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摘要 

基于机构运动的折纸结构设计空间广、变形能力强、性能调控范围宽，在

大变形机械超材料的设计中发挥着重要的角色。但现有折纸超材料研究在具有

多变形模式的单自由度结构设计和性能调控策略方面尚未形成系统方法。本文

基于分叉重构机构，提出了一系列单自由度可重构折纸创新设计，包括零厚度

折纸、厚板折-剪纸、以及模块化折纸，进行了超材料的性能可调控性分析。 

首先，本文开发了结合机构运动协调条件与图形表达的简易算法，可以精

准辨识四折痕折纸及其镶嵌的山谷线重构并去除重复构型。利用此算法，研究

揭示了三种具有恒定山谷线分布数量的 2D寡模式折纸图案和一种可以通过调整

山谷线分布展现出面内负、零和正泊松比特性的 3D 多模式蜂窝折纸结构。 

其次，本文将垂直转移铰链嵌入厚板结构中，设计了一种融合折纸、剪纸

和折-剪纸运动模式的单自由度可重构单元及其镶嵌结构。通过对与可重构单元

等价的机构的闭环方程显式解的推导，深入分析了设计参数对可重构单元运动

学行为的影响。研究结果表明，通过优化设计参数，单一超材料能够兼具各向

异性或各向同性的负泊松比，大折展比、以及多种承载特性。 

接着，本文设计了基于单闭环空间七杆机构的模块化折纸单元，并系统分

析了几何参数对该单元运动学行为的影响。根据单元的运动分叉特性，提出了

两套单自由度的可重构 2D模块的构造方案。其中，采用背靠背式装配的模块及

其镶嵌在变刚度材料或气驱下可实现所有晶体学平面对称群。而通过肩并肩式

装配的模块及其构造的一类 3D棱柱结构，呈现出面内的负、零和正泊松比，甚

至任意面内面外泊松比符号的组合。 

最后，本文分析了模块化立方体结构中平面连杆组在对称性约束下的分叉

行为，揭示了可重构模块在分叉过程中伴随的可调泊松比、手性和刚度等特性。

基于几何和运动协调性，提出了混合正、负泊松比模块的组合设计策略，以增

强 3D超材料的可调和可编程性。利用模块的可重构性，实现了超材料正交平面

上泊松比在 (−∞,+∞) 大范围内的独立编程调控。并以模块化立方体为基础，衍

生了一类具有负、零和正泊松比的单自由度可重构棱柱。 

本文系统研究了机构分岔理论指导设计具有多形状变化能力的单自由度可

重构折纸的方法，为发展具有性能可调和可编程大变形机械超材料及其工程应

用提供理论基础与技术支撑。 
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ABSTRACT 

Kinematic-based origami structure, with its flexible design space, powerful 

deformation capability, and wide range of property tunability, plays a crucial role in 

designing large deformation mechanical metamaterials. However, existing studies on 

origami metamaterials have not yet developed systematic approaches in terms of single 

degree-of-freedom (DOF) structures with multiple deformation modes and property 

tuning strategies. In this dissertation, a series of innovative designs of single DOF 

reconfigurable origami, including zero-thickness origami, thick-panel ori-kirigami, and 

modular origami, are proposed to analyse the property tunability of metamaterials. The 

highlights of this dissertation are as follows. 

Firstly, a straightforward algorithm that combines motion compatibility conditions 

and graphic representation is developed to accurately assess the mountain-valley (MV) 

crease reconfiguration and obtain duplicate configurations in origami structures with 4-

crease vertices and their tessellations. The analysis has revealed three types of two-

dimensional (2D) oligo-modal origami tessellations characterised by a consistent 

number of MV assignments independent of tessellation size. A three-dimensional (3D) 

pluri-modal cellular origami structure is proposed that exhibits in-plane negative, zero 

and positive Poisson's ratios (NPR/ZPR/PPR) through MV crease reconfiguration. 

Secondly, by embedding vertically transferable joints (VTJ) into the thick-panel 

structure, a single DOF reconfigurable ori-kirigami unit and its tessellations integrating 

origami, kirigami, and ori-kirigami motion branches are designed. Explicit solutions of 

the closure equations of the assemblies are derived to analyse the effects of the design 

parameters on the kinematic behaviour of the reconfigurable unit, thus enabling a single 

mechanical metamaterial to combine the properties of anisotropic or isotropic NPR, 

large deployable ratio, and multiple load-bearing capacity. 

Thirdly, a single closed-loop spatial seven-revolute (7R) linkage in modular 

origami form is proposed. The effects of geometric parameters on the kinematic 

bifurcation behaviour of this basic unit are systematically analysed. According to the 

kinematic bifurcation behaviour of the 7R unit, two types of single DOF reconfigurable 

2D modules are constructed. A back-to-back assembly of the modules and their 

tessellations is employed to realise tunability in all crystallographic planar symmetry 

groups under variable stiffness materials or pneumatic actuation. It’s also found that 2D 
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modules in shoulder-to-shoulder assembly and their constructed 3D prismatic structures 

exhibit in-plane NPR, ZPR and PPR, and even arbitrary in-plane and out-of-plane 

Poisson’s ratio signs. 

Finally, the bifurcation behaviour of an open-chain planar linkage group (PLG) in 

a single DOF modular cube under symmetry constraints is analysed, revealing the 

tuneable Poisson’s ratio, chirality, and stiffness that accompany the kinematic 

bifurcation of this reconfigurable 3D module. To enhance the programmability of 

metamaterials, a combinatorial design strategy is proposed, i.e., mixing modules with 

PPR and ZPR, based on geometric and kinematic compatibility. The reconfigurability 

of the modules is utilized to achieve independent programming of Poisson’s ratio in the 

orthogonal plane of the metamaterial over a wide range from −∞ to +∞. At last, a class 

of single DOF reconfigurable prismatic structures with NPR, ZPR, and PPR are 

developed inspired by the modular cube. 

In summary, the design method of single DOF reconfigurable origami with multi-

shape change capability, directed by kinematic bifurcation theory, is systematically 

studied in this dissertation, thus providing the theoretical foundation and technical 

support for developing large deformation mechanical metamaterials with tunability and 

programmability as well as their engineering applications.  

 

KEY WORDS: Reconfigurable linkage with bifurcation behaviour; Origami 

metamaterial; Zero-thickness origami; Thick-panel ori-kirigami; Modular origami 
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 Introduction 

1.1 Background and Significance  

Metamaterials refer to a class of functional materials with artificially designed 

periodic or non-periodic microstructures that exhibit extraordinary physical properties 

beyond those of natural materials[1]. Recognized as a ground-breaking scientific 

advancement, metamaterials were acknowledged in Science as one of the ten most 

significant scientific advancements of the first decade of the 21st century, classified as 

one of the "Six Areas of Disruptive Basic Research" by the US Department of Defense, 

and listed in China’s 13th Five-Year Plan for the Development of National Strategic 

Emerging Industries[2]. Mechanical metamaterials[3,4], a frontier branch in metamaterial 

research, refer to structures with negative/zero properties such as negative/zero 

Poisson’s ratio[5,6], stiffness[7,8], and thermal expansion[9,10], and ultra-properties, such 

as ultra-stiffness[11], ultra-light[12], as well as structures with vanishing shear modulus[13], 

and so on. Nowadays, mechanical metamaterials have also evolved into information 

processing and logical computing capabilities[14–18]. Generally, these unique properties 

of metamaterials are derived from the geometry and spatial tessellation of cell 

microstructure rather than material composition. Therefore, it is critical to rationally 

design microstructure and spatial arrangement of unit cells to achieve unprecedented 

physical properties. Despite the strides made, traditional mechanical metamaterials 

confront three significant limitations: a narrow strain range, non-tuneable mechanical 

behaviours, and fixed properties after fabrication[19]. The prevailing trend in 

metamaterial research has transitioned towards multifunctionality and high adaptability, 

necessitating tuneability, i.e., enabling the adjustment of material properties through 

either active or passive deformation control, and programmability, where the 

mechanical property is a function of controllable parameters, e.g., geometric parameters, 

boundary conditions, and topological configurations[20]. 

Origami, an ancient art of folding paper that originated in China and flourished in 

Japan, transforms 2D sheet materials into complex 3D structures along predefined 

crease patterns[21]. Evolved beyond traditional constraints, modern origami techniques 

have progressed from the pure fold (Fig. 1-1(a)), which involves the use of a single 

sheet of paper without cutting or bonding, to the realms of kirigami (including cut-only 

kirigami and ori-kirigami) (Fig. 1-1(b)), which introduces cuts, and modular origami 
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(Fig. 1-1(c)), where multiple sheets can be cut and bonded. Despite the art’s rich 

aesthetic history, the combination of modern origami structure and modern science and 

technology extends far beyond the art itself and now has inspired a wide range of 

applications in aerospace[22], architecture[23], transportation[24], flexible electronics[25], 

energy absorption[26], gripper[27], medical manipulator [28], and even virtual reality 

device[29], as shown in Fig. 1-2. Due to their flexible design space, reliable large 

deformations, reconfigurable topology, and scale-free properties, kinematics-

dominated rigid origami structures play a significant role in the design of mechanical 

metamaterials with tuneability[30] and programmability[31,32]. However, the current 

works mainly focus on origami metamaterials that deform along a single motion path. 

Despite attempts to enhance programmability by exploring reconfigurable 

metamaterials with multiple kinematic paths through origami, kirigami, and modular 

origami techniques, these endeavours turn out to be typically either a limited number 

of configurations with insignificant shape changes or with multi-DOFs, resulting in an 

unreliable and challenging controllable deformation process. Due to the lack of 

guidance from the underlying mechanism, the designs of reconfigurable metamaterial 

with multi-pathway but one DOF are rare. Differing from a multi-DOFs system, 

kinematic bifurcation refers to a critical point in a mechanical system at which the 

system transitions from one reliable kinematic path to another requiring minimal 

external intervention. Therefore, a single DOF system with kinematic bifurcation 

capabilities is an excellent candidate for designing reconfigurable metamaterials, since 

it can be deformed into various configurations while also having a predefined and 

reliable path.  

 

 

Fig. 1-1 Artworks for origami, kirigami, and modular origami. (a) An origami crane folded from 

a sheet of paper[33]; (b) a kirigami tower, RES Octagon Star[34], involves cuts in a sheet of paper; 

(c) a modular origami toy, Snapology[35], created by multiple sheets of paper. 
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This dissertation is focused on the rational design of mechanical metamaterials 

with large deformation from the perspective of single DOF reconfigurable linkage in 

the form of origami, which enables the metamaterials to be equipped with the ability to 

tune their mechanical behaviours without redesigning or reassembling the architecture. 

It is of great scientific and engineering significance to expand the variety of origami 

structures, to guide the development of tuneable metamaterials, and to promote the 

application of reconfigurable mechanisms in shape-morphing systems, such as flexible 

metamaterials, morphing architectures, and deployable structures. 

 

 

Fig. 1-2 Origami engineering. (a) An origami-based deployable solar array [22]; (b) the metre-

scale inflatable shelter[23]; (c) high-load capacity origami transformable wheel[24]; (d) curved 

display [25]; (e) energy absorption structure with a kirigami-inspired pyramid foldcore[26]; (f) 

origami soft gripper[27]; (g) kirigami-inspired miniature manipulator for teleoperated 

microsurgery[28]; (h) active mechanical haptics for immersive virtual reality based on curved 

origami[29]; (i) modular origami-based mechanical metamaterials with static non-reciprocity[36]. 
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1.2 Review of Previous Works 

1.2.1 Origami Kinematics  

Kinematics deals with the relationship between input and output motions in terms 

of position, velocity and acceleration within the mechanical system, which refers to an 

assembly of bodies connected by joints with a specific topological structure[37]. The 

creases and components in rigid origami form can be modelled as revolute joints and 

links of the linkage form. So, an origami structure consisting of pieces of paper or 

origami blocks is a mechanism[38]. Compared to geometric methods[39] and numerical 

algorithms[40,41], kinematic theories show significant advances when applied to quickly 

assess rigid foldability, accurately describe the folding and unfolding process, and 

innovatively create origami designs.  

Origami studies undoubtedly begin with the predefined crease pattern. For zero-

thickness origami, the best-known rigid vertex with four creases meeting at one point 

is kinematically a spherical 4R linkage with one DOF[42,43], as shown in Fig. 1-3(a). 

Similarly, when six creases meet at one vertex, it forms a spherical 6R linkage with 

three DOFs[44]. Additionally, a rigid pattern comprising multiple origami vertices can 

be viewed as a mobile network of spherical linkages[45], as shown in Fig. 1-3(b). A 

closed-loop pattern is considered rigidly foldable only if the motion transmitted through 

the creases returns to its input position, which also serves as the compatibility condition 

for the corresponding linkage form. 

 

 

Fig. 1-3 Linkage forms of zero-thickness origami vertices and their tessellations. (a) Four-crease 

vertex with zero thickness and corresponding spherical 4R linkage[42]; (b) origami pattern with 

multiple four-crease vertices and corresponding mobile network of spherical linkages[45]. 
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In this case, the folding behaviours can be analysed using the matrix method based 

on the Denavit-Hartenberg (D-H) notation[46]. For spherical linkages consisting of n  

links, the lengths ( 1)i ia +  and offsets iR  of each link are zero since the axes cross at a 

single point. As a result, the closure equation can be expressed as 

 
21 32 1 3... n =Q Q Q I  (1-1) 

where 
3I  represents the 3×3 identity matrix, and when 1i n+  , it is replaced by 1, 

and the transformation matrix ( 1)i i+Q  between the coordinate systems at joints i+1 and i 

is 

 

( 1) ( 1)

( 1) ( 1) ( 1)

( 1) ( 1)

cos cos sin sin sin

sin cos cos sin cos

0 sin cos

i i i i i i i

i i i i i i i i i

i i i i

    

    

 

+ +

+ + +

+ +

 −
 

= − 
 
 

Q  (1-2) 

and 

 ( ) ( ) ( )

( ) ( ) ( )

1

( 1) ( 1) 1 1 1

1 1 1

cos sin 0
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sin sin sin cos cos

i i

i i i i i ii i i i i i

i ii i i i i i

 

    

    

−

+ + + + +

+ + +

 
 

= = − 
 

−  

Q Q  (1-3) 

Here, ( 1)i i +  is the twist angle from axes iz  to 1iz +  positively about axes 1ix +  and i  is 

the angle from ix   to 1ix +   along the positive direction of iz . The explicit function 

between the input angle i  and the output angle 1i +  can be derived from Eq. (1-1). 

Meanwhile, origami is no longer limited to zero-thickness sheets[42,45,47–49]. The 

thickness of various rigid materials cannot be disregarded, and related engineering 

applications have plagued their folding and unfolding problems. Most structures 

involving thick panels are derived from conventional origami, initially based on the 

zero-thickness model. Hinges are translated to the top and bottom surfaces of the thick 

panels, thereby constructing thick-panel origami by connecting adjacent thick panels[47]. 

The thick-panel form’s four-crease, five-crease, and six-crease vertices can be modelled 

as spatial overconstrained 4R, 5R and 6R linkages[47], respectively. Taking the thick-

panel form of the Miure-ori in Fig. 1-4 as an example, it leads to assemblies of Bennett 

4R linkages with identical link lengths[49]. 

In this case, the folding kinematic behaviours of the entire the thick panel origami 

structure can be described by the closure equation for a single close-loop spatial linkage 

consisting of n  links, i.e.,  
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 21 32 1 4... n =T T T I  (1-4) 

where 

 

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

( 1)

( 1) ( 1)

cos cos sin sin sin cos

sin cos cos sin cos sin

0 sin cos

0 0 0 1

i i i i i i i i i i

i i i i i i i i i i

i i

i i i i i

a

a

R

     
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 

+ + +

+ + +

+

+ +

− 
 

−
 =
 
 
 

T  (1-5) 

Since the panels must be adjusted to accommodate thickness, most existing 

solutions to deployable thick panel structures have uneven surfaces in the fully unfolded 

state. Zhang and Chen proposed a uniform-thickness panel form of a six-crease pattern, 

i.e., diamond thick-panel[48] from the mobile assembly of plane-symmetric Bricard 6R 

linkages. By introducing the cuts,  Yang et al. constructed a uniform-thickness panel 

form of the Miura-ori fold with single DOF, which can be folded from a flat array to 

compact bundles without any voids[50], kinematically is an assembly of 8R closed chains. 

The matrix method proved to be a powerful tool for the design and analysis of these 

zero-thickness and thick-panel origami structures.  

 

 

Fig. 1-4 Linkage forms of thick-panel origami vertices and their tessellations[49]. (a) The Miura-

ori vertex in thick-panel form and corresponding Bennett 4R linkage; (b) the Miura-ori pattern and 

corresponding mobile network of spatial linkages. 

 

For relatively simple origami forms, e.g., kirigami with only cuts and 2D modular 

origami, which are kinematically planar linkages and their networks[51], the simplest 

and most effective method of kinematic analysis besides the D-H method is the vector 

method[52]. On the other hand, highly complex mechanisms, for which it is difficult to 

obtain explicit solutions, can be analysed using additional symmetry constraints[53] or 

numerical methods[54]. In both ori-kirigami and modular origami, which involve folds 

and cuts, the basic unit of kinematic analysis is no longer a vertex but independent 

closed loops formed by the creases and rigid components around the cut or hole, which 
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may be equivalent to planar, spherical and spatial linkages, or even a hybrid of these in 

kinematics. The analysis and design of this class of origami structures is a kinematic 

challenge.  

1.2.2 Reconfigurable Mechanisms 

Over the past two decades, reconfigurable mechanisms have gained significant 

importance across various fields for their ability to provide multiple functionalities 

within a single structure, enabling them to perform various tasks. Research on 

reconfigurable mechanisms can be traced back to the 1990s. Two new types of 

mechanisms were identified: kinematotropic linkages[55] and metamorphic 

mechanisms[38]. The former exploits the bifurcation phenomenon, extending it to 

involve mobility change with changes in relative orientations of joint axes[56], while the 

latter, inspired by metamorphosis, undergoes form, topology, and configuration 

alterations, extending the context from biology to changes in the main structural 

parameters of a mechanism (mobility, connectivity, overconstrainedness, and 

redundancy)[57]. In the following development of reconfigurable mechanisms, various 

ways to achieve reconfiguration were investigated and developed[58–65].  

