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ABSTRACT

Deployable polyhedrons, a special type of 3D deployable structure, have great
potential in engineering fields such as aerospace, modular construction and robotics.
The design of deployable polyhedral mechanisms (DPMs) combines the ingenious
inspirations of mechanism kinematics and solid geometry, yet it remains challenging to
realise one-degree-of-freedom (DOF) transformations between two regular
polyhedrons with a kinematic strategy. Moreover, most of these transformations
involve spatial, multiloop, and overconstrained mechanisms that have limited their
application potential. Thus, overconstraint reduction based on kinematic equivalence
has become a problem that needs to be solved. This dissertation focuses on mechanism
kinematics, establishes a design criterion for deployable polyhedrons based on spatial
symmetries and different types of mechanism units. Herein, a family of DPMs with 1-
DOF synchronized radial motion is constructed, the overconstraint reduction strategy
for multiloop overconstrained mechanisms is proposed. The highlights of this
dissertation are as follows.

First, a synchronized mechanism with a threefold-symmetric motion feature is
proposed by integrating a spatial 9R linkage and three pairs of spherical 4R (S4R)
linkages. Subsequently, by embedding the proposed S4R-synchronized mechanism
cells into the polyhedral surface, a group of S4R-based polyhedrons is constructed, and
a total of nine paired transformations are realized by means of dimensional shortening
operations. Furthermore, overconstraint reduction of the S4R-based polyhedral
mechanisms is achieved by analyzing the constraint conditions, and the kinematic
equivalence after removing redundant constraints is demonstrated and verified.

Next, a family of Sarrus-based deployable polyhedral mechanisms is proposed by
carrying out the expansion operation of Platonic polyhedrons and implanting Sarrus
linkages. Subsequently, based on screw theory and equivalent prismatic joints, an
equivalent analysis of multiloop polyhedral mechanisms is proposed to significantly
simplify the calculation process. Moreover, a systematic method for the overconstraint
reduction of multiloop overconstrained mechanisms is proposed by introducing the
Hamiltonian path to topological graphs of DPMs, in which the degrees of overconstraint

in each Sarrus-based DPM are greatly reduced without affecting the original kinematics.
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Finally, considering the multi-symmetric spatial 7R assembly as the construction
cell, a series of 1-DOF 7R-based polyhedrons is obtained by embedding the 7R
assembly into polyhedral surfaces following the corresponding symmetries. The rich
polyhedral geometric transformations are realized with a kinematic method, which
widens the design of transformable polyhedrons. Moreover, based on the proposed
Hamiltonian-path reduction strategy, further removal of redundant constraints in 7R-
based polyhedral mechanisms is achieved by removing path-contour redundant
constraints.

Therefore, this dissertation establishes an approach for the design of novel DPMs
based on spatial symmetries and proposes the overconstraint reduction strategy based
on the Hamiltonian path. This dissertation establishes a strong theoretical foundation
for the innovative research of DPMs and provides effective technical support for their

engineering applications.

KEY WORDS: Mechanism kinematics, Deployable polyhedral mechanism,
Polyhedral transformation, Symmetry, Synchronized radial motion, Overconstraint
reduction, Kinematic equivalence
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background and Significance

Deployable mechanisms!!!, due to their extraordinary ability to fold a large
structure into a compact size, have interested researchers over the past decades in the
fields of civil engineering®”), aerospace exploration'®16], robotics!!’-??) and more. Some
example engineering applications are shown in Fig. 1-1. Three-dimensional (3D)
deployable mechanisms with a large volume deployment ratiol?* 24 offer several
advantages, e.g., they enable various spatial shapes and sizes and can be deployed into

[25

larger structures with more functions'?’!. Because of their low degrees of freedom

(DOFs) and superiorly foldable properties, they have recently attracted increasing

attention.

(b)

(c) (d)

Fig. 1-1 Engineering applications of deployable mechanisms. (a) Heureka-polyhedron showpiecel”;

(b) lunar habitat!'>; (¢) origami tent!'®]; (d) Bricard-based deployable robot!?],
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Deployable polyhedral mechanisms (DPMs) have been developed with various
design strategies!?®! by combining the ingenious inspirations of mechanism kinematics
and solid geometry. Recent studies of DPMs have focused on embedding linkages and
their mobile chains into vertices, faces and edges of regular convex polyhedrons?7, in
which the design and assembly strategies of basic mechanism units play a key role in
their constructions. Moreover, this may be beneficial for practical applications because
the deploying or folding of DPMs can be more easily controlled owing to their lower

degrees of freedom*®!

. Compared to other deployable mechanisms, deployable
polyhedral mechanisms have regular geometric configurations and higher volume
folding ratios. Thus, they could attract the attention of both scientists and engineers,
due to their potential applications in the fields of manufacturing, architecture and space
exploration, such as human habitats on Mars that need to be folded neatly for launch.
However, there is little work describing how to construct deployable polyhedrons and
transformable polyhedrons by symmetrically synthesizing S4R  linkages!?”!,
overconstrained Sarrus linkagest® and spatial 7R linkages®l. Furthermore, DPMs with
1-DOF synchronized radial motion and symmetric transformability can enhance the
development of 3D deployable mechanisms with modular and customizable
potential®®, yet it remains challenging to determine a novel and systemic construction
method for synchronized radial DPMs.

On the other hand, typical DPMs have multiloop overconstrained mechanisms*-
3% because the interconnection of each mechanistic units often results in a large number
of redundant constraints. Due to the harsh working environment and the errors in
fabrication, the overconstraints bring additional internal loads that can render those
mechanisms immobile and reduce the reliability, which cannot be completely overcome
simply by improving the manufacturing accuracy®¢-**l, Therefore, it is useful to reduce
or even eliminate the redundant constraints of the original overconstrained mechanism

while maintaining their equivalent kinematic behaviors!® 401,

In previous works,
overconstraint reduction strategies were mainly based on replacement of hinge types
and the removal of redundant hinges!*!!. However, there remains a lack of a systematic
guiding ideology for overconstraint reduction due to the complex topology relations of
multiloop mechanisms, which is still a greatly challenging issue in kinematics.
Nevertheless, the mathematics-inspired method could be explored to propose a

reduction strategy for multiloop mechanisms and enhance their practical applications.
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Therefore, the study of symmetric construction methods and overconstraint
reduction strategies can pave the way for the development of deployable and
transformable polyhedrons, which not only are valuable in theoretical investigation but
also facilitate their applications in various engineering fields, such as deployable

mechanisms for aerospace exploration and architecture, as well as metamaterials.

1.2 Literature Review

1.2.1 Kinematic Theory in Mechanism

Kinematics are an essential part of the study of mechanisms, which focuses on the
geometric properties of the mechanism motion, including the positions, velocities and
accelerations of links and joints without considering the forces that drive the motion. In
the past, a number of kinematic methods have been proposed, including the matrix
method“>*4, quaternion and duel quaternion method*>!l, bond theory®*>¢! screw

37. 381 Lie group and Lie algebral®>%?l some of which are advantageous to

theory!
analyze articular types of mechanisms and to identify specific mechanism parameters.
For the design of mobile mechanism assemblies, it is vital to identify the positions and
angular relations of the links in motion, while the other physical quantities are of less
interest!®}. Here, some essential kinematic analysis methods, including the matrix
method, screw theory and truss method, are used to reveal the kinematics of DPMs.

In kinematics, a mechanism is any linkage connected by kinematic joints, and the
degree of freedom is the number of independent parameters required to determine the
configuration of the mechanism!®¥. Based on the Griibler-Kutzbach (G-K) formulal®®],
the expected mechanism mobility M=d(n—g—1)+Xf;, where d is the mobility coefficient
that can be obtained from the motion screw system, » is the number of rigid links, g is
the number of kinematic joints, and f;is the degree of freedom of the ith kinematic joint.

The G-K criterion only considers the influence of mechanism topology on degrees
of freedom. However, in practice, there are many special cases where the G-K criterion
is inaccurate, and various correction formulas have been proposed to better calculate

the degrees of freedom of all types of mechanisms using only one formula!®

, yet with
few favorable outcomes, because the influence of specific geometric parameters for the
mechanism have not been completely considered. Moreover, a mechanism can realize

a full periodic range of motion even though the G-K criterion indicates otherwise. This
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type of mechanism is called the overconstrained mechanism with greater mobility than
that predicted by the mobility criterion due to the strict geometry conditions that are
known as overconstrained conditions®. Thus, the degrees of overconstraint ¢ 9 in
one overconstrained mechanism can be derived as c=m—M , in which m represents
the actual degrees of freedom. However, many deployable mechanisms are multiloop
overconstrained mechanisms that increase the stiffness of the entire deployable system

yet reduce the reliability due to the overconstrained conditions.

1.2.2 Spherical Linkages and Spatial Linkages

1.2.2.1 Spherical Linkages and Rigid Origami

67]

With the rapid development of origami engineering in this century!®’), many

origami-inspired foldable structures have been widely adopted in the fields of aerospace

devices!®®

1 civil engineering!®’, robotics!’", metamaterials!’! and so on. Rigid origami,
as a branch of origami, paves the way for widespread engineering applications of
origami mechanisms due to the advantage of folding rigid materials without any
deformation”?. In mechanism theory, the sheets and creases of rigid origami can be
modelled as equivalent rigid links and revolute joints!’*!, respectively, where an origami
vertex at the intersection of creases is regarded as a spherical linkage!’*, such as the
typical four-crease origami vertex, which can be kinematically modelled as a spherical
4R linkage (S4R), see Fig. 1-2. Thus, a rigid origami pattern is kinematically equivalent

§[7

to an assembly of spherical linkages!”!. Many known origami patterns have been

investigated with mechanism kinematics to reveal their specific folding characteristics,

76]

e.g., Miura pattern!’®!, square-twist pattern’!!, diamond patternl’”l and waterbomb

pattern[78].

Fig. 1-2 A four-crease origami vertex and its equivalent S4R linkagel’.
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In addition to the mentioned 2D typical patterns that can be folded and unfolded
into flat surfaces, several 3D origami mechanisms can also be folded flat with novel
crease patterns, including origami tubes, cartons and cubes. Inspired by the cylindrical
origami tubes devised by Tachil”], Liu et al.['®) presented a family of origami prismatic
mechanisms by solving the compatibility of the assembly of spherical 4R linkages, and
Chen et al.® provided a more flexible design for origami tubes by combining several
tubes with parallelograms or kite cross sections. In addition, as demonstrated in Fig. 1-
3(a), Wu and You®!! presented a new solution for rigid and flat foldable tall bags
without considering the top surface. Wei and Dai’ investigated the geometry and
kinematics of equivalent mechanisms evolved from a crash-lock origami carton, as
shown in Fig. 1-3(b). Gu and Chen!® proposed a new approach for constructing rigid
origami boxes with various geometries and shapes by using spherical linkage loops.
Furthermore, Gu and Chen!®¥ developed a total of four crease patterns that enable
origami cubes with rigid and flat foldability and a single degree of freedom, for which

an example with a spherical 4R-5R-4R-5R loop is shown in Fig. 1-3(c).

Fig. 1-3 3D origami and kirigami mechanisms. (a) Rigid origami shopping bag®!); (b) crash-lock

base origami carton!’l; (c) rigid ang flat foldable origami cubel?3.

5
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Thus, prior research shows that it is impossible to rigidly fold the 3D sealed
structures, in which hollows and slits should be introduced to fold such spatial
structures®). Furthermore, due to the geometric complexity and limitations of these
structures, the layout and arrangement of creases and slits are still challenging for the
design of spatially deployable mechanisms, especially for regular deployable
polyhedrons.

1.2.2.2 Spatially Overconstrained Linkages

Overconstrained linkage is a unique type of spatial mechanism with greater
mobility than that predicted by the mobility criterion!®]. The first published research on
spatial overconstrained linkages can be traced back to the Sarrus linkage!*”), as shown
in Fig. 1-4, which is capable of exact straight-line motion between platforms A and B.
Thereafter, more overconstrained mechanisms were developed with more attention
from mathematicians, scientists and engineers, such as, to mention but a few, the
Bennett linkage!®, Bricard®> %61 Wohlhart®”! and Waldron linkages!®®.

Furthermore, various multiloop overconstrained mechanisms with high expansion
ratios can be constructed through the synthesis of the above single-loop overconstrained
linkages. Zhang and Chen® proposed mobile assemblies of Bennett linkages from
four-crease thick origami patterns. Qi et al.”®! developed two types of large spatial
deployable networks based on Myard linkages with different twist angles. Based on
Bricard linkages, a mobile assembly with a threefold-symmetric configuration was
presented by connecting any two adjacent linkages with a scissor !, and integrated
networks of plane-symmetric Bricard linkages were discovered referring to diamond
thick-panel origami®*. and a new family of Bricard-derived deployable mechanisms
was derived with a large volume®!. However, there is little work reported on the

assembly of Sarrus linkages.

(a) (b)

Fig. 1-4 Sarrus linkagel*”l, (a) A physical model; (b) a mechanism diagram.

6
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1.2.2.3 Spatial 7R and 8R Linkages

Referring to the G-K formulal®®!, a spatial 7R linkage is generally 1-DOF, in which
plane-symmetric 7R linkages are preferred to design the spatial deployable mechanisms.
Xu et al.” proposed a deployable tetrahedron unit mechanism to design truss antennas,
i.e., a 3RR-3RRR multiloop coupled mechanism"®], which is actually an assembly of
plane-symmetric 7R linkages. Similarly, the plane-symmetric 7R linkage shown in Fig.
1-5(a) is used to construct a two-layer and two-loop spatial deployable mechanism,
which is capable of accurate straight-line motion®®. Furthermore, Zhou et al.’”!
developed a general plane-symmetric 7R linkage, as shown in Fig. 1-5(b), to fold a
triangular frustum into a bundle, as well as various polygons and polyhedrons. Recently,
a systematic synthesis method based on a symmetric 7R single-loop mechanism was

presented to address the structural design of two-dimensional truss-shaped deployable

[98 99, 100]

aerospace platforms with 1-DOF synchronized motion!®®. In contrast, Kong!
proposed a variable-DOF single-loop 7R spatial mechanism with five motion modes,
which is based on the combination of a general variable-DOF single-loop 7R spatial
mechanism and a plane-symmetric Bennett 6R mechanism.

However, an 8R linkage without overconstrained conditions has two DOFs. As
shown in Fig. 1-5(c), Wei and Dai"®*¥ proposed a two-DOF single-loop dual-plane-
symmetric spatial 8R linkage that performed exact straight-line motion, in which a
geared 8R linkage is then incorporated to generate a 1-DOF exact straight-line motion.
Furthermore, a reconfigurable 8R linkage constructed by using a variable revolute joint
was introduced by Wei and Dail'®!l. Then, a Sarrus-like overconstrained spatial 8R
linkage has been reported that can be treated as a two-limb parallel mechanism (see Fig.
1-5(d)), in which straight-line motion between two platforms can also be obtained even
though this overconstrained linkage has three DOFs!!%? due to two groups of four
parallel joints. In their work, in addition to the Sarrus linkage, those two
nonoverconstrained spatial 8R linkages can also generate the exact straight-line motion.
Furthermore, Chai et al."®! proposed an 8R square mechanism based on two alternative
Bennett mechanisms. Several 8R linkages can be found in metamorphic mechanisms,
such as a reconfigurable 8R mechanism proposed by Wang et al.'*! can realize a square

shape.
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(a) (b)

(d)

Fig. 1-5 Spatial 7R and 8R linkages. (a) A 7R linkage with linear motion®®l; (b) A plane-symmetric

7R linkagel’]. (c) An 8R linkage with straight-line motion!*3l; (d) an overconstrained 8R linkagel'%%.

1.2.3 Polyhedral Transformations in Geometry

A polyhedron is a three-dimensional shape with flat polygonal faces, straight edges
and sharp corners or vertices, in which a polyhedron that bounds a convex set is called
a convex polyhedron. For the convex regular polyhedrons in 3D Euclidean space, their
faces are congruent regular polygons and are assembled in the same way around each
vertex, in which two classic groups are Platonic polyhedrons (five types) and
Archimedean polyhedrons (thirteen types)!!®! (see Figs. 1-6). The five Platonic
polyhedrons in Fig. 1-6(a) are tetrahedron, hexahedron (cube), octahedron,
dodecahedron and icosahedron, and the thirteen Archimedean polyhedrons in Fig. 1-
6(b) are truncated tetrahedron, cuboctahedron, truncated cube, truncated octahedron,

rhombicuboctahedron, truncated cuboctahedron, icosidodecahedron, truncated
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dodecahedron, truncated icosahedron, rhombicosidodecahedron, truncated

icosidodecahedron, snub cube and snub dodecahedron.

Fig. 1-6 Two classic groups of regular polyhedrons. (a) Five Platonic polyhedrons and (b) thirteen

Archimedean polyhedrons.

Moreover, we find some interesting polyhedral pairs among Archimedean and
Platonic polyhedrons through mathematical transformations, which are demonstrated
following tetrahedral (Tq), octahedral (On), and icosahedral (In) symmetriest%.

First, considering a truncated tetratetrahedron with Tq symmetry in Fig. 1-7 as an
example, three types of edge lengths in a truncated tetratetrahedron are defined as a, b
and ¢, in which each length is related to two adjacent facets in two different colours.
Based on this, for instance, if we only shorten the edge length a to zero while b and ¢

are retained in transformation path 1 (TP1), then all yellow hexagon facets will become
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triangles, and the cyan squares will vanish, yet the blue hexagons remain intact. As a
result, the polyhedral geometric transformation from a truncated tetratetrahedron to a
truncated tetrahedron is obtained in TP 1. Subsequently, if edge length b is shortened to
zero while a and c are reserved in TP 2, i.e., all yellow hexagon facets are reserved,
leading to the same transformation as given in TP1 due to the duality of the tetrahedron.
Next, a transformation from a truncated tetratetrahedron to a rhombitetratetrahedron is
shown in TP 3 by only shortening the edge length ¢ to zero and reserving all cyan

squares.

—_—

|

W ETOERY

b=0

> gm 2 Y
S A

b=0

Fig. 1-7 Transformations of polyhedrons with the same Tq symmetry. TP 1 and TP 2: transformation

/

—

c=0

from a truncated tetratetrahedron to a truncated tetrahedron. TP 3: transformation from truncated a
tetratetrahedron to a rhombitetratetrahedron. TP 4 and TP 5: transformations from a truncated
tetrahedron to a tetratetrahedron. TP 6 and TP 7: transformations from rhombitetratetrahedron to

tetrahedron.

On the other hand, further transformations based on the results of TP 1 to TP 3 in
Fig. 1-8 can also be demonstrated by shortening the remaining edge length. In TP 4, a

truncated tetrahedron becomes a tetratetrahedron when the edge length b shortens to

10
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zero, as well as the same transformation in TP5. Finally, taking similar operations for a
rhombitetratetrahedron, two dual tetrahedrons occur along TP 6 and TP 7. Regardless
of which transformation, T4 symmetry is always reserved in each paired case.

These geometric transformations can be immediately applied to the other
Archimedean polyhedrons with Oy and I symmetries. As shown in Fig. 1-9, three types
of edge lengths a, b and c are defined in a truncated cuboctahedron. If edge length a is
shortened to zero while b and c are retained in TP1, then all the blue octagons are still
reserved, leading to the transformation from a truncated cuboctahedron to a truncated
cube. Subsequently, if the edge length b is shortened to zero in TP 2, a transformation
from an original truncated cuboctahedron to a truncated octahedron is realized.
Similarly, a transformation from an original truncated cuboctahedron to a
rhombicuboctahedron is shown in TP 3 by only shortening the edge length ¢ to zero;
thus, all cyan squares are reserved.

Next, in TP 4, a truncated cube becomes a cuboctahedron when the edge length b
shortens to zero, and shortening the edge length a of a truncated octahedron results in
a cuboctahedron in TP 5. Finally, referring to TP 6 and TP 7, we can obtain a cube and
an octahedron by making edge lengths a and b in a rhombicuboctahedron equal to zero,
respectively. Due to the synchronized geometry operations for edge length, On
symmetry is always reserved in each paired transformation. Compared with the
transformations with Tq symmetry in Fig. 1-8, this family of Oy transformations can
realize all seven distinct solutions due to its Op duality between a cube and an
octahedron.

In addition, similar to the cases in Figs. 1-8, we can obtain seven different
transformations from TP1 to TP7 beginning from a truncated icosidodecahedron with
I symmetry; the details can be found in Figs. 1-9. Here, in TP 1 to TP 3, all deployable
configurations are truncated icosidodecahedrons, similarly leading to three different
folded configurations. In particular, dodecahedrons and icosahedrons occur along TP 6
and TP 7, respectively. Additionally, regardless of the transformation, In symmetry is
always preserved in each paired case. Thus far, all five Platonic polyhedrons are

demonstrated in Figs. 1-7 to 1-9.

11
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Fig. 1-8 Transformations of polyhedrons with the same Oy symmetry. TP 1: transformation from a
truncated icosidodecahedron to a truncated dodecahedron. TP 2: transformation from a truncated
icosidodecahedron to a truncated icosahedron. TP 3: transformation from truncated
icosidodecahedron to rhombicosidodecahedron. TP 4: transformation from a truncated
dodecahedron to an icosidodecahedron. TP 5: transformation from a truncated icosahedron to an

icosidodecahedron. TP 6: transformation from rhombicosidodecahedron to dodecahedron. TP 7:

transformation from rhombicosidodecahedron to icosahedron.

Thus far, in addition to two special Archimedean polyhedrons without symmetry,
i.e., the snub cube and snub dodecahedron in Fig. 1-6 (last two polyhedrons), the
geometric transformations among the remaining eleven Archimedean and all five
Platonic polyhedrons have been demonstrated following T4, On and In symmetries,
respectively. Among these transformations, a total of eighteen transformations are
identified without duplicate cases, of which four, seven and seven cases are respectively
shown in Figs. 1-7 to 1-9. The richer geometric transformations have been identified
following different symmetries, yet it is challenging to realize these structures using a
kinematic strategy due to the design of novel mechanism units and their coordinated
tessellations. Here, it is shown that this objective can be achieved by the introduction

of 1-DOF transformable and deployable polyhedral mechanisms.

12
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Fig. 1-9 Transformations of polyhedrons with the same I, symmetry. TP 1: transformation from a
truncated icosidodecahedron to a truncated dodecahedron. TP 2: transformation from a truncated
icosidodecahedron to a truncated icosahedron. TP 3: transformation from truncated
icosidodecahedron to rhombicosidodecahedron. TP 4: transformation from a truncated
dodecahedron to an icosidodecahedron. TP 5: transformation from a truncated icosahedron to an
icosidodecahedron. TP 6: transformation from rhombicosidodecahedron to dodecahedron. TP 7:

transformation from rhombicosidodecahedron to icosahedron.

1.2.4 Deployable Polyhedral Mechanisms

Deployable polyhedral mechanisms and transformable polyhedral mechanisms
have been developed with various design strategies, in which the design of deployable
polyhedrons combines the ingenious inspirations of solid geometry and mechanism

kinematics!®!.

