel origami 
forms. As there are multiply rigid origami patterns, such as waterbomb origami pattern 
and Resch pattern, each rigid origami pattern can be furtherly studied to find mobile 
assemblies of spatial overconstrained linkages. In addition, multi-layer origami patterns, 
such as Miura-ori, can be used to construct mobile assemblies of multi-layer Bennett 
linkages. As none of the discussed origami patterns can transit to the case 1 mobile 
assembly of the Bennett linkages, we conjuncture that this mobile assembly may 
correspond to an origami pattern that differs from commonly known ones. It would be 
extremely interesting to find out what it is. 

Secondly, in the research of diamond thick-panel origami pattern and 
corresponding mobile assemblies of plane-symmetric Bricard linkages, it should be 
noted that diamond vertex of six creases has three degrees of freedom. Due to the 
geometric condition with both line and plane symmetry, line-symmetric constraints can 
be applied to transfer it into the thick-panel forms, which will lead to the new mobile 
assemblies of line-symmetric Bricard linkages.  

Thirdly, in the work on vertex-splitting, two schemes are proposed to construct 
one-DOF rigid origami patterns with equivalently symmetric folding to diamond 
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origami pattern. How to widen the vertex-splitting technique to reduce other multi-DOF 
origami patterns to construct one-DOF origami patterns is an interesting research 
subject. First, the direction of splitting vertex and the added creases can become more 
general. Second, how to determine the DOF of newly-generated origami by splitting 
vertices. Third, supposing that the obtained origami is non-rigid, the relationships 
between adding creases or slice creases and the number of DOF of an origami pattern 
may be studied to transform it into one-DOF origami.  

Fourthly, the hinge-removing on thick-panel origami pattern indicates the 
relationship between the construction of Waldron’s hybrid linkages and variations of 
four-crease thick-panel origami pattern. Therefore, further study on the relationship of 
other Bennett-based linkages, such as Goldberg 5R and Goldberg 6R linkages, may 
bring new possibilities of the construction of thick-panel origami. 

Finally, in this dissertation, we have only done some theoretical research on the 
mobile assemblies of spatial linkages and rigid origami. We do not take the following 
features into consideration. One is the section area of the bar and the number of hinges 
connected by two panels which can influence the strength and rigidity of a thick-panel 
origami pattern. The other is the influence of the manufacturing errors on the movement 
of the mechanism. In addition, the target configuration and package volume are two 
important factors to design a deployable structure in engineering applications. Hence, 
the relationship between the design parameters of the deployable structures and the 
target configuration and package volume needs further study. 
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Appendix 
A. Vertex-splitting on diamond origami pattern corresponding to section 4.3 

 
Fig. A1 Cases of vertex-splitting on diamond origami pattern with six vertices.  
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Fig. A1 Cases of vertex-splitting on diamond origami pattern with six vertices (Continued). 
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Fig. A1 Cases of vertex-splitting on diamond origami pattern with six vertices (Continued). 
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Fig. A1 Cases of vertex-splitting on diamond origami pattern with six vertices (Continued). 

 
 

 
 
 
 
 
 
 