Of particular interest in this dissertation lies in reconfigurable linkages with 

kinematic bifurcation. Currently, single-loop overconstrained spatial linkages have 

emerged as a valuable resource for designing such reconfigurable linkages. Chen and 

You observed the kinematic bifurcation in a spatial 6R linkage formed by merging two 

extended Myard 5R linkages[66]. They also analysed bifurcations of a two-fold 

symmetric 6R deployable linkage[67]. Later, Song and Chen constructed reconfigurable 

spatial 6R linkages with one DOF, employing summation/subtraction of existing 

overconstrained linkages[68–70]. This approach has paved the way for synthesising 

numerous reconfigurable linkages with bifurcation behaviours[71]. Besides, kinematic 

analysis is also a powerful tool for unravelling the kinematic bifurcation of specific 

linkages. For example, Chen and Chai discovered the bifurcation of a special line and 

plane-symmetric Bricard linkage from the kinematic paths based on closure 

equations[72], as shown in Fig. 1-5(a). Feng et al. revealed bifurcation cases of the plane-

symmetric Bricard 6R linkage under different geometric conditions by deriving explicit 

solutions of closure equations using the matrix method[73], as shown in Fig. 1-5(b). 

Zhang and Dai[74] delved into the reconfiguration properties of the plane-symmetric 
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Bennett plano-spherical 6R hybrid linkage, leveraging screw theory. Li et al. proposed 

a reconfigurable Goldberg 6R linkage(Fig. 1-5(c)) features one Goldberg 6R motion 

branch, two line-symmetric Bricard 6R motion branches, and one Bennett motion 

branch[75]. Tang and Dai explored a class of multi-bifurcated double-centered linkages 

combined with higher order kinematic analyses and singular value decomposition[76], 

as shown in Fig. 1-5(d). Lu et al. presented the analysis of bifurcations of the doubly 

collapsible Bricard 6R linkage through the projection of configuration space[77]. In 

addition to the fascinating overconstrained 6R, non-overconstrained 7R linkages and 

8R linkages with variable and mobility topology are also the focus of reconfigurable 

research[78–83].  

 

 

Fig. 1-5 Reconfigurable 6R linkages with kinematic bifurcation. (a) A special line and plane-

symmetric Bricard linkage[72]; (b) plane-symmetric Bricard 6R linkage[73]; (c) line-symmetric 

Goldberg 6R linkage[75] (b) double-centered 6R linkage[76]. 
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However, traditional reconfigurable linkages often entail complex components and 

actuation methods, raising concerns about reliability, weight, and energy consumption. 

In contrast, origami-inspired designs are another primary resource for single-loop 

reconfigurable linkage, with the advantages of simple components and lightweight. It 

was revealed that the flat-unfolded state of a single four-crease vertex is a kinematic 

singularity of spherical 4R linkage that can bifurcate into two or more kinematic paths 

following different MV assignments[84], as exemplified in Fig. 1-6.  

 

 

Fig. 1-6 Mountain-valley crease reconfiguration of the double corrugated vertex in spherical 4R 

linkage form. Mountain and valley creases are indicated by red solid lines and blue dotted lines. 

 

This simple mountain-valley crease reconfiguration, which involves switching 

creases between mountain and valley and activating/deactivating creases, has in turn 

sparked the development of various reconfigurable linkages. For example, Zhang and 

Dai proposed reconfigurable plane-symmetric double spherical 6R linkage[85] (Fig. 

1-7(a)), Sarrus-motion linkage[86], and 8R linkage[87] inspired by closed-loop kirigami. 

Ma and Dai presented the planar-spherical 6R and the Bennett-spherical 6R linkage, 

both of which have three motion branches inspired by the kirigami fold[88]. Feng and 

Chen presented a novel 6R linkage and a variation of doubly collapsible octahedral 

Bricard 6R linkage by applying the kirigami technique to rigidly foldable origami twist 

patterns[89]. Liu and Chen transferred a rigid kirigami pattern into a double spherical 

linkage (Fig. 1-7(b)) with kinematic bifurcation behaviour[90]. Through the analysis of 

kinematic compatibility of a multi-loop origami pattern formed by four four-crease 

vertices, Liu and Chen proposed three types of reconfigurable 6R linkages with the 

kirigami technique, including a double spherical linkage, a planar-spherical linkage, 

and a parallel 6R linkage[91]. Tang and Dai presented an eight-bar linkage (Fig. 1-7(c)) 

derived from a rotatable kaleidocycle whose bifurcated motions were revealed by screw 

theory[92]. Wang and Dai presented work on a fortune teller origami fold-inspired 
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reconfigurable 8R linkage (Fig. 1-7(d)) and its evolved Bricard 6R and Bennet 4R 

linkages[93]. Interdisciplinary research on linkages and origami not only offers a method 

to analyse the motion behaviour of origami patterns but also fosters the discovery of 

novel reconfigurable linkages with kinematic bifurcation. 

 

 

Fig. 1-7 Single-loop reconfigurable linkages inspired by origami designs. (a) and (b) 

reconfigurable 6R linkages[85,90]; (c) and (d) reconfigurable 8R linkages[92,93]. 

 

Compared with single-loop reconfigurable linkage, multi-loop reconfigurable 

linkage is characterised by a large number of loops and a complex structure[94]. Among 

multi-loop reconfigurable linkages, one of the notable ones is the single DOF 

reconfigurable polyhedral linkage, which is a unique multi-loop reconfigurable linkage 

that adopts polyhedral layouts and allows its global shape to be changed during 

deployment. Röschel investigated the self-motions of a Fulleroid-like mechanism based 

on a cube and the conditions for its movability[95]. Li et al. presented the construction 

method of single DOF reconfigurable deployable polyhedral mechanisms by inserting 

straight elements[96] shown in Fig. 1-8(a) and angulated elements [97] into the vertices 

and faces of polyhedrons. They also contributed to the single DOF reconfigurable 

deployable cube mechanism (Fig. 1-8(b)) by inserting 4-parallelogram mechanisms 

into six quadrilateral faces[98]. Hao et al. further analysed the constraints of the adjacent 

faces of the single DOF cube mechanism, and then obtained the possible motion modes 

of the cube mechanism[99]. Liu et al. developed a group of N-sided antiprism 
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mechanisms based on an asymmetric 8R linkage[100], as shown in Fig. 1-8(c). They have 

investigated the bifurcation characteristics of mechanisms by analyzing the 

infinitesimal motions of eight-bar linkages at the singular configurations. Zhang 

constructed reconfigurable polyhedrons with eight kaleidocycles, which have two 

motion paths following cuboid symmetry and tetrahedral symmetry[101]. Although many 

single DOF deployable polyhedral linkages have been constructed[102,103], only a few 

have demonstrated reconfigurable properties. Designing and analysing such 

reconfigurable polyhedral linkages remains a significant challenge in kinematics. 

 

 

Fig. 1-8 Reconfigurable polyhedral linkages with single DOF. (a) Constructed by reconfigurable 

straight elements[96]; (b) constructed by reconfigurable parallelogram linkages[98]; (c) constructed 

by asymmetric 8R linkage[100].  

 

In general, multi-DOFs systems and single-DOF systems with kinematic 

bifurcation are two widely adopted methods to achieve reconfiguration between 

different shapes or configurations. Multi-DOFs linkages provide versatility through 

independent motion in various directions, often requiring multiple locking devices or 

actuators to operate synchronously at each joint. Compared to multi-DOFs linkages, 

single DOF reconfigurable linkages based on kinematic bifurcation are particularly 

desirable because they require minimal external intervention to switch or remain in a 
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given configuration[72,104]. Note that this choice between different motions is only 

available in the particular bifurcation points; once the linkage has left this particular 

configuration, its motion is again determined by a single parameter.  

Various tools have been used to study the bifurcation of reconfigurable linkages, 

including singular value decomposition of the equilibrium matrix[105–107], screw 

theory[86,88,108], matrix method[73,88,92] and so on. Among them, the matrix method is a 

commonly used method for kinematic analysis of planar, spherical, and spatial linkages 

by considering the topological structure and geometric conditions, and its advantage is 

that it not only determines the mobility but also gives explicit closure equations that 

can be used to reveal the kinematic bifurcation and configuration evolution of 

reconfigurable linkages.  

1.2.3 Origami Mechanical Metamaterials 

One could consider kirigami and modular origami as variations of origami due to 

their apparent similarities and are frequently related to conventional origami. However, 

origami, kirigami, and modular origami work on fundamentally different principles, 

although there is a crossover between the three. Therefore, mechanical metamaterials 

induced by the folding behaviour based on origami, kirigami, and modular origami are 

presented. 

1.2.3.1 Origami-based Mechanical Metamaterials 

The current research interest of conventional rigid origami-based mechanical 

metamaterials is on those with four-crease vertices (one-DOF type), the Miura 

pattern[109] and its variations, and six-crease vertices (multi-DOFs type), e.g., the 

waterbomb[110] and Resch[54] patterns, and other patterns[84]. Although there are some 

other rigid origami patterns, such as wrapping origami[111], more attention is paid to 

them as non-rigid cases, so they are not discussed further. 

The best-known four-crease vertex pattern is the Miura-ori, which consists of 

repeating parallelograms that form a tessellation on the sheet. As shown in Fig. 1-9(a), 

the Miura-ori pattern can be folded from a flat sheet into a compact arrangement with 

one DOF motion while demonstrating fascinating mechanical properties, the most 

intuitively notable of which is its auxetic behaviour (also known as negative Poisson’s 

ratio). Pioneering work by Schenk and Guest involved the auxetic mechanical 



Chapter 1 Introduction 

13 

 

metamaterials based on the Miura-ori pattern, exhibiting transversal contracting 

deformation under external vertical compression loading[112]. Meanwhile, Wei et al. 

showed that the in-plane and out-of-plane Poisson’s ratios of Miura-ori folds are equal 

in magnitude but opposite in sign, independent of material properties[113].  

While the mechanical properties of Miura-ori origami are intriguing, the original 

single-layer Miura-ori origami is inherently confined to folding into planar structures, 

posing limitations on its potential applications. To address this limitation, efforts have 

been made to develop 3D deployable mechanical metamaterials with more complex 

geometries and performances while retaining their original properties, such as flat 

foldability and negative in-plane Poisson’s ratio, by connecting identical or different 

Miura-ori origami sheets layer by layer[112,114,115]. Alternatively, using the concept of 

gradient, Ma et al. introduced a unidirectional geometric variation into the origami 

structure[116]. Subsequently, they developed 2D graded and 3D graded cellular 

structures based on the Miura-ori pattern (Fig. 1-9(b)), which are capable of generating 

periodically graded stiffness and superior energy absorption[117]. Another avenue for 

obtaining 3D cellular structures involves the summation and subtraction of tubular 

origami (Fig. 1-9(c-f)). This method involves the construction of a rigid tubular 

structure by joining pieces of paper containing the vertices of Miura-ori or Miura-

variant, followed by the creation of a new stacked origami structure by joining common 

sides or corners using such a tubular origami structure as a basic unit[118–123]. As shown 

in Fig. 1-9(c), Filipov et al. introduced an innovative approach by coupling rigidly 

foldable origami tubes in a “zipper” fashion[119]. This novel configuration exhibits 

significantly higher bending stiffness than the original Miura-ori origami tube. 

Remarkably, the metamaterials exhibit tuneable stiffness spanning about four orders of 

magnitude, achieved by altering the loading direction and folding ratio. Using Miura-

based closed-loop origami units, Mousanezhad et al. designed a set of foldable tubes, 

and further constructed a 3D cellular structure (Fig. 1-9(d)) that has one DOF with flat-

foldability in out-of-plane and in-plane folding directions[120]. Tachi et al. drew 

inspiration from the Miura-ori pattern and designed a Tachi-Miura polyhedron 

bellow[121], as illustrated in Fig. 1-9(e). Subsequent studies revealed that mechanical 

metamaterials based on this Tachi-Miura polyhedron bellow could transition between 

load-bearing and collapsed states, exhibiting features such as negative Poisson’s ratios 

and bi-stability[122,123]. Wang et al. proposed a 3D metamaterial with negative Poisson’s 
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ratios simultaneously in the in-plane and out-of-plane directions[118], by incorporating 

Miura-ori into the re-entrant honeycomb, as shown in Fig. 1-9(f). This hybrid Miura-

based metamaterial enables the programmability of Poisson’s ratios from mild to 

extreme authenticity since it is a function of geometry and configuration of the 

microstructural. 

 

 

Fig. 1-9 Rigid origami-based mechanical metamaterials with a single deformation path. (a) The 

Miura-ori pattern with in-plane NPR[112]; (b) graded cellular structures[116]; (c) cellular origami 

metamaterial formed by zipper-coupled tubes[119]; (d) cellular structure formed by Miura-based 

closed-loop origami units[120]; (e) Tachi-Miura polyhedron[121–123]; (f) hybrid Miura-based 

metamaterial[118]. 
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For mechanical metamaterials based on an origami pattern consisting of six-crease 

vertices, each origami vertex equivalent spherical 6R linkage with three DOFs, thus 

significantly increasing the overall DOFs when tessellated. Although the folding or 

unfolding process of such multi-DOFs systems is particularly challenging, it is of 

considerable value in certain applications, particularly those involving shape morphing, 

due to its high flexibility. The mechanical metamaterials based on these six-crease 

patterns generally manifest in two predominant configurations: planar or shell-like and 

tubular. In the planar category, the research focus for the waterbomb and Resch patterns 

is on the algorithmic generation of highly adaptable programmable curvatures or 

surfaces, exploiting the flexibility inherent in multi-DOFs systems[54,124,125]. Turning 

attention to tubular structures, the waterbomb pattern has attracted significant attention 

in metamaterial design due to its programmable stiffness and 3D shape, coupled with 

compression-torsion deformation due to its rich deformation modes such as contraction, 

torsion, etc[53,126,110,127]. In particular, when forming a tubular structure, Resch’s origami 

still has a good ability to withstand axial loads due to its negative Poisson’s ratio and 

self-locking phenomenon[128].  

The geometry of origami provides a facile platform to explore the various desired 

mechanical properties of a wide class of constraint-based metamaterials. On the one 

hand, the characteristic of a reliable large deformation path is essential for tuneable 

properties, making rigid origami widely used in designing the microstructure of 

metamaterials. On the other hand, the deformation pattern of these rigid origami-based 

metamaterials is similar to the zero-energy motion of the underlying mechanism. 

Therefore, external forces can easily excite deformation. However, most of the 

currently reported rigid origami-based mechanical metamaterials with a single DOF can 

only deform along a single motion path.  

Recently, Chen et al. investigated the effect of MV creases on the rigid foldability 

of double corrugated patterns[84] and square twist patterns[45,129,130], which opened the 

gate for reconfigurable origami. Nowadays, reconfigurable origami, i.e., exhibits crease 

topological morphing by switching MV creases, or activating/inactivating creases, has 

rapidly emerged as the research frontier and hot spot[131,132]. This remarkable capability 

enables these structures to be folded into multiple shapes while exhibiting enhanced 

tuneable mechanical properties, making them highly suitable for multifunctional 

applications. For example, the morph pattern demonstrated a smooth switchable 
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Poisson’s ratio ranging from negative infinity to positive infinity when it undergoes 

topological reconfiguration between a Miura-ori mode and an Eggbox mode through 

the re-assignment of MV creases (Fig. 1-10(a))[133]. Another example is the Tachi-Miura 

Polyhedron (Fig. 1-10(b)), whose rich reconfigurations are compatible in a large 

tessellation, providing a new paradigm for designing heterogeneous metamaterials 

yielding a wide range of design space[134]. Furthermore, a variant of the stacked Miura-

ori origami structure with multi-stability and shape reconfigurability achieves basic and 

compound logic gates[114,135], as shown in Fig. 1-10(c). 

 

 

Fig. 1-10 Reconfigurable origami-based mechanical metamaterials deform along multiple motion 

paths. (a) The morph pattern with sign switchable Poisson’s ratio[133]; (b) reconfiguration of Tachi-

Miura polyhedron for heterogeneous metamaterials[134]; (c) variant of the stacked Miura-ori 

origami for the mechanical logic gate[135]. 

 

It can be seen that configuration reconfigurations of one DOF rigid origami unlock 

new possibilities for the tunability of mechanical properties. However, the kinematic 

nature of all these reconfigurable origamis is that of spherical linkages and their 

assembly, resulting in a limited design space for conventional origami. Although there 

are examples that exploit the kinematic bifurcation of single DOF mechanisms, the 

shape transformations of these reconfigurable origamis are not significant. The major 

challenge at the structural design level is now to delve further into reconfigurable 

structures with significant shape changes to achieve breakthroughs in mechanical 

properties. 
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1.2.3.2 Kirigami-based Mechanical Metamaterials 

Kirigami-based mechanical metamaterials refer to a type of metamaterial that 

incorporates kirigami principles, that exploit additional DOFs offered by cuts to expand 

the range of accessible geometries. As a result, after cutting the paper appropriately 

based on kirigami techniques, the folding process could generally be easier to obtain a 

wider variety of metamaterials with different types of deformations. Unlike origami, 

kirigami is not usually categorized by patterns, kirigami patterns are categorized into 

two groups: (a) cut-only kirigami, and (b) ori-kirigami.  