Verheyen!'%”! reported pioneering work on expandable polyhedral
mechanism known as Jitterbug transformers (see Fig. 1-10(a)). Similarly, it was the
well-known showpiece of a mobile octahedron named “Heureka-polyhedron”!”! built at
the Heureka Exposition in Zurich in 19911191 which was obtained from Fuller’s
Jitterbug by replacing spherical joints with two-DOF Hooke’s joints. Furthermore,

based on the Fulleroid"'%!, the construction methods of Fulleroid-like polyhedral
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mechanisms were proposed by Wohlhart!!!%l Kiper!!''!) and Roschel''?!. Furthermore,
several overconstrained linkages were adopted for the synthesis of DPMs. As shown in
Fig. 1-10(b), Kiper and Soylemez!'!3! introduced a deployable tetrahedral polyhedron
by integrating multiple loops of equilateral Bennett linkages, yet with a rather small
expansion ratio. Wang and Kong!!'* 5] demonstrated a family of overconstrained
multiloop DPMs by connecting orthogonal single-loop linkages, including the
orthogonal Bricard linkage, as shown in Fig. 1-10(c), using S-joints. Moreover, taking
the four-sided antiprism mechanism constructed by asymmetric eight-bar linkage as an
example!'!®] see Fig. 1-10(d), various DPMs based on prisms and antiprisms have been

developed following prismatic geometry!!16-120],

(a) (b)

(d)

Fig. 1-10 Deployable polyhedral mechanisms. (a) Jitterbug transformers!'®”); (b) Bennett-based
DPMI'3I; (¢) Bricard-based DPM!!'4; (d) four-sided antiprism DPM with asymmetric eight-bar

linkagel!'6l,
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1.2.4.1 Polyhedral Mechanisms with Deployable Transformability

The interesting polyhedral transformations among Archimedean and Platonic
polyhedrons through mathematical operations are shown in Figs. 1-7 to 1-9.
Transformable polyhedrons are mathematically interesting yet kinematically
challenging. However, some existing designs introduce many constraints that make
control of the conversion process extremely difficult and cumbersome, thus limiting the
practical application of these mechanisms. Thus, to facilitate the control of
transformations, transformable polyhedrons with a kinematic strategy require few
DOFs, and the internal space must not be occupied by complex joints.

Yang et al.l'?!l realized a 1-DOF transformation between cuboctahedron and
octahedron based on a spatial multiloop mechanism, which was constructed by two
Bennett linkages and four RSRS linkages, as shown in Fig. 1-11(a). Then, as shown in
Fig. 1-11(b), they constructed a 1-DOF polyhedral transformation between a truncated
octahedron and cube by setting up two threefold-symmetric Bricard linkages with the
same parameters, while other related vertices were set with R or S joints!'??!. Similarly,
a 1-DOF transformation between the truncated tetrahedron and tetrahedron was
achieved and constructed with one threefold-symmetric Bricard 6R linkage and three
RSRRSR linkages with a large volume deployable ratio of 23!!%3], Furthermore, various
transformable polyhedrons have been constructed to mechanically transform cyclic
polyhedrons into their corresponding dual forms!'>*'?"). Wohlhart!!?*] proposed a
variety of new twisting towers that can be derived on the basis of three special
Archimedean polyhedrons, 1i.e., cuboctahedron, rhombicuboctahedron and
rhombicosidodecahedron, by omitting square side facets and setting up 2R-joints at the
vertices, in which the 1-DOF transformation from a rhombicuboctahedron to a
cuboctahedron is identified and illustrated in Fig. 1-11(c). In addition, the concept of
transformable polyhedrons with articulated faces was proposed by Lalibert¢ and
Gosselin!'*), which was described as polyhedral frameworks with faces that were
constrained to remain planar, for which the mechanical assembly of a cube with
articulated planar faces is given in Fig. 1-11(d). Nevertheless, this type of DPM had
more DOFs and could generate more shape transformations, which offered potential

applications in fields such as reconfigurable deployable mechanisms.
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Fig. 1-11 Transformable polyhedral mechanisms. (a) Transformation of cuboctahedron and
octahedron!'?!; (b) transformation between truncated octahedron and cubel'??); (c) transformation
between rhombicuboctahedron and cuboctahedron!!?8l; (d) transformation of cube and its general

configuration!'?”),

16



Chapter 1 Introduction

1.2.4.2 Polyhedral Mechanisms with Synchronized Radial Motion

In addition to the above investigations, there is a special type of DPM that is
capable of performing radial motions with shape-keeping capability. As shown in Fig.
1-12(a), a popular toy named Hoberman Sphere!!**! with 1-DOF radial motion was
produced by combining Sarrus linkages and scissor-like elements. To retain the exterior
shape during deployment, Agrawal et al.['*!l set up radially expanding polyhedrons by
introducing prismatic joints to polyhedral edges. Based on 1-DOF regular polygon-
shaped planar linkages, Gosselin and Gagnon-Lachance!!*?! developed a family of
expandable polyhedral mechanisms by assembling planar linkages with spherical joints
to retain the shape; as an example, a cubic mechanism is demonstrated in Fig. 1-12(b).
Similar polyhedral mechanisms were synthesized by integrating the assembly of planar
mechanisms into the edges!!** 134! and faces!'** %) of various polyhedrons.

In addition, based on plane-symmetric spatial eight-bar linkage and a virtual-axis-
based method, Wei and Dai >3] proposed a synthesis mothed for constructing a family
of overconstrained regular and semiregular DPMs possessing 1-DOF radially
reciprocating motion, in which the prototype hexahedral mechanism is presented in Fig.
1-12(c). Furthermore, reconfigurable DPMs constructed by using a variable revolute
joint were introduced by Wei and Dai''°!. Furthermore, Xiu et al.'*” developed a
synthesis approach for generating Fulleroid-like Platonic and Archimedean DPMs by
integrating the mentioned overconstrained eight-bar linkages into the Archimedean
polyhedron bases, in which a Fulleroid-like deployable cuboctahedral mechanism is
given in Fig. 1-12(d). Recently, taking 1-DOF polygonal prisms as basic units, group
DPMs with radially reciprocating motion were proposed based on an additive-then-
subtractive design strategy, where a deployable regular-tetrahedron mechanism was
selected as a design example to show the procedure of their synthesis method!?%,

Various deployable polyhedral mechanisms have been proposed in the past two
decades, yet there is little work on how to construct DPMs together with radial motion
and shape transformation, in which it is challenging to design the basic mechanism units
with synchronized motion and obtain their assembly strategy. Although the prismatic
joints, planar scissor-like linkages and eight-bar linkage were adopted in the reported
works, other new radial mechanism units have not been proposed as well as their novel

spatial tessellations following polyhedral symmetries.
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Fig. 1-12 Polyhedral mechanisms with synchronized radial motion. (a) Hoberman Spherel'3%; (b) a
cubic mechanism constructed by planar linkages with spherical joints!'*?l; (c) hexahedral
mechanism based on plane-symmetric spatial eight-bar linkages!®); (d) Fulleroid-like deployable

cuboctahedral mechanism based on overconstrained eight-bar linkages!!37].

1.2.5 Overconstraint reduction Strategy
The aforementioned 3D deployable mechanisms, especially DPMs, offer great

nl138, 139]

potential in deployable mechanisms for space exploratio . However, the

interconnection of these overconstrained linkages often results in a large number of

18



Chapter 1 Introduction

§[1401

redundant constraints in deployable mechanism Moreover, most deployable

si281 To ensure the

polyhedral mechanisms are overconstrained multiloop mechanism
motion of the overconstrained mechanisms, the strict overconstrained geometric
conditions of links and joints must be satisfied. Nevertheless, due to the harsh working
environment of those deployable mechanisms and the errors in fabrication, the
overconstraints bring additional internal loads that can render those mechanisms
immobile and reduce the reliability in the operation of the deployable mechanisms,
which cannot be completely overcome by simply improving the manufacturing
accuracy*® 11 Therefore, it is important to reduce or even eliminate the redundant
constraints of the original overconstrained mechanism by designing a less-
overconstrained or nonoverconstrained form while maintaining their equivalent
kinematic behaviours.

Several overconstraint reduction strategies for single-loop and 2D multiloop
mechanisms have been developed. To reduce the degree of overconstraint in a Bennett
linkage, an RRRS linkage with kinematic equivalence was reported by using a spherical
joint to replace a revolute joint!'*> 131 yet overconstraints still exist in this linkage.
Furthermore, Yang et al.>> proposed a truss method based on Maxwell’s rule'**] to
obtain a nonoverconstrained form of the Bennett linkage as the RSSR linkage, as well
as that of the Myard linkage as the RRSRR linkage. Recently, several methods to address
the overconstraint reduction of origami mechanisms have been developed. Based on
joint removal with kinematic equivalence, Brown et al. proposed certain reduction
methods to reduce the redundant constraints of zero-thickness origami-based
mechanisms, such as connected 1-DOF sections and end-to-end chains!'*’], for which
the reduced hexagonal pattern is shown in Fig. 1-13(a). Similar reduction approaches
have been applied in Miura-ori-based deployable arrays!!*?. In addition, the hinge-
removing technique!*!! was presented for thick-panel origami based on the construction
of a Waldron hybrid 6R linkage from two Bennett linkages, as demonstrated in Fig. 1-
13(b), which facilitates the engineering application of thick-panel origami, as it can
create a flat working surface in the deployed state. Furthermore, a novel folding method
of uniform-thickness panels was proposed, as shown in Fig. 1-13(c), which can be
treated as a modified Miura-ori where slits are introduced along the diagonals of some

147

facets to reduce constraint!'*’. The two triangular panels separated by a slit move apart
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during deployment, yet they are always parallel, which mimics the motion of the
original Miura-ori pattern.

However, few works have reported on how to reduce the overconstraints of 3D
multiloop DPMs while preserving their motion behaviour. The novel reduction strategy
for complex multiloop overconstrained mechanisms should be further explored, in

which mathematics could provide special inspirations to address this problem.

(a)

Fig. 1-13 Joint removal of 2D origami mechanisms. (a) Joint removal in hexagonal patterns!!#]; (b)
joint removal in thick-panel origami with four- and six-creased vertices™*'l; (¢) a modified Miura-

ori pattern with slits!'47],

1.3 Aim and Scope

This dissertation proposes a construction method of novel DPMs with 1-DOF
synchronized radial motion, accomplishes richer polyhedral transformations with a
mechanism kinematic strategy, investigates the mechanism topology following
polyhedral symmetry, and proposes a novel overconstraint reduction strategy for

multiloop overconstrained DPMs by combining kinematics and mathematics.
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In this process, by introducing S4R linkages to provide symmetric motion, the
approach to construct S4R-based polyhedrons with 1-DOF radial motion is first
investigated. Based on the S4R-synchronized mechanism, a construction method of
nine transformable polyhedral mechanisms with distinct symmetries is presented by
embedding the S4R-synchronized mechanism cells into the surface of Archimedean
polyhedrons. Then, the synthesis method, kinematic analysis and constraint reduction
of Sarrus-based deployable polyhedral mechanisms are investigated. The Hamiltonian
paths of 3D topological graphs are introduced for removing redundant constraints.
Finally, considering spatial 7R linkages as the basic construction units as well as their
multi-symmetric loops, the design of deployable Archimedean polyhedrons is presented,
and their richer polyhedral transformations are revealed following tetrahedral,
octahedral and icosahedral symmetries. Therefore, this dissertation aims to propose a
novel and systemic construction method of radial DPMs by using S4R linkages, Sarrus

linkages and spatial 7R linkages as the radial mechanism units, respectively.

1.4 Main Contents

This dissertation consists of five chapters, which are described as follows.

Chapter 1 presents a review of the previous works mainly on 3D deployable
mechanisms and polyhedral mechanisms.

Chapter 2 proposes a method to create a novel S4R-synchronized mechanism with
threefold-symmetric motion, which is constructed by integrating three pairs of S4R
linkages to a spatial 9R linkage. Then, the synthesis of three 1-DOF radial S4R-based
polyhedrons is proposed by properly embedding S4R-synchronized mechanism cells
into the surface of polyhedrons, as well as structural variations with mechanism
topology isomorphism by introducing shortening operations. Overconstraint reduction
of the proposed S4R-based polyhedrons is investigated with constraint space.

Chapter 3 constructs Sarrus-based tetrahedral, cubic and dodecahedral
mechanisms by implanting Sarrus linkages. Three paired transformations with
synchronized radial motion are revealed. Moreover, the overconstraint reduction of
multiloop overconstrained DPMs is proposed by introducing the Hamiltonian path to
3D topological graphs. Through topological reduction operations based on their
corresponding Hamiltonian paths, the simplest constraint forms of those polyhedral

mechanisms are proposed with kinematic equivalence.
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Chapter 4 discusses to the design of a family of deployable Archimedean
polyhedrons by means of spatial 7R linkages. Various 7R-based DPMs are demonstrated
following tetrahedral, octahedral and icosahedral symmetries, respectively, in which the
symmetry is always reserved in the folding process of each 7R-based polyhedron.
Finally, the overconstraint reduction of those DPMs is further investigated through a
topology reduction operation, which is an extension of the Hamiltonian-path reduction
strategy proposed in Chapter 3.

As the conclusion of this dissertation, Chapter 5 summarizes main achievements
and future works. This dissertation establishes a rational design principle of DPMs
using three mechanism types as the basic mechanism units following polyhedral
symmetries, and conducts the overconstraint reduction of the proposed DPMs. Finally,

a logic diagram of the main research works shown here is shown in Fig. 1-14.

Symmetric Polyhedral Geometry
4 t i N e “\ 2 . )
" Spherical : ( Sarrus [ Spatial 7R
Design of . linkages | & linkages linkages
the basic P
mechanism !
units D
§ 3 i ‘ J
. ] : ' L ! N |
' S4R-based = Sarrus- | 7R-based
Construction. DPMs | based DPMs
of symmetric | DPMs
polyhedral
mechanisms |
J— ! ! !
Reduced Reduced ' Reduced
Constraint | S4R-DPMs | = Sarrus- | 7R-DPMs
reduction of | DPMS
polyhedral | ' B
mechanisms L
. l I‘
One-DOF radial DPMs and their simplest forms

Fig. 1-14 Logic diagram of the main contents in this dissertation.
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Chapter 2 1-DOF Deployable S4R-based Polyhedrons

2.1 Introduction

Deployable polyhedral mechanisms are generally constructed by embedding
linkages and their mobile chains into the vertices, faces and edges of regular convex
polyhedrons. However, there is little work on how to construct deployable polyhedrons
using origami mechanisms, especially for the most typical S4R linkages, which are not
only interesting in solid mathematical geometry but also challenging in the kinematics
of mechanism science. The difficulty of research is how to arrange new crease patterns
on polyhedrons.

Thus, the objective of this chapter is to construct S4R-based DPMs with 1-DOF
radial motion and achieve paired polyhedral transformations among Archimedean
polyhedrons. For this purpose, three paired polyhedrons are identified in Fig. 2-1, and
each pair possesses the same polyhedral symmetry, which are tetrahedral symmetry,
octahedral symmetry and icosahedral symmetry. In each deployed polyhedron, any
hexagon yellow facet is alternately surrounded by three cyan squares and three blue
polygons, in which each vertex is intersected by three different facets. For instance, to
transform a truncated cuboctahedron to a truncated cube, as shown in Fig. 2-1(b), the
identical octagonal faces in blue move radially towards the centroid during the
transformation, while the faces in other colours are folded.

The outline of this chapter is as follows. In Section 2.2, a novel S4R-synchronized
mechanism with threefold-symmetric motion characteristics is constructed by
integrating three pairs of S4R linkages into a spatial 9R linkage. Section 2.3 presents
the synthesis of three 1-DOF S4R-based polyhedrons by properly embedding S4R-
synchronized mechanism cells into the surface of polyhedrons, as well as the structural
variations with mechanism topology isomorphism by introducing the shortening
operations. In Section 2.4, overconstraint reduction of the proposed S4R-based
polyhedrons is investigated by removing redundant links and joints to reduce
overconstraint in the polyhedral mechanism. Finally, the main findings of the research
are summarized in Section 2.5.
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(a)

(b)

()

Fig. 2-1 Three paired Archimedean polyhedrons. (a) Truncated tetratetrahedron and truncated
tetrahedron; (b) truncated cuboctahedron and truncated cube; (c¢) truncated icosidodecahedron and

truncated dodecahedron. Their volumetric expansion ratios are 4.17, 3.07, and 2.43, respectively.

2.2 SAR-synchronized Mechanism

Considering the truncated cuboctahedron in Fig. 2-2(a) as an example, to realize
the transformation illustrated in Fig. 2-1(b), the blue facets move synchronously and
radially with respect to the polyhedral centroid, while the facets in cyan and yellow are
folded. The highlighted red line area in Fig. 2-2(a) is adopted as a cell of the truncated
cuboctahedron, which is centred around a yellow facet and has a threefold-symmetric
facet arrangement. A crease pattern is identified in Fig. 2-2(b) by removing the yellow
facet and embedding three valley creases into three cyan sheets. Thus, sheets P; to pg
are connected sequentially to deliver a spatial 9R linkage, where solid lines between
two adjacent sheets denote mountain creases and dashed lines stand for valley creases.

To reveal the motion characteristics of this spatial 9R linkage, kinematic analysis
can be conducted based on the D-H matrix method, in which its D-H coordinate frames
are established in Fig. 2-2(c). There exists 2,//2,//1,, Z//75// 7, and Z43//1,//'Z,
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based on the polyhedral geometry, and the D-H parameters of the spatial 9R linkage can
be obtained as
Oy =0y =g = B, Olyg =gy = Oleg = Oy = Qlgg =0y, =0
, =85 =8, =0, 8y =8y, =8, =8y =8, =a, =a/2 (2-1)
R =R,=R,=-R, R, =R =R, =R, R, =R, =R; =0
where link length a/2 represents half of the polyhedral edge length, and £ can be
determined by the corresponding polyhedral geometry.
The closure equation in the D-H method can be rewritten as
Ty Tao s = ToiTeo Tog Ter Teg Tus (2-2)
Substituting the above D-H parameters into this closure equation (2-2) and
referring to the relations between dihedral angles and kinematic joint angles, the

kinematic relations of dihedral angles ¢, in spatial 9R linkage can be derived as

cos(p — s+, ) = cosp (2-3a)
1+cosp
sin(g, — ;) =sin (¢ — 9, + & -, (2-3b)
cos(, ;) =C0s(ps — 5 + ¢ — ;) (2-3¢)
cos (¢, )—cos (@, —@,) =cos(¢, )—cos (¢, — ;) (2-3d)
Adjusting the order of the transformation matrix in the closure equation,
T Tes Tog = Ty Tos T Tor Teo Tg (2-4)
drives the corresponding kinematic relationships
cos (@, — @, +¢1):% (2-5a)
sin(g; — ;) =sin(g, — ¢+~ ) (2-5b)
cos(, — ;) =Cos(@, — 0+~ ;) (2-5¢)
cos (¢, ) —cos (¢ —¢, ) =cos(¢, ) —cos(@ — ¢, ) (2-5d)
And, taking a similar matrix operation,
T Toe Tio = Tsr Teg Tas Taa T3 1o (2-6)
yields
cos(@, — @, +¢,) = liisofﬂ (2-7a)
sin(g, —,) =sin(,— ¢, + 0, -4 (2-7b)
COS(% _(/’9):(:05(% P+, _¢71) (2-7¢)
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cos (¢, ) —cos (¢, — ¢, ) =cos(¢, ) —cos(@, — ;) (2-7d)

Hence, the associated dihedral angles in this spatial 9R linkage can be identified as
—+——+——+—arccosﬂ 2-8
PPt P =P P TP =P~ Pt 1+ cos 3 (2-8)

(b)

Fig. 2-2 Spatial 9R linkage. (a) A cell of the truncated cuboctahedron illustrated in the red line area;
(b) a crease pattern with the connection of nine sheets P, to pPy; (c) D-H coordinate frames of its

corresponding spatial 9R linkage.

If three independent dihedral angles, e.g., ®,, @; and @5, are given as the
kinematic inputs, the rest of the dihedral angles can be determined by Egs. (2-3), (2-5),
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(2-7) and (2-8); hence, this spatial 9R linkage has three DOFs, which is consistent with
the calculation result of the G-K formula.

In addition, referring to Fig. 2-2(c), ¢, is a virtual dihedral angle between
platforms P, and P,,sodo @,; between P, and P,,and ¢, between P; and p,,

there exist further relations that

D= =Pt Py, Pu=P5 =P TP, P =G =P+, (2-9)
Combining Eq. (2-8) and Eq. (2-9) yields
cos g
Prp = Py = Pr, = AICCOS (m} (2-10)

which reveals that the spatial angles between any two platforms are identical in each
folding configuration of the proposed spatial 9R linkage even though it is 3-DOF.

To achieve 1-DOF synchronized radial motion, extra motion constraints are
needed. Here, two additional sheets are introduced to form an S4R linkage at vertex A
to constrain the motion between p, and p,.Moreover, the same operation is applied
to vertices B to F, which forms a modified crease pattern, as shown in Fig. 2-3(a).
Taking two paired S4R linkages A and B sharing a common crease AB as an example,
as shown in Fig. 2-3(b), to obtain an associated symmetric motion between sheets P,
and p,, the symmetrically identical design parameters of two S4R linkages are set as

a,=(p+180°)/2, ay+a,,=120°, «,,=90° (2-11)
in which «a,, is associated with polyhedral geometry, while «,; and &, are the
variable design parameters.

Substituting Eq. (2-11) into the closure equation, the kinematic relationships of
dihedral angles @ to ¢, in S4R linkages A and B are

COS @ (Sin at;, COS a,, — COS @, SN 15 COS ) + SN SiN A SNy —COS(120°— 1) = 0
sin(120°— az,, )sin g =sin ¢ OS¢, +CoS ar, COS A Sin ¢,
sin(120°—a,, ) COS ¢, = COS 4, COS aty, +SiN ey, SIN 2, COS (2-12)

where i =A, B.
Moreover, the inverse kinematics of the S4R linkages can be revealed to avoid
physical interference during the entire folding. The range of the dihedral angle ¢1' can

be obtained based on the polyhedral geometry; thus, the minimum design parameter

a5, can be derived from Eq. (2-12) when ¢, =0 as
Sin (o, — Gyain ) COSA —C€05(120°— g ) =0 (2-13)
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When ¢, =0, the maximum of &,; can be calculated with
SiN @, SIN (g —30°) COS @ +COS 1y, COS( gy —30°) —COS( g ) =0.  (2-14)
With the above deduction and the structural geometry of polyhedrons given in Fig.

2-1, the configuration parameters and design parameters are listed in Table 2-1.

Table 2-1 Configuration parameters and design parameters of the four-crease vertex.

The paired polyhedrons # 14 Py B , Xz3min Xogmax

Truncated tetratetrahedron and

truncated tetrahedron 125.26° 35.26 60 120 69.23°  78.53

Truncated cuboctahedron and

truncated cube 135 45 90 135 69.90° 87.56

Truncated icosidodecahedron

and truncated dodecahedron 148.28°  58.28 108 144 61.42° 94.22

Furthermore, the adjacent S4R linkages A and B share a common revolute joint,
referring to Fig. 2-3(b), i.e.,

¢ =4, (2-15)
thus,

¢ =¢°(j=1,2,3,4) (2-16)

Therefore, the associated symmetric motion between sheets P, and Py in the
paired S4R linkages is realized and is not affected by geometric parameters.

Similarly, the above geometric parameters and kinematic relationships can be
readily applied to the paired S4R linkages C and D, as well as E and F, as illustrated in
the synthesized S4R-synthesized mechanism in Fig. 2-3(c), thus the further assembly
conditions can be expressed as

6 =6 =4, b =4(-1.2.3.4) (2-17)

Thus far, considering the common panels and joints in Fig. 2-3(c) among the

spatial 9R linkage and six S4R linkages A to F, we can establish the transmission

relationships in the entire S4R-based mechanism,

2} :¢1Aa 0, :¢1B, N :¢1C, 23 :¢1D , O; :¢1E, Py = ¢1F (2-18)
Referring to Egs. (2-17) and (2-18), we have

OL=0y, Oy=QPs, P; =0 (2-19)
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Fig. 2-3 S4R-synthesized mechanism. (a) A modified crease pattern by introducing six four-crease

vertices A to F; (b) D-H coordinate frames of the paired S4R linkages A and B; (c) the S4R-

synthesized mechanism based on the modified pattern.