中文大摘要 

 109

中文大摘要 
可展结构是一种几何形状可变的结构，其可以实现从紧密折叠状态到可控展

开状态的变化。该类结构在折叠状态下便于存贮和运输，在展开状态下执行正常

工作任务。可展结构以其良好的折叠特性广泛应用于各类工程领域中，如航空航

天领域的卫星天线、太阳能电池板和飞机机翼，土木工程领域的帐篷、穹顶和桥

梁，生物医学领域的折纸血管支架和手术钳，以及机器人领域等。虽然可展结构

种类繁多，但根据其组成构件形态的差异可分为两类：由杆单元或框架单元组成

的杆状可展结构和由连续面单元构成的面状可展结构。其中，由连杆机构组成的

可展机构网格和由面结构组成的折纸，具有较少的自由度和良好的折叠特性，而

备受相关领域研究人员的关注。 

连杆机构可以作为构成大型可展机构网格的单元，并将其良好的可展特性传

递给由其构成的可展机构网格。常见的可展机构网格单元主要包括经典的剪式单

元和基于单自由度单环空间过约束连杆机构构造的单元。剪式单元具有运动同步

可靠、折叠紧凑、用料经济等优点，在大型可展结构，如屋顶、帐篷、天线等设

计中应用 为广泛。单自由度单环空间过约束连杆机构的自由度数不遵循

Grübler-Kutzbach 准则，其特殊的几何条件保证其正常运动，常见的主要有

Bennett 机构、Myard 机构和 Bricard 机构。此类机构能够以较少的杆件产生复杂

的三维运动，且其过约束几何特征能够为可展结构提供额外的刚度，因此如何设

计由此类机构组成可展机构网格也成为了相关学者的研究热点。几何覆盖法的提

出为以空间过约束连杆机构为基本单元构造可展机构网格奠定了基础。然而，求

解复杂非线性方程以获得可展机构网格中各连杆机构间的运动协调条件是设计

可展机构网格的难点。 

折纸是一门通过折叠将纸张变成三维结构的艺术，它根据预先设计的折痕图

案折成不同的形状。其中一些折纸可以从大尺度结构折叠成小尺度结构，因而应

用于可展结构的设计中，近来相关的研究证实折纸可以应用于如超材料、机器人

等领域。刚性折纸是一种特殊的折纸，在折叠过程中各个面可绕折痕旋转且面内

不发生变形，可以采用高刚度的材料设计制造此折纸。其中单自由度折纸（如

Miura-ori 折纸）以其结构简单、易于控制的特点被广泛研究；多自由度折纸则以

其可变的展开状态在变形机器人的设计中应用广泛。然而，如何设计单自由度折

纸图案以及精确控制多自由度折纸的运动依然是一个巨大挑战。 

基于折纸设计的可展结构一般可以简化为零厚度折纸进行分析。将刚性折纸

的折痕和刚性面分别视为转动副和杆件，单顶点刚性折纸可以等价成为一个球面

连杆机构，多个顶点的刚性折纸可视为由多个球面连杆机构组成的网格，因此，
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可以引入机构学相关理论分析刚性折纸。然而，在某些对可展结构的强度或刚度