Rigid kirigami techniques involving only cutting are usually used to create rotating 

units in a continuous flat sheet that generate auxetic behaviour in 2D mechanical 

metamaterials. By careful cutting, a continuous sheet can be strategically divided into 

a tessellation of polygon facets connected at hinge points, e.g., a rigid square structure 

that is a planar 4R linkage with a single DOF in kinematics[136]. The organized 

arrangement of these rigid units, coupled with their rotational motion in either 

clockwise or anti-clockwise directions, contributes to the creation of auxetic behaviour, 

as shown in Fig. 1-11(a). The rotating square unit structure is the simplest 2D structure 

with a rotating motif. By scaling and tilting these basic square unit structures, 

rectangular and parallelogram unit structures are obtained. Moreover, the substitution 

of the rotating unit with two or more heterogeneous unit types, as depicted in Fig. 

1-11(b), introduces notable variations[137]. One such prominent case is the triangular 

unit, also known as the Kagome lattices[138]. Since each independent loop has six joint 

points (planar 6R mechanism, if the point is considered as a revolute joint), it is a typical 

multi-DOFs system with a much richer range of transformed modes and their 

corresponding physical properties. Kagome lattices offer an ideal platform to 

investigate how to control the large deformation of multi-DOFs systems during 

expansion and contraction, in response to specific constraints such as symmetry or 

synchronous actuation. For example, Kagome lattices (see Fig. 1-11(c)) could exhibit 

negative Poisson’s ratio -1, when the triangular units rotate against every joint and 

deformation is locally isotropic (d3 symmetry), or its Poisson’s ratio as a function of 

the nominal strain, when it is producing a pattern of alternately tilted distorted 

hexagonal pores (c2 symmetry). In addition, to generating auxetic behaviour, 

hierarchical kirigami patterns composed of rigid square units allow for extreme 

expandability (>800%)[139,140](see Fig. 1-11(d) and (e)) and 2D shape changes[141,142] 
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(see Fig. 1-11 (f)). Furthermore, rigid kirigami can also be deformed into a 3D 

configuration without panel deformation. As shown in  Fig. 1-11(g) and (h), when the 

thickness of the panel is small enough to be ignored, the deformation of joint points 

turns from a single DOF revolute joint to a 3-DOFs ball joint, and together with an 

optimization algorithm, the rotating structure starting from a continuous plane can also 

achieve programmable 3D shapes[143–146]. Despite their powerful deformation ability, 

the DOFs increase dramatically as the size increases, making the deformation process 

challenging to control. 

 

 

Fig. 1-11 Cut-only kirigami-based 2D and 3D mechanical metamaterials. (a) Auxetic behaviour 

generated by rotating square units[136]; (b) various rotating unit structures[137]; (c) a Kagome lattice 

and its corresponding two collapsing modes[138]; (d) and (e) are examples of hierarchical kirigami 

patterns with extremely large strains[139,140]; (f) kirigami-based inverse design enables 

transformation between two 2D target shapes[141]; (g) kirigami designs for 3D shape programming 

based on rotating square units[143] and (h) rotating triangular units[145,146]. 
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Rigid kirigami design involving cutting and folding (referred to ori-kirigami) is an 

emerging approach, where a structure is cut off appropriate parts, and then folded to 

close the missing part to form a 3D structure. First of all, a fundamental strategy 

involves the strategic introduction of cuts and creases within a continuous flat sheet. 

The purpose of these cuts is to release the constraints between the panels so that the 

remaining panels can be rotated around these creases due to their mobility. A 

noteworthy example is the lattice kirigami proposed by Castle et al., where they 

introduce defects into the sheets, including cutting and removing (or adding) wedges 

and then performing dislocations or disclinations to form 3D structures[147,148]. Sussman 

et al. further proposed algorithmic lattice kirigami, where a single kirigami pattern can 

be robustly manipulated into a variety of three-dimensional shapes by adjusting the 

mountain and valley creases[149], as shown in Fig. 1-12(a). Another example is a 

checkerboard pattern featuring pop-up and pop-down blocks. This configuration is 

achieved by selectively removing panels of the checkerboard pattern alternately in two 

directions. Xie et al. established parametric relationships between the crease pattern, 

volumetric, and kinematic parameters of the checkerboard pattern[150]. Based on the 

kirigami checkerboard pattern, Zhang and Paik developed a lightweight kirigami 

metamaterial (see Fig. 1-12(b)) that can withstand high loads (2875 times its own 

weight)[12]. Another noteworthy contribution is the zigzag kirigami (see Fig. 1-12(c)) 

proposed by Eidini, where the unit cell of the patterns comprises two zigzag strips 

surrounding a hole with a parallelogram shape[151,152]. It is proved that zigzag kirigami-

based mechanical metamaterials not only retain the characteristics of the Miura-ori, 

including negative Poisson’s ratio, flat-foldable, and developable, but also perform 

lower density and higher programmability than Miura-ori.  

Furthermore, adding creases to existing rigid kirigami patterns and cuts to existing 

rigid origami, is another potential method for designing novel kirigami patterns, albeit 

at the cost of introducing potentially undesirable multi-DOFs, whilst enriching the 

deformation modes of the metamaterials[153,154]. For example, Yin et al. added more 

creases to rotating square and triangular structures to reconstruct the underlying 

patterns[154], as shown in Fig. 1-12(d). The results showed that the supplemented folds 

did not only enrich the structural reconfiguration beyond sole cuts but also 

demonstrated that multi-DOFs in the deformation of unit cells enable metamaterials to 

perform diverse mechanical properties. Jamalimehr et al. designed a class of rigidly 

https://www.pnas.org/doi/full/10.1073/pnas.1506048112#con1
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foldable cellular metamaterials, with unit cells obtained by removing the centre panel 

of a pattern of origami twist family[153], as shown in Fig. 1-12(e). These metamaterials 

can be flat folded and locked into several states that are stiff across multiple directions, 

even including the deployment direction.  

Finally, an innovation involves strategically arranging creases and cuts at the 

surfaces and edges of polyhedrons to obtain rigid kirigami patterns[155–157]. For example, 

Zhang et al. innovatively transformed a cuboid into a foldable 3 DOF kirigami design 

(Fig. 1-12(f)), which evolved into a tri-stable kirigami meta-structure with specific 

elastic joints, enabling a frequency-reconfigurable antenna with three programmable 

working frequencies[155].  

 

 

Fig. 1-12 Ori-kirigami-based mechanical metamaterials. (a) Cuts and creases are introduced in a 

continuous flat sheet[149,158]; (b) checkerboard kirigami[12]; (c) zigzag kirigami[152,159]; (d) adding 

creases to existing rigid kirigami patterns[154]; (e) remove some of the panels from a rigid origami 

pattern[153]; (f) arranging creases and cuts at the surfaces and edges of polyhedrons to obtain rigid 

kirigami patterns[155]. 

 

In general, existing rigid kirigami metamaterials achieve tuneable and 

programmable mechanical properties by releasing continuous constraints in structures 

and significantly increasing the kinematic degrees of freedom. The vast majority of 
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existing designs, with only a few exceptions, exemplified by single DOF examples that 

deform solely between two final configurations, feature multi-DOFs unit cells. The 

absence of kinematic guidance in these design methods typically necessitates a 

substantial number of cuts and the removal of sufficient panels to grant mobility, 

allowing the remaining panels to rotate in-plane and out-of-plane and form intricate yet 

uniform shapes. As a result, to utilize the diverse kinematic modes inherent in these unit 

cells to achieve programmable properties, the deformation process must occur under 

certain symmetry, boundary, and actuation conditions. Currently, a critical challenge is 

determining the number, size, and direction of cuts and folds, to design unit cells with 

one or less DOF yet with a variety of deformation modes, facilitating the programming 

of properties in kirigami metamaterials. 

1.2.3.3 Modular Origami-based Mechanical Metamaterials 

Modular origami, an extension of conventional origami and kirigami techniques, 

can be traced back to the paper folding of polyhedron units by origami artists[160,161]. 

This technique involves folding multiple pieces of paper and then interlocking or 

connecting these folded modules to create intricate and diverse 3D structures, as shown 

in Fig. 1-13. Notably, certain modular origami structures exhibit shape transformation 

due to inherent mobility, which imparts unconventional physical properties to the entire 

structure. This characteristic has positioned modular origami as a compelling avenue 

for designing 3D metamaterials that take advantage of their simplicity and versatility. 

Yang et al. introduced a spatial overconstrained 6R linkage in modular origami, i.e., the 

Sarrus 6R linkage[162], characterized by single DOF linear motion, and constructed a 

series of 3D modular metamaterials with negative Poisson’s ratio[163] (Fig. 1-13(a)) and 

even programmable almost constant Poisson’s ratio in three orthogonal directions[164] 

(Fig. 1-13(b)). Ma et al. developed a 3D modular origami-based meta-structure[165], as 

shown in see Fig. 1-13(c), which also kinematically equivalent assembly of Sarrus 6R 

linkage and planar 4R linkage mechanisms featuring continuous mechanism motion 

and bi-stability, enabling programmable control of both mechanism motion and 

structural deformation through careful adjustment of geometric parameters and joint 

stiffness. The examples of modular origami-inspired mechanical metamaterials in Fig. 

1-13 have only one deformation path, which means that the ability to tune their 

properties is limited. 
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Fig. 1-13 Modular origami-inspired mechanical metamaterials with a single deformation path. (a) 

(a) A Sarrus linkage-based 3D modular structure[163]; (b) 3D metamaterials with programmable 

almost constant Poisson’s ratio[164]; (c) 3D modular metamaterials with customized bi-stability[165]. 

 

As a branch of origami, the appeal of modular origami lies not only in its visual 

appeal arising from simple folding but also in more powerful, yet pervasive, rich 

configurations. For example, Yang et al.[166] assembled single DOF lantern modules 

(formed by introducing folds and cuts in pieces of paper before glueing them together) 

into large-scale metamaterials. Since a single module has two mutually compatible 

deformation modes, each module can have its mechanical properties independently 

prescribed from their adjacent neighbours, ultimately realizing decoupling local 

mechanics from the large-scale structure in modular metamaterials. Inspired by the 

geometries of snapology origami, Overvelde et al. presented a transformable 

metamaterial (see Fig. 1-14(a)) endowed with multiple degrees of freedom, wherein the 

shape, volume, and stiffness can be actively controlled through the incorporation of air 

pockets[167]. Building on that work, Overvelde et al. also introduce a robust design 

strategy based on space-filling tessellations of polyhedra to create three-dimensional 

reconfigurable materials with a wide range of qualitatively different deformations[168], 

as shown in Fig. 1-14(b). Inspired by the above pioneering works of Overvelde, Xiao 

et al. recently proposed an inverse design approach for complex 3D curvilinear modular 

structures with reconfigurability rather than tessellating a constant building block[169], 

as shown in Fig. 1-14(c). Li and Yin innovatively assembled 3D kirigami-inspired 

modules with multiple transformation paths, each consisting of eight closed-loop 

connected cubes, as shown in Fig. 1-14(d), kinematically equivalent to a multi-DOFs 

spatial 8R linkage, which greatly enhances the reconfigurability and shape re-
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programmability in architected matter[170]. Expanding on their work, Li and Yin further 

developed kirigami inspired module for reconfigurable metamaterials with diverse 

structures and unique properties, including reconfigurable 2D metamaterials 

undergoing chirality phase transitions and 3D metamaterials with programmable 

deformation modes[171], as shown in Fig. 1-14(e). Very recently, inspired by the 3D 

modular origami design with decoupled planar 4-bar linkage motions in the three 

orthogonal planes, Hu et al. propose a type of transformable mechanical metamaterials 

that can be reversibly transformed among null-, uni-, bi-, tri-, quadra-, penta-, and hexa-

modes, leading to tuneable mechanical properties and reprogrammable wave 

functionalities[13], as shown in Fig. 1-14(f).  

 

 

Fig. 1-14 Modular origami-inspired mechanical metamaterials with multiple deformation paths. 

(a) A snapology-inspired transformable metamaterial with multi-DOFs[167]; (b) reconfigurable 

prismatic architected materials[168]; (c) the inverse design of 3D reconfigurable curvilinear 

modular origami structures[169]; (d) an eight cube-based kirigami module-based reconfigurable and 

reprogrammable architected matter[170]; (e) 3D transformable modular kirigami-based 

programmable metamaterials[171]; (f) 3D metamaterials transformed for different zero modes[13]. 
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From a mechanism point of view, modular origami tends to be an alternative form 

of a hybrid network of planar, spherical, and spatial linkages, and it is its induced multi-

DOFs that add rich deformation modes to the origami structure. Modular origami, a 

sub-category of origami structures, is more flexible in design and richer in configuration 

than conventional origami and kirigami, but as well as being plagued by the problem 

of multi-DOFs. Therefore, if one start from the reconfigurability of the underlying 

linkage of modular origami and its mobile network, it is possible to design single DOF 

structures with multiple deformation modes, which will entail a great advancement in 

the tunability and programmability of mechanical metamaterials. 

1.3 Aim and Scope  

The primary objective of this dissertation is to develop single DOF reconfigurable 

origami structures endowed with the capability of multiple shape reconfigurations, and 

further to develop a series of mechanical metamaterials with tuneable properties, to lay 

a robust theoretical foundation for realising the leap of metamaterials from theoretical 

research to engineering applications. 

In this process, the principles of reconfigurable linkages will be used to guide the 

design of origami structures with one DOF. Then, the kinematic bifurcation and 

configuration evolution of origami structures will be analysed according to developed 

kinematic models. Next, the geometric and kinematic compatibility between different 

bifurcation configurations will be exploited to determine the connections between the 

unit cells and to construct homogeneous and heterogeneous 2D or 3D mechanical 

metamaterials concerning networking methods for reconfigurable and deployable 

structures. Finally, the analytical relationships between geometry, deformation, 

topology, and properties are to be established to explore the qualitative and quantitative 

tuning strategies for the physical properties of origami metamaterials. 

1.4 Main Contents 

This dissertation consists of six chapters, which are outlined as follows, while a 

diagram of the main contents is shown in Fig. 1-15. 

Chapter 1 introduces the existing kinematic theory and its application in the 

analysis and design of various origami structures as well as the current state of research 
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on reconfigurable mechanisms. Besides, mechanical metamaterials induced by the 

folding behaviour based on origami, kirigami, and modular origami are also reviewed. 

 

 

Fig. 1-15 Diagram of the main contents of this dissertation. 
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Chapter 2 presents a straightforward algorithm that combines graphic 

representation and motion compatibility conditions to assess the reconfigurability of 

one-DOF origami structures with 4-crease vertices as well as their 2D and even 3D 

cellular tessellations. 

Chapter 3 focuses on the reconfigurable thick-panel ori-kirigami design using 

vertically transferable joints and the investigation of the influence of design parameters 

on the folding behaviour under different motion branches. In addition, the properties of 

single DOF tessellation are also investigated, including Poisson’s ratio, deployable ratio, 

and load-bearing capacity. 

Chapter 4 discusses modular origami design from the perspective of alternative 

forms of single-loop linkage with kinematic bifurcation. Then, based on the 

deformation characteristics of different bifurcation configurations, compatible 

connections between reconfigurable units are proposed for the design of single DOF 

modules, followed by their constructed mechanical metamaterials with tuneable 2D 

symmetry groups and customised sign of Poisson’s ratios. 

Chapter 5 reveals the bifurcation behaviour of a single DOF modular cube by the 

kinematic model of an open-chain PLG under symmetric constraints. Then, Poisson’s 

ratio, chirality, and stiffness of a single polyhedron module during reconfiguration were 

also studied. Further, a combinatorial design strategy, i.e., stacking different bifurcation 

configurations in 3D space, is proposed to enhance the programmability of Poisson’s 

ratio. Finally, the modular cube is generalised to a series of single DOF reconfigurable 

prism structures, all of which have NPR/ZPR/PPR. 

Chapter 6 summarises the main achievements and plans for future work, which 

conclude this dissertation.  

At the crossover of kinematics, structural engineering, mechanics and materials, 

this endeavour guides the use of kinematic bifurcation from the perspectives of MV 

crease reconfiguration, transferable hinges, reconfigurable closed-loop spatial linkage 

and open-chain planar linkage, to design and analyse single DOF zero-thickness 

origami, thick-panel ori-kirigami, and modular origami structures with multiple shape 

reconfigurations. In addition, the tunability and programmability of the properties of 

the developed mechanical metamaterials have been investigated. 
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 Mountain-Valley Crease Reconfiguration of 4-Crease 

Origami Vertices and Tessellations 

2.1 Introduction  

Origami studies undoubtedly begin with the predefined crease pattern, where the 

most basic rigid-foldable unit for origami designs with one DOF is a four-crease vertex. 

Most of these studies have concentrated on the fixed crease topology in which an 

origami pattern folds between two final shapes with a clearly defined MV assignment. 

Reconfigurable origami-inspired folding has recently gained significant attention due 

to its potential to achieve multi-shape changes through crease topological morphing, 

resulting in multi-functionality from a single original structure. Hence, an essential 

understanding of the topological reconfiguration of four-crease vertices origami and 

their tessellations is critical to creating advanced functionalities. For any origami 

pattern with an un-predefined MV assignment, from the kinematic point of view, one 

of the major challenges is to identify the reconfigurability by inspecting all bifurcation 

paths precisely. However, there is no generic method that can identify the specific MV 

assignments with qualitatively different rigid folding behaviour in an origami 

tessellation consisting of four-crease vertices, which forms the goal of this chapter. 

The layout of the chapter is as follows: in section 2.2, a Depth First Search (DFS) 

algorithm[172] that combines graphic representation and motion compatibility conditions 

for evaluating the reconfigurability of origami structures composed of double 

corrugated, Miura-ori, and symmetric Eggbox vertices is developed. In section 2.3, the 

efficiency and accuracy of the method are demonstrated by searching for all rigid MV 

assignments of well-known 2D origami tessellations. Additionally, a 3D cellular 

origami example is presented in section 2.3, showcasing all possible rigid MV 

assignments as well as variations in typical folding behaviour. Finally, conclusions are 

drawn in section 2.4. 