Subsequently, for the spatial 9R linkage, substituting Eq. (2-19) into kinematic
relationships obtained in Egs. (2-3), (2-5) and (2-7) yields

D=0, =0, =P =P; =P (2-20a)
o =, =20, —arccos| 58 2.20b
D3 =P =Py 2] 1+cos B (2-20b)
for S4R linkages A to F,
6= =0, =¢) =4, =¢] (j=1,2,3,4) (2-21)
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Furthermore, by assigning =90°, ,,=135° and @4, =69.90° in the case of
a truncated cuboctahedron, as given in Table 2-1, the input—output curves of the dihedral
angles in the entire S4R-synchronized mechanism are illustrated in Fig. 2-4. In the
unfolded process, @, in the spatial 9R linkage are linearly dependent; for the six S4R
linkages, in addition to @' =¢,, @ increases from 0° to 125.26°, ¢} is from 67.16°
to 180°, and ¢j is from 56.71° to 144.74°, where i =A, B,..., F.

180 ' y
— 0.0.90:0,0.9, A
’

— @;‘m(y Q’v

135

90

Dihedral angles (°)

45

45 67.5 90 112.5 135
¢ (%)

Fig. 2-4 Input—output curves of dihedral angles in the S4R-synchronized mechanism with 3 =90°,

o, =135°, @y, =69.90° andi=A,B,...,F.

The above analysis shows that if ¢, is given as the only kinematic input, the rest
of the dihedral angles in the entire S4R-synchronized mechanism can be determined.
Moreover, the synchronized radial motion of this mechanism can be revealed and
proven by means of the direction and position vectors. Referring to the kinematic
deductions of the 1-DOF S4R-synchronized mechanism with f=90° and o, =135°,
the direction vectors of the joint axes of z; to zg are shown in Figs. 2-5, in which z3, zs
and zo are vertical to each other and intersect at the origin of the global coordinate frame
in every configuration. The direction vectors of z; to zo and the position vectors of points

A to F' can be derived as

. T
acosg, asin g01:|

z,=[1 0 0], A:{d > >
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. T

2,-[0 1 O]T, B:[_acos(p1 q asm(ﬂl}

2 2
z,=[0 1 0], B'=[0 d 0]

. T
2,=[0 1 o', C{_asm(ol q acos(ol}

2 2

. T
2=[0 0 —1J. D=|:_aSI2n(Dl _acc;s(ol —d}

T

z,=[0 0 -1]', D'=[0 0 —d],

. T
2,-[0 0 1], Ez[_acoswl _asing, —d}

2 2
. T
Z=[1 0 O]T, F=[d _asing, acos%}
2 2
z,=[1 0 0], F'=[d 0 o] (2-22)

in which d =a(J§—COS(p1)/2.

Fig. 2-5 Direction vectors of joint axes of z; to zg in the S4R-based mechanism.

The direction vector n,, in platform p; is the normal vector of z; and z> passing
the common point P12, as do the normal vector n,, for z4 and zs passing Pss and the

normal vector n,, forz7and zs passing P7s, which can be obtained as

. T
T acos acos asing
n12:[0 0 1] > P].Zzl:_ ho A 1:|

2 2 2
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f T
T asin acos acos
ne=[-1 0 o, p45:|:_ ¢ _acosp col}

2 2 2
. T
acos asin acos
n,=[0 -1 of, Pm{- S0, _asho, 2“’1} (2-23)

Thus far, the motion directions of the three platforms illustrated in blue are
invariable, and the distances of the three points P2, P45 and P73 with respect to the
origin O are always identical. Hence, this S4R-based mechanism presents a 1-DOF
synchronized radial motion. Hence, as illustrated in Fig. 2-6, this S4R-synchronized

mechanism performs a 1-DOF threefold-symmetric radial motion.

(b)

(c) (d)

Fig. 2-6 Folding process of the S4R-synchronized mechanism, from (a) the deployed configuration,

via (b) and (c) two intermediate configurations, to (d) the folded configuration.

Based on kinematic equivalence, the double-spherical Bennett 6R linkage can also
be adopted by removing the common revolute joint of each pair of S4R linkages.

Therefore, a novel S4R-synchronized mechanism is constructed in this section by
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integrating three pairs of S4R linkages into a spatial 9R linkage. The proposed 1-DOF
S4R-synchronized mechanism can be utilized as a mechanism cell to construct a series
of novel S4R-based polyhedrons with synchronized radial motion, as is presented in the

next section.

2.3 Construction and Variations of a Series of S4R-based Polyhedrons

2.3.1 Symmetric Construction of S4R-based Polyhedrons

The truncated cuboctahedron with octahedral symmetry is selected from Fig. 2-1
to demonstrate the construction process of the S4R-based polyhedron. As shown in Fig.
2-7(a), a one-eighth portion of the entire polyhedral surface is symmetrically
highlighted by grey dotted lines. Referring to Fig. 2-7(b), we then embed the 1-DOF
crease pattern proposed in Fig. 2-3(a) into this one-eighth surface, which can be
regarded as the S4R-based mechanism cell. Ultimately, following O tessellation, the
complete S4R-based truncated cuboctahedron is constructed in Fig. 2-7(c) by
embedding and merging eight mechanism cells. With the 1-DOF radial motion of
mechanism cells and the symmetric property, it is straightforward to show that the entire
motion of the proposed S4R-based truncated cuboctahedron is 1-DOF, coordinated and
radially synchronized. A corresponding prototype is fabricated, as shown in Fig. 2-7(d),
in which the sheets at each four-crease vertex have been expanded along the valley
creases until the red lines to cover the maximum yellow surface in a deployed
polyhedron.

During the 1-DOF synchronous radial motion, the inscribed sphere radius r,
circumscribed sphere radius R and the Volume V of the S4R-based truncated

cuboctahedron as illustrated in Fig.2-7(c) are

r =(v/2sin(p, —45°) +y/2 +1)a/ 2 (2-24a)

R = /(8-+4sin(p, —45%) / (2—2) —2sin g, a/2 (2-24b)

v 102+ 68+/2 +3(48 + 29+/2) sin(¢, — 45°)
~(18+12/2)sin(2¢,) +~/2 sin(3¢, + 45°)

where a is the edge length of a regular truncated cuboctahedron.

Ja3 /112 (2-24c)
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Fig. 2-7 Construction of S4R-based truncated cuboctahedron. (a) A one-ecighth of the entire
polyhedral surface in a truncated cuboctahedron; (b) the embedding of one S4R-synchronized
mechanism cell; (c) construction of the entire S4R-based truncated cuboctahedron; (d) the
transformation sequence of a cardboard prototype from a truncated cuboctahedron (left) to a

truncated cube (right), in which the red lines stand for slits.

Thus, taking @, as the only input dihedral angle, the curves for the deployable

radius 7 and R and the volume J can be obtained and illustrated in Fig. 2-8.

(a) (b)

2.4a 424°
R .-~
2.1a P 34a’
/// V

w - = (M)
= - e =]
< 1.8alL” o = 264
] - (=]
o T 4

1.5a 184’

' 45 67.5 90 112.5 135 45 67.5 90 112.5 135
@, (%) (%)

Fig. 2-8 The curves of (a) inscribed sphere radius » and circumscribed sphere radius R and (b) the
Volume V' vs. folding angle ¢,.
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Furthermore, the proposed construction method can be readily extended to the
other two cases, as shown in Fig. 2-1. Based on tetrahedral symmetry, one S4R-based
mechanism cell is embedded into a quarter surface of the truncated tetratetrahedron, as
shown in Fig. 2-9(a). Then, a prototype S4R-based truncated tetratetrahedron is created
and fabricated, as illustrated in Fig. 2-9(b). Following icosahedral symmetry, the
tessellation of one mechanism cell on the one-twentieth surface in Fig. 2-9(c) results in
an S4R-based truncated icosidodecahedron in Fig. 2-9(d). The transformation
sequences of the two prototypes show that both can realise 1-DOF synchronized radial

motion.

Fig. 2-9 Tessellation with T4 and I, symmetries. (a) One mechanism cell of the S4R-based truncated
tetratetrahedron and (b) its transformation sequences of the cardboard prototype; (c) one mechanism

cell in the S4R-based truncated icosidodecahedron and (d) its cardboard prototype.
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In summary, the procedure of constructing such S4R-based polyhedrons can be
summarized as follows. Step 1: Divide a threefold-symmetric portion centred around a
yellow facet on a polyhedral surface according to the corresponding symmetry. Step 2:
embed the 1-DOF S4R-synchronized mechanism cell into this portion surface. Step 3:
synthesize the entire polyhedral mechanism following symmetric tessellation of
mechanism cells. Step 4: Verify the kinematic characteristics, i.e., one DOF, radial
synchronized motion and the symmetry reserved in the continuous motion. If the
threefold-symmetric portion cannot be divided out from a polyhedral surface in Step 1,
then the objective polyhedron should be reconsidered. Moreover, the synthesis process

of mechanism cells in Step 3 should satisfy the kinematic compatibility.

2.3.2 Structural Variations with Mechanism Topology Isomorphism

To date, three paired transformations have been realized by symmetrically
embedding S4R-synchronized mechanism cells into the surface of polyhedrons. Next,
we aim to create a wider range of polyhedral transformations using dimensional
shortening operations, in which the related mechanism topology remains isomorphic.

First, an octagon with two types of sides lies in the middle of the first row in Fig.
2-10, in which the length of the horizontal or vertical sides is / and the inclined side is
h. Following the leftward path I, / is gradually shortened until it is reduced to zero while
h is retained, which ultimately leads to an inclined square with side length 4. On the
other hand, shortening % to zero along the rightward path II results in a square with side
length /. Subsequently, referring to the planar shortening operations of an octagon, the
second row demonstrates the corresponding polyhedral assemblies. As a result, based
on the original truncated cuboctahedron, a rhombicuboctahedron and a truncated
octahedron eventually reach along path I and path II, respectively, where the
rhombicuboctahedron’ in path I and truncated octahedron’ in path II represent the
intermediate shortening results. Furthermore, following the polyhedral transformation
principle indicated in Fig. 2-1, the third row in Fig. 2-10 shows the corresponding
folded polyhedrons in geometric dimensions.

Together with the shortening operations in Fig. 2-10 and the proposed construction
method of the S4R-based polyhedral mechanism, structural variations of polyhedrons

are presented as follows with mechanism topology isomorphism.
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Fig. 2-10 Dimensional shortening operations. The first row: the leftward path I to shorten side length
I and the rightward path 11 to shorten side length h in an octagon; the second row: the corresponding

polyhedral assemblies; the third row: the corresponding transformation results.

Here, the original mechanism cell is taken as the middle one in the first row of Fig.
2-11. Combined with the proposed shortening operations along paths I and II, the S-/-
cell and S-/-cell both possess the same mechanism topology as the original cell due to

the paired S4R linkages at the corners.

Next, in terms of the construction of the entire polyhedral mechanism, the second
row in Fig. 2-11 depicts the proposed S4R-based polyhedrons in the deployed state.
Similarly, the third row displays the corresponding folded configurations of the above
S4R-based polyhedrons. The S4R-based rhombicuboctahedron’ in path I can perform
1-DOF radial motion due to the same mechanism topology as the original truncated
cuboctahedron mechanism, as well as the S4R-based truncated octahedron’ in path II.
In the extremal cases /=0 and 4#=0, the dimension of the S4R linkage pairs is shortened
to zero, which is only theoretically possible but rather difficult to make a physical

prototype without special design on the joints.
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Fig. 2-11 Variations of S4R-based polyhedrons with shortening operations. The first row: leftward
path | to shorten side length I and path 11 to shorten side length h in an original mechanism cell. the
second row: the folded configurations of the deployable polyhedrons; the third row: the folded

configurations.

Therefore, the S4R-based rhombicuboctahedron’ and truncated octahedron’ in Fig.
2-11 are identified and constructed along path I and path II to achieve the other two 1-
DOF radial transformations with On symmetry, respectively. Moreover, the proposed
structural variations can be directly extended to the other two original S4R-based
polyhedrons (see Fig. 2-9) with T, and |, symmetries. In summary, based on the
three original cases given in Fig. 2-1, a total of six transformations with structural
variations are demonstrated in Fig. 2-12, all of which can perform 1-DOF synchronized
radial motion.

Based on the polyhedral geometry, the specific design parameters of the cyan and
yellow sheets of the S-/-cell and S-A-cell are presented as follows to avoid physical

interference during folding, especially in the folded configuration.
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(a) (b)
.

WV (A4 B

(d)

Fig. 2-12 The paired polyhedrons and their transformation solutions. (a) Rhombitetratetrahedron
and tetrahedron (VDR=20); (b) truncated tetrahedron and tetratetrahedron (VDR=5.75); (c)
rhombicuboctahedron and cube (VDR=8.71); (d) truncated octahedron and cuboctahedron
(VDR=4.80); (e) rhombicosidodecahedron and dodecahedron (VDR=5.43); (f) truncated
icosahedron and icosidodecahedron (VDR=4.00). (VDR=Volumetric Deployable Ratio).

Based on threefold symmetry of the S-/-cell in Fig. 2-11, a one-third portion of the
S-I-cell is shown in Fig. 2-13(a). Theoretically, / can be shortened to an infinitesimal

one; here, we assign |1"=0.11 that facilitates manufacturing and presentation.
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Then, the length b without interference can be derived as
I"tan y
™ 25in(4/2)
in which 7 can be obtained from the polyhedral geometry in the completely folded

(2-25)

state as 35.26°, 54.74° and 69.09° in the rhombitetratetrahedron, rhombicuboctahedron
and rhombicosidodecahedron, respectively.

On the other hand, one-third of the S-A-cell is illustrated in Fig. 2-13 (b), in which
we set up h'=0.1h, and the length ¢ of the valley crease between two yellow sheets
can be obtained as

cC._ = il
"™ 2¢0s(90°+ B/2 - a,,)

(2-26)

Other geometric parameters and shapes of these sheets can also be properly

adjusted without physical interference and with mechanism isomorphism.

(b)

Fig. 2-13 Design parameters in (a) one-third of the S-I-cell and (b) one-third of the S-h-cell.

2.4 Overconstraint reduction of S4R-based Polyhedrons

To achieve 1-DOF synchronized radial motion, we add extra motion constraints of
the original S4R-synchronized mechanism into the depiction of Fig. 2-3, i.e., three
paired S4R linkages are introduced into a spatial 9R linkage. However, we can further
reduce the motion constraints by arbitrarily removing one pair of S4R linkages, in which
two pairs of S4R linkages still need to be reserved. As shown in Fig. 2-14, we remove
the paired S4R linkages A and B, meaning that the motion constraint between sheets
p, and Py vanishes. Thus, the original constraint relationships in Eq. (2-19) are
reduced as

Py =Ps ,P7 =Py (2-27)
in which @, =@, in Eq. (2-19) vanishes.

Substituting Eq. (2-27) into Egs. (2-3) and (2-5), we have

D=0 =5y Q) =P =g, Q3 =5 =Py (2-28)
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referring to Eq. (2-7d),

cos(¢,)—cos (¢, —@,) =cos(¢, ) —cos(p — ;) (2-29)
Combining Eq. (2-28) and Eq. (2-3d) yields
P =0 (2-30)
Therefore, the kinematic relationships about dihedral angles can also be obtained
as
P= =P =05 =0 =y (2-31a)
Py =05 =Py =20 —arCCOS(liZZf ﬂ] (2-31b)

Thus far, the reserved two paired S4R linkages, C and D and E and F, can also
provide the necessary constraint for the 1-DOF S4R-synchronized mechanism. Based
on the above derivation, the yellow sheets and the relative joints at S4R linkages A and
B can be removed without affecting the original kinematics. The simplified S4R-
synchronized mechanism can also perform a 1-DOF threefold-symmetric synchronized
radial motion as the original mechanism (see Fig. 2-15). In addition, the yellow sheets
at S4R linkages C to F cannot be further removed because that will increase the DOF

of the S4R-synchronized mechanism.

z; z,
Fig. 2-14 Reduction of S4R-synchronized mechanism.
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(b)

() (d)

Fig. 2-15 Folding process of the simplified S4R-synchronized mechanism, from (a) the deployed

configuration, via (b) and (c) two intermediate configurations, to (d) the folded configuration.

Considering the three S4R-based polyhedrons with On symmetry in Fig. 2-11 as
examples, following the Oy, tessellation of the simplified S4R-synchronized mechanism,
simplified S4R-based truncated cuboctahedron, rhombicuboctahedron and truncated
octahedron are proposed. The folding progresses are illustrated in Fig. 2-16, and it can
be seen that the original 1-DOF synchronized radial motion is reserved in each
simplified S4R-based polyhedron, as well as the On symmetry in each configuration.
The original truncated cuboctahedron mechanism consists of 102 links and 156 joints
with overconstraints of 175. After removing the redundant constraint, there are 78 links
and 116 joints with overconstraints of 119, which indicates a significant reduction in

overconstraints.
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Fig. 2-16 Simplified deployable S4R-based polyhedrons based on (a) truncated cuboctahedron, (b)

rhombicuboctahedron and (c) truncated octahedron.

2.5 Conclusions and Discussion

In this chapter, we proposed an innovative approach for constructing a family of
S4R-based DPMs with 1-DOF radial motion and deployable transformability among
Archimedean polyhedrons. As construction cell DPMs, a 1-DOF S4R-synchronized
mechanism is constructed by embedding three pairs of spherical 4R linkages into a
spatial 9R linkage to provide kinematic constraints. Three 1-DOF transformable S4R-
based polyhedrons are obtained by assembling 1-DOF mechanism cells following T4,
On and I, symmetries. Furthermore, dimensional structural variations with mechanism
topology isomorphism are demonstrated to realize various transformable solutions.

Ultimately, a total of nine transformable polyhedrons with 1-DOF radial motion were
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obtained. In addition, the overconstraint reduction of the proposed DPMs was proposed
by removing redundant links and joints.

Although only Archimedean solids are studied in this chapter due to their
interesting transformability, such construction methods can be adapted to explore the
design of other 1-DOF deployable polyhedrons, such as Johnson solids. Note that to
realize such polyhedral construction, three blue platforms in an S4R-based mechanism
cell should surround a hexagonal facet (or triangular facet after shortening operations)
and separate from each other to derive a threefold-symmetric feature. The tessellation
of mechanism cells should follow the original symmetry of a polyhedron. Furthermore,
the dimensional shortening operations should ensure the symmetry of the platforms and
the radial motion towards the centroid, as well as mechanism topology isomorphism.

Due to the synchronized radial motion of S4R-based polyhedrons, their
corresponding symmetric properties are preserved in all configurations, i.e., they are
isotropic. Regarding an S4R-based polyhedron as a construction cell, the work in this
chapter potentially provides a new kinematic strategy to create three-dimensional
metamaterials with enriched properties, such as a large deformation range, Poisson’s
ratios of —1 and negative thermal expansion. Furthermore, in the kinematics of the S4R-
based polyhedral mechanism, the focus is on the 1-DOF mechanism topology. In
addition to the structural variations reported in this chapter, relative geometric
conditions can also be properly adjusted to meet specific engineering requirements. We
expect the proposed S4R-based DPMs and their tessellation to enhance their
applications in various engineering fields, such as deployable mechanisms for

architectures as well as space exploration.
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Chapter 3 Sarrus-based Deployable Polyhedral Mechanisms

3.1 Introduction

Deployable polyhedrons with transformability are concerned with solid geometry
and mechanism science, which present geometric inspirations and kinematic challenges.
In this chapter, we focus on three paired transformations between Platonic and
Archimedean polyhedrons, as shown in Fig. 3-1, referring to polyhedral expansion in
solid geometry. The blue facets in a Platonic polyhedron are separated and moved apart
radially, and new facets in beige are formed among separated elements to form a
corresponding Archimedean polyhedron. Due to this expansion operation, the two
polyhedrons in each transformation have identical polyhedral symmetry properties;
Figs. 3-1(a) to (c) show tetrahedral symmetry, octahedral symmetry and icosahedral
symmetry, respectively. However, it is challenging to accomplish such transformation
from a mechanistic point of view.

Moreover, most deployable polyhedral mechanisms are highly overconstrained
multiloop mechanisms, which will hinder their practical applications. To ensure the
motion of the heavily overconstrained mechanism, the strict geometric conditions of
links and joints should be satisfied. Nevertheless, due to the harsh working environment
of those deployable mechanisms and the errors in fabrication, the ideal geometric
constraints are difficult to meet. Moreover, the overconstraints bring additional internal
loads that can render those mechanisms immobile, reducing the reliability of the
deployable mechanisms. Therefore, it is important yet difficult to reduce or even
eliminate the redundant constraints for the original overconstrained mechanism by
designing a less-overconstrained or nonoverconstrained form while maintaining their
equivalent kinematic behaviours. Hence, the other objective of the chapter is to
investigate the overconstraint reduction of the multiloop DPMs.

The outline of this chapter is as follows. In Section 3.2, we first construct the
deployable tetrahedral, cubic and dodecahedral mechanisms by implanting Sarrus
linkages along the straight-line motion path. Three paired transformations with
synchronized radial motion between Platonic and Archimedean polyhedrons are
revealed, and their significant symmetric properties perfectly remain in each work
configuration. Moreover, with the assistance of equivalent prismatic joints, an

equivalent analysis strategy for the mobility of multiloop polyhedral mechanisms is
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proposed to significantly simplify the calculation process. In Section 3.3, combining
kinematics and mathematics, the overconstraint reduction of multiloop overconstrained
DPMs is proposed by introducing the Hamiltonian path to 3D topological graphs.
Through the removal of redundant joints based on their corresponding Hamiltonian
paths, the simplest constraint forms of those polyhedral mechanisms are proposed with
kinematic equivalence. Furthermore, nonsimplest constraint forms of Sarrus-based with

rotational symmetries. Finally, a conclusion is given in Section 3.4.

(a)

(b)

Fig. 3-1 Three paired Platonic and Archimedean polyhedrons. (a) A tetrahedron and a
rhombitetratetrahedron with tetrahedral symmetry; (b) a cube and a rhombicuboctahedron with
octahedral symmetry; (c) a dodecahedron and a rhombicosidodecahedron with icosahedral

symmetry. The volumetric expansion ratios are 20, 8.71, and 5.43, respectively.