有要求的场合，忽略材料的厚度会引起模型运动过程中的物理干涉，进而导致可

展结构无法折叠，因此引出厚板折叠问题。偏移铰链法利用空间过约束连杆机构

替换原有球面连杆机构建立厚板折纸的运动模型，不仅完美解决了厚板折纸的干

涉问题，还建立起了空间过约束机构与刚性折纸的运动等价关系。以厚板折纸为

桥梁，研究刚性折纸与空间过约束机构之间的关系，不仅可以从折纸的角度出发

设计空间机构网格，还可以在空间机构网格的运动分析中拓宽折纸的设计空间。 

本文旨在以厚板折纸为基础研究空间连杆机构与刚性折纸之间的关系，并设

计新型由空间连杆机构组成的可展机构网格、刚性折纸和厚板折纸。 

本文首先从四折痕折纸出发提出了一种基于厚板折纸的转化法，实现了四折

痕折纸到 Bennett 机构的转化，发现了一种由 Bennett 机构组成的新型可展机构

网格。其次，在六折痕 diamond 折纸中应用基于厚板折纸的转化法，获得了一种

由面对称 Bricard 机构组成的可展机构网格，并构造了在展开状态具有平整表面、

折叠状态是螺旋形的 diamond 厚板折纸。 后，针对 diamond 折纸具有多自由度

的缺陷，提出了一种减少折纸自由度数的顶点拆分法，并据此构造了多种单自由

度折纸；研究了 Waldron 混联六杆机构的构造过程与其对应厚板折纸模型的几何

形状变化的关系，通过去除铰链构造具有平整展开表面的厚板折纸。本文工作主

要包括如下三部分： 

 基于四折痕折纸设计的由 Bennett 机构组成的可展机构网格 

采用偏移铰链法设计的厚板折纸与零厚度刚性折纸及由空间过约束机构组

成的网格运动等价，因此可将厚板折纸视为研究零厚度刚性折纸与该机构网格关

系的桥梁。从已知的四种四折痕折纸图案出发建立其相应的厚板折纸模型，并设

计形成由 Bennett 机构组成的可展机构网格。 

本文第二章以单顶点四折痕折纸、单顶点厚板折纸以及 Bennett 机构的运动

等价性为基础，建立了从四折痕折纸到 Bennett 机构的转化法。将该转化法应用

于多顶点四折痕折纸中，得到了一系列由 Bennett 机构组成的可展机构网格。 

首先选取具有平面可折叠特性的单顶点四折痕折纸为研究对象。该折纸相对

的两个扇形角之和为 180 度。将刚性折纸的折痕和刚性面分别视为转动副和杆

件，其运动与球面四杆机构等价。然后，利用偏移铰链法构造出该折纸对应的厚

板形态，观察发现厚板折纸的四条铰链轴线不再交于一点，因此该厚板折纸可视

为杆长与厚板厚度相关的 Bennett 机构。通过建立适当的 D-H 标记，获得厚板折

纸的扇形角、板厚与 Bennett 机构的扭角、杆长之间的关联关系。之后，沿相邻

铰链轴线的公法线方向用直杆替代原有的厚板，并将其连接到相邻的铰链，构造

出了与原有厚板折纸运动等价的、具有杆件形式的 Bennett 机构。由此，提出了

四折痕折纸到 Bennett 机构的转化法。此外，零厚度刚性折纸(其相应的球面机构)
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和厚板折纸(其相应的 Bennett 机构)具有相同的拓扑结构，文中引入拓扑图来描

述杆件之间的本质关系，并将其应用于多顶点折纸的分析与转化中。 

对于多顶点折纸，首先以包含四个四折痕顶点的 Miura-ori 折纸为例，建立

其厚板折纸模型。通过分析四个顶点对应 Bennett 机构组成闭环的相对连接关系，

确定了各厚板上连接铰链在其厚度方向上的分布顺序。将厚板转化为杆件，并按

顺序将铰链布置到相应的杆件上，建立了与厚板折纸运动等价的、由四个 Bennett
机构组成的可展机构网格。分析该网格中机构扭角的关系，发现 Miura-ori 厚板

折纸对应的是由具有等杆长特征的 Bennett 机构组成的可展机构网格。之后将基

于厚板折纸的转化法应用到互补型折纸中，发现从互补型折纸的三种不同的山谷

线排布图案中分别得到由不同负杆长特征的 Bennett 机构组成的可展机构网格。

后以 identical linkage-type 折纸为对象，应用折纸到机构网格的基于厚板折纸

的转化法，形成了一种新型的 Bennett 机构网格。对其开展的运动协调性分析进

一步保证了其可动的特性。 

建立起四折痕刚性折纸到 Bennett 机构网格的基于厚板折纸的转化法，为从

折纸的角度设计可展机构网格提供了一种新思路。研究获得 Bennett 机构网格的

运动协调条件也扩展了可展机构网格的设计空间。 

 Diamond 厚板折纸及其对应的由 Bricard 机构组成的可展机构网格 

利用折纸到机构的基于厚板折纸的转化方法，从四折痕厚板折纸出发可构造

出由 Bennett 机构组成的可展机构网格；对于具有面对称特征的六折痕厚板折纸

（如典型的 diamond 和 waterbomb 厚板折纸），其每个顶点的运动与一个面对称

Bricard 机构运动等价，因此可以类似的应用基于厚板折纸的转化法构造由面对

称 Bricard 机构组成的可展机构网格。与此同时，对于这种网格的运动协调性分

析可以用来拓宽厚板折纸的可行设计空间。 

在第三章中，我们首先对具有面对称特征的单顶点 diamond 厚板折纸应用基

于厚板折纸的转化法，将其厚板转化为杆件并连接相应的铰链，构造出运动等价

的面对称 Bricard 机构。在适当的 D-H 标记下，建立了单顶点六折痕厚板折纸的

扇形角、板厚与面对称 Bricard 机构扭角、杆长间的关系方程。然后对包含有四

个顶点的 diamond 厚板折纸，分析其各顶点处面对称 Bricard 机构的连接关系，

确定连接铰链在板厚方向上的分布顺序，进而将其转化为包含四个相同面对称

Bricard 机构的 diamond 机构网格，且该网格与 diamond 厚板折纸运动等价。根

据厚板与机构间参数的对应关系，给出了构造此机构网格的运动协调条件。 

从一般面对称 Bricard 机构的闭环方程出发，选取包含七个面对称 Bricard 机

构的 diamond 机构网格为研究对象，分析其运动协调性。根据机构的分布特点，

选择共用同一杆件的三个面对称 Bricard 机构形成的组合进行运动协调条件的分

析，结果表明三个面对称 Bricard 机构可以组合形成八种运动类型。采用其中一
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种运动类型，求得了两组构造面对称 Bricard 机构网格的运动协调条件，并设计