2.2 Evaluation Method for Reconfigurability 

2.2.1 Kinematics of the Four-crease Vertices and Their Assemblies 

Starting with a four-crease vertex where four panels p i  (i = 1, 2, 3, 4, counted 

clockwise) are connected by four creases ic  on the pattern and characterized by four 
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sector angles ( 1)i i +  , as shown in Fig. 2-1. Referring to the vertex widely used to 

construct rigid origami patterns, the generic four-crease vertex is categorised into three 

types: double corrugated, Miura-ori, and Eggbox vertices with symmetric features 

(Although symmetry is not required for general eggbox vertices, more attention is paid 

to symmetric one for flat-foldability). Both the double corrugated and Miura-ori 

vertices satisfy the flat-foldability 12 34 23 41+ = +      and developability 

12 23 34 41+ + + =2π     . The difference is that the former can be folded flat without 

collinear creases, while the latter possesses a pair of collinear creases. The symmetric 

Eggbox vertex loses developability while keeping the flat-foldability. The geometric 

parameters for these three types of vertices are 

 12 23 34 41= ,  = ,  =π ,  =π       − −  (2-1) 

 12 23 34 41,  π     = = = = −  (2-2) 

and 

 12 23 34 41,  ,  π       = = = = +   (2-3) 

respectively. Note that 12  is set as the smallest sector angle. 

 

 

Fig. 2-1 Evolution among a generic four-crease vertex and three types of vertices, i.e., double 

corrugated, Miura-ori, and symmetric Eggbox vertices. 
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To describe their rigid motions, panels and creases are represented by links and 

revolute joints, as shown in Fig. 2-2. Therefore, a single four-crease vertex with creases 

intersecting at one point is kinematically a spherical 4R linkage and can be analysed 

with the matrix method in kinematics[45,132,173]. For the double corrugated vertex shown 

in Fig. 2-2 (a), the kinematic relationship between the revolute variable i   and the 

geometric parameter ( 1)i i +  can be derived following D-H notations[84], i.e., 

 

23 121

1 3 2 4
2 23 12

tan sin
2 2 ,  ,  

tan sin
2 2

 

   
  

−

= − = − =
+

 (2-4) 

or 

 

23 121

1 3 2 4
2 23 12

tan cos
2 2 ,  ,  

tan cos
2 2

 

   
  

−

= − = = −
+

 (2-5) 

There are two sets of solutions in Eqs. (2-4) and (2-5), and their corresponding 

kinematic paths 2  vs 1  as well as MV assignments of the vertex are plotted in Fig. 

2-2(a), where the geometric parameters with 30 ,  100 =  =    are taken as an 

example. There are two different MV assignments MV-I and MV-II, whose kinematic 

paths are path I and path II, respectively. Here is a trick to distinguish between these 

two crease topologies for the double corrugated vertex, i.e., if the two adjacent creases 

of crease 1c  have the same MV assignments, then it belongs to MV-I, otherwise it is 

MV-II. Both the fully unfolded and folded configurations are bifurcation points, at the 

unfolded one, MV assignments switch between MV-I and MV-II, while such switching 

cannot happen as folded one due to the physical interference, i.e., the panels cannot 

protrude each other. Note that flipping the paper results in the simultaneous interchange 

of all MV creases, a condition deemed equivalent in crease topology within this study.  

Turning attention to the Miura-ori vertex in Fig. 2-2(b), three sets of solutions can 

be obtained, i.e.,  

 1 3 2 4=0,     = =  (2-6) 

 

1

12 1 3 2 4
2

tan
2 cos ,  ,  

tan
2



    


= = = −  (2-7) 

or 
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 1 3 2 4,  π   = − = =  (2-8) 

The kinematic paths and corresponding MV assignments of the Miura-ori vertex 

with 30 =   are plotted in Fig. 2-2(b). The unfolded configuration at point (0, 0)  is 

one of the bifurcation points where the Miura-ori vertex can achieve the switch of crease 

topology between MV-I and MV-II assignments. When the vertex in path I is fully 

folded where panels 1p  and 2p  are fitted together, it can switch into path III at another 

bifurcation point (0, ) . After that, creases 1c  and 3c  are active, and creases 2c  and 

4c   become inactive. There are two sets of closure equations for symmetric Eggbox 

vertex shown in Fig. 2-2(c), i.e., 

 

1 3

2 1 1
12 12 34 12 12 34

4 1 1
34 34 12 34 34 12

1
tan ((cos sin cot )cot (cos sin cot ) tan ))

2 2 2 2

1
tan ((cos sin cot )cot (cos sin cot ) tan ))

2 2 2 2

 

  
     

  
     

=

= + − −

= + − −

 (2-9) 

or 

 1 3 2 4,  π   = − = =  (2-10) 

The kinematic paths and corresponding MV assignments of the symmetric Eggbox 

vertex are divided into two cases based on the geometric parameters ( 1) 2πi i +   (Fig. 

2-2(c) top) or ( 1) 2πi i +   (Fig. 2-2(c) bottom). Despite having only two kinematic 

paths, the symmetric Eggbox vertex exhibits three distinct MV assignments. During 

motion along path I, a crease topological transition occurs by switching one of its 

creases between a mountain and a valley. Specifically, in the case of ( 1) 2πi i +  , one 

of four mountain creases of the symmetric Eggbox vertex, i.e., crease 2c , switches into 

a valley crease when panels 1p  and 2p  are coplanar, thus achieving a Miura-like mode 

of folding motion. In the case of ( 1) 2πi i +  , the symmetric Eggbox vertex has two 

mountain creases and two valley creases, and the crease 4c  is changed from a mountain 

crease to a valley crease when panels 3p  and 4p  are coplanar, also achieving a Miura-

like folding motion. On path II in both cases of ( 1) 2πi i +    and ( 1) 2πi i +   , the 

creases 2c  and 4c  are inactive, leading to MV-III.  
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Fig. 2-2 Kinematics of three types of 4-crease vertices. (a-c) From left to right are origami 

vertices with un-predefined MV assignment, linkage form, and kinematic paths 2  vs 1  plus MV 

assignments for the double corrugated, Miura-ori, and symmetric Eggbox vertices, respectively.  
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To illustrate proposed approach, the quadrilateral mesh shown in Fig. 2-3(a) was 

taken as an example. As depicted in Fig. 2-3(a), this pattern containing multiple vertices 

can be conceptualised as an assembly of spherical 4R linkages. The coordinate frames 

kF   (k=A, B, C, D) following the D-H notations are established at the joints of each 

spherical 4R linkage, as shown in Fig. 2-3(b). Sector angles ( 1)

k

i i +   at vertex k are 

marked clockwise and 
12

k  is the smallest sector angle. The explicit function between 

the input angle 
k

i   and the output angle 1

k

i +   about vertex k is given by Eqs. (2-4)-

(2-10), which can also be represented concisely in implicit function form as 

( 1) 1( )k k k

i i i i + +=f . Hence, as shown in Fig. 2-3(b), the compatibility condition[84] of the 

corresponding linkage form is  

 
D

4

A

k

k=

= f I  (2-11) 

The expression establishes a link between the MV assignments and bifurcation 

paths by considering geometric parameters and kinematic variables. This relationship 

enables the transformation of evaluating the number of rigid or valid MV assignments 

of a pattern containing several vertices into a solvable combinatorial problem.  

 

 

Fig. 2-3 Motion compatibility of assemblies of spherical 4R linkages. (a) The quadrilateral mesh 

origami and the corresponding mobile assembly and (b) the motion transmission path. 

2.2.2 Graphic Representation of Origami Modules  

The above kinematic method to understand the reconfigurability of crease patterns 

is powerful and efficient for a single four-crease vertex, but rather complicated for 

multi-vertices tessellations due to the inherent complexity arising from the mutual 
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nesting of motion loops. In contrast, graphic representation, where objects and 

connections are represented by shapes and lines, works perfectly here. Taking 

inspiration from the concept of modularity, a single loop unit, encompassing several 

four-crease vertices, can be initially perceived as a module, and then the physical 

vertices and modules can be translated into a graphic representation. As illustrated in 

Fig. 2-4(a), double corrugated vertices with MV-I and MV-II assignments are denoted 

by central blue and red circles with black boundaries, respectively, whereas Miura-ori 

vertices with MV-I and MV-II assignments are depicted by central blue and red circles 

without boundaries (Fig. 2-4(b)). The symmetric Eggbox vertices with MV-I and MV-

II assignments (Fig. 2-4(c)) are represented by the central blue and red upward triangles 

with black boundaries, respectively, in the case of ( 1) 2πi i +   . In contrast, the 

downward triangle is used in the case of ( 1) 2πi i +  . It is noteworthy that the vertex 

with MV-III assignments is considered a defective configuration, as the motion curve 

of this type of vertex indicates that the panel of vertices connected to vertices with MV-

III assignments remains fixed. Thus, meaningless defected configurations with MV-III 

assignments at both Miura-ori and symmetric Eggbox vertices are excluded. Meanwhile, 

each vertex is assigned a value of “0” or “1” based on conformity to MV-I or MV-II 

assignments. After that, the compatibility condition in Eq. (2-11) is used to find all valid 

M-V assignments of the module. It is worth noting that each vertex has two general 

path options. As a result, there are up to sixteen combinations for quadrilateral-mesh 

modules. However, there are kinematic relationships between neighbouring vertices, 

and many of these sixteen combinations are invalid and can be assessed one by one 

using Eq. (2-11).  

 

 

Fig. 2-4 Graphic representations of a single vertex. The blue and red fillings represent MV-I and 

MV-II assignments, respectively, while circles with black boundaries, circles without boundaries, 

and triangles with upward or downward orientations represent (a) double corrugated, (b) Miura-

ori, and (c) symmetric Eggbox (
( 1) 2πi i +   and 

( 1) 2πi i +  ) vertices, respectively. 
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Fig. 2-5 Graphic representations of eighteen typical modules consisting of double corrugated, 

Miura-ori, symmetric Eggbox vertices and their hybridization.  



Chapter 2 Mountain-Valley Crease Reconfiguration of 4-Crease Origami Vertices and Tessellations 

35 

 

Here, eighteen typical modules distinguished by vertex type and geometric 

parameters derived from well-known origami patterns are listed in Fig. 2-5, whose 

prototypes are displayed in Appendix A. Each MV assignment corresponds to the graph 

for any of the modules one by one. As shown in Fig. 2-5, modules are schematically 

indicated by graphs, where each line represents a connection and circles or triangles on 

four corners represent four vertices. It is straightforward that modules 1-10, 11-13, and 

14-15 are composed of pure double corrugated, Miura-ori, and symmetric Eggbox 

vertices, respectively, while hybrid vertices form modules 16-18. Modules 1-5 can be 

rigidly folded along six different MV assignments according to compatibility conditions. 

With the enhancement of the constraint generated by the geometry in modules 6-9, the 

number of valid MV assignments is decreased to four or even two. The common point 

of modules 1-9 is that two vertices possess MV-I assignments, and the other two satisfy 

MV-II assignments. Nevertheless, module 10, consisting of a pure double corrugated 

vertex, requires all four vertices to simultaneously satisfy MV-I or MV-II assignments. 

Modules 11-13 with Miura-ori vertices have four similar crease topologies, i.e., one 

column for MV-I and the other column for MV-II, or vice versa, or cases that all for 

MV-I or MV-II. As for modules 14-15 with symmetric Eggbox vertices, the number of 

valid MV assignments is four or two, depending on the location of the smallest sector 

angle. Module 16 is a hybrid of two double corrugated and two symmetric Miura-ori 

vertices, while modules 17 and 18 are a hybrid of two Miura-ori and two symmetric 

Eggbox vertices. In the former, the Miura-ori vertex can only be MV-II assignments, 

while the latter only requires that two vertices in the same column belong to either MV-

I or MV-II simultaneously. 

2.2.3 Algorithm Design for Origami Tessellation with Size m×n 

After addressing the reconfigurability analysis of origami modules based on 

compatibility conditions, the reconfigurability of origami tessellations using graphic 

representation and algorithms was further investigated. At first, the origami tessellation 

is abstracted into a checkerboard with size m×n (m and n are numbers of vertices in the 

orthogonal directions), described by a matrix ( )ij m na =A . Taking the double corrugated 

pattern (Fig. 2-6(a)) parameterised by   and    as an example, it consists of 3×4 four-

crease vertices without predefined MV assignments. So, the 3×4 checkerboard is 

characterised by a matrix 3 4( )ija =A . Next, composed modules are founded according 

to geometric parameters. As shown in Fig. 2-6(a), it consists of two types of modules 

https://cn.bing.com/dict/search?q=Nevertheless&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=%2C&FORM=BDVSP6&cc=cn
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(exactly modules 1 and 2 in Fig. 2-5), one considered as the basic module and the other 

considered as the connection module to constrain neighbouring basic modules, which 

can be easily distinguished by the geometry of the central quadrilateral panel. It was 

found that the two modules in double corrugated pattern share six types of MV 

assignments with distinct graphic representations, according to Fig. 2-5. Hence, the null 

matrix 
2 2A  of the module can be assigned values and expressed as 

0 1

0 1

 
 
 

, 
0 1

1 0

 
 
 

, 

0 0

1 1

 
 
 

 , 
1 0

1 0

 
 
 

 , 
1 0

0 1

 
 
 

 , and 
1 1

0 0

 
 
 

 . Finally, the notoriously difficult issue of 

compatibility conditions for origami tessellations under different MV assignments is 

transformed into the interesting discrete mathematical problem of filling a 

checkerboard with graphic representations of modules, which can be easily tackled with 

the aid of programming languages.  

 

 

Fig. 2-6 Algorithm design for origami tessellation with size m×n. (a) A tessellation without 

presupposed MV assignments consists of basic modules, and the connection module can be 

described as a checkerboard with size m×n and a null matrix. (b) The matrix can be further 

assigned values according to graphic representations of modules.  

 

As shown in Fig. 2-6(b), the challenge of identifying origami tessellations with 

size m×n is first conceptualized as the pursuit of valid visit sequences in a m-layered 

graph where each layer contains 2n
 nodes (corresponding to 2n

 cases of an origami 
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tessellation row). For any two adjacent layers, connect ( )1

, , 0,  2n

i jV j −   and 

( )1

1, , 0,  2n

i kV k −

+   if row j and row k can form a valid origami tessellation (see lines 

1-9 of Algorithm 1). Upon constructing the graph, for each node ( )1

0, , 0,  2n

jV j −  in 

the first layer, conduct a depth-first search with 0, jV  as the current node and an empty 

visit sequence (see lines 10-12 of Algorithm 1). The algorithm investigates each branch 

to its fullest, guaranteeing comprehensive path coverage (see lines 14-23 of Algorithm 

1). When a branch’s end is reached, DFS backtracks to the previous decision point, 

allowing for the examination of alternative paths (see lines 16-19 of Algorithm 1). This 

process of moving forward and then backtracking enables a thorough exploration of the 

graph, uncovering every possible path starting from the source node. Therefore, at the 

end of the process, each valid node visit sequence (i.e., the matrix A ) discovered by 

the algorithm can be turned back to an origami pattern with valid MV assignment. 

  

Algorithm 1: Mountain-valley crease reconfiguration 

Input: 𝑛, 𝑚 

Output: valid results 

1 For j from 0 to 
12n−
: 

2     For k from 0 to 
12n−
: 

3         If row [j] and row [k] form a valid origami tessellation: 

4             For i from 0 to 𝑚 − 2: 

5                 Connect 
,i jV  and 

1,i jV +
 

6             end for 

7         end if 

8     end for 

9 end for 

10 For i from 0 to 
12n−
: 

11      DFS(
0,iV ) 

12 

13 

end for 

Return valid results 
  

14 Function DFS(node): 

15 Append node to the sequence 

16 If the length of the sequence is equal to 𝑚 then 

17     Append the sequence to valid results 

18     return 

19 end if 

20 For i in node’s adjacent nodes of next layer: 

21 

22 

DFS(i) 
end for 

23 Delete node from the sequence 

 

For a m-layered graph where each layer contains 2n
  nodes, the computational 

complexity of the algorithm to identify all possible paths is usually at least O( 2m n
). 
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However, the rules (e.g., ( +1) ( 1) ( 1)( +1)+ + 2ij i j i j i ja a a a+ ++ =  ) of basic and connection 

modules established according to the graphic representation and motion compatibility 

conditions prune the connections between nodes of any two adjacent layers (from 
22 n

 

to 2 2n +  ), so the size of the search space is effectively reduced. Therefore, the 

computational complexity of the algorithm is significantly simplified to Ο( 2 +2n mm ). 

2.3 Reconfigurability of Origami Tessellations 

2.3.1 2D Origami Tessellations 

In this section, the proposed algorithm is examined with 2D tessellations of 

different 4-crease vertices. First, the variations in the number of valid MV assignments 

of the double corrugated pattern as the size of the tessellation increases is examined. 

For a 2×2 double corrugated pattern, there are six valid MV assignments. As raising the 

size of the tessellation, it is noticed an exponential growth in the number of valid MV 

assignments for m×n tessellation. Furthermore, it is also observed that the rate of 

increase in the number is the same regardless of whether a new column or row is added. 

Based on the graph evaluations and algorithm feedback, the number of valid MV 

assignments for m×n tessellations can be summarised as 2 2 2m n+ −  . Fig. 2-7(a) 

visually illustrates search results for the number of valid MV assignments (black bars) 

for a double corrugated pattern with n×n tessellation. Note that the algorithm is highly 

efficient in terms of time consumption, see Appendix B for details. Another advantage 

of utilising the graphic representation. and DFS algorithm is the ability to remove 

duplicates by assessing the symmetry of the matrix A . For example, the two graphic 

representations of 4×4 double corrugated tessellations depicted in Fig. 2-7(b) are valid 

MV assignments. However, upon rotating one of them by o180 , it is discovered that it 

perfectly overlaps the other, indicating that they are essentially the same geometric 

configuration. Consequently, only one of the two MV assignments is unique. The valid 

and unique MV assignments for n×n double corrugated tessellations are displayed in 

Fig. 2-7(a), bar charts with section lines. Out of the six rigid MV assignments available 

for 2×2 double corrugated tessellations, only four are valid and unique. Moreover, for 

4×4 double corrugated tessellation, only eighteen out of thirty valid MV assignments 

are unique, whose prototypes and graphic representation are shown in Fig. 2-7(c). 
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Fig. 2-7 The search results for the number of valid MV assignments of a double corrugated 

pattern. (a) Valid or unique MV assignments of a n×n double corrugated pattern tessellations. (b) 

Duplicates by assessing the symmetry of the matrix. (c) The eighteen unique MV assignments and 

corresponding graphical representations of 4×4 double corrugated pattern tessellations. 
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Research on rigid origami has promoted a substantial number of well-known 

patterns. the reconfigurability of these patterns based on intuitive rules in Fig. 2-5(b) is 

further investigated. Tab. 2-1 summarises the component modules and the number of 

valid MV assignments of these well-known patterns[1, 26, 45-49]. As mentioned, 

combining modules 1 and 2 produces a double corrugated pattern. There are two 

tessellation methods of square twist, i.e., fitting modules 3, 4, and 5 creates the first 

type of square twist tessellation, while fitting modules 1 and 3 creates the second type. 