3.2 Construction and Equivalent Analysis of Sarrus-based DPMs
3.2.1 Deployable Tetrahedral Mechanism

3.2.1.1 Construction of a Deployable Tetrahedral Mechanism
A hollow tetrahedron with four congruous prismoid platforms A, B, C and D is
shown in Fig. 3-2(a). Its four vertices are denoted by a to d, six edges are ab, ac, ad, bc,

cd and bd with the x-axis passing through midpoints of edges ad and bc, as do the y-
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axis for edges ac and bd, and the z-axis for edges ab and cd. Here, the coordinate origin
O is the centroid of this tetrahedron, and the perpendiculars of the four platforms
intersecting at the centroid O are denoted by red dashed-dotted lines. Subsequently, by
carrying out the expansion operation, four platforms are separated synchronously and
moved radially along the corresponding perpendiculars, and each pair of adjacent
triangular prismoid platforms undergoes a straight-line motion, as shown in Fig. 3-2(b).
Based on tetrahedral geometry, the angle between the bottom and side facets of each
triangular prismoid is £=35.26°, i.e., half of the dihedral angle (70.53°) between
prismoids A and B. Moreover, any edge of the tetrahedron is divided into two edges,
such as ab into &b, and &b,. At this moment, the trends of straight-line motion
occur between any two adjacent platforms while they are away from the centroid, which
are represented by red solid lines. For instance, virtual straight-line motion path P,
between platforms A and B is parallel to line @a,, or b,b,. To enable this motion, the
Sarrus linkage is adopted in this chapter because it can generate the exact straight-line
motion between two platforms. As shown in Fig. 3-2(c), one Sarrus linkage between
platforms A and B consists of six rigid bodies connected by six revolute joints. Three
parallel joints with axes Z;, Z, and Z; areimplanted along line &3, , as are the other
three joints with axes Z,, Z; and Z; along bb,.Here, the angle between the revolute
axes in two limbs in a Sarrus linkage is y. To avoid physical interference in the fully
folded configuration and consider the tetrahedral geometry, y € (0, 70.53°] should be
satisfied. Moreover, due to the radial decomposition of triangular prismoids, for
instance, the side facet of platform A is coplanar with a virtual plane of axes Z; and
Z; . Thus, the straight-line motion along p, between platforms A and B is obtained.
Furthermore, we can take a similar implantation and integrate five extra Sarrus
linkages into each pair of two adjacent platforms along paths p, to p, following the
procedure along P;, in which the geometric relations of all integrated Sarrus linkages
are identical to demonstrate consistency. Thus, a novel deployable tetrahedral
mechanism is obtained, as shown in Fig. 3-2(d), which consequently leads to a
transformation from a rhombitetratetrahedron (the deployed configuration) to a
tetrahedron (the folded configuration). Moreover, we set y,, =70.53° to obtain a
planar triangle in a fully deployed configuration among three different platform vertices
(such as @,d, and a;), which are composed of three limbs of three adjacent Sarrus

linkages. Based on such a construction, Sarrus-based deployable tetrahedron performs
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synchronized radial motion. These four platforms have straight-line motion along their
respective perpendiculars relative to the centroid O while separating from each other,
which mechanically presents the expansion operation in geometry. It should be noted
that the four platforms A to D are located on the faces of a virtual tetrahedron during
the continuous motion process, in which the T4 symmetry of this deployable tetrahedron

is completely reserved.

(d)

Fig. 3-2 Construction of a deployable tetrahedral mechanism. (a) A tetrahedron and the Cartesian
coordinate system; (b) the expansion of four triangular platforms of a tetrahedron; (c) the Sarrus
linkage with platforms A and B; (d) the motion sequence (transformation) from a

rhombitetratetrahedron (the deployed configuration) to a tetrahedron (the folded configuration).

3.2.1.2 Mobility Analysis and Equivalent Strategy

The mobility of the proposed deployable tetrahedral mechanisms can be
investigated with screw theory. First, as the foundational element of polyhedral
construction, a Sarrus linkage in an arbitrary configuration is given in Fig. 3-3(a) with
a local coordinate frame {X,Y;,Z}, where origin O; is located at the centre of the

virtual plane between two mobile platforms, the y;-axis is aligned with the straight-line
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motion direction and the z;-axis is perpendicular to the virtual plane. It is well known
that this linkage consists of two limbs, and the motion-screw system of limb 1 can be

calculated in the associated local coordinate system as
S,=[sina 0 cosa -bcosasing lcosa bSinaSin(p]T
Su=1S;, =[sina 0 cosa 0 lcosa—bcosg 0]T (3-1)

. . . . T
Si;=[sina 0 cosa bcosasing Icosa -bsinasing |

for limb 2,
SM:[—sina 0 cosa -bcosasing -—lcosa —bSinaSinq)]T
Si,=9Sis=[-sina 0 cosa 0 bcosp—lcosa 0]T (3-2)
Sm:[—sina 0 cosa bcosasing -lcosa bsinozsingo]T

where subscript 7 indicates the number of Sarrus linkages involved in the integration of
the proposed deployable polyhedral mechanisms, ¢ is the folding angle between half of
the limb and platform, b is half of the edge length of a regular rhombitetratetrahedron,
and l=a/2 and a=y/2.

The reference coordinate frame {X, Y, Z} in the deployed configuration of the
tetrahedral mechanism is established in Fig. 3-3(b), in which its reference origin O is
located at the centroid of the rhombitetratetrahedron and six local origins O; (i =1,
2, ..., 6) are the centres of virtual planes expanded by any two adjacent platforms.
Conceivably, the four platforms A, B, C and D are located at the vertices of a virtual
dual tetrahedron during the continuous motion process; thus, a dual tetrahedron is
introduced in Fig. 3-3(c) to conveniently describe the directions of axes Y, i.e., the
direction of straight-line motion between two adjacent platforms.

The motion screws of a Sarrus linkage element in Fig. 3-3(a) is transformed with
respect to the reference coordinate system in Fig. 3-3(b) using the adjoint
transformation matrix Ad; ,in which R; is the 3x3 rotation transformation matrix and

p; isthe skew-symmetric matrix of vector p, that presents the displacements of origin
O, relative to origin O. Referring to tetrahedral geometric conditions and T4 symmetry
in Figs. 3-3(b) and (¢), R, and p (i =1, 2, ..., 6) in the deployable tetrahedral

mechanism can be obtained as
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(a) (b)

Fig. 3-3 Mobility analysis of deployable tetrahedral mechanism. (a) Joint screws in a Sarrus linkage;
coordinate systems in (b) deployed configuration of the tetrahedral mechanism and (c) its dual

tetrahedron; (d) constraint graph of this mechanism.
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212 212 0

R,=| 0 0 -1, p,=dJo -1 o
212 212 0
[0 0 1

R,=|~2/2 212 0|, p,=d,[1 0 0]
212 212 0

212 212 0
Ro=| O 0 1], p,=dJ0o 1 0]

V212 212 0
212 =212 0

Ro=|—2/2 2/2 0], p;=d,[0 0 -]
0 0 -1

T

(3-3)

Furthermore, the number of links and joints involved in the deployable tetrahedral
mechanism are 28 and 36, respectively. Using the Euler formula in the multiloop
mechanism, the number of independent loops in this mechanism can be obtained as
36—28+1=9, and the associated constraint graph is sketched in Fig. 3-3(d). According
to Kirchhoff’s circulation law for independent loops shown in the constraint graph, the

constraint matrix of the deployable tetrahedral mechanism is organized as

S, 05 05 05 05 05

O S, 05 0O 05 O

0 0 S 0 0 0

05 05 05 S, 0 05

M, =] 0O 05 05 05 Ss 05 (3-4)

O 0 0s 0 0 S

06 _Sg _83’ Oe 06 _Sg

_81” _Sé 06 06 —Sé’ 06

__81’ Oe _83” _SZ 06 06 J

where Si:[Sil S S S Sis Sie] S":[Sil S S: 0 0 0]

B 1

S'=[0 0 0 S, Ss S and 0,=[0 0 0 0 0 O] with

2

0=[0 0 0 0 0 0].

The mobility of this mechanism can be determined with the 54x36 constraint

matrix as
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m=n-rank(M,) =36-35=1 (3-3)

in which m represents the actual mobility of this mechanism and 7 is the number of
joints. Moreover, all six involved Sarrus linkages have identical kinematic behaviour to
generate the synchronized radial motion of the entire mechanism, which is revealed and
proven as follows.
As shown in Fig. 3-4, considering the Sarrus linkage between platforms A and B
as an example, @, and ¢, are two related kinematic variables, as shown in Fig. 3-
3(a),and ¢@=2¢, can be easily obtained. Moreover, for all six involved Sarrus linkages,
@/=2¢, (i =1 to 6). Next, among platforms A, B and C, a spatial 9R linkage can be
identified as an assembly of three limbs of three corresponding Sarrus linkages, in
which the revolute axes Z; to Zg are highlighted in red. Similarly, a general kinematic
solution of this spatial 9R linkage is revealed in Section 2.2, including the matrix
operation process based on the D-H matrix method.
In this tetrahedral mechanism, for the spatial 9R linkage among platforms A, B
and C, we have the motion constraint relationships as
P=200, Pi=205,0,=2¢, (3-6)
Substituting this constraint condition into kinematic solution of this 9R linkage
yields
P=P=0s> P=P=Q; (3-7)
Conducting a similar calculation procedure, other constraint conditions for the

remaining three 9R linkages are
P=200, 9,=20,, =20
Po=20,5 Ps=205, =205
Pa=20,5 =205, Q=20 (3-8)
Furthermore, we can obtain the kinematic relationships in the entire tetrahedral
mechanism as
P=Pr=Ps=P=Ps=0s s P=P =P =P, =P (3-9)
Therefore, all the six involved Sarrus linkages have the identical kinematic
behaviour that can generate the 1-DOF synchronized radial motion of the entire

tetrahedral mechanism.
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Fig. 3-4 Analysis of kinematic variables in the tetrahedral mechanism.

Based on the above derivation, we prove that the tetrahedral mechanism has a
mobility of one. However, the calculation and solution of the constraint matrix are
complicated due to the complexity of the polyhedral geometry and the significantly
large number of links and joints in the proposed polyhedral mechanism. To find a simple
and effective analysis method for the mobility of deployable polyhedrons, we present
the equivalent analysis strategy as follows by solving the equivalent motion screws.

Additionally, beginning with the construction element, the constraint screw system

of limb 1 in Sarrus linkage can be obtained by solving the reciprocal screws of S, as
si=[tna 0 1 0 0 0]
Si=1S,=[0 0 0 0 1 0] (3-10)

s,=[0 0 0 -cota 0 1]
for limb 2,

S,=[-tana 0 1 0 0 0]
S,=1S5=[0 0 0 0 1 0] (3-11)
Sr=[0 0 0 cote 0 17

The platform constraint-screw multiset is the combination of the above two
constraint screw systems, which contains five linearly independent screws. A

nonunique basis for the subspace of the constraint screw multiset can be selected as
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st=L 0100 0]
s,=[0 0 0010]
S'=4s,=[0 0 0 -1 0 1] (3-12)
s,=[-1 0100 0]
st=[0 0 010 1]

By considering the reciprocal screw of S|, the equivalent motion screw between
two platforms in a Sarrus linkage is
s,=[0 0 0 0107 (3-13)
which indicates the straight-line motion between two platforms along the y;-axis.

Therefore, we regard a Sarrus linkage as a prismatic joint, and the tetrahedral
mechanism obtained in Fig. 3-2 can be simplified as an equivalent mechanism with six
prismatic joints denoted by Pito Ps (see Fig. 3-5(a)). The original six motion screws in
Egs. (3-1) and (3-2) can be equivalently replaced by a single motion screw in Eq. (3-
13); thus, the equivalent topological graph is given in Fig. 3-5(b). Furthermore, the
simplified mobility analysis of the tetrahedral mechanism can be conducted by
redrawing the constraint graph in Fig. 3-5(c) with equivalent motion screws S¢; to
S¢, which can also be obtained in the reference coordinate system through adjoint
transformation matrices. According to Fig. 3-5(c), the constraint matrix M, can be

rewritten as

Me1: 0 _sz st 0 0 SfG (3-14)

which is a 18x6 one.

(b) (c)

Fig. 3-5 Equivalent tetrahedral mechanism. (a) Schematic diagram of the equivalent mechanism

with prismatic joints, (b) its three-dimensional equivalent topological graph and (c¢) constraint graph.
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Therefore, referring to this equivalent constraint matrix, the identical conclusion

that the deployable tetrahedral mechanism has mobility one can be verified as
m=n, —rank(M,)=6-5=1 (3-15)
in which n, is the number of equivalent prismatic joints.

Due to the 1-DOF synchronized radial motion with unchanged T4 symmetry of
this tetrahedral mechanism, both the inscribed sphere and circumscribed sphere related
to the four platforms are regular spheres. When ¢=0 (the folding angle in a Sarrus
linkage), referring to a tetrahedron in a fully folded configuration, the inscribed sphere
radius () and circumscribed sphere radius (R) in this mechanism are J6a/12 and
J6a/4, respectively. Following deployed motion until ¢=90°, i.e., a completely
deployable configuration, r increases to J6a/3 , and R becomes a.

Thus, together with the kinematic and geometric calculations, the relationships
between the polyhedral geometry and kinematic angle are I = \/Ea(ssin @+1)/12 and
R= a\/ (3sin® @ +2sin @ +3) /8. Next, for the volume () of the deployable tetrahedron
during continuous motion, V = J2a° (sin® p+9sin” p+9sinp+1) /12, in which a is

the edge length of a regular tetrahedron. Hence, the input—output curves between the

polyhedral geometry and kinematic angle are illustrated in Fig. 3-6.

(a) (b)
a =" 2.44°
R .-~
0.75a et S 1.84°
2 e £ g
= 0.5a o %‘ 1.2a" |
; _/'/ -
0.25a .~ 0.6a"
0 — R
0 22.5 45 67.5 90 0 22.5 45 675 90
9 (°) ¢ (°)

Fig. 3-6 Kinematic curves of (a) inscribed sphere radius 7 and circumscribed sphere radius R and (b)

the volume ¥ vs. folding angle ¢.
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Therefore, a novel synthesis mothed based on the expansion operation and Sarrus
linkages is presented to construct the 1-DOF deployable tetrahedral mechanism, and its
significant symmetry property perfectly remains in each work configuration, whose
corresponding prototype is fabricated (see Fig. 3-7). The kinematic strategy of
construction and mobility analysis can be readily extended to deployable cubic and

dodecahedral mechanisms with distinct symmetries, as shown below.

Fig. 3-7 Motion sequence of the tetrahedral mechanism.

3.2.2 Deployable Cubic Mechanism

A cube with six congruous square prismoid platforms A to F and twelve edges is
shown in Fig. 3-8(a), in which the axes in a global coordinate system are perpendicular
to the platforms. Following the expansion operation, Fig. 3-8(b) presents all separated
platforms along red dash-dot perpendiculars, and a total of twelve virtual motion paths
(indicated in red lines) between each pair of adjacent platforms are generated in Fig. 3-
8(c). In this case, the angle between the bottom and side facets of each square prismoid
is f=45°. As a result, twelve Sarrus linkages need to be involved to construct a
deployable cubic mechanism, in which the geometry and kinematics of each identical
Sarrus linkage are the same as those in Fig. 3-2(c). Moreover, y € (0, 109.47°] should
be satisfied in this case to avoid interference, and the angle between the virtual plane
(Sarrus translational platform) and polyhedral platform is also fS=45°. Therefore, the
transformation from a rhombicuboctahedron to a cube with synchronized radial motion

is obtained and shown in Fig. 3-8(d).
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Fig. 3-8 Construction of the deployable cubic mechanism. (a) A cube and the Cartesian coordinate
system; (b) the expansion of six square platforms of a cube; (c) straight-line motion paths between
two adjacent platforms; (d) the motion sequence from a rhombicuboctahedron (the deployed

configuration) to a cube (the folded configuration).

Without loss of generality, the equivalent mobility analysis method can be
effectively applied to this deployable cubic mechanism involving twelve Sarrus
linkages. Similarly, by regarding a Sarrus linkage as a prismatic joint, the equivalent
motion screws can be calculated based on the reference coordinate frame in Fig. 3-9(a)
and its dual octahedron in Fig. 3-9(b), in which the details of adjoint transformation
matrices are provided in Appendix A. Thus, the equivalent mechanism of the proposed
cubic mechanism can be obtained in Fig. 3-9(c) with prismatic joints P to P12, which
has a base of its dual octahedron. Inspired by the Schlegel diagram for polyhedral
representation, i.e., a planar projection of a polyhedron, Fig. 3-9(d) illustrates the
constraint graph of the equivalent mechanism with S;; to S;,; then, the constraint

matrix can be derived as
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(b)

(d)

Fig. 3-9 Mobility analysis of deployable cubic mechanism. Coordinate system in (a) deployed
configuration of cubic mechanism (rhombicuboctahedron) and (b) its dual octahedron (yi presents

the direction of straight-line motion); (¢) the equivalent mechanism with twelve prismatic joints and

(d) its constraint graph.

00 0 0O 0 0 S, 0 0 0 S, S
o0 S, S, 0 0 -S, 0 0 0O 0 O
o0 0 0 0 S, 0O 0 0 S, -S, 0
M,=[{0 0 0 0 0 0O 0 S S, 0 0 =S,,| (3-16)
S, 0 0 -S, 0 0 0 -S, 0 0 0 O
0S,-S, 0 0-S, 0 0 O O O O
o0 0 0 S, 0 0 0 -S,-S, 0 0
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The rank of this constraint matrix is 11, thus m=n, —rank(M,,) =12-11=1,
which indicates that the deployable cubic mechanism has mobility. To verify the
equivalent analysis result, the original constraint graph and a 114x72 original
constraint matrix M, are given in Appendix A, which confirms that the Sarrus-based
deployable cubic mechanism has a mobility of one.

3.2.3 Deployable Dodecahedral Mechanism

Furthermore, we can also create a deployable dodecahedral mechanism following
In symmetry with the proposed construction strategy. A dodecahedron with twelve
congruous pentagonal platforms and thirty edges is given in Fig. 3-10(a). After the
expansion operation of pentagonal prismoids with £=58.28° (a half of the dihedral
angle between two adjacent pentagonal platforms), thirty red straight-line motion paths
are illustrated in Fig. 3-10(b). Considering the similar implantation of Sarrus linkages
as given in Fig. 3-2(c), the deployable dodecahedron based on thirty identical Sarrus
linkages is constructed in Fig. 3-10(c), in which y € (O, 138.190] should be considered.
Moreover, the radial transformation from a rhombicosidodecahedron to a dodecahedron
is obtained.

By following the equivalent analysis approach, the coordinate systems of the
deployable dodecahedral mechanism are established in Figs. 3-11(a) and (b), and thirty
motion screws can be derived referring to the details listed in Appendix B. Hence, we
obtain an equivalent mechanism with thirty prismatic joints on the basis of a dual
icosahedron, as shown in Fig. 3-11(c). Together with the Schlegel diagram of its dual
icosahedron, the equivalent constraint graph with thirty motion screws S;; to S;g,
is sketched in Fig. 3-11(d); then, a 114x30 equivalent constraint matrix M,; can be

organized as

M, M
Me3: 06><6 Mzz 23 M24 Mzs (3-17)
0 0

in which its submatrices are given in Appendix B.
The rank of this constraint matrix can be calculated as 29. Therefore, the mobility
of the deployable dodecahedral mechanism is m=n,—rank(M, ) =30-29=1.

Furthermore, the original constraint graph and the 114x30 original constraint matrix
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M, of this mechanism can be found in Appendix B, as well as the same conclusion

about the mobility of one.

(a)

Fig. 3-10 Construction of the deployable dodecahedral mechanism. (a) A dodecahedron and the
Cartesian coordinate system; (b) straight-line motion paths between two adjacent pentagonal
platforms; (c) the motion sequence from a rhombicosidodecahedron (the deployed configuration) to

a dodecahedron (the folded configuration).

Although only three platonic polyhedrons are investigated in this chapter (due to
their regular transformability), these construction methods can be adapted to explore
the design of other 1-DOF deployable polyhedrons, such as Archimedean and prismatic
polyhedrons. The details of Sarrus-based DPMs that can be constructed with the
proposed method are listed in Table 3-1, including the number of Sarrus linkages
(Nsarrus), links (NViink), joints (Njoint) and the angle pasn) for radially decomposed

prismoids and the angle pma to avoid interference. To realize such polyhedral
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construction, three adjacent platforms in a polyhedron should surround at a common
vertex, similar to the synthesis principle of the proposed tetrahedral, cubic and

dodecahedral mechanisms.

(b)

Fig. 3-11 Mobility analysis of the deployable dodecahedral mechanism. Coordinate system in (a)

deployed configuration of the dodecahedron (rhombicosidodecahedron) and (b) its dual icosahedron
yi present the direction of straight-line motion); (c¢) the equivalent mechanism with thirty prismatic

joints and (d) its constraint graph.
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Table 3-1 Sarrus-based DPMs in different polyhedral groups

Polyhedral Deployable Nsarrus  Miink Njoint B an (%) Vmax (°)
groups mechanisms
Platonic Tetrahedron 6 28 36 35.26 33) 70.53
polyhedrons
Cube 12 54 72 45 4.4 109.47
Dodecahedron 30 132 180 58.28 (5.5 139.18
Archimedean  Truncated 18 80 108 54.74 ;) 129.52
polyhedrons  tetrahedron 35.26 (6.6)
Truncated cube 36 158 216 62.63 39 147.35
45 3.8
Truncated 36 158 216 62.63 (46 143.13
octahedron 54.74 (6)
Truncated 72 314 432 72.37 @46 155.09
cuboctahedron 67.5 4s)
62.63 (6.8
Truncated 90 392 540 71.31 3,10 160.61
dodecahedron 58.28 (10.10)
Truncated 90 392 540 69.09 (6,6) 156.72
icosahedron 71.31 )
Truncated 180 782 1080 79.55 (a6 164.89
icosidodecahedron 74.14 @10
71.31 (6,10)
Prisms N-prism (N > 3) 3N 13N+2 18N 90(N-2)/N 44y 2arccos(l+c
45 “m SCz(ﬁ/N))'l/z

3.3 Overconstraint reduction Inspired by Hamiltonian Paths

3.3.1 Reduction of the Tetrahedral Mechanism

The proposed tetrahedral mechanism is illustrated in Fig. 3-12, as is its equivalent

mechanism with six prismatic joints and the corresponding three-dimensional
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topological graphs, which is the basis of the dual tetrahedron. Based on the Griibler-

Kutzbach formula, the mobility of one mechanism can be described as

M =d(n—g—1)+zg:fi (3-18)

i=1
where M is the expected mobility, d is the mobility coefficient and can be obtained from
the motion screw system, # is the number of rigid links, g is the number of kinematic
joints, and f. is the degree of freedom of the i-th kinematic joint.

Taking the proposed 1-DOF deployable tetrahedral mechanism in Fig. 3-12(a)
with 28 links and 36 revolute joints as an example, its expected mobility
M =6(28-36—-1)+36 =—-18; hence, it is a highly overconstrained mechanism. Thus,
the original degree of overconstraints ¢ in this mechanism can be derived as

c=m-M =1-(-18) =19 (3-19)
in which m represents the actual mobility of the mechanism.

Referring to the equivalent strategy, the equivalent tetrahedral mechanism with six
prismatic joints is shown in Fig. 3-12(b). Thus, combining Egs. (3-18) and (3-19), the
equivalent overconstraints C, in this equivalent mechanism are

c,.=m-M=1-(-3)=4 (3-20)

(b)

c=19 c,=4 c,=4
Fig. 3-12 Sarrus-based deployable tetrahedral mechanism. (a) Original mechanism constructed by
Sarrus linkages; (b) the equivalent mechanism with prismatic joints; (c) the corresponding three-

dimensional topological graph.