出两种具有不同扭角条件的面对称 Bricard 机构网格。 

借助 diamond 厚板折纸与面对称 Bricard 机构几何参数的关系方程，从一组

Bricard 机构网格的运动协调条件中得到构造 diamond 厚板折纸更一般的几何条

件。依据此条件分析优化 diamond 厚板折纸的几何参数，构造了不同外形的厚板

折纸。其中，通过改变厚板折纸的扇形角，确定了具有渐变特征的 diamond 型厚

板折纸的构造条件。基于机构杆长与厚板折纸板厚之间的关系方程，通过改变厚

板折纸的板厚，构造出具有平整展开表面的 diamond 厚板折纸。综合改变折纸扇

形角和板厚构造出一种新型的具有平整展开表面和螺旋折叠构型的厚板折纸。该

折纸可以通过合理的参数设计获得折叠结构紧凑、可无限延展的可展结构，有利

于厚板折纸在工程中的应用。 

此外，通过分析三个面对称 Bricard 机构的组合，获得八种运动状态下的运

动协调条件，其中有五种是不同的类型。通过给定设计参数，构造了五种运动类

型下的机构网格模型。这些模型可以根据需要组合到一起，通过验证运动协调性

可以作为机构单元进一步构造大型的 Bricard 机构网格。 

 基于刚性折纸的节点拆分法 

拥有面对称运动特征的 diamond 厚板折纸可以实现单自由度运动，其对应的

零厚度折纸所具有的六折痕顶点可以视为三自由度的球面六杆机构，因此包含多

顶点的零厚度 diamond 折纸是多自由度的。基于此类折纸、采用薄板材设计制造

出的可展结构具有多自由度的特点，因此获得所需的面对称运动往往比较困难。

第三章中以 diamond 折纸为研究对象，提出了一种减少自由度数的顶点拆分法，

在多顶点 diamond 折纸上应用该方法获得了一系列运动等价的单自由度刚性折

纸。为获得具有平整展开表面的厚板折纸，基于 Waldron 混联六杆机构的构造过

程，得出四折痕厚板折纸可以通过去除部分铰链来获得单自由度的六折痕厚板折

纸，构造了多种具有平整展开表面的厚板折纸。 

从单顶点 diamond 型折纸出发，根据其山谷线排布的对称特性提出了顶点拆

分的两种方式：SI 沿平行于对称折痕方向拆分和 SII 沿垂直于对称折痕方向拆

分。两种拆分方式应用到单顶点 diamond 型折纸中共获得三种类型的折纸单元：

沿平行于对称折痕方向拆分形成包含两个相同四折痕顶点的 DI 型折纸，沿垂直

于对称折痕方向拆分形成包含两个相同五折痕顶点的 DII 型折纸，沿两个方向分

别拆分可以获得包含有四个相同四折痕顶点的 DI-II 型折纸，其中 DI 和 DI-II 型
折纸具有单自由度。此外，当 DII 型折纸中的五折痕顶点引入面对称约束条件时，

这三类折纸与在线面对称约束条件下的单顶点 diamond 折纸具有等价的面对称

运动特性。 

对于包含六个相同六折痕顶点的 diamond 折纸，其各顶点均可应用顶点拆分
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法形成 DI、DII 和 DI-II 三类折纸单元。为得到刚性折纸，分别采用 SI、SII 方式