Since the modules in double corrugated pattern and square twist tessellations share rules, 

the number of their valid MV assignments are the same, i.e., 2 2 2m n+ − . Meanwhile, 

the number of valid MV assignments of a generalised Mars pattern is 2 2n −  . 

Remarkably, the number of valid MV assignments in a dual square twist is always four 

with increasing system size, two of which are unique due to the centre symmetry of the 

pattern, while both the numbers of valid MV assignments in the generalised Huffman 

pattern and Helical pattern remain two. This means that the dual square twist, 

generalised Huffman pattern and Helical pattern displayed in Fig. 2-8 belong to oligo-

modal origami with a constant number (≥2) of zero-energy deformation modes 

independent of tessellation size[50]. Besides, the Miura-ori pattern and its derivatives, 

i.e., the Chicken wire tessellation and the Arc-Miura tessellation, exist 2n  valid MV 

assignments. It found that the number of valid MV assignments for Eggbox tessellation 

and quadrilateral creased pattern depends on the even/odd of n yet is independent of m. 

 

Tab. 2-1 The number of valid MV assignments for well-known origami patterns 

Tessellations 
Component 

modules 
Size 

Valid M-V 

assignments 

 

Double corrugated tessellation 

modules 1 and 2 m×n 2 2 2m n+ −  

 

Square twist pattern 

modules 3, 4, and 5 m×n 2 2 2m n+ −  
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Square twist pattern 

modules 1 and 3 m×n 2 2 2m n+ −  

 

Generalized Mars pattern 

module 6 m×n 2 2n −  

 

Dual square twist pattern 

modules 3, 6 and 7 

m×n, m, n≥4, 

and m, n are 

even 

numbers 

4 (2 of which are 

unique) 

 

Generalized Huffman grid pattern 

module 9 m×n 2 

 

Helical pattern 

module 10 m×n 2 

 

Miura-ori pattern 

module 11 m×n 2n  

 

Chicken wire tessellation 

module 12 m×n 2n  

 

Arc-Miura tessellation 

module 13 m×n 2n  
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Eggbox pattern 

module 14 and 15 

m×n, 

n is old 
( 1)/22 n+  

m×n, 

n is even 
/22n  

 

Quadrilateral creased pattern 

module 16 

m×n, n is old ( 1)/22 n−  

m×n, n is 

even 
/22n  

 

 

Fig. 2-8 Three types of oligo-modal origami with a constant number of MV assignments 

independent of tessellation sizes. (a) Dual square twist pattern, (b) Huffman pattern, and (c) 

Helical patterns. 
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2.3.2 3D Cellular Origami Structure 

In this section, the proposed method is extended to 3D cellular origami structures. 

The tunability of mechanical properties induced by mountain-valley crease 

reconfiguration is explored by both theoretical models and experimental results. Fig. 

2-9(a) shows different views of a 3D cellular origami structure composed of m×n×p 

Miura-ori tubular origami units[174,175]. Unlike conventional stacking methods, this 

cellular structure adopts a shifted stacking strategy between layers of tubular origami 

units, resulting in a consistent one-unit disparity between the number of tubular units 

in layers p-1 and layer p. Upon examining the top view of the cellular origami, a 

standard 2D Miura-ori tessellation becomes apparent, implying the independence of the 

number of valid MV assignments on parameter m. The front view, depicting 3×3×3 

tessellation, can be abstracted as a chessboard, as illustrated in Fig. 2-9(a). To facilitate 

the algorithm’s solution, basic and connected modules in the yoz plane are identified. 

As shown in Fig. 2-9(b), the basic module is constructed using two identical Miura-ori 

sheets and two rectangular connecting sheets, resulting in two identical symmetric 

Eggbox vertices parameterized by ( 1) 2πi i +   on the left and two identical symmetric 

Eggbox vertices parameterized by ( 1) 2πi i +    on the right, forming a Miura-ori 

tubular origami represented by a rectangular lattice with six nodes. Since this tubular 

origami corresponds to an assembly of six spherical 4R linkages, six graphic 

representations (MV assignments) emerge. Additionally, two neighbouring Miura-ori 

tubular origami in the z-direction, along with the subsequent layer, share four rhombic 

sheets, abstracted as a trapezoidal lattice with four graphic representations (MV 

assignments) termed connection module i (Fig. 2-9(c)). Another consideration involves 

neighbouring Miura-ori tubular origami in the y-direction, sharing rectangular 

connecting sheets and forming connection module ii. This module is represented as a 

square lattice with four nodes corresponding to four symmetric Eggbox vertices, 

encompassing sixteen MV assignments and graphic representations (Fig. 2-9(d)). The 

proposed algorithms yield insights into the number of valid and unique configurations 

with different tessellation sizes, revealing an exponential increase in valid and unique 

configurations as the tessellation size expands (Fig. 2-9(e)). Since there is no symmetry 

when the number of rows p are even numbers, the number of unique configurations is 

the same as the number of valid configurations. Whereas when the number of rows p 

are odd, the number of unique configurations is approximately half the number of valid 
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configurations due to horizontal symmetry. It is noted that the increase of the size 

number from two to three contributes directly to the surge of the overall variety of the 

tessellations (The runtime of the algorithm is provided in Appendix B).  

 

 

Fig. 2-9 Reconfigurability of 3D cellular origami structure. (a) Views of cellular origami 

structure and chessboard of 3×3×3 tessellation in the front view. (b-d) Graphic representations of 

the basic module, connection modules i and ii. (e) The result of the search for the number of valid 

and unique configurations with different tessellation sizes. 
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For a simple 3×3×3 tessellation, it is surprising that more than 36 10   valid 

configurations exist. These configurations are switched through a common bifurcation 

point, where the Miura vertices are flat unfolded, as shown in Fig. 2-10(a) left. In the 

discussion of these specific examples discovered during the exploration process, three 

typical graphic representations are presented in Fig. 2-10(a) right. Notably, all Miura-

ori vertices in these cases adhere to the MV-II assignment. In graphic representation I, 

the symmetric Eggbox vertices conform to the MV-II assignment, resulting in a concave 

shape for the tubular origami module. Moving to graphic representation II, a unique 

configuration emerges wherein the symmetric Eggbox vertices in the top and bottom 

layers exhibit both MV-I and MV-II assignments, while those in the middle layer adhere 

solely to the MV-II assignment. Consequently, the entire 3×3×3 cellular origami 

structure manifests convexity at the top and bottom ends and concavity at the middle 

layer. Finally, in graphic representation III, the symmetric Eggbox vertices adhere to 

the MV-I assignment, yielding all tubular origami modules with a convex contour. 

Meanwhile, the folding process of the three typical configurations is shown in Fig. 

2-10(b). Apparently, the geometric dimensions of the structure, namely the width (W), 

breadth (B), and height (H) in the x, y, and z directions, undergo significant changes 

during the folding process. For a m×n×p cellular origami structure, its dimensions are  

 

e,0 m,0 m,1

=2 sin(arccos(cos / cos ))

=2 cos + cos / cos

= sin sin sin

W m

B nb a

H pc n b n b n b

 

  

  + + −

 (2-12) 

where a, b, and c are length parameters, φ is the angle describing the folding ratio, ne,0 

is the number of layers in the two end-sheets’ convex, while ,0em   and ,1em   are the 

number of layers in the middle sheets’ convex and concave configurations, respectively.  

Particularly intriguing are the changes in dimensions within the yoz plane. The 

structure is observed to undergo contraction, remains unchanged, or stretches along the 

z direction in three cases while being contracted in the y direction monotonically, as 

shown in Fig. 10(b), indicating negative, zero and positive in-plane Poisson’s ratio 

(NPR/ZPR/PPR). To verify these findings, a theoretical model of Poisson’s ratio is 

established by means of the kinematic model. The in-plane Poisson’s ratio BH  of the 

structure is defined as[133,176] 

 =BH

dH B

dB H
 −   (2-13) 
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Fig. 2-10 The 3×3×3 tessellation. (a) The bifurcation configuration of the tessellation and its three 

typical configurations as well as graphic representations. (b) Folding process of the prototype. 

 

Consequently, equation (2-13) can be written as 

e,0 m,0 m,1

e,0 m,0 m,1

cos cos cos 2 cos + cos / cos
=

2 sin + cos tan sec sin sin sin
BH

n b n b n b nb a

nb a pc n b n b n b

     


      

+ −
− 

− + + −

 (2-14) 
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The quantitative Poisson’s ratio experiments on these three typical configurations 

of the 3×3×3 tessellation have also been performed. The tested sample was compressed 

between two smooth flat platens (the one on top is transparent) along the x direction, as 

shown in Fig. 2-11(a). The compression tests are conducted using a vertical testing 

machine (Instron 5982) by applying an 80mm displacement and a 0.5 mm s-1 loading 

rate. Due to the prestressing of the hinges made of tape, the compression test of three 

cases starts from a partially folded configuration rather than a fully unfolded 

configuration. The motion of the markers used to define the contours in the yoz plane 

was captured by a CSI Vic-3D9M digital image correlation (DIC) system with a camera 

resolution of 2704×3384 pixels and a frame period of 500 ms. Thus, the Poisson’s ratio 

associated with the generic frame i of the experimental movie, was computed through 

 1

1

= i i i
BH

i i i

H H B

B B H
 +

+

−
− 

−
 (2-15) 

In Fig. 2-11(b), the experimental results (markers) are compared with the 

theoretical prediction (continuous lines) provided by Eq. (2-14), where the folding ratio 

is defined as ( )max max/W W W− . The analysis shows that experiments and theory are in 

good agreement although the results differ slightly due to fabrication defects. Figure 

Fig. 2-11(b) shows that the Poisson’s ratio BH  of case I remains negative and changes 

from -0.48 to -0.13, while the Poisson’s ratio BH  of case II fluctuates around zero, and 

the Poisson’s ratio BH  of case III remains positive and changes from 0.41 to 0.10. It is 

also noted that experimental results and the theoretical curve for both positive and 

negative Poisson’s ratio at higher folding ratios with experimental values converging 

towards zero. This phenomenon is mainly due to the thickness of the material. 

Specifically, the analysis of the theoretical Poisson’s ratio is based on a kinematic model, 

where the cardboard is ideally zero-thickness materials. In fact, each piece of cardboard 

in the prototype is only 0.2 mm thick. However, the 3×3×3 tessellation consists of 12 

layers stacked together in the W direction at higher folding ratios, even without 

considering the thickness of the tape (0.02mm). Consequently, the dimensional change 

of the prototype in the H direction will be small with compression nears its end. Overall, 

these results demonstrated that it is achievable to rationally design origami 

metamaterials with negative, zero and positive in-plane Poisson’s ratio (NPR/ZPR/PPR) 

under large deformation by manipulating the MV assignments, which has not yet been 

reported previously in conventional origami sheets.  
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Fig. 2-11 Quantitative analysis of Poisson’s ratio. (a) The experimental setups. The black speckles 

of the panels are used to evaluate the dimensions. (b) Comparison of experimental and theoretical 

results. Data are expressed as the mean and standard deviation of three tests. 

2.4 Conclusions 

In this chapter, the challenge of searching for MV assignments that satisfy rigid 

foldability in large 2D origami tessellations or 3D cellular structures is addressed by 

transforming it into a chessboard coloring problem and employing programming 

language for its solution. Specifically, origami tessellation is divided into combinations 

of modular units. Subsequently, the motion compatibility conditions for assemblies of 

spherical linkages are used to establish basic rules for the graphic representation of 

these modules. Eventually, the DFS algorithm is employed to systematically traverse 

the chessboard, seeking graphical solutions that adhere to the established rules and 

ultimately transforming them back into origami patterns with specific MV assignments. 

This method not only provides an analytical value and their precise assignments of MV 

creases but also eliminates a significant number of duplicate geometric configurations. 

The efficiency and accuracy of proposed method have been demonstrated through a 

series of 2D origami tessellations, and further extended to 3D cellular origami structures. 

In this process, three types of oligo-modal origami tessellations that exhibit a constant 

number (≥2) of rigid MV assignments independent of tessellation size, and a pluri-

modal cellular origami whose number exponentially increases with tessellation size, 

have been identified. Additionally, the analysis of the theoretical and experimental 

results of mechanical properties reveals that negative, zero, and positive in-plane 

Poisson’s ratio can be achieved under large deformation by manipulating the MV 

assignments within a single origami structure.公式节 (下一节)  
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 Integration of Origami, Kirigami and Ori-Kirigami in 

Thick Panels by Transferable Joints 

3.1 Introduction  

The challenge of evaluating the reconfigurability of four-crease origami vertices 

and their tessellations for zero-thickness structures was addressed in chapter 2. 

However, modern origami extends beyond zero-thickness sheets, with the thickness of 

rigid materials gaining significance, particularly in engineering applications requiring 

heightened strength or rigidity. It is found that most studies of origami-based 

reconfigurable structures focused on zero-thickness origami, except for a few known 

examples of thick-panel origami. Despite the development of various approaches to 

accommodate thickness in origami-based designs, the physical interferences arising 

from thick-panel transformations present challenges in reconfigurable structures. This 

arises from the necessity to accommodate panel thickness in various folded or unfolded 

configurations. 

On the other hand, joint axes in conventional thick-panel origami are typically 

located at the top and bottom edges of the panel, while thick-panel kirigami aligns them 

in the thickness direction. However, ori-kirigami introduces unique design principles, 

where joint axes can be at the panel’s edge or within its thickness simultaneously. 

Generally, a revolute joint, commonly used to connect two links, provides one DOF 

relative motion. Once installed, the direction of the joint axis and corresponding linkage 

parameters are determined. The variations in joint axis orientation prevent connectivity 

between thick-panel origami, kirigami, and ori-kirigami. This chapter seeks to integrate 

them using Jacob’s Ladder toy-inspired vertically transferable joints (VTJ). 

The outline of this chapter is as follows. In section 3.2, the design of the thick-

panel ori-kirigami unit is presented, integrating origami, kirigami, and ori-kirigami 

motion branches by embedding VTJ into flat-foldable six-crease vertices, and the 

effects of design parameters on the kinematic behaviours are revealed. In section 3.3, 

the focus is on the tessellation of the reconfigurable units and their accompanied 

tuneable mechanical properties, including Poisson’s ratio, deployable ratio, and load-

bearing capacity. The concluding remarks are presented in section 3.4. 



Doctoral Dissertation of Tianjin University 

50 

 

3.2 Single Reconfigurable Unit with Vertically Transferable Joints 

3.2.1 Vertically Transferable Joints 

Extending parallel transferrable joint inspired by the Jacob’s Ladder toy[177], the 

VTJ technique is introduced, as shown in Fig. 3-1(a) and (b). Each panel is intricately 

linked to three non-stretchable tapes, A, B, and C. Notably, tapes A and C are attached 

to the side surface of panel 1p  and extend down in the thickness direction to the bottom 

surface of panel 2p . In contrast, tape B is attached to the side surface of panel 2p  and 

extends down in the thickness direction to the bottom surface of panel 1p  . Such an 

arrangement of interlaced non-stretchable tapes allows each panel to act as an R joint 

(one DOF) at either of its two edges. Consequently, when the joint axis relocates from 

the edge of the bottom surface to that of the side surface at an unfolded configuration 

(which is also the bifurcated configuration), the mountain crease transitions into an R 

joint whose axis is in the thickness direction, graphically depicted by the red dashed 

line plus a grey circle and arrow in Fig. 3-1(a). Meanwhile, by connecting the top and 

side surfaces of two panels with three interlaced tapes, as shown in Fig. 3-1(b), the axis 

of the joint can be transferred from the edge of the top panel surface (valley mountain 

crease) to the thickness direction, graphically indicated by the blue dashed line plus a 

grey circle and arrow. Despite each VTJ comprising two joints, only one joint operates 

after passing through the unfolded configuration. 

 

 

Fig. 3-1 Vertically transferrable joint technique. (a) Mountain crease replaced by VTJ and 

(b) valley crease replaced by VTJ. Arrows and grey circles accompany these representations, 

where arrowheads indicate the direction of joint transfer, and circles signify the joint axes located 

in the direction of thickness. 
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The proposed VTJ can be selectively activated to be located on the upper and lower 

surfaces of the panel or in the thickness direction by controlling the adsorption of the 

strip to the panel. Taking the case in Fig. 3-1(a) as an example, when the tapes B (A and 

C) are adsorbed on the panel 2p  ( 1p ), the two panels can only be folded in the way of 

R joint at mountain creases. And when strip B (A and C) is adsorbed on panel 1p  ( 2p ), 

the two panels can only be opened in the way of the joint whose axes located in the 

direction of thickness. 

3.2.2 Characterization of a Single Unit 

At the nucleus of integration design is the single diamond vertex, as illustrated in 

Fig. 3-2(a) left, which is characterized by four diagonal mountain creases (represented 

by red solid lines) and two co-linear valley creases (represented by blue dashed lines), 

converging at a point. The square base height is denoted by 2l, and the design angle is 

represented by α. Transforming these facets into panels of uniform thickness t yields an 

assembly where adjacent panels are connected by six revolute joints ic  (i =1, 2, …, 6). 