However, overconstraints still exist. To reduce or even eliminate the
overconstraints in the multiloop mechanism and find the effective constraint space for
polyhedral platforms, we clarify the reduction process as follows by utilizing the

topology operation.
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The essential premise of reduction is that each platform requires at least two
equivalent prismatic joints to maintain the closed-loop mechanism, i.e., each vertex is
related to at least two edges in the topological graph, and then the original kinematic
properties, including mobility and radial motion, should be reserved among polyhedral
platforms. It is mathematically surprising to find that the Hamiltonian path (or
Hamiltonian cycle) matches the premise of the reduction process. There are two
significant characteristics of the Hamiltonian path: first, it is a closed-loop path with a
sequence of edges that visits all the vertices of a graph; second, each vertex between
two edges is only accessed exactly once along the path. For demonstration purposes,
the generation process of the Hamiltonian path in a tetrahedron is taken as an example,
as shown in Fig. 3-13. First, starting from vertex A, any edge among AB, AC and AD
is identical due to tetrahedral symmetry; here, edge AB in Fig. 3-13(a) is selected.
Subsequently, edges BD and BC are also identical in tetrahedral symmetry, so edge BD
is selected in Fig. 3-13(b). Next, edge DC can only be selected to connect vertex C
instead of edge DA, as shown in Fig. 3-13(c). Finally, the closed-loop path is obtained
in Fig. 3-13(d) by connecting the initial vertex A through the edge CA. Due to the

tetrahedral symmetry, there is only one Hamiltonian path in a tetrahedron.

(a) (b) (c) (d)

Fig. 3-13 Only one Hamiltonian path in a tetrahedron.

Next, the obtained Hamiltonian path, also given in Fig. 3-14(a), can split the
tetrahedron into two half shells, as shown in Figs. 3-14(b) and (e). The half shell in Fig.
3-14(b) is an assembly of two 1-DOF triangular units ADC and ADB connected by one
common edge AD. The constraint matrix in this two-loop equivalent mechanism can be

directly derived as

S
M, = (3-21)
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The true mobility of the two-loop mechanism shown in Fig. 3-14(b) is
m=n, —rank(M,) =5-4=1 . However, the overconstraints of this two-loop
equivalent mechanism are C, =M—M =1—(=3) =2, and for the original Sarrus-based
mechanism, c=m—-M =1-(-12) =13. Furthermore, to explore the possibility of the
simplest constraint path based on Fig. 3-14(b), we can only remove edge AD under the
mentioned reduction premise. Thus, a skew quadrilateral (nonplanar quadrilateral)
ABDOC is obtained in Fig. 3-14(c). The constraint matrix of this single-loop equivalent

mechanism with four equivalent prismatic joints P1, P3, Ps and Psin Fig. 3-14(d) is

Méizl:sfl Stz Ste Sts (3-22)

The mobility of this single-loop mechanismis M= n, —rank(M/) =4-3=1 and

its degree of overconstraint is ¢, =M—M =1-1=0. Therefore, we can regard a skew
quadrilateral as the simplest topological graph, i.e., the single-loop mechanism in Fig.

3-14(d) can be obtained as the simplest constraint form with four equivalent prismatic

joints.
a
(a) A
C
Hamiltonian Path
c,=4,c=19

c,=2,c=13 ¢, =0, =7 ¢,=0,c=7

Fig. 3-14 Reduction process of the equivalent tetrahedral mechanism. (a) The only one 3D
Hamiltonian path (illustrated in red line); (b) one half shell split by Hamiltonian path, and (c) the
simplest topological graph and (d) its corresponding simplest equivalent mechanism; (e) the other

half shell and (f) its simplest topological graph and (g) equivalent mechanism.
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On the other hand, the other half shell in Fig. 3-14(e) is also a 1-DOF assembly of
two triangular units ABC and BCD connected by edge BC, which is congruent with the
one in Fig. 3-14(b) due to symmetry. Thus, the same reduction process can be conducted
to obtain the simplest topological graph in Fig. 3-14(f) and the simplest equivalent
mechanism in Fig. 3-14(g), which are the same as Figs. 3-14(c) and (d), respectively.

According to the original tetrahedral mechanism and its kinematic solution based
on the D-H matrix method, as shown in Fig. 3-4, referring to Figs. 3-14(b) and (c), the
simplified tetrahedral mechanism and the simplest form are illustrated in Figs. 3-15(a)
and (b), respectively. Moreover, @'=2¢. still exists in all involved Sarrus linkages, yet
some original 9R linkages vanish after reduction. First, a spatial 12R linkage with
revolute axes Z; to Z, can be identified in Fig. 3-15(a) after removing the Sarrus
linkage between platforms B and C. Its motion constraint conditions can be obtained as
follows: among platforms A, D and B,

D= =05, PEP =9, (3-23)
among platforms A, D and C,
D=0, =0, =)=, (3-24)

Substituting these constraint conditions into matrix calculations of this 12R
linkage yields

D=0 =P =P =05, P=P,=P=PL=; (3-25)

Thus, the identical kinematic behaviour of five involved Sarrus linkages and the
equivalent kinematics of the entire simplified tetrahedral mechanism are revealed.

However, there are no original 9R linkages reserved in the simplest mechanism in
Fig. 3-15(b); thus, the constraint conditions in Egs. (3-23) and (3-24) no longer exist,

and we can only utilize the fundamental conditions in each Sarrus linkage, i.e.,

P=20,, 9;=20,, 0;=205, @=2¢; (3-26)
After the matrix calculations of this 12R linkage, we have
D=P=0s= 05, =P, ==, (3-27)

Therefore, the equivalent kinematics of the four involved Sarrus linkages and the
entire simplest tetrahedron can also be obtained. Hence, the edges BC and AD are
redundant in their mechanism topology and can be removed without affecting the

motion behaviour of the polyhedral platforms.
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(a) (b)

Fig. 3-15 Analysis of kinematic variables in (a) the simplified tetrahedral mechanism and (b) its

simplest mechanism.

Ultimately, by mapping the proposed simplest equivalent mechanism in Fig. 3-
14(d) or (g) back to the original Sarrus-based mechanism, Fig. 3-16(a) shows the
simplest tetrahedral mechanism integrated by four Sarrus linkages, in which the 1-DOF

synchronized radial motion is preserved, whose prototype is shown in Fig. 3-16(b).

(b)

Fig. 3-16 Motion sequence of the simplest tetrahedral mechanism. (a) CAD model and (b) prototype.
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Nevertheless, the actual overconstraint of this simplified Sarrus-based mechanism
is c=m—M =1-(-6) =7 based on the four involved overconstrained Sarrus linkages.
Compared with the original mechanism in Fig. 3-12, the actual overconstraint is greatly
reduced from 19 to 7. Furthermore, if we arbitrarily remove one of eight limbs among
four platforms, i.e., remove two links with three revolute joints in a Sarrus linkage, the
mobility of this tetrahedral mechanism will become two; hence, the simplified
tetrahedral mechanism in Fig. 3-16 can be regarded as the simplest constraint form.

Furthermore, the skew quadrilateral topological graph in Fig. 3-14(c) will be taken
as the basic unit with ¢, =0 to conduct the overconstraint reduction in complex

Hamiltonian paths for other polyhedral mechanisms.

3.3.2 Reduction of the Cubic Mechanism

Inspired by the characteristic of the Hamiltonian path that matches the premise of
the reduction process, a similar topology operation can be conducted to demonstrate the
reduction of the deployable cubic mechanism given in Fig. 3-17, in which the original
and equivalent overconstraints are C, =10 and c=43, respectively. The 3D
topological graph of the equivalent cubic mechanism in Fig. 3-17, with a basis of dual

octahedron, possesses a total of two distinct Hamiltonian paths.

(a) (b)

c=43 c.=10 c,=10
Fig. 3-17 Sarrus-based deployable cubic mechanism. (a) Original mechanism constructed by Sarrus
linkages; (b) the equivalent mechanism with prismatic joints; (c) the corresponding three-

dimensional topological graph.
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First, Hamiltonian path 1 of a double-Z shape in an octahedron is shown in Fig. 3-
18(a) in red lines; it splits this octahedron into two congruent half shells due to the
octahedral symmetry, see Figs. 3-18(b) and (d). Taking Fig. 3-18(b) as an example, this
half shell is an assembly of four 1-DOF triangular units FBC, BCA, CAD and ADE
with equivalent kinematics, and the mobility in its corresponding mechanism can be
calculated as one with C, =4 and c =25, which proves that the edges DF, EF and EB
are redundant. Subsequently, we can arrange the proposed skew quadrilateral basic unit
in this half shell generated from path 1 to conduct further reduction. As shown in Fig.
3-18(c), starting from vertex F with a smaller included edge angle, we can arrange a
quadrilateral FBAC (highlighted in blue); thus, the next quadrilateral ACDE can be
readily arranged in the remaining space. Compared with the reduction result in Fig. 3-
18(b), we regard that edges BC and AD are removed, which results in a two-loop 1-
DOF mechanism constructed by seven equivalent prismatic joints with C, =0 .
Moreover, due to the octahedral symmetry, an identical reduction result based on the
other half shell in Fig. 3-18(d) can also be obtained (see Fig. 3-18(e)).

According to the topological graph in Fig. 3-18(c) from path 1, the corresponding
equivalent prismatic joints S; and the constraint graph are given in Fig. 3-19. The
resulting constraint matrix M, can be derived as

Mézz{sfl 0 Si3 Sy S O 0

(3-28)
_Sfl sz 0 0 0 ng SflO

where the rank of this matrix is 6, the mobility of the cubic mechanism in Fig. 3-19 can
be verified as m=n,—rank(M.,) =7—-6 =1, and the equivalent kinematics can also
be revealed based on similar matrix method as illustrated in Fig. 3-15.

However, the actual overconstraints ¢ =13 still exist in the corresponding Sarrus-
based mechanism due to the related seven Sarrus linkages. Furthermore, if we remove
the common edge AC in Fig. 3-18(c) or edge EF in Fig. 3-18(¢), i.e., S;; in Fig. 3-19,
the single-loop equivalent mechanism with six prismatic joints will occur, and then its
mobilities will become two, which is contrary to the reduction process. Thus, the
topological graph in Fig. 3-18(c) or Fig. 3-18(e) can be identified as the 1-DOF simplest

constraint path derived from path 1.
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F
c,=4,c=25 ¢,=0,¢c=13
Fig. 3-18 Reduction process of equivalent cubic mechanism using Hamiltonian path 1. (a)
Hamiltonian path 1 in the 3D topological graph. (b) One half shell split by path 1, and (c) the
simplest topological graph. (d) The other half shell and (e) its simplest topological graph.

© v 6 W 6

Fig. 3-19 Constraint graphs of the simplest cubic mechanism derived from path 1.

However, Hamiltonian path 2 of a threefold zigzag shape is shown in Fig. 3-20(a),
which also splits this octahedron into two congruent half shells due to symmetry (see

Figs. 3-20(b) and (d)). For the topological graph in Fig. 3-20(b), three external
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triangular units are connected to the central unit, leading to a 1-DOF four-loop
mechanism with C, =4 and C=25. Next, due to its threefold symmetry, we can select
any one of vertices D, E and F at the beginning to arrange the skew quadrilateral basic
unit. For example, a quadrilateral FBAC is generated in Fig. 3-20(c), yet two resulting
triangular units ACD and ABE, as illustrated in grey, cannot be merged into a
quadrilateral anyway, which also applies to the identical reduction result in Fig. 3-20(e).
No matter which arrangement for this case, there are always two triangles that cannot
be merged.
Referring to the topological graph in Fig. 3-20(¢) from path 2, the corresponding
constraint graph is shown in Fig. 3-21, and the corresponding constraint matrix M}, is
S, 0 0 S, 0 S5, O 0
Mg=|-Sy; Si; 0 0 0 0 Si S (3-29)
0O -5, S; 0 S, O 0 0

where the rank of this matrix is 7, and the mobility of the cubic mechanism in Fig. 3-
21 is m=n,—rank(M.,) =8-7 =1. As a result, the topological graph in Fig. 3-20(c)
has a mobility of one with ¢, =2 and c=19 due to the connection of one skew
quadrilateral unit and two triangular units.

However, if edge AB (or AC) is further removed, the mobility will become two.
Thus, the constraint path in Fig. 3-20(c) or Fig. 3-20(e) can be regarded as the simplified
constraint path derived from path 2. However, compared with the constraint path in Fig.
3-18(c), this constraint path cannot be treated as the simplest of these cubic mechanisms
due to its eight associated equivalent prismatic joints among all six platforms. Thus, the
only simple topological graph of the cubic mechanism can be identified in Figs. 3-18(c)
and (e).

According to the simplest topological graph in Fig. 3-18(c), the simplest 1-DOF
deployable cubic mechanism is obtained with the original motion behaviour of its
platforms unchanged, whose motion sequences are given in Fig. 3-22. Compared with
the original cubic mechanism in Fig. 3-17, the actual overconstraints in this simplest
Sarrus-based cubic mechanism are greatly reduced from 43 to 13.

In this section, the 1-DOF simplest topological graph of the cubic mechanism is
identified as two 1-DOF skew quadrilaterals connected by one common edge, and the
reduction method inspired by the Hamiltonian path can be readily applied to the

complex dodecahedral mechanism in the next section.
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F
c,=4,c=25 c,=2,c=19

Fig. 3-20 Reduction process of equivalent cubic mechanism using Hamiltonian path 2. (a)
Hamiltonian path 2 in the 3D topological graph. (b) One half shell split by path 2, and (c) the
simplified topological graph. (d) The other half shell and (e) the simplified topological graph.

Fig. 3-21 Constraint graphs of the simplified cubic mechanism derived from path 2.
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Fig. 3-22 Motion sequence of the simplest cubic mechanism.

3.3.3 Reduction of the Dodecahedral Mechanism

As shown in Fig. 3-23, the original 3D topological graph of the deployable
dodecahedral mechanism is related to its dual icosahedron with ¢, =28 and c=115.
There are a total of 17 distinct Hamiltonian paths on an icosahedron, which presents a
different challenge to find all simplest constraint forms for this mechanism.
Nevertheless, the proposed reduction method, including arranging the skew
quadrilateral into basic units, can still be conducted for dodecahedral mechanisms.

Considering an arbitrary Hamiltonian path as an example, as shown in Fig. 3-24(a)
in red lines, which connects all twelve vertices without any symmetry. Next, two
distinct half shells split by path 1 are generated in Figs. 3-24(b) and (d), each of which
consists of ten 1-DOF triangular units connected in sequence and can be regarded as a
1-DOF assembly. It is intuitive that we only need to repeat the quadrilateral
arrangements, as illustrated in Figs. 3-18(b) to (¢), to explore the simplest constraint
path. Starting from vertex A in Fig. 3-24(b), 1-DOF skew quadrilaterals ADIC, CILH,
CHGB, BGKF and FKJE can be sequentially arranged inside the Hamiltonian path,
leading to a 1-DOF assembly of these five basic units, as shown in Fig. 3-24(c). Here,
the redundant edges CD, IH, BH, FG and EK are alternately removed, such that the two
adjacent basic units share one common edge, i.e., edges CI, CH, BG and FK,
respectively. Similarly, as shown in Fig. 3-24(d), starting from vertex C, if we further
arrange five skew quadrilaterals CBFA, AFED, DEJI, IJKL and LKGH in the other half
shell, another different simplest constraint path is obtained in Fig. 3-24(e).
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Fig. 3-23 Sarrus-based deployable dodecahedral mechanism. (a) Original mechanism constructed
by Sarrus linkages; (b) the equivalent mechanism with prismatic joints; (c) the corresponding three-

dimensional topological graph.

c, =10, c=61 c,=0,c=31

Fig. 3-24 Reduction process of the equivalent dodecahedral mechanism. (a) Hamiltonian path 1 in

the 3D topological graph. (b) One half shell split by this path and (c) its simplest constraint path
with the removal of redundant edges CD, IH, BH, FG and EK. (d) The other half shell split by this
path and (e) its simplest constraint path with the removal of redundant edges AB, AE, DJ, JL and
LG.
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Referring to the first example of the simplest dodecahedral mechanism represented
by Fig. 3-24(c), its mobility can be analysed and verified with a total of 16 associated
equivalent kinematic pairs. Based on the corresponding constraint graph in Fig. 3-25(a),

its related constraint matrix M/; is

Més :[Ml'l Mllz] (3-30)
with
_sz Sf3 0 0 0 0 0 Sf15 i
0 0 0 0 0 0 Sf14 Sf15
M1'1: 0 0 0 Sf? 0 Sle Sf14 0
0 0 st 0 0 —Sf12 0 0
0 0 0 0 SflO 0 0 0
S 0 0 0 0 0 0 O
0 0 0 0 0 0 S, Sy
M,= 0 0 0 S, 0 0 0 0
o 0 S, 0 0 S, 0 0
L 0 Sf18 _szo 0 sz4 0 0 0 i

The rank of constraint matrix M/; is 15, and through computation, the mobility
of this dodecahedral mechanism can be derived as m=n, —rank(M_,) =16-15=1.
Then, using the same approach, the constraint graph derived from another different

path in Fig. 3-24(e) is shown in Fig. 3-25(b), and its constraint matrix M, is

Mg =[M Mg (3-31)
with
S, 0 S5 Sy S, 0 0 0]
0 Sf3 _st 0 0 ng Sf10 0
Mi=[0 0 0 0 0 -S, 0 S,
0 0 0 O 0 0 0
0 0 0 0 0 0 0 0|
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
M;=[Sp O S O 0O 0 0 0
0 0 S Siu 0 0 Sizs Sia
L 0 Sz 0 0 Siss Stz 0 _Sf30_

The rank of this constraint matrix M(; is 15. Thus, the mobility of this simplest
dodecahedral mechanism is one.
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Fig. 3-25 Constraint graphs of the two simplest dodecahedra mechanisms.

Referring to the above mobility analysis, the equivalent mechanism obtained in
Fig. 3-24(c) has a mobility of one with an equivalent overconstraint ¢, =0, as well as
the case in Fig. 3-24(e); hence, both can be regarded as the simplest constraint paths
among the twelve polyhedral platforms. Because the two distinct simplest constraint
forms are derived from one common Hamiltonian path 1 in Fig. 3-24(a), they have
identical outer contour lines, so they can be called complementary simplest paths.

Ultimately, by mapping the simplest topological graphs in Figs. 3-24(c) and (e) to
the original Sarrus-based mechanism, the two simplest dodecahedral mechanisms that
preserve the original 1-DOF radial motion are generated in Fig. 3-26, in which
kinematic equivalence can also be proven based on the matrix method. Compared with
the original dodecahedral mechanism in Fig. 3-23, the degrees of overconstraint in these
simplest mechanisms are greatly reduced from 115 to 31.

In addition to the mentioned Hamiltonian path as given in Fig. 3-24(a), some other
distinct Hamiltonian paths on an icosahedron can also be utilized to identify the
simplest dodecahedral mechanisms by following the proposed reduction process, which

is organized and listed as follows.
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First, similar to path 1 in Fig. 3-24(a), which can generate two complementary
paths, as illustrated in Figs. 3-24(c) and (e), Table 3-2 lists five Hamiltonian paths
(including path 1), and each can generate two complementary simplest paths, in which

five skew quadrilaterals are still arranged in sequence by sharing four common edges.

(b)

Fig. 3-26 Motion sequence of the simplest dodecahedral mechanisms obtained from (a) one half

shell and (b) the other.

Next, each Hamiltonian path in Table 3-3 generates two congruent simplest paths,
also as the arrangement of five quadrilaterals due to its Co-symmetry. In contrast, for
two half shells separated from each Hamiltonian path listed in Table 3-4, one shell can
be derived into an effective simplest constraint path, as illustrated in blue, and the other
shell is unsuccessful due to few unmergeable triangular units, as illustrated in grey,
which is similar to the case from Figs. 3-20(b) to (c). The remaining three Hamiltonian
paths are given in Table 3-5, yet any effective simplest path can also be obtained as

unmergeable grey triangular units.
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Table 3-2 Reduction results of dodecahedral mechanism using paths 1 to 5

Hamiltonian paths Two complementary simplest paths

@

Path 5

c,=0,c=31
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Table 3-3 Reduction results of dodecahedral mechanism using paths 6 to 10

Hamiltonian paths Two congruent simplest paths

c,=0, c=31
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Table 3-4 Reduction results of dodecahedral mechanism using paths 11 to 14

Hamiltonian paths One simplest path and the other nonsimplest path
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Table 3-5 Reduction results of dodecahedral mechanism using paths 15 to 17

Hamiltonian paths Two nonsimplest paths

Path 17

Therefore, 17 Hamiltonian paths of an icosahedron have been discussed in detail,
and a total of 19 simplest constraint paths of this dodecahedral mechanism can be found
and identified, each of which is a sequential arrangement of five skew quadrilateral
basic units. As a result, each simple dodecahedral mechanism can preserve the original
1-DOF radial motion behaviour, and the degrees of overconstraint are greatly reduced
from 115 to 31. It should be noted that in each nonsimplest form, the unmergeable grey

triangular units always exist, independent of how the skew quadrilaterals are arranged.

3.4 Nonsimplest Constraint Forms with Rotational Symmetries

By introducing Hamiltonian paths to guide the removal of redundant constraints,

the simplest constraint forms of tetrahedral, cubic and dodecahedral mechanisms have
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been obtained and identified. However, the original polyhedral symmetries vanish in
the simplest mechanism due to the irregular and asymmetric arrangement of skew
quadrilateral basic units, meaning that the entire symmetry and simplest constraint are
contradictory. Here, also based on the skew quadrilateral basic units, some nonsimplest
constraint forms of DPMs can be explored combining fewer constraints and rotational
symmetry, which could benefit the motion stability under the overconstraint reduction.

For the tetrahedral mechanism, the 1-DOF nonsimplest form is given in Fig. 3-
14(b), which has a C,-symmetry and can also be regarded as plane-symmetry.

Next, referring to the original topological graph of the cubic mechanism given in
Fig. 3-27(a), four skew quadrilateral basic units, ABFC, ACFD, ADFE and AEFB, can
be set up into its octahedron base following C4 symmetry (see Fig. 3-27(b)), in which
lines BC, CD, DE and EB are removed. Two adjacent basic units share two common
topological lines to ensure the original motion. We can identify the mobility of the
proposed nonsimplest constraint forms with screw theory. For nonsimplest cubic
mechanism with C4 symmetry as given in Fig. 3-27(b), its constraint matrix can be

derived as
Sfl O 0 Sf4 Sf9 O 0 Sle

M,,={ 0 0 S, -S;, O 0 Sin —Sip (3-32)
0 S, -S,; O 0 S, -Siu 0

The rank of constraint matrix is 7, and through computation, the mobility of this
nonsimplest mechanism is m=n, —rank(M,,;) =8—-7=1, compared with the
simplest mechanism with ¢, =0 and c=13 as given in Fig. 3-18(c), the actual and
equivalent overconstraints of this nonsimplest cubic mechanism are c,=2 and
c=19. Thus, the nonsimplest cubic mechanism is obtained following rotational
symmetries with the original motion behaviour, whose motion sequences are
demonstrated in Fig. 3-27(d).

Furthermore, following the C. symmetry to crisscross arrange four skew
quadrilateral basic units, AEBC, BCDF, ACDE and DEFB, another nonsimplest
topological graph is indicated in Fig. 3-27(c), also see Fig. 3-27(e). The constraint
matrix of this nonsimplest cubic mechanism is

Sy S O 0 S;; Si 0 0
M,,=| 0 0 S, O 0 =S Sip Sie (3-33)
o 0 0 S, -S,;, 0 =S, -S;,
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(a) (b) ()

Fig. 3-27 Nonsimplest cubic mechanisms. (a) The original topological graph; (b) the nonsimplest
topological graph following Cs symmetry; (c) the nonsimplest topological graph following C,
symmetry; (d) motion sequence of the nonsimplest cubic mechanism with C4 symmetry; () motion

sequence of the nonsimplest cubic mechanism with C, symmetry.
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Thus, the mobility can be obtained as m=n, —rank(M,,,) =8—-7 =1 also with
c, =2 and c=19. Without loss of generality, all the reduced solutions are given in
Appendix C, from the removal of one line in the topological graph to the removal of
four lines.