拆分整行、整列的顶点，共得到 96 种不同的拆分结果。通过总结分析，从中获

得了包含四折痕顶点、五折痕顶点及六折痕顶点的具有单自由度特征的基本折纸

图案。由四个四折痕顶点组成的、具有面对称特征的基本折纸图案可以看作是由

四个球面四连杆机构组成的单自由度面对称环路。包含有四折痕顶点和一个五折

痕顶点的基本折纸图案，四折痕顶点可以为该五折痕顶点提供两个约束使整个基

本折纸图案也具有单自由度特征。此外，由四折痕顶点与两个五折痕顶点构成的

基本折纸图案、由四折痕顶点与一个六折痕顶点分别通过三条折痕和四条折痕构

成的基本折纸图案、由四折痕顶点与五折痕顶点再与六折痕顶点构成的基本折纸

图案，这些折纸中所有顶点的运动都可以通过给定一个输入来确定，因此，这些

图案都是单自由度的基本折纸图案。利用这些具有单自由度特征的基本折纸图案，

可以确定 96 种不同的拆分结果中有 42 种情况是单自由度的。剩余的折纸中，各

折纸的单自由度基本折纸图案不能提供足够用于确定所有顶点运动的约束，因此

都是多自由度的。 

由两个具有平面可折叠特性的四折痕顶点、通过共用一个同类型的折痕组成

的折纸，可以利用偏移铰链法构造对应的厚板折纸。该厚板折纸包含两个四折痕

顶点，可以应用基于厚板的转化法得到由两个 Bennett 机构通过一个铰链连接的

机构组合。根据 Waldron 混联六杆机构的构造方法，去除该机构组合中两个

Bennett 机构的共用铰链，得到运动等价的 Waldron 混联六杆机构；去除厚板折

纸上两个四折痕顶点共用的铰链和厚板上的台阶，产生了与 Waldron 混合型六杆

机构运动等价的六折痕厚板。由此提出了四折痕厚板折纸去除铰链构造运动等价

六折痕厚板折纸的方法。在包含四折痕与六折痕顶点的厚板折纸中，相邻四折痕

顶点间的共用铰链及其厚板形成了该厚板折纸在展开状态时的台阶。通过去除铰

链，再根据 Waldron 混联六杆机构的构造条件改变相应的板厚，可以构造一种具

有平整展开表面的单自由度厚板折纸。此外，通过去掉 Tachi-Miura 型厚板折纸、

identical linkage-type 厚板折纸的部分铰链，再分别修改对应厚板的板厚去除厚板

的台阶，构造两种具有平整展开表面的单自由度厚板折纸。 

应用顶点拆分法可在保证折纸对称运动的前提下，从 diamond 型折纸中构造

了一系列单自由度折纸。包含有四折痕、五折痕和六折痕顶点的混合型单自由度

折纸的产生为单自由度折纸的设计提供了新思路。此外，通过去除铰链构造具有

平整展开表面的单自由度厚板折纸，有利于厚板折纸的工程应用。 

 结论与展望 

本文着眼于机构学与折纸科学的交叉融合，通过研究空间机构网格、厚板折

纸与刚性折纸之间的内在关系，提出了折纸到可展机构网格的基于厚板折纸的转

化法、减少折纸自由度的顶点拆分方法，为设计新型可展机构网格、刚性折纸、
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厚板折纸提供了新途径。 

此外，本文的研究工作还可以在如下几方面进行进一步的深入研究： 

（1）刚性折纸到可展机构网格的基于厚板折纸的转化法可以扩展应用在更

多的刚性折纸中，如 waterbomb 折纸和 Resch 折纸，从而构造更多的由空间过约

束机构组成的可展机构网格。此外，该转化法可以应用在多层刚性折纸到可展机

构网格的转化中，以获得由多层机构组成的机构网格，如应用于多层 Miura-ori 折
纸中。对于已经讨论的四折痕折纸中，发现存在一种 Bennett 机构网格未与已知

折纸相对应，因此，此机构网格可能对应一种新型的折纸，后续可以对此开展进

一步的研究。 

（2）在研究 diamond 厚板折纸及其对应的面对称 Bricard 机构网格中，单顶

点六折痕的 diamond 折纸拥有三个自由度和线面对称特性。文中只讨论了折纸在

面对称运动条件下的厚板折纸形式。当该折纸引入线对称运动条件时，其厚板折

纸形式可以产生线对称 Bricard 机构网格。 

（3）在拆分折纸顶点减少自由度的研究中，针对 diamond 折纸提出了两种

拆分顶点的方式，同时构造了一系列与 diamond 折纸具有等价对称运动的单自由

度折纸。如何扩大顶点拆分法的应用范围，提出一般化的顶点拆分法以减少其它

折纸的自由度数需要进一步研究。具体包括：第一，改变拆分顶点的方向和增加

折痕的方向；第二，计算应用一般化的顶点拆分法获得的折纸的自由度；第三，

通过研究增加或切开折痕与折纸自由度的关系，将拆分顶点获得的非刚性折纸转

化成为单自由度的折纸。 

（4）在厚板折纸上通过去除部分铰链得到具有平整展开表面的厚板说明了

由两个 Bennett 机构构造 Waldron 混联六杆机构的过程可以影响厚板折纸形状的

变化。对于其它基于 Bennett 机构构造的机构，如 Goldberg 五杆机构和 Goldberg 
六杆机构，其构造过程可能会产生更多的新型厚板折纸。 

（5）本文仅在机构网格和刚性折纸方面开展理论研究。并未考虑机构网格

中杆件的截面积与厚板折纸中连接处的铰链数对厚板强度和刚度的影响，以及制

造误差对机构运动的影响。此外，在工程应用中，可展结构的目标工作状态和折

叠体积是其设计的关键参数，因此可展机构网格与刚性折纸的设计参数与目标工

作状态和折叠体积之间的关联关系也需要进一步的研究。 

关键词：刚性折纸，厚板折纸，机构网格，Bennett 机构，Bricard 机

构，转化法，顶点拆分法 
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