The axis of these joints aligns either along the panels’ bottom or top edges for mountain 

or valley creases, respectively. Fig. 3-2(a) right presents the reconstruction of this 

origami vertex. Then replacing four joints ( 1c , 2c , 4c  and 6c ) of the original pattern 

with VTJs obtains the modified unit as shown in Fig. 3-2(a) right. The replacement of 

mountain or valley creases by VTJs is visually highlighted by red and blue dotted lines 

plus arrows and grey circles, respectively. Arrows and grey circles accompany these 

representations, where arrowheads indicate the direction of joint transfer, and circles 

signify the joint axes located in the direction of thickness. Consequently, the modified 

unit undergoes a metamorphosis, now comprising six triangular panels intricately 

interlinked by ten joints, and its thick-panel form is presented in Fig. 3-2(b). 

Obviously, co-linear creases in the modified unit could enable the entire unit to 

work as open-chain mechanisms with mobility, where an R joint is connected by two 

links, but more interesting are these single-loop linkage cases. In fact, VJTs serve to 

lock and unlock joints, allowing for the adjustment of joint axis orientation on the top 

and bottom surfaces of panels or in the thickness direction without increasing DOF, 

thereby reconfiguring the type of linkages to form a transformable vertex with multiple 

motion branches. Thus, there are 42 16=  potential combinations of activated joints. 
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Only 10 are unique considering plane symmetry, and only five of these have mobility 

for single-loop linkage cases (Appendix C). 

 

 

Fig. 3-2 Diamond pattern-based integration design. (a) Modified unit with vertical transferable 

joints evolved from six-crease vertex; (b) thick-panel form of the modified unit. 

3.2.3 Motion Branches of a Single Unit 

3.2.3.1 Thick-Panel Origami Motion Branch 

Starting from the basic mode, the diamond origami branch (depicted in Fig. 3-3), 

unlocks all four transferable joints 1c , 2c , 4c  and 6c , positioning their axes on the top 

or bottom surfaces of the panels. This setup transforms the single unit into a two-fold 

plane-symmetric Bricard 6R linkage, following the geometric condition  

 

12 34 45 61 23 56

12 61 23 56 34 45

1 2 3 4 5 6

, 0

2π =2π , 2π =π 2 , 2π =

0

a a a a t a a

R R R R R R

        

= = = = = =

= − − = − − = −

= = = = = =

  (3-1) 

where 0 π / 4  , to ensure flat foldability.  

Further, the kinematic relationships underlying this linkage are deduced through 

the following expressions[47] 

 1 2
1 4 2 3 5 6

1
, , tan tan

2 cos 2

 
     


= = = = =   (3-2) 

where i  denotes dihedral angles. 

Equation (3-2) shows that the relationship between dihedral angles is independent 

of the thickness t and edge length l. Meanwhile, the kinematic curves between 2  and 

1  are plotted in Fig. 3-4(a), where points i-ii-iii-iv-v in black and red correspond to 

configurations in Fig. 3-4(b) and (c) of the vertex with 30 =    and 45 =   , 

respectively. Regardless of the variation of design angles α, there always exist two fixed 
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points (0, 0) and ( π  , π  ), implying that the unit is flat-foldable and flat-deployable. 

While general design angles ( 0 π / 4  ) may yield voids and tabs in the fully folded 

configuration, as shown in Fig. 3-4(b), the special case of 45 =   enables ideal folding 

from a flat square panel into a compact stack (Fig. 3-4(c)). 

 

 

Fig. 3-3 Thick-panel origami branch of a modified unit in diamond vertex mode. (a) Crease 

pattern of the unit; (b) thick-panel form of the unit. 

 

 

Fig. 3-4 Relationship between dihedral angles 2  and 1  and corresponding configurations in 

thick-panel origami branch. (a) The kinematic paths of a single unit. The path for the case of 

30 =   line a is in black, and the one for the case of 45 =   is in red. (b) Motion sequence of 

the unit with 30 =  ; (c) motion sequence of the unit with 45 =  . 
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3.2.3.2 Thick-Panel Kirigami Motion Branch 

A kirigami branch arises when activating four joints ( 1c  , 2c  , 4c   and 6c   in Fig. 

3-5(a)) located in the thickness direction among transferable joints. This particular 

geometric configuration results in the automatic dormancy of joints 3c  and 5c  within a 

single modified unit, as visually indicated by the grey lines in Fig. 3-5(a). Consequently, 

panels 3p   and 4p  , as well as 5p   and 6p   operate as a unified entity, respectively. 

Therefore, the thick-panel form depicted in Fig. 3-5(b), featuring a single loop unit 

composed of four panels, can be deemed kinematically equivalent to a planar 4R 

linkage.  

 

 

Fig. 3-5 Thick-panel kirigami branch of the modified unit. (a) Crease pattern of the unit; (b) 

thick-panel form of the unit. 

 

The geometric condition governing this linkage is listed as follows: 

 12 23 34 41a a a a l= = = =  (3-3) 

whose relationship between the dihedral angles is 

 1 2 3 4   = = =   (3-4) 

The relationships between 2   and 1   for varying   , coupled with their 

configurations, are illustrated in Fig. 3-6(a-c). Intriguingly, these relationships remain 

independent of the design parameters  . As angle 1  increases, it can be seen that the 

rectangular unit first opens in-plane and then closes to form an isosceles triangle.  

3.2.3.3 Thick-Panel Ori-kirigami Motion Branches 

Attention is then turned to ori-kirigami scenarios where certain joint axes are 

located at the top and bottom edges of the panel, while others are aligned with the 
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thickness direction. As a result, a total of three different ori-kirigami branches were 

found to exist in a single unit. 

 

Fig. 3-6 Relationship between dihedral angles 2  and 1 , and corresponding configurations in 

thick-panel origami branch. 

 

Firstly, as illustrated in Fig. 3-7(a), the two transferable joints c2 and c6 in the 

modified unit with axes located in the bottom of the panel surfaces and the other two 

transferable joints c1 and c4 with axes located in the thickness direction are activated. 

Consequently, the corresponding thick-panel ori-kirigami branch I, as shown in Fig. 

3-7(b), exhibits a two-fold plane-symmetric property. This particular configuration 

corresponds to a two-fold plane-symmetric Bricard 6R linkage, characterised by the 

following geometric condition 

 

12 34 45 61 23 56
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  (3-5) 

and the relationship between angles can be conducted with matrix method, i.e., 

 
1 4 2 3 5 6

2

1 2 1

,

2cos cos( / 2) cos sin sin(2 ) 0

     
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  (3-6) 

The depiction of the kinematic curve describing the relationship between 2  and 

1 , coupled with the folding process for a single loop unit with design angles set at 
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30 =    and 45 =    are shown in Fig. 3-8(a-c). For general situations, i.e., 

0 π / 4  , the opening of panels 1p  and 2p , 4p  and 5p  within two faces facilitate 

the transformation of the unit from an initial rectangle configuration into a stack. The 

illustrated example in Fig. 3-8(b) with 30 =   (i-ii-iii-iv-v, black line) encapsulates 

this folding dynamic, wherein, in the fully folded configuration v, 1   is non-zero, 

indicating the presence of voids and tabs. However, in the special case of 45 =  , the 

limit configuration v reaches point (0, 0). As a result, a single unit can be folded from 

the flat state of the rectangle to a compact prism state (i-ii-iii-iv-v, red line), with an 

area reduced to half of its original size and a height doubled, whose motion sequence is 

illustrated in Fig. 3-8(c). 

 

Fig. 3-7 Thick-panel ori-kirigami branch I of the modified unit with two-fold plane-symmetry. 

(a) Crease pattern of the unit; (b) thick-panel form of the unit. 

 

 

Fig. 3-8 Relationship between dihedral angles 2  and 1  and corresponding configurations in 

thick-panel ori-kirigami branch I with two-fold plane-symmetry.  
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Secondly, in addition to the two-fold plane-symmetric case in Fig. 3-7 and Fig. 

3-8, strategically activating the VTJs may also trigger other ori-kirigami branches with 

solo symmetric plane. As shown in Fig. 3-9(a), the axes of the activated VTJs 4c  is 

located at the top of the panel surfaces, while the axes of the other three activated VTJs 

1c , 2c , and 6c  are located in the thickness direction. In this case, the thick-panel ori-

kirigami branch II works as Bennett 6R linkage with geometric condition 

 

12 61 23 56 34 45

12 61 23 56 34 45
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  (3-7) 

Then, the relationship between dihedral angles can be obtained with the matrix method, 
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  (3-8) 

 

 

Fig. 3-9 Thick-panel ori-kirigami branch II of the modified unit with solo symmetry plane. (a) 

Crease pattern of the unit; (b) thick-panel form of the unit. 

 

The kinematic paths 4  vs 3  and the corresponding motion sequences of the ori-

kirigami branch II with 30 =   and 45  are shown in Fig. 3-10(a-c). Both paths have 

the same starting point ( )π / 2,  0  and ending point ( ) π,  π , which indicates that one 

side of the unit can always be folded compactly while the other side can only be partially 

opened within the plane, as demonstrated by motion sequence in Fig. 3-10(b) and (c). 

Thirdly, the exploration extends to ori-kirigami branch III, as shown in Fig. 3-11(a), 

where VTJs 2c   and 6c   are located at the bottom of the panel surfaces, while one of 

VTJs 1c  and 4c  is located at the top of the panel surface and the other in the thickness 
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direction. As a result, the thick-panel ori-kirigami branch III in Fig. 3-11(b) conforms 

to a plane-symmetric Bricard 6R linkage with geometric condition  
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  (3-9) 

 

 

Fig. 3-10 Relationship between dihedral angles 2  and 1  and corresponding configurations in 

thick-panel ori-kirigami branch II.  

 

Using explicit closure equations of the general plane-symmetric Bricard 6R linkage 

derived by Feng[73], the relationship between dihedral angles can be conducted, i.e., 
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Fig. 3-11 Thick-panel ori-kirigami branch III of the modified unit with solo symmetry plane. (a) 

Crease pattern of the unit; (b) thick-panel form of the unit. 

 

 

Fig. 3-12 Relationship between dihedral angles 4  and 3  and corresponding configurations in 

thick-panel ori-kirigami branch III. (a) The kinematic paths with 30 =   when / 1/ 4t l =  and 

/ 2 / 2t l = ; (b) the kinematic paths with 45 =   when / 1/ 4t l = and / 2 / 2t l = , respectively; 

(c-f) motion sequence of the unit with different design parameters. 
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Equation (3-10) shows that the relationship between dihedral angles is dependent 

on the angle  , the thickness t, and the edge length l, simultaneously. To investigate 

the effect of design parameters on the motion of structure, 30 , / 1/ 4t l =  =  (black 

line) and 45 , / 1/ 4t l =  =  (red line) are chosen at first. As shown in Fig. 3-12(a). 

when the dihedral angle 4 0 =  , 3   goes to 18.19   and 15.50   under the above two 

design parameters. The fact that 3 0   means that the unit does not have a flat and 

compact folded configuration, which can be visually demonstrated by the V-shaped 

limit configuration iii of the motion sequence in Fig. 3-12(c) and (e). However, when 

/ sint l = , taking 30 , / 1/ 4t l =  =  (black line) and 45 , / 1/ 4t l =  =  (red line) in 

Fig. 3-12(b) as examples, 3  becomes 0, which means the structures are folded towards 

flattened configurations even with void (limit configuration iii in Fig. 3-12(d) and (f)). 

In summary, investigation so far has demonstrated the remarkable reconfigurability 

of a single unit with VTJs. Specifically, by strategically activating the axis orientation 

of the transferable joints, a single unit can exhibit five single DOF motion branches, 

namely origami, kirigami, and ori-kirigami I-III, as shown in Fig. 3-13. The effect of 

the design parameters on the folding behaviour of the unit is analysed using the closure 

equations of the underlying linkage. Remarkably, the unit exhibits excellent properties 

when the angle 45 =   and / sint l = . Therefore, subsequent analysis of tessellation 

will focus on the case of 45 =   and / 2 / 2t l = . 

3.3 Tessellation of Reconfigurable Units with Tuneable Properties 

3.3.1 Tessellation Method and Motion Branches 

The formation and connectivity of tessellations utilizing modified units are 

illustrated in Fig. 3-14. Initially, the modified unit with 45 =   undergoes a reflection 

symmetry operation along the horizontal direction. Then, the unit and its mirrored 

counterpart are interconnected by two joints connecting panels 4p  and 4p` , as well as 

5p   and 5p`  , whose axes are located along the thickness. Subsequently, resulting 

assemblies undergo mirroring along the vertical axis and then joined through two VTJs 

to form a 2×2 tessellation, as depicted in Fig. 3-14. An analysis of the overall DOF of 

the tessellation reveals a spatial 8R linkage formed at the centre of the four units whose 

configuration can be defined by two neighbouring cells in the rows. Each unit has one 

DOF, and the connection between two neighbouring cells in the rows is defined by a 
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single input, i.e., a joint at the valley crease or a planar 4R linkage. Consequently, the 

overall DOF of the tessellation is one. 

 

 

Fig. 3-13 The prototype of a single unit with 45 ,  40mm,  28.28mml t =  = = . Triangular panels 

are made of cardboard and non-stretchable tapes are made of high density polyethylene fibre. 

 

3.3.1.1 Origami Motion Branch of the Tessellation 

Upon the selection of a thick-panel origami branch by the modified unit, the 2×2 

tessellation undergoes deformation in accordance with the crease pattern depicted in 

Fig. 3-15(a). Since the units in two adjacent rows are connected to each other by hinges 

in the thickness direction, 4p  and 4p` , as well as 5p  and 5p`  will each work as one large 

triangular panel when the valley folds connecting them are in action. The folding 
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process of the 2×2 origami tessellation, as depicted in Fig. 3-15(b), aligns with the 

standard diamond patterns of the thick panel, a well-known single DOF system, 

resulting in a reduction of the area to 1/8 of the original and an increase in thickness by 

8 times. As the number of rows of the tessellation increases, unidirectional bending 

propensity causes the panels to self-intersect, eventually leading to the formation of a 

tubular structure (iii-iv-v in Fig. 3-15(c)). Meanwhile, the flat thick panels can also be 

folded into a compact stack within a single DOF mode by keeping some of the co-linear 

creases dormant (iii-ii-i in Fig. 3-15(c)). 

 

 

Fig. 3-14 The formation and connectivity of 2×2 tessellation. 

 

 

Fig. 3-15 Tessellations of thick-panel origami mode. (a) Crease pattern of 2×2 origami 

tessellation; (b) and (c) are single DOF motion sequence of 2×2 and 4×4 origami tessellations. 
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3.3.1.2 Kirigami Motion Branch of the Tessellation 

When the modified unit opts for a thick-panel kirigami motion branch, the trend of 

the 2×2 tessellation deforms following the crease pattern depicted in Fig. 3-16(a). 

Initially, all units in the tessellation are in planar 4R linkage mode (level-I deformation), 

as illustrated in Fig. 3-16(b). As the unit reaches its limit configuration, two 

neighbouring cells in the rows come into contact and merge, thereby triggering the 

level-II deformation of the 2×2 tessellation, where it functions as a single R joint, as 

demonstrated in Fig. 3-16(c). As the number of units increases, the tessellation 

transforms into a standard rotating square structure[178] during level-II deformation, as 

demonstrated by the motion sequence of the 2×2 tessellation in Fig. 3-16(d). For either 

level-I or level-II deformation, there is only in-plane deformation. 

 

 

Fig. 3-16 Tessellations of thick-panel kirigami mode. (a) Pattern of 2×2 tessellation and its (b) 

level-I deformation and (c) level-II deformation; (d) single DOF motion sequence of 4×4 origami 

tessellations, where i-ii-iii correspond to configurations in level-I deformation, iii-iv-v correspond 

to configurations of in level-II deformation.  

3.3.1.3 Ori-Kirigami Motion Branches of the Tessellation 

Lastly, consider the ori-kirigami cases. When the modified unit selects a thick-

panel ori-kirigami motion branch I, the 2×2 tessellation trend deforms following the 

crease pattern shown in Fig. 3-17(a). Studies have shown that a single ori-kirigami I 

unit can be folded from the flat state of a prism to another prism state (Fig. 3-8), with 

its area reduced to half of the original size and height doubled. However, in tessellations, 
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units are only allowed to fold to half of their final state due to panel interference 

between adjacent units. As a result, the 2×2 tessellation is folded from a planar state 

into a square arch, as shown in Fig. 3-17(b). As the number of rows increases, the 

tessellation can eventually fold into a square prism, as shown in Fig. 3-17(c). 

When the modified unit selects the thick-panel ori-kirigami branch II, the 2×2 

tessellation deforms according to the crease pattern shown in Fig. 3-18(a). Due to the 

opening or closing of the triangular panels at both ends only within their respective 

faces, the internal triangles rotate around the valley creases, causing the 2×2 tessellation 

to fold from a planar state into an inverted V-shape with an angle of o90 . For the 4×4 

tessellation, it can be seen as two inverted V-shapes with angles of o90   connected 

within the plane to form a square arch, as demonstrated in Fig. 3-18(c). 

 

 

Fig. 3-17 Tessellations of thick-panel ori-kirigami I. (a) Crease pattern of 2×2 tessellation; (b) and 

(c) are single DOF motion sequences of 2×2 and 4×4 tessellations. 

 

As shown in Fig. 3-19(a) and (b), the 2×2 tessellation is folded from a planar state 

into a square arch, when the modified unit selects the ori-kirigami branch III. Although 

both tessellation of ori-kirigami branches III and I are folded into square arches, the 

fully folded configuration of the tessellation of ori-kirigami branch III exhibits 

triangular panels on either side of the arch in face-to-face contact, unlike the line-to-

line contact in the tessellation of ori-kirigami branch I. Furthermore, when the 

tessellation of thick-panel ori-kirigami mode III comprises more than three rows, it 

becomes incompatible. This is due to the tendency for the tessellation to bend in both 

directions because of the presence of cuts in the unit, as shown in Fig. 3-19. 
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Fig. 3-18 Tessellations of thick-panel ori-kirigami mode II. (a) Crease pattern of 2×2 tessellation; 

(b) and (c) are single DOF motion sequence of 2×2 and 4×4 tessellations. 