Furthermore, nonsimplest dodecahedral mechanisms can also be obtained using
rotational symmetry. Based on the original icosahedral topological graph in Fig. 3-28(a),
ten skew quadrilateral basic units, ABHC, CHLI, ACID, DILJ, ADJE, EJLK, AEKF,
FKLG, AFGB and BGLH, are crisscross arranged in Fig. 3-28(b) following Cs
symmetry, in which lines BC, CD, DE, EF, FB, HI, 1J, JK, KG and GH are removed,
the mobility of this nonsimplest dodecahedral mechanism can be derived with the

following constraint matrix

Mes,lz[Mn MlZ] (3-33)
with
0 0 O 0 0 0 0 0 O 0 |
0 0 O 0 0 S, O 0 O 0
0 0 O 0 0 0 0 0 O 0
0 0 S, S O 0 0 0 O 0
M,={0 0 0 -S;, S5 O 0 0 O 0
0 0 O 0 0 0 0 0 S S
0 0 O 0 0 0 S, S5 O 0
0 S, -S¢; O 0 0 0 0 0 -S;
S;;, 0 O 0 -S,-S,; -S4, 0 O 0
0 0 Siis St 0 0 0 0 Sia sto_
0 0 0 0 S;p Si O 0 0 -Sp
Siis Stwr 0 0 0 0 0 St —Sin 0
0 -S;;, -S4 O 0 0 0 0 0 0
M,=| O 0 0 -S;,-S;,, O 0 0 0 0
0 0 0 0 0 0 S, =S, O 0
0 0 0 0 0 Si =S;, O 0 0
0 0 0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 0 0 0 |
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The mobility of this nonsimplest cubic is m=n,—rank(M,,) =8-7 =1 also
with ¢, =8 and c=55, which are obviously more than the simplest results with
¢, =0 and c=31 asshown in Fig. 3-24(c).

Moreover, if six skew quadrilateral basic units, ACID, ADEF, AFGB, FKLG,
GLIH and LIDJ, are connected end to end following C3 symmetry, the other
nonsimplest dodecahedral mechanism is obtained in Fig. 3-28(c), whose motion
sequences are demonstrated in Fig. 3-28(e). The corresponding constraint matrix can

also be derived as

Mes,zz[Mn Mlz] (3-34)
with
0 0 0 0 S, S, O 0 0]
o0 0 O O 0 S, 0 O
0 0 O 0 0 0 0 0 O
M,={0 0 O 0 0 0 0 0 O
0 S, S;3 O 0 0 0 0 S
0 0 _Sf3 st _ng Y10 0 0 0
_Sfl 0 0 _st 0 0 _an Sflz 0 |
0 St 20 0 0 0 0 Stae sto_
0 0 -S;,, 0 0 S, O 0 =-S5
SflG B Y4 0 0 0 0 f28 ~ Yf29 0
M,= 0 0 0 Sy Sz =Sis —Sis 0 0
S, 0 0 0 0O 0 0 0 ©
0 0 0 0 O 0 0 0 0
0 0o 0 0 0O O 0 0 0 |

which also results in mobility m=n,—rank(M_,)=8-7=1 with c¢,=4 and
c=43.

Therefore, the 1-DOF nonsimplest constraint forms can combine the
overconstraint reduction and rotational symmetries, in which other solutions can also

be obtain with the proposed combination method.
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(a) (b)
A
D F
I A!G
L
c,=28,c=115

Fig. 3-28 Nonsimplest dodecahedral mechanisms. (a) The original topological graph; (b) the
nonsimplest topological graph following Cs symmetry; (c) the nonsimplest topological graph
following C3; symmetry; (d) motion sequence of the nonsimplest dodecahedral mechanism with Cs

symmetry; (e) motion sequence of the nonsimplest dodecahedral mechanism with C3 symmetry.
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3.5 Conclusions

In this chapter, we have proposed an innovative and intuitive approach for
constructing Sarrus-based DPMs based on three Platonic solids. Through integrating
the Sarrus linkages into a Platonic solid after the expansion operation, deployable
tetrahedral, cubic and dodecahedral mechanisms are synthesized and constructed that
enable 1-DOF synchronous radial motion, in which three paired polyhedral
transformations between Platonic and Archimedean solids are identified and revealed.
The proposed construction technique can be readily extended to the design of
deployable semiregular Archimedean polyhedrons, prism polyhedrons and Johnson
polyhedrons, which satisfy the geometry condition that only three faces meet at one
vertex.

For the mobility analysis of Sarrus-based DPMs, the equivalent analysis strategy
for multiloop mechanisms is proposed by regarding each Sarrus linkage as an
equivalent prismatic joint. The mobility of each polyhedral mechanism in this chapter
has been derived as only one by utilizing the screw-loop equation method with
Kirchhoff’s circulation law and an associated constraint graph. Subsequently, the
calculation process with the conventional analysis method was conducted, revealing the
accuracy, simplicity and high efficiency of the proposed equivalent analysis strategy.
The proposed construction and analysis strategy can be adapted to design other
deployable mechanisms in various regular and irregular polyhedral groups that could
facilitate their applications in various engineering fields. Furthermore, based on the
construction method, we can also realize all nine paired transformations reported in
Chapter 2, where structural variations with mechanism topology isomorphism need to
be conducted. This work also paves the way for designing kinematic cells for
metastructures and metamaterials, especially in Oh symmetry.

In addition, a novel Hamiltonian-path-based reduction method of 1-DOF Sarrus-
based DPMs was developed. By introducing Hamiltonian paths on 3D topological
graphs, the overconstraint reduction strategy for multiloop overconstrained DPMs was
proposed based on skew quadrilateral basic units and their sequential arrangements. All
Hamiltonian paths on their dual tetrahedron, octahedron and icosahedron were
discussed in detail to obtain one simplest tetrahedral mechanism, one simplest cubic
mechanism and nineteen dodecahedral mechanisms, respectively. The degree of

overconstraint in each simplest DPM is greatly reduced while preserving the original
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motion behaviour, i.e., one-DOF synchronized radial motion. Moreover, the proposed
reduction results are evaluated according to the calculation of the degree of
overconstraint combining the Euler formula and the Griibler-Kutzbach formula. The
nonsimplest form can be selected and obtained from the proposed approach for specific
applications. The proposed construction, analysis and reduction methods provide
inspiration for the simplification of known multiloop mechanisms or for the
construction of new mechanisms, with potential applications in the fields of

manufacturing, architecture and space exploration.
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Chapter 4 7R-based Archimedean Polyhedrons and Their
Symmetric Transformations

4.1 Introduction

Deployable mechanisms have interested researchers over the past decades across
various engineering fields as their extraordinary ability to fold a large structure into a
compact size. As a special and regular type of 3D deployable mechanisms, deployable
polyhedrons and transformable polyhedrons have been developed with various design
strategies. Moreover, some interesting polyhedral pairs can be identified through
mathematical transformations (details can be found in Section 1.2.3), in which each pair
of polyhedrons has the same polyhedral symmetry due to their radial transformation in
geometry. Using kinematic strategies to realize such polyhedral transformations
obtained in geometry, the proposed S4R-based polyhedrons in Chapter 2 present a
construction method for a group of transformable polyhedrons. However, their
transformable pairs are limited due to the threefold-symmetric construction cell, which
can only deal with the folding of hexagon facets of polyhedrons. In this chapter, aiming
to realize richer transformations among Archimedean and Platonic polyhedrons, a
family of deployable Archimedean polyhedrons are proposed based on spatial 7R
linkages and their threefold-, fourfold-, fivefold-symmetric loops, all of which perform
1-DOF synchronized radial motion and symmetric transformability.

The outline of this chapter is as follows. By using spatial 7R linkages as the
construction cells, a family of deployable Archimedean polyhedrons is developed in
Section 4.2, in which polyhedral transformations are demonstrated following
tetrahedral, octahedral and icosahedral symmetries. Regardless of which transformation,
the original symmetry is always preserved in the continuous folding process of 7R-
based polyhedrons. In Section 4.3, the overconstraint reductions of those 7R-based
polyhedrons are investigated based on the Hamiltonian-path-based method as a further
exploration for the reduction strategy, in which the Hamiltonian paths of all five
Platonic polyhedrons are discussed in detail in this section. the nonsimplest 7R-based
polyhedrons are discussed in Section 4.4. Finally, the conclusions and discussion are

given in Section 4.5, which summarizes the main findings in this chapter.
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4.2 Construction of 7R-based Archimedean Polyhedrons

4.2.1 Polyhedral Construction Based on Symmetric 7R Loops

To fold polyhedrons and realize the polyhedral transformation, the first task is to
fold polygons on the polyhedral surface. For instance, to transform a truncated
tetratetrahedron into a truncated tetrahedron, as illustrated in Fig. 4-1(a), the yellow
hexagon facet should be folded into a triangle, and the adjacent cyan squares should
vanish (highlighted red line area), while other blue hexagon facets should move
synchronously and radially with respect to the polyhedral centroid. For this purpose, as
shown in Fig. 4-1 (b), to completely fold the cyan squares, the design strategy of the
construction cell originates from a kirigami pattern with nine sheets (P; to p,) when

we cut the yellow hexagon facet and add an additional valley crease on each cyan square.

\/

(a)

(b) (c)

Zs Zy Iy

Fig. 4-1 Threefold-symmetric kirigami pattern. (a) Transformation from a truncated tetratetrahedron

to a truncated tetrahedron; (b) a spatial 9R linkage and (c) a threefold-symmetric 7R loop.

90



Chapter 4 7R-based Archimedean Polyhedrons and Their Symmetric Transformations

This geometry can be kinematically modelled as a threefold-symmetric spatial 9R
linkage with three sets of parallel revolute joints, i.e., z,//z,/lz, , z //z /lz, and
Z,/12,//z,, and other design parameters are dependent on polyhedral geometry, yet it
has three DOFs. To obtain 1-DOF folding motion, extra motion constraints need to be
introduced into this kirigami pattern. Here, we add four additional yellow sheets (], to
g, ) to further associate and constrain the motion of blue platforms (P;, p, and p,),
in which (; to Q, are identical isosceles trapezoids and (, is an equilateral triangle
to match the threefold symmetry. As a result, a modified kirigami pattern is obtained in
Fig. 4-1(c), which can be modelled as a threefold-symmetric 7R loop that consists of
three 7R linkages p,p,P;P,0,0,0;, P.PsPsP-0:0,d, and P;PgPyP,0;d,d;-

Mobility analysis of the proposed threefold-symmetric 7R loop can be investigated
and verified using screw theory. The threefold-symmetric 7R loop in an arbitrary
configuration is given in Fig. 4-2(a) with the local coordinate frame {Xi, Yo, Zi} , Where
origin O, is located at the centre of the yellow equilateral triangle sheet (side length is
b) and |= \/§a/ 2—\/§b /6 . The motion-screw system can be calculated in the

associated local coordinate system, in which

Si’lz[l 0 0 0 Ising, |COS¢£—\/§b/6T

s,=[-1/2 B/2 0 —\Blsing,/2 —lsing,/2
lcos g, / 4—/3b/ 24—/3(b/ 4—Blcos g, 12)12]

S,=[-1/2 —3/2 0 \Blsing,/2 —lIsing,/2
|c05¢;/4—J§b/24—J§(b/4—J§|cos(p;/2)/2]T

su=[1 0000 —Va/6]

S.=[-1/2 312 0 0 0 —3b/12]

Su=[-1/12 ~3/2 0 0 0 —3/12]

Si=|[b/2 30/6 —l6b/3 —(2b%/2—Icosg’)/3—+/3blsing;/6
blsing, /2—/6ab/6 —b(ﬁb/ﬁ—lcosqp’)/2+J§ab/12]T
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S,=|-b/2 f3b/6 —6b/3 —(\2b?/2—1cos¢’)/3—~/3blsing, /6
—blsing, /2—+/6ab/6 —b(\/§b/6—lCOS¢’)/2—J§ab/12]T

S,=[-b/2 J3b/6 —/6b/3 —/Bb(h/2-/3b/6)/3
—J6b(b/2+/3n/6)/3 b(h/2—\/§b/6)/2—J§b(b/2+J§h/6)/6]T

S.=|-b/2 /6 —Bh/3 —3b(\3al2—+B0/12+Icosg'/2)/3~3blsing, /6
—J3b(a/2-b/4—-Blcose'/2)/3-blsing, /2
b(«/§a/2—\/§b/12+lc03go'/2)/2—«/§b(a/2+b/4—«/3_’lCOS¢’/2)/6]T

Ss=[0 —+30/3 —6b/3 (3v2ab/2++/3b/12+1cos¢'/2)/3+~/3blsing,/3
Jeb(a/2-b/4++Blcosy’'/2)/3 J§b(a/2-b/4+J§|cos,go'/Z)/s]T

S.=[0 —\3/3 —\Bb/3 Eb(h+3b/3)/3 0 0]

S.=|0 —3b/3 —Bb/3 (3v2ab/2++/3b/12—Icosg'/2)/3+~/3blsing;/3
—J6b(a’2-b/4+~/3lcosg'/2)/3 J§b(a/2—b/4+J§|cos¢'/2)/3]T
Sp=[b/2 f3/6 —6b/3 —f6b(\Ba/2—3b/12+1cos¢g’'/2)/3—[3blsing;/6

—J6b(a/2—b/4—[3Icos¢’'/2)/3+blsing /2
—b(J§a/2—J§b/12+|cosgo'/2)/2+J§b(a/2+b/4—J§|cosgp'/z)/es]T

Se=[b/2 \Bb/6 —+6b/3 —<fBb(h/2+/3b/6)/3
Jeb(b/2++/3h16)/3 —b(h/2+\/§b/6)/2+\/§b(b/2+\/§h/2)/6T

Then, the associated constraint graph is sketched in Fig. 4-2(b). According to
Kirchhoff’s circulation law for independent loops shown in the constraint graph, the

constraint matrix of the threefold-symmetric 7R loop is organized as

S S35, 0 0 0 0 0 S; S, 0 §, S5 0

0
M,=| 0 0 0 0S4S5S, 0 0 0-S, S, 0 -S, S | &1
S 0. 00 0 Sig S _Sill 0 _Si’s _Sil4 0 _Si’6

Thus, the rank of this constraint matrix M, is 14, which indicates that the mobility
of the threefold-symmetric 7R loop is m=n-rank(M,) =15—-14 =1. Moreover, based
on the D-H matrix method, the kinematic relationships among the four types of dihedral

angles, see Fig. 4-2(a), can be derived as
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@, =2¢, —arccos(1/ 3)
cosg, =~/3(b—a—2asin(p, / 2))/ 6l
@, = @, —arccos(1/3) (4-2)
in which ¢, is given as the only kinematic input. Hence, this threefold-symmetric 7R

loop presents a 1-DOF synchronized radial motion, whose folding sequence is given in
Fig. 4-3.

(b)

Fig. 4-2 Mobility analysis of the threefold-symmetric 7R loop. (a) Coordinate system and (b)

constraint graph.
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© (d)

Fig. 4-3 Folding sequence of the threefold-symmetric 7R loop.

Regarding a construction cell, see Fig. 4-4(a), the symmetric 7R loop can be
tessellated with tetrahedral symmetry to synthesize a 7R-based truncated
tetratetrahedron and realise the transformation as given in Fig. 4-1(a). First, a quarter
portion of the entire polyhedral surface is symmetrically highlighted by grey dotted
lines according to T4 symmetry. Then, we embed one threefold-symmetric 7R loop into
this quarter polyhedral surface, referring to the polyhedral geometry. Finally, the 7R-
based truncated tetratetrahedron is obtained by embedding four 7R loops following Tq
tessellation. The 1-DOF construction cell and the polyhedral symmetric tessellation
guarantee that the 7R-based truncated tetratetrahedron also performs a 1-DOF
synchronized folding motion, whose cardboard prototype is shown in Fig. 4-4(a).
Therefore, the polyhedral transformation from a truncated tetratetrahedron (left) to a
truncated tetrahedron (right) is ultimately accomplished during the entire folding

Process.
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(b)

Fig. 4-4 Construction of 7R-based deployable polyhedrons with 7R loops. (a) 7R-based truncated
tetratetrahedron constructed by threefold-symmetric 7R loops and the transformation sequence from
a truncated tetratetrahedron to a truncated tetrahedron; (b) 7R-based truncated cuboctahedron
constructed by fourfold-symmetric 7R loops and the transformation sequence from a truncated
cuboctahedron to a truncated octahedron; (c) 7R-based truncated icosidodecahedron constructed by
fivefold-symmetric 7R loops and the transformation sequence from a truncated icosidodecahedron

to a truncated icosahedron.

Furthermore, if we fold a truncated cuboctahedron into a truncated octahedron, the
corresponding octagons need to be folded into squares, in which the threefold-
symmetric 7R loop is not applicable. To solve this problem, similar 1-DOF fourfold-
symmetric 7R loops are introduced, as shown in Fig. 4-4(b), which consists of four
spatial 7R linkages. One fourfold-symmetric 7R loop is embedded into the one-sixth
polyhedral surface, and following On tessellation, a 7R-based truncated cuboctahedron

is obtained to fulfil the corresponding polyhedral transformation. Similarly, we can also
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use the 1-DOF fivefold-symmetric 7R loops to address the folding of the decagon and
create a 7R-based truncated icosidodecahedron following icosahedral symmetry. As
illustrated in Fig. 4-4(c), a total of twelve fivefold-symmetric 7R loops are involved in
this construction, and the transformation from a truncated icosidodecahedron to a
truncated icosahedron is revealed.

Considering the truncated tetratetrahedron mechanism as an example to conduct
the mobility analysis, the reference coordinate frame {X, Y, Z} in its deployed
configuration is established in Fig. 4-5(a), in which its reference origin O is located at
the centroid of the truncated tetratetrahedron. Theoretically, the four platforms A, B, C
and D are located at the vertices of a virtual dual tetrahedron during the continuous
motion process; thus, a dual tetrahedron is introduced in Fig. 4-5(b). in which four local
origins O, (i =1, 2, 3 and 4) are the centres of virtual triangles, i.e., triangles ABC,
ACD, ABD and BCD, respectively. The joint screws of a threefold-symmetric 7R loop
in Fig. 4-2(a) can be transformed to the reference coordinate system with the 3x3
rotation transformation matrix R, and the skew-symmetric matrix of vector .
Referring to the polyhedral geometry and T, symmetry, R and P, (i=1,2,...,6)in

the 7R-based truncated tetratetrahedron can be obtained as

0 —J6/3 3/3
R=|v2/2 —[6/6 \3I3|, p,=d[3/3 —3/3 J§/3]T
212 616 3I3

212 616 —3/3]
R,=| 0 —6/3 373, p,=d[-V3/3 V3/3 3/3]
212 616 3/3]

212 616 —3/3]
R,=| 2/2 —6/6 —3/3|, p,=d[\B/3 3I3 —3/3]
0 6/3 —3/3

212 616 313
Ro=| 0 —6/3 3/3], p,=d[\3/3 v3/3 —3/3] 4-3)
212 616 —3/3

Based on the reference coordinate frame, Fig. 4-5(c) shows the constraint graph

with 42 joint screws in the 7R-based truncated tetratetrahedron. Thus, the constraint
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matrix M, can be expressed as

where

25

O O O o o

O O O o o
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"0 0 0 0 0 0] 0 00 0O0DO

O 0 0 0 0 0 0 00 0O0DO

Ma- 0 0 0 0 0 0 g,-00000¢
Sy S, 0 S, S 0

0 _Sz'tz 84'13 _84;4 0 Sz;e 0000700

- - 00000 O]

Therefore, the rank of the constraint matrix M, is 41, which indicates the

mobility of the 7R-based truncated tetratetrahedron is m=n-rank(M,) =42—-41=1.

(a) (b)

Fig. 4-5 Mobility analysis of the 7R-based truncated tetratetrahedron. (a) Coordinate system; (b)

constraint graph.
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4.2.2 Transformations with Ta Symmetry

Next, considering a truncated tetratetrahedron in Figs. 4-6(a) to (c) as an example
in which these types of polygons are illustrated in different colours, we reserve one type
and fold the other two, leading to three possible transformations. First, we reserve the
blue hexagons as highlighted by the red line in Fig. 4-6(a) and fold the other types by
using threefold-symmetric 7R loops, whose corresponding kinematic solution has been
demonstrated in Fig. 4-4(a). Second, due to the duality of the tetrahedral group, the
construction by reserving yellow hexagons in Fig. 4-6(b) also results in the same
transformation as given in Fig. 4-6(a). Third, if we reserve cyan squares, then
synchronous folding of yellow and blue hexagons can create a different transformation
from a truncated tetratetrahedron to a rhombitetratetrahedron, as shown in Fig. 4-6(c).
However, we rotate the yellow and blue sheets 60° to ensure connection with the
reserved cyan squares, leading to a 1-DOF assembly of spatial 8R linkages instead of
7R linkages.

Moreover, based on the construction of the 7R-based truncated tetratetrahedron in
Fig. 4-6(a), we explore the transformation from Archimedean to Platonic polyhedrons.
As shown in Fig. 4-6(d), the blue triangles are reserved in the geometric transformation,
while the yellow hexagons should be folded. Here, to embed the threefold-symmetric
7R loops, we add elongated cyan sheets with a width of / along the edges between two
adjacent yellow hexagons, in which the original blue triangles are actually inequilateral
hexagons and /4 can theoretically be infinitely small. Thus, the 7R-based truncated
tetrahedron is obtained as is its transformation to a tetratetrahedron. Additionally, we
reserve the blue triangles in a rhombitetratetrahedron in Fig. 4-6(e) and fold other facets
with threefold-symmetric 7R loops to realize the transformation into a tetrahedron.
Similarly, we extend three edges with a width of/ at the vertices of each original triangle
to accommodate the embedding of 7R loops. Only carrying out the geometric variations,
both the 7R-based truncated tetrahedron in Fig. 4-6(d) and rhombitetratetrahedron in
Fig. 4-6(e) have the same mechanism topology as the 7R-based truncated
tetratetrahedron in Fig. 4-6(a), i.e., isomorphic assembly of threefold-symmetric 7R
loops. No matter which transformation is performed in Fig. 4-6, Tq symmetry is always
reserved in the continuous folding process of 7R-based polyhedrons, as well as the 1-

DOF synchronized radial motion.
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Fig. 4-6 Transformations of 7R-based polyhedrons with Tq symmetry. (a) and (b) Transformation
from a truncated tetratetrahedron to a truncated tetrahedron; (c) transformation from a truncated
tetratetrahedron to a rhombitetratetrahedron; (d) transformation from a truncated tetrahedron to a

tetratetrahedron; (e) transformation from a rhombitetratetrahedron to a tetrahedron.

4.2.3 Transformations with On and In Symmetries

The above construction and transformation methods can also be readily applied to
the other Archimedean polyhedrons with Oy and I, symmetry, respectively. Here, for
the transformation of a 7R-based truncated cuboctahedron with On symmetry, we can
obtain three kinematic solutions, as given in Figs. 4-7(a) to (c). Reserving the blue
octagon (marked in red line) and using a threefold-symmetric 7R loop as the
construction cell to fold the yellow hexagons and cyan squares, the transformation from

a truncated cuboctahedron to a truncated cube is given in Fig. 4-7(a) based on the On
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tessellation of a total of eight construction cells. Next, the transformation in Fig. 4-7(b)
has been presented by introducing six fourfold-symmetric 7R loops to fold the blue
octagons, also see Fig. 4-4(b). Furthermore, by combining the above folding of yellow
hexagons and blue octagons while reserving cyan squares, the transformation to
rhombicuboctahedron is obtained in Fig. 4-7(c), which results in an assembly of 8R
linkages.

Similar to the cases in Figs. 4-6(d) and (e), we obtain more paired transformations
among Archimedean and Platonic polyhedrons based on the proposed 7R-based
truncated cuboctahedron, see Figs. 4-7(d) to (g). The 7R-based polyhedrons in Figs. 4-
7(d) and (e), both transformed into cuboctahedrons, are constructed with threefold- and
fourfold-symmetric 7R loops, respectively, in which we introduce elongated cyan
sheets along the edge between the facets that need to be folded. The
rhombicuboctahedron in Figs. 4-7(f) and (g) can be transformed into a cube and an
octahedron, respectively, in which those two 7R-based rhombicuboctahedrons are
constructed by embedding threefold- and fourfold-symmetric 7R loops. Thus, the
kinematic solutions, as demonstrated in Figs. 4-7(d) and (f), have the same mechanism
topology isomorphism as the one in Fig. 4-7(a), as do the cases in Figs. 4-7(¢e) and (g),
as in Fig. 4-7(b). Apparently, the 1-DOF synchronized radial motion with On symmetry
is presented in each transformation of 7R-based polyhedrons in Fig. 4-7.

Moreover, we readily create a series of 1-DOF 7R-based polyhedrons with I
symmetry and their corresponding transformations (see Fig. 4-8). Embedding threefold-
symmetric 7R loops, fivefold-symmetric 7R loops and their combination in a truncated
icosidodecahedron result in the transformations to truncated dodecahedron (Fig. 4-8(a)),
truncated icosahedron (Fig. 4-8(b)) and rhombicosidodecahedron (Fig. 4-8(c)),
respectively. Implementing a similar construction strategy as shown in Figs. 4-7(d) to
(g), the remaining four different 7R-based polyhedrons are obtained in Figs. 4-8(d) to
(g), as well as the paired transformations in the icosahedral group. In this way, the
folded configurations of the two cases in Figs. 4-8(d) and (e) are identical, as well as
the deployed configurations in Figs. 4-8(f) and (g).

Therefore, in addition to two special Archimedean polyhedrons without symmetry,
i.e., snub cube and snub dodecahedron, the 1-DOF transformations among the
remaining eleven Archimedean and all five Platonic polyhedrons have been presented

following Tq, On and In symmetries.
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Fig. 4-7 Transformations of 7R-based polyhedrons with On symmetry. (a) Transformation from a
truncated cuboctahedron to a truncated cube; (b) transformation from a truncated cuboctahedron to
a truncated octahedron; (c) transformation from a truncated cuboctahedron to a
rhombicuboctahedron; (d) transformation from a truncated octahedron to a cuboctahedron; (e)
transformation from a truncated cube to a cuboctahedron; (f) transformation from a

rhombicuboctahedron to a cube; (g) transformation from a rhombicuboctahedron to an octahedron.
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Fig. 4-8 Transformations of 7R-based polyhedrons with I, symmetry. (a) Transformation from a
truncated icosidodecahedron to a truncated dodecahedron; (b) transformation from a truncated
icosidodecahedron to a truncated icosahedron; (c) transformation from a truncated
icosidodecahedron to a rhombicosidodecahedron; (d) transformation from a truncated icosahedron
to an icosidodecahedron. (e) Transformation from a truncated dodecahedron to an
icosidodecahedron; (f) transformation from a rhombicosidodecahedron to a dodecahedron; (g)

transformation from a rhombicosidodecahedron to an icosahedron.
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4.3 Overconstraint reduction of 7R-based Polyhedrons

4.3.1 Reduction of the 7R-based Truncated Tetratetrahedron

The proposed 7R-based truncated tetratetrahedron constructed by threefold-
symmetric 7R loops is illustrated in Fig. 4-9(a), with its corresponding 3D topological
graph shown in Fig. 4-9(b), in which the larger blue vertices of a dual tetrahedron stand
for the main translational platforms, and smaller dots in corresponding colours denote
the involved sheets. To reduce or even eliminate the overconstraint in multiloop 7R-
based DPMs and find the effective constraint space for polyhedral platforms, we can
also present the reduction process by utilizing the topology operation inspired by the
Hamiltonian path, which is an extension of the Hamiltonian-path reduction strategy

proposed in Chapter 3.

(a) (b)

Fig. 4-9 7R-based truncated tetratetrahedron. (a) The original mechanism and (b) its corresponding

topological graph based on a dual tetrahedron.

Notably, the essential premise of reduction is that each platform requires at least
two equivalent prismatic joints to connect it to the entire closed mechanism, i.e., each
vertex is related to at least two edges in the topological graph, while the original
kinematic properties, including mobility and radial motion, will be preserved among
polyhedral platforms.

Thus, we can readily investigate the reduction of 7R-based polyhedrons with the
assistance of a Hamiltonian path. Considering symmetry, only one 3D Hamiltonian path
of the tetrahedron is given in Fig. 4-10(a), as illustrated by the four red lines connecting
the four blue vertices. Moreover, referring to the analysis of the degree of overconstraint
c as given in Section 3.3, the 32 links and 42 joints in this 7R-based mechanism result

in overconstraints ¢c=25. Next, this Hamiltonian path splits the tetrahedron into two half
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shells, as shown in Figs. 4-10(b) and (e). On the one hand, the half shell in Fig. 4-10(b)
is an assembly of two 1-DOF equilateral triangular units ABC and BCD, in which each
equilateral triangle consists of three isosceles small triangles representing a threefold-
symmetric assembly of 1-DOF 7R linkages. Next, we can remove edge BC under the
mentioned reduction premise without affecting kinematics, where a spatial 8R linkage
appears at the original edge BC, as shown in Fig. 4-10(c). However, the overconstraints
of 7 still exist due to multiloop coupling. Furthermore, we remove edges AB and CD in
Fig. 4-10(d), resulting in a 1-DOF 7R-8R-7R assembly, in which the 7R linkage can
completely constrain the motion of the 8R linkage due to two shared joints and three
common links. Thus far, the overconstraint has been reduced from the original 25 to 1.
Note that if we remove arbitrarily one link or joint, the mobility of this 7R-based
mechanism will increase; hence, the topological graph in Fig. 4-10(d) can be obtained
as the simplest constrained form of the 7R-based truncated tetratetrahedron. The
mobility and equivalent kinematics can also be obtained with the analysis process as
given in Section 4.2.1. However, the other half shell in Fig. 4-10(e) can also lead to the

identical simplest constraint form due to tetrahedral symmetry, as shown in Fig. 4-10(g).

(b) (c) (d)

n=22, g=27, c=10 n=20, g=24, c=7 n=16, g=18, c=1

(e) (f) (2)

Hamiltonian Path
n=32, g=42, c=25 A

[ a
D™~
B
n=22, g=27, =10 n=20, g=24, =7 n=16, g=18, =1
Fig. 4-10 Reduction process of 7R-based truncated tetratetrahedron. (a) The only 3D Hamiltonian
path (illustrated by the red line). (b)-(d) Reduction process based on one half shell split by the

Hamiltonian path. (e)-(g) Reduction process based on the other half shell.
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Either edge AB or AC can be selected for removal without affecting the reduction
result, as can the edges DB or DC. By mapping the proposed simplest constraint form
obtained in Fig. 4-10(d) to the 7R-based mechanism, the simplest 7R-based truncated
tetratetrahedron is demonstrated in Fig. 4-11, in which the 1-DOF synchronized radial
motion is preserved. The above reduction remains applicable for the identical 7R-based
truncated tetratetrahedron obtained in Fig. 4-6(b) due to the duality of the tetrahedron.

Thus, the reduction procedure in this section is the extension of Hamiltonian-path-
based method proposed in Section 3.3, which can be summarized as follows: (1) obtain
two topology half shells split by the Hamiltonian path; (2) remove redundant constraints

inside the path; (3) remove redundant constraints on the contour edge of the path.

Fig. 4-11 Motion sequence of the simplest 7R-based truncated tetratetrahedron constructed by

threefold-symmetric 7R loops.

4.3.2 Reduction of 7R-based Truncated Cuboctahedrons

For the 7R-based truncated cuboctahedron constructed by threefold-symmetric 7R
loops, as shown in Fig. 4-12(a), the corresponding three-dimensional topological graph
based on an octahedron is illustrated in Fig. 4-12(b), which has two distinct Hamiltonian

paths.

(a) (b)

)4

Fig. 4-12 7R-based truncated cuboctahedron constructed by threefold-symmetric 7R loops. (a) The

original mechanism and (b) its corresponding topological graph based on a dual octahedron.

106



Chapter 4 7R-based Archimedean Polyhedrons and Their Symmetric Transformations

This original 7R-based mechanism with 62 links and 84 joints has overconstraints
¢=55, and one Hamiltonian path highlighted in red lines is given in Fig. 4-13(a). One
half shell split by path 1 is shown in Fig. 4-13(b); then, the common edges BC, CA and
AD among the four equilateral triangles can be sequentially removed (see Fig. 4-13(c)).
For further removal, as shown in Fig. 4-13(d), contour edges FC, CD, DE and AB can
be removed to construct a 1-DOF 7R-8R-8R-8R-7R open-loop assembly, in which the
overconstraint is reduced from the original 55 to 1. If any link or joint is removed based
on Fig. 4-13(d), then the original kinematics among platforms will change, which
diverges the reduction premise. To minimize the degree of overconstraint, only two
ends of the original Hamiltonian path are reserved in the simplest form. However, due

to the octahedral symmetry, the reduction process based on the other half shell, as

shown in Figs. 4-13(e) to (g), is the same as the case in Figs. 4-13(b) to (d).

Path 1
n=62, g=84, ¢=55

n=40, g=51, ¢=22 n=34, g=42, =13 n=26, g=30, c=1

Fig. 4-13 Reduction process of the 7R-based truncated cuboctahedron based on path 1. (a)
Hamiltonian path 1 of an octahedron (illustrated by the red line). (b)-(d) Reduction process based

on one half shell split by path 1. (e)-(g) Reduction process based on the other half shell.

Furthermore, the other Hamiltonian path 2 is shown in Fig. 4-14(a), which also

splits this octahedron into two congruent half shells with a threefold zigzag shape due
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to symmetry (see Figs. 4-14(b) and (e)). Subsequently, we can remove the common
edges AB, BC and CA among the four equilateral triangles (see Fig. 4-14(c)). However,
because four equilateral triangles are not connected in sequence in Fig. 4-14(b), we
cannot obtain a simple open-loop assembly similar to Fig. 4-13(d); thus, we remove
edges FC, CD and BE for further reduction. In fact, we can select either edge FB or
edge FC in the original triangle BCF in addition to the common edge BC to remove, as
can either edge DA or edge DC in the original triangle ACD and edge EA or edge EB
in the original triangle ABE. In such a way, its overconstraints are reduced from the
original 55 to 4, yet compared with the case in Fig. 4-13(d), this constraint path in Fig.

4-14(d) cannot be treated as the simplest one of this 7R-based mechanism, nor can the

identical reduction result obtain from Figs. 4-14(e) to (g).

(d) T~

f (2) a

n=40, g=51, c=22 n=34, g=42, c=13 n=28, g=33, =4
Fig. 4-14 Reduction process of the 7R-based truncated cuboctahedron based on path 2. (a)
Hamiltonian path 2 of an octahedron (illustrated by the red line). (b)-(d) Reduction process based

on one half shell split by path 2. (¢)-(g) Reduction process based on the other half shell.

According to the simplest topological graph in Fig. 4-13(d), the simplest constraint

form of the 7R-based truncated cuboctahedron constructed by threefold-symmetric 7R
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loops is obtained with equivalent kinematics, whose motion sequence is shown in Fig.

4-15. The original radial motion is reserved after the removal of redundant constraints.

Fig. 4-15 Motion sequence of the simplest 7R-based truncated cuboctahedron constructed by

threefold-symmetric 7R loops.

Moreover, for the 7R-based truncated cuboctahedron constructed by fourfold-
symmetric 7R loops in Fig. 4-16(a), the corresponding 3D topological graph is based
on a dual cube, see Fig. 4-16(b), in which each facet of this cube consists of four
isosceles right triangles standing for a 1-DOF fourfold-symmetric assembly of 7R

linkages.

Fig. 4-16 7R-based truncated cuboctahedron constructed by fourfold-symmetric 7R loops. (a) The

original mechanism and (b) its corresponding topological graph based on a dual cube.

This 7R-based mechanism constructed by 62 links and 84 joints has
overconstraints of 55. Considering symmetry, only one 3D Hamiltonian path of this

cube is given in Fig. 4-17(a). Based on one shell split by this Hamiltonian path in Fig.

109



Doctoral Dissertation of Tianjin University

4-17(b), we can remove the common shared edges BC and AD. Next, to ensure the
reduction premise and guarantee the 1-DOF original kinematics, we further remove
edges GC, CD and DH to obtain a 7R-7R-8R-7R-8R-7R-7R assembly, as shown in Fig.
4-17(d). Due to the fourfold symmetry and to ensure the sequenced connection of each
spatial linkage, some 7R linkages cannot be reduced, which results in the overconstraint

in this simplest constraint form being c=4. In addition, identical reduction results are

presented in Figs. 4-17(e) to (g) based on the other shell.

Hamiltonian Path
n=62, g=84, ¢=55

n=43, g=54, c=19 n=39, g=48, ¢=13 n=33, g=39, c=4

Fig. 4-17 Reduction process of the 7R-based truncated cuboctahedron constructed by fourfold-
symmetric 7R loops. (a) The only Hamiltonian path of a cube (illustrated by the red line). (b)-(d)
Reduction process based on one half shell split by the Hamiltonian path. (e)-(g) Reduction process
based on the other half shell.

Mapping the simplest topological graph in Figs. 4-17(d) or (g) to the original 7R-
based mechanism, the simplest constraint form of the ensuing truncated cuboctahedron
is shown in Fig. 4-18, which reserves the original 1-DOF radial motion among six

yellow platforms.
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Fig. 4-18 Motion sequence of the simplest 7R-based truncated cuboctahedron constructed by

fourfold-symmetric 7R loops.

4.3.3 Reduction of 7R-based Truncated Icosidodecahedrons

The proposed 7R-based truncated icosidodecahedron based on threefold-
symmetric 7R loops is given in Fig. 4-19(a), together with its corresponding 3D
topological graph in Fig. 4-19(b) based on a dual icosahedron. Similar to the Sarrus-
based dodecahedral mechanism proposed in Section 3.3, there are 17 distinct
Hamiltonian paths on an icosahedron that also bring a major challenge for the reduction

of this 7R-based truncated icosidodecahedron.

(b)

Fig. 4-19 7R-based truncated icosidodecahedron constructed by threefold-symmetric 7R loops. (a)

The original mechanism and (b) its corresponding topological graph based on a dual icosahedron.

Nevertheless, the proposed reduction method can still be conducted by taking an
arbitrary Hamiltonian path as an example, as shown in Fig. 4-20(a) in red lines. Two
distinct half shells split by path 1 are given in Figs. 4-20(b) and (e), respectively. For
the first case, the common edges CD, Cl, IH, CH, HB, BG, GF, FK and KE are removed
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in Fig. 4-20(b), and the result is shown in Fig. 4-20(c). Under the reduction premise,
several external contour edges of this shell are removed, in which the edges AC, HL
and EG of the original path 1 are reserved. However, the overconstraints of this
reduction are c=4. On the other hand, the common edges AB, AF, AE, DE, DJ, 1J, JL,
KL and GL in Fig. 4-20(e) are removed (see Fig. 4-20(f)). Next, the redundant external
contour edges are removed under the reduction premise, and only edges BC and GH
are reserved; thus, the simplest constraint form is obtained in Fig. 4-20(g) with
overconstraint c=1, in which a 7R-8R-8R-8R-8R-8R-8R-8R-8R-8R-TR assembly is
obtained. Therefore, compared with the result in Fig. 4-20(d), the simplest constraint
form generated from Hamiltonian path 1 is identified in Fig. 4-20(g), which is also an

assembly of spatial 7R and 8R linkages, in which two 7R linkages are respectively set

up as two ends of the open-loop assembly.

Path 1
n=152, g=210, c=145

n=94, g=123, ¢=58 n=76, g=96, c=31 n=>56, g=66, c=1

Fig. 4-20 Reduction process of the 7R-based truncated icosidodecahedron constructed by threefold-
symmetric 7R loops. (a) Hamiltonian path 1 of an icosahedron (illustrated by the red line). (b)-(d)
Reduction process based on one half shell split by path 1. (e)-(g) Reduction process based on the
other half shell.
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Referring to the simplest topological graph in Figs. 4-20(g), the simplest constraint
form of the 7R-based truncated icosidodecahedron constructed by threefold-symmetric
7R loops is obtained without affecting the original kinematics. The mapped 7R-based

mechanism is shown in Fig. 4-21, as well as the unchanged synchronized radial motion.

Fig. 4-21 Motion sequence of the simplest 7R-based truncated icosidodecahedron constructed by

threefold-symmetric 7R loops.

Due to the complexity of Hamiltonian paths in a dual icosahedron, detailed
investigations should be conducted to describe the possible solutions and obtain all the
reduction results of this 7R-based truncated icosidodecahedron. Similar to the
discussion of reduction for the Sarrus-based dodecahedral mechanism in Section 3.3,
under the reduction premise, we can find the other four simplest topological graphs
from paths 2 to 5 identified from all 17 Hamiltonian paths (divided into 34 half shells),
which are organized and listed in Fig. 4-22. Compared with 145 overconstraints of the
original mechanism, each effective reduction result in Fig. 4-22 has one DOF with only
one overconstraint after removing the redundant constraints.

Based on these reduction results, the simplest constraint forms of the 7R-based
truncated icosidodecahedron are shown in Fig. 4-23, each of which is a 7R-8R-8R-8R-
8R-8R-8R-8R-8R-8R-TR spatial assembly. All five simplest constraint forms reserve the
original kinematic behaviours among platforms A to L.

Finally, the proposed 7R-based truncated icosidodecahedron based on fivefold-
symmetric 7R loops is given in Fig. 4-24(a), as is its corresponding 3D topological
graph in Fig. 4-24(b) based on a dual icosahedron. This 7R-based mechanism is

constructed by 152 links and 210 joints with overconstraints of 145, in which these
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numbers are the same as that in the 7R-based mechanism as given in Fig. 4-18, yet with

a distinct mechanism topology.

Path 5
n=152, g=210, c=145 n=94, g=123, ¢=58 n=76, g=96, ¢=31 n=56, g=606, c=1

Fig. 4-22 Effective reduction results of this 7R-based truncated icosidodecahedron based on

Hamiltonian paths 2 to 5.
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(a) (b)

(a) (b)
D

W \ 2 4
@7
R 0

A e

Fig. 4-24 7R-based truncated icosidodecahedron constructed by fivefold-symmetric 7R loops. (a)

The original mechanism and (b) its corresponding topological graph based on a dual dodecahedron.

Referring to I symmetry, only one 3D Hamiltonian path (highlighted in red lines)
of this dodecahedron is given in Fig. 4-25(a). Then, two identical half shells split by
this path are given in Figs. 4-25(b) and (e). Based on one shell spilt by this Hamiltonian
path in Fig. 4-25(b), we remove the common edges AE, GF OP, MT and KS among six
pentagons, and the result is shown in Fig. 4-25(c). Sequentially, several external
contour edges AB, EF, FO, PT, TS and SR can be removed under the reduction premise,
as indicated in Fig. 4-25(d). However, the overconstraint of this reduction result is c=13
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due to the generated 7R-7R-7R-8R-7R-7R-8R-7R-7TR-8R-TR-TR-8R-TR-TR-8R-TR-7R-
7R assembly, in which the remaining external contour edges have to be reversed to
guarantee the 1-DOF kinematic equivalence among all platforms. On the other hand,
an identical reduction process is illustrated in Figs. 4-25(e) to (g). Mapping the simplest
topological graph in Figs. 4-25(d) to the original 7R-based mechanism, the simplest

constraint form of these 7R-based truncated icosidodecahedrons is shown in Fig. 4-26,

in which the overconstraints are greatly reduced from 145 to 13.

Hamiltonian Path
n=152, g=210, c=145

Q R Q R Q
n=106, g=135, c=46 n=96, g=120, =31 n=84, g=102, =13
Fig. 4-25 Reduction process of the 7R-based truncated icosidodecahedron constructed by fivefold-
symmetric 7R loops. (a) The only Hamiltonian path of a dodecahedron (illustrated by the red line).
(b)-(d) Reduction process based on one half shell split by the Hamiltonian path. (e)-(g) Reduction

process based on the other half shell.

Fig. 4-26 Motion sequence of the simplest 7R-based truncated icosidodecahedrons constructed by

fivefold-symmetric 7R loops.
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4.4 Nonsimplest 7R-based Polyhedrons with Rotational Symmetries

Similar to the obtained nonsimplest forms of Sarrus-based polyhedral mechanisms,
the nonsimplest 7R-based polyhedrons can also be explored by means of different
rotational symmetries.

Based on the original truncated tetratetrahedron mechanism with ¢=25 as given
in Fig. 4-9, by following C3 symmetry and combining 7R and 8R linkages, the 7R-8R
hybrid topological graph is taken as a nonsimplest example of truncated
tetratetrahedron mechanism, see Figs. 4-27(a) and (b), in which three 7R linkages are
arranged on the edges BC, CD and DB, respectively. Based on the screw analysis as
given in Section 4.2.1 and the corresponding constraint graph as indicated in Figs. 4-

27(c), the constraint matrix of this nonsimplest form can be organized as

M1' = [ M11 M12 M13] (4-5)
with
0 0 0 0 0 0 0 0 0]
O 0 0 0 0 0 0 0 O
0O 0 0 0 0 0 0 0 O
MiZlo 0 0 0 0 0 s. 5. S
35 36 37
S. S. S, 0 0 0 0 0 0
(0 0 0 S, S S, 0 0 0
s, S, 0 S, 0 S. 0 0 0]
S, 0 §; -S, S 0 S, S, O
o o o0 0 0 0 -S, 0 S,
M=l o 0 0 0o o0 0o 0o o0 0
0 -S, -S, 0 -S. -S. 0 0 O
0o 0 0 0 0 0 0 -S, -S
"0 0 o0 S, 0 S, s, 0 s
s, 0 S. 0 0 0 0 0 0
S B S
32 33 35 36
o o o o0 0 0 0 0 o0
0 -S, -8, 0O 0 0 0 0 0
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Therefore, the rank of the constraint matrix M, is 26, which indicates the
mobility of this nonsimplest mechanism is m=n-rank(M,) =27 —-26 =1. Compared
with the simplest truncated tetratetrahedron mechanism with ¢=1 as given in Fig. 4-11,

the overconstraints of this nonsimplest form with C; symmetry is c=10.

(a) (b)

n=22, g=27, c=10

()

Fig. 4-27 Mobility analysis of the nonsimplest 7R-based truncated tetratetrahedron. (a) nonsimplest

topological graph; (b) nonsimplest mechanism form; (c) the corresponding constraint graph.

Next, for the truncated cuboctahedron mechanism constructed by threefold-
symmetric 7R loops, as shown in Fig. 4-12, if the cyan small vertices and the related

lines in the topological graph are removed following C4 symmetry, as shown in Fig. 4-
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28(a), the reduction result is an assembly of 8R loops, and the corresponding 1-DOF
mechanism in Fig. 4-28(b) also presents C4 symmetry. On the other hand, if the yellow
small vertices and the related lines are also removed following C4 symmetry, see Figs.
4-28(c) and (d), yet a 5-DOF assembly of 9R loops occurs, which is clearly undesirable
under the reduction premise.