 

 

Fig. 3-19 Tessellation of thick-panel ori-kirigami mode III. (a) Crease pattern of 2×2 tessellation; 

(b) single DOF motion sequence of 2×2tessellations. 

 

The folding process of the prototype, depicted in Fig. 3-20, demonstrates how 

transferable joints enhance the reconfigurability of a single thick-panel structure, where 

triangular panels made of cardboard are connected by high-density polyethylene fibre. 

Starting from the fully unfolded configuration, by keeping the axes of any of the 

transferable joints located on the upper and lower surfaces of the panel, the uniform-

thickness panels can be folded into a compact volume with no gaps in diamond origami 

mode. Alternatively, by keeping the axes of all the transfer hinges located in the 

thickness direction, the uniform-thickness panels can be deformed in the plane in the 

kirigami branch. If some of the joints are in the top and bottom surfaces of the panel 

and some are located in the thickness direction, the uniform-thickness panels can be 

transformed into multiple configurations in three ori-kirigami I-III branches. It is worth 

noting that with this careful design, the folding process in either thick-panel origami, 

kirigami, or ori-kirigami modes is a single DOF. 

 



Doctoral Dissertation of Tianjin University 

66 

 

 

Fig. 3-20 Singe DOF folding process of the prototype with 45 ,  40mm,  28.28mml t =  = = .  

3.3.2 Tuneable Properties of the Tessellation 

When the tessellation enters different motion branches, besides changes in shape, 

there may also be variations in properties. Therefore, this section will discuss the 

tunability of the Poisson’s ratio, deployable ratio, and load-bearing capacity associated 

with reconfiguration. 

3.3.2.1 Poisson’s Ratio  

Apparently, the dimensions of the tessellations have changed significantly. Of these, 

the most intriguing is the auxetic behaviour exhibited when the tessellation goes into 

the kirigami branch with only in-plane deformation. As shown in Fig. 3-16 (d), the 

dimensions are marked by the red dashed line. At the beginning state of level-I, the 
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dimensions of the m×n tessellation, i.e., the width 1W  and breadth 1B   in the x and y 

directions, are derived as 

 
1 2 1
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B m l l
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where m and n are the number of rows and columns of the unit in the tessellation. 

Meanwhile, the dimensions 1W and 1B  of the tessellation in level-II are  
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Therefore, in-plane Poisson’s ratio BW  are 
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and 
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for level-I and level-II deformations, respectively. 

 

 

Fig. 3-21 Dimension and Poisson’s ratio variations of the 4×4 kirigami tessellation. (a) Variations 

in dimensions; (b) variations in Poisson’s ratio. 

 

The normalised dimension variations and the corresponding Poisson’s ratio BW  

for the geometric parameters are 40mm,  π / 4l = =  are plotted in Fig. 3-21(a) and (b). 

During level-I deformation (i-ii-iii in Fig. 3-21(c)), the tessellation first undergoes a 
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bidirectional expansion of anisotropy, transforming from a small square to a rectangular 

contour, exhibiting NPR. Then, the breadth 1B   slowly increases while the width 1W

starts to contract (PPR). Subsequently, as the width 1B  reaches its maximum size, it 

begins to contract simultaneously with the width 1W , resulting in NPR behaviour again. 

After reaching the bifurcation point at 1=  , the dihedral angle 1  remains constant, 

and the tessellation further deforms according to level-II (iii-iv-v in Fig. 3-21(c)). It is 

found that Poisson’s ratio has a constant value of -1, which indicates that the tessellation 

is isotropic. Overall, the in-plane Poisson’s ratio BW  in kirigami branch can be highly 

anisotropic or isotropic negative within the same structure as it transitions between 

level-I or level-II deformations. 

 

 

Fig. 3-22 The simulation results of the in-plane Poisson’s ratios BW when the tessellation enters 

the origami branch, ori-kirigami branches I-III. (a)-(d) refer to origami and ori-kirigami branches 

I-III, respectively. 
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There are both in-plane and out-of-plane deformations as the tessellation enters 

the other four motion branches, so the dimensions B and W are defined as projections 

in the xoy plane. The in-plane Poisson’s ratios BW  are provided in Fig. 3-22(a)-(d). In-

plane negative Poisson’s ratios also exist as the tessellation enters the other four motion 

branches. The discontinuity in Poisson’s ratio curve for the origami branch at 
o

3 102 =  

is due to a change in the projection of the outer contour in the xoy plane. The 

discontinuity of the Poisson’s ratio curves for the other cases is due to the transition of 

the Poisson’s ratio between positive infinity and negative infinity. 

3.3.2.2 Deployable Ratio 

The deployable ratio of a deployable structure is a measure of how efficiently it 

can be packed for transportation or storage relative to its deployed size. A higher 

deployable ratio would mean that the structure can be packed into a smaller volume, 

which is desirable for transportation and storage efficiency. Here, deployable, is defined 

as the projection of the maximum folded or unfolded surface area along respective 

motion branches to flat panel state, where a value greater than 1 means it is deployable, 

and a value less than 1 means it is folded. As shown in Fig. 3-23, deployable ratio of 

origami, kirigami, and ori-kirigami branches I-III are 0.125, 3.08, 1.5, 2.65, and 1. The 

origami branch is the one with the smallest deployable ratio (0.125 times) among the 

five motion branches, while the kirigami branch is the largest deployable ratio (3.08 

times). It means that the deployable of the entire reconfigurable unit is about 1/24, from 

the smallest to the largest projection surface, as shown in Fig. 3-23. 

 

 

Fig. 3-23 Deployable ratio of five motion branches. The labels ori-, kiri-, ori-kiri I-III on the x-

axis refer to origami, kirigami, and ori-kirigami branches I-III, respectively. 
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3.3.2.3 Load-Bearing Capacity 

To explore the load-bearing capacity of the reconfigurable thick panel, 2×2 

tessellations are fabricated with cardboard, which were compressed between two 

smooth flat platens along x, y, z directions, as shown in Fig. 3-24(a). The specimens in 

fully folded or fully unfolded configurations, along with origami, kirigami, and ori-

kirigami I-III branches, were subjected to compression testing using a vertical testing 

machine (Instron 5982) with a loading rate of 0.5 mm s-1. Experimental force-

displacement curves for origami, kirigami, and ori-kirigami I-III branches are presented 

in Fig. 3-24 (b)-(e), respectively.  

 

 

Fig. 3-24 Compression experiments with folding or unfolding configurations along motion 

branches. (a) Experimental setup; (b)-(f) experimental force-displacement curves for origami, 

kirigami, ori-kirigami I-III branches, respectively. 
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Fig. 3-25 Normalised maximum force for origami, kirigami, ori-kirigami I-III branches. 

 

At the same time, the normalised maximum force ( max / weightF ) is shown in Fig. 

3-25. Notably, fully folded configurations devoid of any gaps or steps under the origami 

branch exhibited the highest load-bearing capacity. For instance, paperboard specimens 

weighing 45g could withstand up to 677.03N under compression along the x direction 

(1505 times their own weight), 705.45N along the y direction (1567 times their own 

weight), and 78.89N along the z direction (175 times their own weight). However, when 

the flat panel was fully unfolded under the kirigami branch, it became collapsible in 

either the x or y direction (Fig. 3-24 (c)). The tessellation exhibits a self-locking 

phenomenon arising from interference between panels in the fully unfolded 

configuration, owing to the combination of creases and cuts, thereby imparting a 

notable load-bearing capacity. As shown in Fig. 3-24 (d), paperboard specimens in 

locked configuration under the ori-kirigami branch I can withstand up to 38.88N under 

compression along the x-direction, 33.31N along the y direction, and 121.89N along the 

z direction, corresponding to 86, 74, 271 times of its own weight, respectively. Such a 

self-locking phenomenon also exists when the tessellation is in ori-kirigami branches 

II and III, as shown in Fig. 3-24 (e) and (f). However, in the fully unfolded configuration 

under the ori-kirigami branches II, compression along the y or z direction forces the 

contacting panels to open, resulting in only marginal load-bearing capacity along the x 

direction (42 times their own weight). In contrast, in the locked state of the ori-kirigami 

branches III, the triangular panels on either side of the arch are in face contact, 

significantly reinforcing the load-bearing capacity in all three directions compared to 

ori-kirigami branches II, as demonstrated by the test results in Fig. 3-24 (f). Specifically, 

Specifically, specimens weighing 45g exhibited the ability to withstand up to 215.06N 
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under compression along the x direction, 58.21N along the y direction, and 157.47N 

along the z direction, translating to 478, 129, and 350 times their own weight, 

respectively. 

3.4 Conclusions 

In this chapter, the VTJs technique is proposed to design reconfigurable thick-

panel structures. Starting from an origami vertex with uniform thickness, replacing 

some of the R joints with VTJs gives the origami structure, which otherwise has a single 

deformation mode, the ability to be reconfigurable. By strategically activating the VTJs, 

the reconfigurable unit can undergo various folding behaviours, including origami, 

kirigami, and three cut-and-fold kirigami motion branches. The kinematic analysis 

revealed that the choice of design parameters, particularly the angle of the panels and 

the thickness-to-length ratio, significantly influences the folding behaviour of the 

structure. Furthermore, the results show that this reconfigurable unit can be tessellated 

to form large-scale structures with a single DOF while also preserving the motion 

branches, thus enabling a single mechanical metamaterial to combine the properties of 

anisotropic (varies from −∞ to +∞) or isotropic (-1) NPR, large deployable ratio (about 

1/24), and multiple load-bearing capacity (0.4-1567 times its own weight). 
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 Tuneable Metamaterials Based on Spatial 7R Linkage 

in Modular Origami Form 

4.1 Introduction  

The phenomenon of reconfiguration triggered by kinematic bifurcation in a single 

closed-loop linkage has attracted the attention of researchers and proved to be a 

valuable resource for the design of advanced mechanisms. Therefore, the primary aim 

of this chapter is to first design alternative forms of reconfigurable single-loop spatial 

mechanisms with a modular origami appearance with more regular shape, richer 

geometry and enhanced functionality. Subsequently, 2D or 3D modules will be 

constructed, taking into account the geometric and kinematic compatibility between the 

different bifurcation configurations, so as to exploit their inherent kinematic bifurcation 

to achieve advanced mechanical properties for a wide range of metamaterials. 

The chapter outline is structured as follows. In section 4.2, a modular origami unit 

based on a single DOF spatial 7R linkage is introduced initially. The folding process of 

the unit is described using a kinematic model, facilitating systematic analysis of 

kinematic properties under varied geometric parameters. In section 4.3, a set of single 

DOF reconfigurable 2D modules arranged in a back-to-back assembly scheme are 

presented. The tunability of these modules and their tessellations through 

reconfiguration within all 2D symmetry groups under the control of a simple 

compression load, aided by thermal-responsive materials or pressurization schemes, is 

also explored. In section 4.4, a 2D origami module is created through a shoulder-to-

shoulder assembly scheme of units. Subsequently, these 2D origami modules are 

integrated onto the surfaces of regular prisms, yielding a series of reconfigurable 

polyhedrons with NPR, ZPR, and PPR, or even customizable Poisson’s ratio signs. 

Finally, this chapter is concluded by the conclusions in section 4.5. 

4.2 Kinematics of the Spatial 7R Linkage in Modular Origami Form 

4.2.1 Characterization of Modular Origami Unit 

The 3D structure of the simple unit operating in plane-symmetry mode is 

illustrated in Fig. 4-1(a), which is composed of two rectangular panels, two triangular 

panels, two thin sheets, and a trapezoidal panel. These components are bonded together 
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along edges to form a closed loop. The unit is parameterized by edge lengths

1 2 3,  ,  ,  ,  ,  a b l t t t , sector angles ,  ,     , and folding angles 1 7-  . Assuming that all 

components are rigid, and the structure can fold only along the connected edges that act 

as R joints whose axes are indicated by red centre lines in Fig. 4-1(a). Such a modular 

origami unit is kinematically equivalent to a spatial 7R linkage, as shown in Fig. 4-1(b), 

and thus it is a single DOF system referring to the Kutzbach criterion[179]. Following 

the D-H notation[46], parametric constraints of this linkage form in Fig. 4-1(b) of the 

modular origami unit are derived as 

 

12 23 34 45 56 67 71

12 23 34 56 56 67 71

1 4 5 6 7 2 3

,  0,  ,  0,  ,  ,  0

0,  ,  0,  3 / 2,  0,  0,  / 2

0,   tan( / 2)

a a a a a a a b a b a

R R R R R R R a

         



= = = = = = =

= = = = = = =

= = = = = = − =

 (4-1) 

 

 

Fig. 4-1 The geometric design of Spatial 7R Linkage in modular origami form. (a) Components 

of modular origami unit and (b) its equivalent 7R linkage. 

 

The linkage features joints 1 and 2 aligned parallel, joints 3 and 4 aligned parallel, 

while parallel joints 5, 6, and 7 are all simultaneously perpendicular to joints 1 and 4. 

Thus, in modular origami form, the trajectories of the rectangular and triangular panels 

always lie in the same plane that is parallel to the trapezoidal panel, and the two 

rectangular panels preserve the angle π − , during the folding process determined by 

a single kinematic variable. Reference[80] states that the singularity of this linkage 

occurs when two triangular panels are coplanar ( 6 π = ) or when two thin sheets are 

parallel ( 1 π / 2 = ). Therefore, for general geometric design parameters, there are a 

total of four possible motion branches of the modular origami unit (Fig. 4-2), i.e., M1 

and M2 involve symmetric and asymmetric configurations with bulged-out triangular 

panels, while M3 and M4 involve symmetric and asymmetric configurations with 

nested-in triangular panels.  
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Fig. 4-2 Four possible motion modes M1-M4 of the modular origami unit. 

 

To describe the folding motions of four modes in Fig. 4-2, lines AG and BG are 

drawn along the edges of the rectangular panel to intersect at point G, and lines DI and 

CI are drawn along the lateral sides of the trapezoidal panel to intersect at point I, so

AGB CID  = =  . Draw lines DH and CH that are perpendicular to DI and CI 

leading to πCHD  = − . Meanwhile, line DE is the common perpendicular of lines 

AG and DH, and line CF is the common perpendicular of lines BG and CH. In 

symmetric modes, AG  and BG  are equal to 1cosa a − , while in asymmetric mode, 

AG  and BG  are equal to 1cosa a  , where ± means one is positive and the other is 

negative. Notice that line AB is the diagonal of planar quadrilateral OAGB. And, 

AD BC a= = , OA OB b= = . Therefore, folding angles 1 7-   are derived, i.e., 
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for motion branch M1, 
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for motion branch M2, 
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for motion branch M3, and  
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for motion branch M4.  

It shows that once the input angle 1 [0,  π]   is given, the other dihedral angles 

2 7-   can be determined, also implying that the linkage is one DOF. Meanwhile, the 

relationships among the dihedral angles 1 7-   are not affected by 1 2 3,  ,  ,  t t t . 

4.2.2 Effect of Geometric Parameters on Motion Behaviours 

4.2.2.1 Effect of Geometric Parameters on Kinematic Bifurcation 

Further investigation revealed that the design parameters /b a  and   of the 7R 

linkage exert a profound influence on the number, range, and evolution of the motion 

branches, referring to detailed relationships between 1 7-  . The motion behaviours of 

this modular origami unit have been studied carefully, which can be divided into six 

cases, as shown in Fig. 4-3. The bifurcation configurations 
ijB  (i, j=1, 2, 3, 4) of motion 

branches Mi and Mj are located next to the arrows. The ellipse is filled with purple if 

the module has a complete cycle of motion ( 1  reachable π ) on the Mi motion path, 

otherwise ( 1  inaccessible π ), it is blank. If there is interference in the motion path, 

which can be eliminated by adjusting the angle β or γ, the edges of the ellipse are 

represented as grey, otherwise it is black. 
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Fig. 4-3 Effects of geometric design parameters (b/a and α) on motion branches. 

 

To better understand the effect of parameter changes on kinematic behaviour, 

particular parameters were carefully selected by increasing b/a while keeping 

2 2 90o  = = = . The resulting kinematic paths and configurations are illustrated in 

Fig. 4-4(a) and Fig. 4-4(b-g), respectively. In case ①: OA OB DC+   , where 

)/ cos / 2(b a  , leading to 1 π / 2  , there is only one bifurcation between M1 (blue 

line) and M3 (green line) that occurs at 6 π =   for the modular origami unit. 

Kinematic paths 5 1  vs   and the motion sequence of the modular origami unit in case 

① with / 1/ 2b a =   are shown in Fig. 4-4(a) and (b). Moving to case ②: 

DC OA OB AD CI +  +  , i.e., )cos / 2 / 1/ 2 1/ 2ta( ) ( )n(b a   +  , there are 

four motion branches M1-M4 sharing five bifurcation points, as the example in case ② 

with / 3 / 4b a =  shown in Fig. 4-4(a) and (c). The bifurcations 12B  and 34B  occur at 

1 / 2 = , where two thin sheets swinging in the same or opposite direction, while 12B  

and 24B  occur at 6 = , where bulged-out triangular panels change to nested-in state, 

or vice versa. In case ③: OA OB AD CI+ = + , i.e., )/ 1/ 2 1 t( a )/ 2 (nb a = + , the 

bifurcation behaviour is similar to that of the case ② except that 1  is able to reach its 

limit angle   in modes M2 and M4. The example of the modular origami unit with 

/ 1b a =   in Fig. 4-4(a) and (d) is in this case. In case ④: 

( ( ))1/ 2 1/ 2tan / 2co ( )s / 2b a +   , there are four motion branches, M1-M4, 

sharing only three bifurcation points 12B , 13B  and 24B , as shown in Fig. 4-4(a) and (e),. 