By following rotational symmetry and combining 7R and 8R linkages, the 7R-8R
hybrid topological graph is taken as a nonsimplest example, see Fig. 4-28(e), in which
the Cs-axis passes through the centres of triangles ABC and DEF simultaneously. Then,
the yellow small vertices in these two triangles together with cyan small vertices in
lines AE, EB, BF, FC, CD and DA are removed following C; symmetry; thus, a close-
loop 7R-8R-7R-8R-TR-8R-TR-8R-TR-8R-T7R-8R assembly is obtained, as shown in Fig.
4-28(f), in which the 7R linkages are arranged around triangles ABC and DEF to match
the C3 symmetry. Thus, based on the rotational symmetries, the 8R assembly with Cq4
symmetry and 7R-8R hybrid assembly can be obtained as two nonsimplest examples of
this truncated cuboctahedron mechanism, in which the overconstraints are reduced from
the original 55 to 19, instead of the only overconstraint in its simplest form, as given in
Fig. 4-13(d). The nonsimplest form is not unique; in addition to the mentioned C4 and
Cs symmetries, different symmetries can be utilized to construct various nonsimplest
forms, such as using C, symmetry to obtain a plane-symmetry mechanism.

On the other hand, referring to the truncated cuboctahedron mechanism constructed
by fourfold-symmetric 7R loops as shown in Fig. 4-16, based on C4 symmetry, the entire
removal of all edges in the cubic topological graph also results in a 1-DOF 8R assembly,
see Figs. 4-29(a) and (b), in which overconstraints are reduced from the original 55 to
19. Similar to the reduction shown in Figs. 4-28(e) and (f), the reduction following C4
symmetry can be applied to this mechanism. As shown in Fig. 4-29(c), the blue small
vertices in two squares ABCD and EFGH are removed, as well as the cyan blue small
vertices in edges AE, BF, CG and DH; thus, a C4 symmetry topological graph and the
corresponding mechanism are indicated in Figs. 4-29(c) and (d), respectively. Thus, the
7R linkages are arranged along the reserved edges, and four 8R linkages are sequentially
arranged between 7R linkages to present the C4 symmetry, which is also a close-loop
7R-8R hybrid assembly with c=23.
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(b)

() (d)

n=30, g=36, c=11 5-DOF

n=38, g=48, =19 1-DOF

Fig. 4-28 Nonsimplest truncated cuboctahedron mechanisms constructed by threefold-symmetric
7R loops. (a) The 8R topological graph following C4 symmetry and (b) the corresponding 1-DOF
mechanism; (c) the 9R topological graph following C4 symmetry and (d) the corresponding 5-DOF
mechanism; (e) the 7R-8R hybrid topological graph following C, symmetry and (f) the

corresponding 1-DOF mechanism.
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(b)

(d)

n=44, g=56, =23

Fig. 4-29 Nonsimplest truncated cuboctahedron mechanisms constructed by fourfold-symmetric 7R
loops. (a) The 8R topological graph following C4 symmetry and (b) the corresponding 1-DOF
mechanism; (c) the 7R-8R hybrid topological graph following Ci-symmetry and (d) the

corresponding 1-DOF mechanism.

Finally, using rotational symmetry, nonsimplest truncated icosidodecahedron
mechanisms can also be obtained. For the mechanism constructed by threefold-
symmetric 7R loops, a 1-DOF 8R assembly can also be obtained by removing all edges
in its original icosahedral topological graph following C4 symmetry (see Figs. 4-30(a)
and (b)). Then, similar to the nonsimplest topological graph given in Fig. 4-28(c), a 7R-
8R hybrid closed-loop assembly is obtained in Fig. 4-30(c) following C; symmetry, i.e.,
a 1-DOF 7R-8R-7R-8R-7TR-8R-T7R-8R-8R-TR-8R-TR-8R-TR-8R-7R-8R-TR-8R-TR-8R-
7R-8R-TR-8R assembly, also showing the corresponding 1-DOF mechanism with C3
symmetry, as given in Fig. 4-30(d).

121



Doctoral Dissertation of Tianjin University

(b)

L
n=92, g=120, c=55

(d)

L
n=84, g=108, c=43

Fig. 4-30 Nonsimplest truncated icosidodecahedron mechanism constructed by threefold-symmetric
7R loops. (a) The 8R topological graph following Cs symmetry and (b) the corresponding 1-DOF
mechanism; (c) the 7R-8R hybrid topological graph following C; symmetry and (d) the

corresponding 1-DOF mechanism.

For the truncated icosidodecahedron mechanism constructed by fivefold-
symmetric 7R loops, a 1-DOF 8R assembly is obtained in Figs. 4-31(a) and (b) by
removing all original dodecahedral edges following Cs symmetry, which results in
overconstraints from the original 145 to 55. Additionally, using Cs symmetry, ten 7R
linkages are reserved at two pentagons ABCDE and RSTPQ. Then, the remaining
elements are all 8R linkages arranged with Cs symmetry. The other nonsimplest form
is obtained in Fig. 4-31(c), as well as the corresponding 1-DOF 7R-8R hybrid

mechanism with ¢=57, as shown in Fig. 4-31(d).
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(c) c. (d)

L_,Q:" ‘

n=100, g=130, =57 1-DOF
Fig. 4-31 Nonsimplest truncated icosidodecahedron mechanism constructed by fivefold-symmetric
7R loops. (a) The 8R topological graph following Cs symmetry and (b) the corresponding 1-DOF
mechanism; (c) the 7R-8R hybrid topological graph following Cs; symmetry and (d) the

corresponding 1-DOF mechanism.

4.5 Conclusions and Discussion

In summary, a family of 7R-based Archimedean polyhedrons with 1-DOF
synchronized radial motion has been designed, as well as paired transformations among
Archimedean and Platonic polyhedrons. Moreover, three types of transformable
polyhedrons with distinct symmetries, i.e., T4, On and I, are constructed, and the
corresponding prototypes are fabricated to verify their deployable transformability and
kinematic properties. As a further exploration of the reduction strategy, the
overconstraint reductions of those 7R-based polyhedrons are investigated based on the
Hamiltonian-path-based method, in which the Hamiltonian paths of all five Platonic

polyhedrons are discussed in detail. Notably, the proposed nonsimplest polyhedrons is
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considered to possess appropriate stiffness to satisfy practical engineering requirements.
Due to the identical threefold-symmetric spatial 9R linkage as the outside frame, we
can combine the threefold-symmetric 7R loop in Fig. 4-1(c) and the S4R-synthesized
mechanism in Fig. 2-3(c¢) when embedding the mechanism units into the polyhedral
surface, to obtain the integrated design of DPMs without affecting the kinematics of the
polyhedral platforms.

The transformable solutions among eleven Archimedean and all five Platonic
polyhedrons, except the snub cube and snub dodecahedron without symmetry, have
been investigated in this chapter. This research solves the difficult problem of
transformable polyhedrons by means of a kinematic strategy, i.e., multi-symmetric 7R
loops, thus realizing richer transformable solutions. Future work will explore other
possible polyhedral pairs and the corresponding kinematic solutions by considering
wider polyhedral symmetry. This work also presents a kinematic strategy to create
mechanism-based metamaterial cells, and their tessellation approach and advanced
applications in multifunctional and programmable metamaterials should be developed

extensively.
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Chapter 5 Achievements and Future Works

This dissertation focuses on the mechanism kinematics rather than the dynamics.
Its goal is to propose the design method of 1-DOF deployable polyhedral mechanisms
with synchronized radial motion by integrating spherical, overconstrained and spatial
linkages, reveal the paired polyhedral transformations among Platonic and
Archimedean polyhedrons, and present an overconstraint reduction strategy by
removing redundant links and joints without affecting the original kinematics. This
chapter summarizes the main achievements of this dissertation and highlights

opportunities for future work.

5.1 Main Achievements

*  1-DOF Deployable S4R-based Polyhedrons

First, a 1-DOF S4R-synchronized mechanism was constructed by embedding three
pairs of spherical 4R linkages into a spatial 9R linkage to provide kinematic constraints.
Embedding the proposed S4R-synchronized mechanism cells into the surface of
Archimedean polyhedrons yielded three 1-DOF transformable S4R-based polyhedral
mechanisms with distinct symmetries, for which corresponding prototypes have been
fabricated to verify their kinematic properties. Referring to the dimensional shortening
operations, structural variations of S4R-based polyhedrons with mechanism topology
isomorphism have been demonstrated to realize all nine polyhedral transformations
with different volumetric deployable ratios. The overconstraint reductions of the
proposed polyhedrons have been investigated by analysing the constraint conditions
and then removing the redundant constraints.

The kinematic model and structural variations of 1-DOF S4R-based deployable
polyhedrons were presented in Chapter 2. This technique offers a new approach to
construct DPMs based on origami mechanisms. The outcomes widen the design concept

and structural variations of deployable polyhedral mechanisms.
*  Sarrus-based Deployable Polyhedral Mechanisms

Second, an innovative and intuitive approach for constructing Sarrus-based

deployable polyhedral mechanisms based on three Platonic solids has been
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demonstrated. Through integrating the Sarrus linkages into a Platonic solid after the
expansion operation, deployable tetrahedral, cubic and icosahedral mechanisms have
been synthesized and constructed that enable 1-DOF synchronous radial motion, in
which three paired polyhedral transformations between Platonic and Archimedean
polyhedrons have been revealed. For mobility analysis of Sarrus-based DPMs, an
equivalent analysis for multiloop mechanisms was conducted by regarding each Sarrus
linkage as an equivalent prismatic joint. Moreover, this dissertation proposes a novel
Hamiltonian-path-based method that can greatly reduce the number of overconstraints
while maintaining the kinematic properties of Sarrus-based DPMs. The simplest
constraint paths of each Sarrus-based DPM have been proposed and identified by
introducing the corresponding Hamiltonian path and then removing redundant links and
revolute joints.

The construction method, kinematic analysis and overconstraint reduction are
presented in Chapter 3. This novel method not only establishes a foundation for further
research into deployable polyhedrons but also can inspire a reduction strategy for

multiloop overconstrained mechanisms.
*  7R-based Archimedean Polyhedrons and Symmetric Transformations

Finally, a family of 1-DOF 7R-based Archimedean polyhedrons with 1-DOF
synchronized radial motion was designed, and the paired transformations between
Archimedean and Platonic polyhedrons were revealed and identified. Moreover, three
types of transformable polyhedrons with T4, On and In symmetries have been proposed
and fabricated. Regardless of which transformation, the original symmetry is always
preserved in the continuous folding process of 7R-based polyhedrons. The
transformable solutions are applied to eleven Archimedean and all five Platonic
polyhedrons (excluding the snub cube and snub dodecahedron without symmetry),
having been investigated and discussed in detail. As a further extension of the proposed
Hamiltonian-path reduction strategy, the overconstraint reductions of those 7R-based
polyhedrons have also been investigated with kinematic equivalence, in which the
Hamiltonian paths of all five Platonic polyhedrons are discussed in detail.

The approach of design, transformation, control and reduction of the 7R-based

Archimedean polyhedrons has been presented in Chapter 4. This research provides an
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opportunity to create deployable and transformable polyhedrons that enhance the

development of deployable mechanisms and multifunctional metamaterials.

5.2 Future Works

The research reported in this dissertation establishes a rational design principle of
deployable polyhedral mechanisms using different mechanism types as constructed
units. To enhance the practical usage of the proposed DPMs, several potential topics
can be further explored.

First, in our work on polyhedral construction, we adopted elemental linkages, i.e.,
spherical 4R linkages, Sarrus linkages, and spatial 7R and 9R linkages, as the
mechanism cells to synthesize DPMs. Future studies can explore various types of
mechanism cells, such as other spherical linkages and spatial 8R linkages. In addition
to the deployable Platonic and Archimedean polyhedrons proposed in this dissertation,
the 1-DOF mechanism topology can be further investigated to design other deployable
mechanisms in various regular and irregular polyhedral groups, such as Johnson solids,
prisms and antiprisms, that could facilitate their applications in various engineering
fields.

Second, for polyhedral transformations, kinematic solutions with T4, On and I
symmetries have been proposed. Future work can explore other possible polyhedral
pairs and the corresponding kinematic solutions by considering wider polyhedral
symmetry. Furthermore, in the kinematics of the polyhedral mechanism, the focus is on
the 1-DOF mechanism topology. In addition to the structural variations reported in this
dissertation, relative geometric conditions would be properly analysed and adjusted to
meet specific engineering requirements.

Third, the degrees of overconstraint have been greatly reduced with the assistance
of polyhedral Hamiltonian paths, yet the nonoverconstrained form of the polyhedral
mechanism is still a difficult kinematic problem in mechanism, which requires further
investigations by means of kinematic and mathematical theory. Referring to the
reduction approach, the simplified form (nonsimplest form) of multiloop polyhedral
mechanisms can also be selected and obtained for specific applications, such as
deployable mechanisms that need appropriate actuation and stiffness without affecting
the kinematics. Hence, future studies can explore the dynamics and stiffness analysis to

evaluate the reduction effect and motion stability.
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Finally, this research also introduces a kinematic strategy to yield three-
dimensional metamaterials with enriched properties, such as a large deformation range,
Poisson’s ratios of —1 and negative thermal expansion. Furthermore, their tessellation
approach and advanced applications in multifunctional and programmable
metamaterials can be extensively developed. To achieve functional diversity and
tunability of polyhedral metamaterials with a large number of construction cells,
actuating materials that can produce deformation responses based on external stimuli
such as magnetic, electric, light, or humidity fields can be implanted into the
synchronous polyhedral system. Thus, future studies can explore the tessellation

strategy, actuating materials and control method of polyhedral metamaterials.
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Appendix

A. Screw analysis of original deployable cubic mechanism

The number of links and revolute joints in the deployable cubic mechanism are 54
and 72, respectively, in which the independent loops of this mechanism are 19. Based
on the reference coordinate frame in Fig. 3-9 in Section 3, Fig. A1 shows the original

constraint graph with 72 joint screws in the deployable cubic mechanism.

Fig. A1 Original constraint graph of the deployable cubic mechanism.

The details of adjoint transformation matrices are
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1 0 0
R,=|0 —2/2 —2/2|, p,=d,[0 -1 -1 (A1)
0 2/2 212
and the 114x72 original constraint matrix M, can be expressed as
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Mz = 06><36 Mzz (A2)
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where
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Thus, the rank of the original constraint matrix M, is 71, which indicates the
mobility of the deployable cubic mechanism as m=n-rank(M,)=72-71=1,
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B. Screw analysis of original deployable dodecahedral mechanism

First, the details of submatrices of M, can be listed as
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Next, the deployable dodecahedral mechanism consists of 132 links and 180

revolute joints, and the independent loops of this mechanism are 49. Referring to the
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reference coordinate frame in Fig. 3-11in Section 3, the original constraint graph with

180 joint screws is shown in Fig. B1.

Fig. B1 Original constraint graph of the deployable dodecahedral mechanism.

The details of adjoint transformation matrices in this mechanism are

—(J§+1)/4 -1/2 —(\/5—1)/4 (J5-1)/4
R=| (\6-1)/14 —(B+1)/4  1/2 p1d3|: 1/2 }
(

“1/2 (V5-1)714 (JB5+1)/4 J5+1)/4

0 -10 0
R,=[1 0 0], p,=d,|0
0 0 1 1

144



Appendix

Ry

0 0 -1 -1
=10 1 0], p,=d,| 0

10 0 0

[(V5-1)/4 (J5+1)/4
172 (J5-1)/4
(V5+1)/4  -1/2

|

“1/2
(V5+1)/4
—(JB5-1)/4

145

> Py :ds

(V5+1)ra  —1/2 —(\B5-1)/4 (B-1)/4
(V5-1)74 (B+1)14 172 ,psd{ ~1/2 ]
/2 (5-1)/4 (JB+1)/4 (V5+1)/4

12 (V5-1)/4 ~(J5+1)4] (V5 +1)14]
~(5+1)ra w2 —(B-1)/4], p,=d,|-(V5-1)/4
| (VB-1)/4  (JB+1)/4 12 | 1/2
vz (B-1)ra -(VBea)ra) ((J5+1)/4]
~(V5+1)/a 12 (VB-1)/4 |, p,=d,| (V5-1)/4
—(5-1)74 (JB+1)/4 1/2 1/2
_(5B-1)/4 (B+1)r4 172 19

112 (\B-1)14 (VB+1)/4], ped{(«/§+l)/4}
(B+1)ra 12 (B-1)/4 (V5-1)/4
_(B+1)/4  1/2 (V5-1)/4] (B-1)/4
_(Jg_l)/4 —(J§+1)/4 1/2 ., p,=d, 1/2 ]
172 (V5-1)/4 (JB5+1)/4) (V5+1)/4
_(5+1)ra <112 (JB-1)/4] (5174
(V5-1)/a -(\B+1)ia  -1/2 |, p,=d,| -1/2 }
172 ~(5-1)74 (B+1)/4] (V5+1)/4
_(5-1)/4 —(B+1)i4 172 1/

12 (B-1)14 -(VB+1)/4), pgd{(\/§+1)/4
| (VB+1)/4 ~1/2 (V5-1)/4 (V5-1)/4

-1/2
{ (V5+1)/4
~(V5-1)/4




Doctoral Dissertation of Tianjin University

R, =

R

Ris =

R =

Ry =

Rzo =

1.0 0 0

0 0 1]» p12=d3{1}

0 1 0 0

(V5-1)74 (VB+1)/4 172
172 —(B-1)/4 (VB+1)/4],

(B5+1)/4 -2 (JB-1)/4]

172 —(B-1)/4 (VB+1)/4

(V5+1)/14  -1/2  (JB5-1)/4],

(V5-1)14 (VB+1)/4 12
~1/2 (V5-1)714 (J5+1)/4

~(B+1)ia —12 —(JB-1)/4],

| (VB-1)74 —(\B+1)/4 1/2

(V5-1)/4 -(B+1)14 112

1/2

~(V5-1)14 —(5+1)/4 ],

(VB+1)74 172

1 0 0 0
=10 0 -1}, p,=d,[-1
0 -1 0 0

(J5-1)/4 —(\5+1)/4

(V5-1)/4

“1/2
172 (5-1)14 -(V5+1)14],
(VB+1)/4 1/2 (V5-1)/4
172 (B-1)14 —(JB+1)/4
(V5+1)/4 1/2 —(V5-1)/14|,
(V5-1)14 —(\5+1)14  -1/2
1712 —(B5-1)14 —(V5+1)/4
~(\5+1)/4 1/2 (V5-1)/4
(V5-1)714 (J5+1)/4 ~1/2

146

(V5+1)/4
—(J5-1)/4

1/2

Pis d3|:

P =d, {(«/&1)/4]
(J5-1)/4

1/2

~1/2
Dis d{(\/§+1)/4]
—(5-1)/4

—(\B+1)/4
o =0, —(vB5-1)/4

-1/2

—(\B+1)/4
. Po=d;| (V5-1)74

-1/2



Appendix

~(5-1)14 (JB+1)/4 1/2
1/2 ~(V5-1)14 (JB+1)/4
(V5+1)/4 1/2 —(V5-1)/4
0 0 1 1
-1 0], pzzzd{ol
1 0 0 0
—(5-1)14 -(5+1)/4 1/2
“1/2 —(5-1)14 —(B+1)/4
 (B+1)ra 12 —(JB-1)/4]
_(B+1)/4 -1/2 —(y5-1)/4]
~|-(5-1)/14 (J5+1)/4 “1/2
12 ~(\5-1)14 —(V5+1)/4]
_(V5+1)ia 12 —(JB-1)/4]
=| (\5-1)14 (V5+1)/4 1/2
172 (V5-1)14 —(V5+1)/4]
(J5+1)/4 172 (V5-1)/4 |
=|(\5-1)14 —(J5+1)/4 1/2
172 —(B-1)14 —(B+1)14
1/2 _(5-1)/4 (J5+1)/4]
=|-(5+1)/a 172 (JB5-1)/4
 (VB-1)/4 —(\B+1)/4 -1/2 |
12 —(B-1)ia (B1)/a ]
—(V5+1)/4 1/2 —(V5-1)/4
-(5-1)r4 -(\B+1)ia -1/2 |
(V5114 142 (V5-1)/4 |
=| (V6-1)74 (B+1)ia  -1/2
112 —(\5B-1)/14 —(\VB+1)/4]

147

> Pos =d3

> Pog =d3

> Py =d3

> Py =d3

> Py =d3

> Py =d3

> Pog :ds

> Py =d3

—(J5-1)/4]
—(B5+1)/4
 (VB-1)/4 |

—(VB+1)74]
(J5+1)/4

1/2
{(\/ﬁﬂ)ml
—(\J5-1)/4

1/2
—(VB+1)/4
—(V5-1)/4]

—(J5-1)/4]

-1/2

—(B5+1)/4

1/2

1/2

(V5

~1)/4

y.

(VB+1)/4 |
(J5-1)/4

-1/2

(VB-1)/4 ]

-1/2

—(B5+1)/4




(B1)

Doctoral Dissertation of Tianjin University

~
o
B T 1T 1
N’
© ©o J
OOoooopy oS
I 1 —
© © © © © N @ =d
Oo0oocoo W oocoo wny o o @ o o o o
666616 N
OCooo o TSNS TS S
0666n1u.606 © © & © © © © © _© _© _© _©
© o wn © oo pnooo © o oo o o
0820000000000
6886666 © ©o ©w ©o ©u ©
(=]
o o O O o n\wl AHWU nan nan nnwo nan O O OO0 o o
| L |
) O O O O o
L ] 3 2]
< [l
I S =
N IS
- T 1
_66665566_ M f 8_66666m
Q@ Q P Q I3} © Q @ . © © © © © T O O O O o um
OGOGOGOGMMOGO_( | _OOOOOS
oo oo s w © © © o & _o
N
© © © < © < < © © © © © o © O O O o »n O
2 3 s i5$ 2 o o 22w
cogs2oc=22J3 oo oo wn o 6 © © { o o
© _© _©o 8§ © 60008200
e8P e 88 RE 2 coraes 0
oo 2555 =22 & © o

P A TSSO Oy o OO

6 ™ o o o O O vy o o o %)

o N o o o
6M66666%66

~ o O O o o

SN ST C Ve e e o

06><36
M 22
06><36
06><36
06><36
M 62
M 72
M 82

6x36
x36
6x36
x36
%36
%36

M81

O =

o ©
o O O O o o

Mll

) re]
Sl OG 06 06 06 OG Sl 06 06 06 06 06 S?_ 06 06 06 06 06
L 1 ! ]

Subsequently, referring to the constraint graph in Fig. B1, the 294x180 original

constraint matrix M, can be derived as

and the corresponding submatrices are
0

Il Il [l
s s s
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Finally, the rank of the original constraint matrix M, is 179, the conclusion that

the deployable dodecahedral mechanism has one mobility can be generated as

m=n-rank(M,) =180-179 =1.

C. All nonsimplest topology graphs of cubic mechanism.

Without loss of generality, all the reduce solutions of the cubic mechanism are
given in Fig. C1, from the removal of 1 line in topological graph to removal of 4 lines,

i.e., reserving from 11 to 8 prismatic pairs.
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F F
c,=2,c=19 c,=2,c=19

Fig. C1 All other reduced topology graphs of the Sarrus-based cubic mechanism with (a) 11

prismatic pairs, (b) 10 prismatic pairs, (c) 9 prismatic pairs and (d) 8 prismatic pairs, respectively.
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