Unlike case ③, M2 and M4 in case ④ are disconnected due to 6 π   . When 

OA OB DC 2 AD cos+ = +  , i.e.,  case ⑤: )/ 2cos / 2(b a =  , the bifurcation 

behaviour of case ⑤ is similar to that of case ④ except that 1  in all four modes M1-

M4 is able to reach its limit angle π . The example of the modular origami unit with 

b/a=√2 in Fig. 4-4(a) and (f) is in this case. When OA OB DC 2 AD cos+  +  (case 

⑥: )/ 2cos / 2(b a  ), there is only one bifurcation between modes M1 and M2 in 

this case that occurs at 1 π / 2 =  for the unit because angle 6  is unable to reach. 
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The example in case ⑥ with / 3b a =  is shown in Fig. 4-4(a) and (g). Referring to 

the motion curves and the motion sequences, when the unit is reconfigured between the 

M1 and M2 branches, it undergoes substantial geometric alterations. Conversely, when 

reconfiguring between M3 and M4, the changes are localized in comparison to those 

between M1 and M2. In addition, on path M1, the unit symmetrically expands or 

contracts, while on path M2, it consistently adopts an asymmetric configuration. 
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Fig. 4-4 Effect of geometric parameters on kinematic bifurcation. (a) Kinematic paths of the unit 

under different design parameters of cases ①-⑥ (assuming o2 2 90  = = = ), where the curve 

for motion branches M1, M2, M3, and M4 are in blue, black, green and red respectively. And 

physical interference is indicated by dotted lines. (b-g) The motion sequence of the modular 

origami unit in cases ①-⑥, where b/a changes from 1/ 2 to 3/ 4,  1,  5 / 4, 2,and 3.  

4.2.2.2 Effect of Geometric Parameters on Physical Interference 

Meanwhile, due to physical interference, a section of the motion curves on the 

paths in Fig. 4-4(a) is dotted, which means it is not achievable. Nonetheless, these 

physical interferences can be eliminated by adjusting the angle   or   of the triangular 

panels (the outline of the ellipse in Fig. 4-3 is represented as dotted), since   and   

are not design parameters of the underlying 7R linkage. For example, it is possible for 

two nested-in triangular panels to squeeze against each other over a portion of the 

kinematic path on the M3 and M4 paths in case ①-⑤. Physical interferences in case 

①-⑤ can be eliminated by adjusting the angle   of the triangular panels to expand the 

motion range and increase the motion mode. Taking case ⑤ as an example, when 
o45 =   (Fig. 4-5(a) left), the angle 1   on path M3 cannot reach π / 2   due to the 

physical interference, and thus M4 cannot be realized. But when the angle 
o30   (Fig. 

4-5(a) right), the angle 1  on path M3 can reach / 2 , and thus M4 becomes realizable. 

In Fig. 4-5(b), an example of the motion sequence of the unit in case ⑤ with 
o30 =  

is plotted, and it is noted that the path M4 can be realized. Meanwhile, physical 

interferences in case ⑥ can be eliminated by adjusting the angle   of the triangular 

panels, thus extending the motion range. In case ⑥, when 
o45 =  (Fig. 4-5(c) left), 

the angle 1  on path M3 cannot reach π  due to physical interference. As   decreases, 

the motion range of path M2 increases (Fig. 4-5(c) middle and right). Until   equals 

o35   and 1  can reach π . An example of the motion sequence of the unit in case ⑥ 

with 
o35 = is plotted in Fig. 4-5(d), where path M2 has a full cycle of motion. 

4.3 Reconfiguration of Origami Modules and Their Tessellations 

4.3.1 Tunability in Two Families of Rosette Groups 

Having identified the modular origami unit with remarkable bifurcation 

behaviours, it is shown that it can be assembled back-to-bake to form origami modules 

whose shape can be significantly altered. As shown in Fig. 4-6, origami modules with 
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a folded n-sided (n=3, 4, 5, 6) shape and an unfolded 2n-sided shape are constructed. 

To achieve compact folding, the parameter conditions should be satisfied as

( ) ( )2π / ,  π / 2,  / 2,  / 1/ sin / 2n b a     = = − = = , and 3 2t a= . Without loss of 

generality, all modular origami units have 1 2 / 2t t a= = . First, n modular origami units 

with 2π / n =  are arranged in a circular array around the z-axis, where two adjacent 

modular origami units share a rectangular area. Next, to ensure that the mechanical 

assembly with n units still has a single DOF and can form a desired unfolded shape, 

two additional sheets with a length range ( ) 21 / 1/ tan / 2 /l a t a  +   are added 

between two adjacent units, enabling all trapezoidal panels to move in the same plane. 

Consequently, a set of modules is constructed, which can also be considered as two 

platforms connected by eight thin sheets in the middle, as shown in Fig. 4-6.  

It is found that the geometric parameters of modular origami units for n=3, 4, 5, 

and 6 all fall into the case of ( )/ cos / 2b a  . Thus, each basic unit is equipped with 

the ability to switch between motion branches M1 and M2 through its inherent 

kinematic bifurcations. At the same time, the two adjacent units plus the two added 

sheets also form a 7R linkage with 0 = . The bifurcation behaviour of this 7R linkage 

for connection in the M1 branch is similar to that of the basic units, expanding or 

contracting in a symmetrical way. However, in the M2 branch, it degenerates into a 

parallelogram linkage. It is noted that the state of this connecting linkage is not 

independent but is determined by the two thin sheets in the two neighbouring basic 

units. When the two sheets swing in opposite directions it is M1 and vice versa it is M2. 

Given the objective of constructing modules with symmetry changes, it becomes 

imperative to focus on branches M1 and M2, characterized by substantial changes in 

dimensions. Consequently, setting l a=   to avoid branches M3 and M4. Due to the 

compatibility between the units, origami modules inherit the reconfigurability of the 

units, which can be reconstructed into different configurations depending on the number 

and location of the units in the M1 or M2 state. Taking a module for n=4 as an example, 

there exists a total of 25 (
3 41+2 +2 ) kinematic paths when four basic units are in all 

branches M1 or M2, or two basic units are in branch M1 and the other two are in branch 

M2. However, due to the similarity in orthogonal directions (see Appendix D for details), 

only the seven unique cases in Fig. 4-7 will be discussed.  
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Fig. 4-5 Effect of geometric parameters on physical interference. (a) 5 1  vs   for kinematic 

paths of modified modular origami unit in case ⑤ with different angles γ; (b) the motion sequence 

of the modular origami unit in case ⑤ with o30 = ; (c) 5 1  vs   for kinematic paths of modified 

modular origami unit in case ⑥ with different angles  ; (d) the motion sequence of the modular 

origami unit in case ⑥ with o35 = . The physical interference is denoted as dotted lines. 

 

It can be observed that in the early stage of unfolding, the module with the four 

units in the M1 state travels along path I governed by 1  ( 1 [0,  π / 2]  ) where the 

module expands bi-directionally from a smaller square in the xoy plane to a larger one, 

or vice versa (path I in Fig. 4-7). This expansion continues until the configuration is 

reached the configuration where all dihedral angles 1 π / 2 =  . At this juncture, 

corresponding to the configuration with maximum height, a kinematic bifurcation 

occurs, resulting in an instantaneous growth of DOFs and the activation of multiple 

kinematic paths. Post-bifurcation, the module can seamlessly switch into mono-

directional contracted rectangle paths, denoted as paths II and III in the xoy plane. In 

this configuration, the two basic units are in the M1 state, and the other two are in the 

M2 state. This setup induces a change in only one dimension in the x or y directions, as 

the two sheets attached to the ends of the rectangular panel in that direction effectively 

form a parallelogram. Alternatively, the module switches into invariant square paths IV-

VII in the xoy plane (both dimensions invariant in x and y directions) with the four units 

in the M2 state or two units in the M1 state and the other two in the M2 state where any 

two sheets attached to the same square panel swing in the same direction. 

Besides the geometric dimensions, the symmetry of the module in the xoy plane 

has undergone significant changes upon reconfiguration, since the module at the 

bifurcation point can access a new kinematic path that causes a break in symmetry. Here, 

even though the origami module is in 3D, the focus is mainly on the shape variations 

of the top platform consisting of rectangular and triangular panels within the xoy plane, 

because there are only three typical configurations with two symmetries of the bottom 

platform. To better understand symmetry changes during the reconstruction, notions 

appear to be handy. Geometrically, for a finite object in 2D, its symmetry according to 

groups of transformations that leave invariant under reflection and rotation is divided 

into two types (two families of Rosette Groups)[180]: those with both rotational and 

reflectional symmetry, denoted by dn, and those with only rotational symmetry, denoted 
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by cn, where n represents the number of reflection axes or the order of rotational 

symmetry. Meanwhile, the reflection axes a are represented by red center lines and 

black dotted lines, while the centers of 2-, 3-, 4- and 6-fold rotational symmetries are 

represented by rhombus, triangles, squares, and hexagons respectively.  

 

 

Fig. 4-6 Construction of origami modules by a back-to-back assembly. (a) A folded n-sided (n=3, 

4, 5, 6) shape and an unfolded 2n-sided shape as the target shapes. The dotted grey line shows the 

shape of the bottom platform. (b) Origami modules are formed by a back-to-back assembly. 

 

As aforementioned, the unit configurations on the path M1 are mirror symmetric, 

while the unit configurations on the path M2 are asymmetric. Thus, the module in the 

expanded square path I has d4 symmetry, i.e., 4-fold rotational symmetry plus 

reflections in four axes, since all four units are simultaneously in a same mirror 

symmetric configuration in branch M1 ( 1 [0,  π / 2]  ). Its symmetry reduces to c2 or 

d1 upon switching to paths II or III in Fig. 4-7. Specifically, when the module bifurcates 

into the motion branch II where the symmetric unit in branch M1 ( 1U , 3U ) and the 

asymmetric unit in branch M2 ( 2U , 4U ) alternates, it exhibits global chirality, i.e., c2. 

And when symmetric ( 1U , 2U )  and asymmetric units ( 3U , 4U ) occur in pairs, there 

is only mirror symmetry. It can be seen that this global chirality originates from the 

symmetry of the location of the units in the M1 or M2 state. Other possibilities are that 

when the module switches to path IV where four basic units are simultaneously in the 

same asymmetric configuration in branch M2, the symmetry may change to c4. 

Although all four identical units are themselves asymmetric, they are in an orientation 
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of 4-fold rotational symmetry and thus giving rise to a global chirality c4. The dihedral 

angle of units 1 [0,  π / 2)   , presenting c4 with left-handed, and when the dihedral 

angle of units 1 (π / 2,  π]  , presenting c4 with right-handed. Furthermore, when the 

module follows path V, four units are in a symmetric configuration in branch M1 in 

which two units ( 2U , 4U ) belong to 1 [0,  π / 2)   and the other two ( 1U , 3U ) belong 

to 1 (π / 2,  π]  . Such an assignment breaks the rotational symmetry, but due to the 

mirror symmetry of the unit itself, two reflection lines perpendicular to each other are 

formed, leading to a d2 symmetry. For the module on path VI, configurations of 1U  

and 3U   are in branch M2 and configurations of 2U   and 4U   are in branch M1 (one 

belongs to 1 [0,  π / 2)   and the other belongs to 1 (π / 2,  π]  ), thus the module has 

only one reflection axes, i.e., d1 symmetry. Lastly, for the module on path VII, two units 

belonging to different motion intervals on the M1 branch are neighbouring and the 

module becomes asymmetry, i.e., c1 symmetry. In summary, the symmetry of the 

module for 4,  90on = = , may be d4, c4, d2, c2, d1, and c1. The motion bifurcation 

and symmetry changes for n=3, 5, and 6 are also investigated. Similarly, the symmetry 

changes when the origami module is reconstructed from a bifurcated configuration 

( 1 π / 2 = ) to bifurcated paths. As a result, the module for n=3 has d3, c3, and c1 point 

groups (Fig. 4-8(a)), the module for n=5 has d5, c5, and c1 point groups (Fig. 4-8(b)), 

while the module for n=6 has d6, c6, d3, c3, d2, c2, d1, and c1 point groups (Fig. 4-8(c)). 

 

 

Fig. 4-7 Reconfiguration of the origami module with 
o4,  90n = =  accompanied by tuneable 

symmetries. The key reflection axes are represented by centre lines, while the centres of 2-fold 

and 4-fold rotational symmetry are represented by rhombus and squares, respectively. 
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Fig. 4-8 Reconfiguration of the origami modules with n=3, 5, and 6 accompanied by tuneable 

symmetries. 
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In general, varying the design parameters   , and then arranging 2π /n =

modular origami units into a circular array around the z-axis allows us to obtain 2D 

geometric objects with arbitrary dn or cn point groups. Meanwhile, the crystallographic 

restriction theorem restricts the value of n can only be 1, 2, 3, 4, and 6 for both symmetry 

families. Therefore, only two single DOF modules with n=4 and n=6 are sufficient to 

construct ten 2D crystallographic point groups, i.e., d1, d2, d3, d4, d6, c1, c2, c3, c4, 

c6. The findings are validated by fabricating and testing centimeter-scale prototypes of 

the modules as shown in Fig. 4-9. These examples prove that the dimensions and 

symmetry of the module can be tuned by manually applying a force, and all ten 2D 

crystallographic point groups predicted by analysis can be easily realized because of a 

single DOF with powerful bifurcation capability. 

 

 

Fig. 4-9 Prototypes with ten 2D crystallographic point groups, i.e., d1, d2, d3, d4, d6, c1, c2, c3, 

c4, c6, constructed from only two modules with n=4 and n=6. 

4.3.2 Tunability in Seven Frieze Groups 

From a single module, attention is now shifted to its periodic border, or frieze 

pattern generated by repeating in one direction since these 2D line groups are related to 

tessellations174]. In mathematics, there are only seven different symmetry groups of 

frieze patterns, called frieze groups, also known as 2D line groups, i.e., p111, p1a1, 

pm11, p1m1, p112, pma2, pmm2. A guide to recognizing these frieze groups is provided 

in Tab. 4-1[180]. 
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Tab. 4-1 Guide to recognizing frieze groups[180]. 

Has perpendicular reflections? 

Yes; Has horizontal reflection axis? No; Has horizontal reflection axis or glide reflection? 

 

Yes: 

pmm2 

No; Has 2-fold rotation? 
Yes; Has horizontal 

reflection axis? 
No; Has 2-fold rotation? 

Yes: pma2 No: pm11 Yes: pm11 No: p1m1 Yes: p112 No: p111 

 

 

Fig. 4-10 All seven frieze patterns constructed by the modules with 
o4,  90n = = . (a) 

Translation unit and its basic generating region (grey area); (b) periodic border designs. 

 

Here, all seven distinct symmetry groups have been achieved with just a linear 

tessellation of modules with n=4, as shown in Fig. 4-10(a) and (b), whose DOFs are 

equal to the number of modules. Specifically, let’s focus on the frieze pattern with line 
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group p111, which is created by repeatedly applying a translation to an asymmetric 

module with point group c1. Then, the symmetry becomes p1a1 if the arrangement of 

modules is reconstructed by applying glide reflection and translation on the asymmetric 

module with the point group c1, or it turns to pm11 by continuously reflecting the 

module with the point group c1 about reflection axes. Next, if all modules are 

reconstructed to the state with point group d1 or c2 and are in a translational 

arrangement, the linear tessellation has line groups p1m1 or p112. To construct the 

pma2 design, neighbouring modules with the point group c2 in the p112 design need to 

be reconstructed into mutually chiral configurations (180° rotational symmetry). Finally, 

the pmm2 design is generated by reconstructing neighbouring modules with point group 

d1 in the p1m1 design into mirror configurations. It’s important to note that all seven 

frieze patterns are generated by the same number of modules in the same connection 

(merging rectangular panels), and the difference between these designs lies in the states 

of bifurcation configurations. Thus, any unique pattern can be reconstructed into other 

six cases with different line groups. 

4.3.3 Tunability in Seventeen Wallpaper Groups 

Consider a geometric object that is regularly repeated by translation in two non-

parallel directions. It turns out that any infinitely repeating 2D pattern falls into one of 

seventeen classes based on its symmetries, including translation, rotation, reflection, 

and glide reflection, known as plane symmetry groups, planar crystallographic groups, 

or wallpaper groups. A guide for recognizing wallpaper groups is shown in Tab. 4-2[181]. 

On one hand, 1- or 2-fold wallpaper groups can be constructed by directly applying 

symmetry operations to the seven frieze patterns described above, as shown in Fig. 

4-11(a). For example, p1, pg, or pm are obtained by filling the plane with copies of a 

frieze pattern p111, p1a1, or pm11 placed directly above/below each other in an ordered 

fashion. Additionally, a p2 wallpaper group can be obtained if the frieze pattern p112 is 

stacked in a shifted manner. Furthermore, wallpaper groups cm, pmm, or cmm are 

obtained by continuous reflection of frieze patterns p1a1, pmm2, or pma2, respectively. 

Note that pgg and pmg wallpaper patterns result from the glide reflection of the p1a1 

and p1m1 frieze patterns, respectively. Moreover, motifs with lower symmetry using 

combinatorial operations or directly with motifs with higher symmetry are expected to 

realize 4-fold wallpaper patterns. For example, a p4g wallpaper group can be 
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constructed by rotating the module with a d1 point group (path VI in Fig. 4-7) four 

times and then applying bi-directional translations. Directly repeating modules with 

point groups d4 or c4 in both directions construct the p4m or p4 wallpaper group. 

 

Tab. 4-2 Guide to recognizing wallpaper groups[181]. 

Rotation 
Has reflection? 

Yes No 

none 
Has glide axis off mirrors? Has glide reflection? 

Yes: cm No: pm Yes: pg No: p1 

2-fold 

Has perpendicular reflections? Has glide reflection? 

Yes; Has rotation centre off 

mirrors? No: pmg Yes: pgg No: p2 

Yes: cmm No: pmm 

3-fold 
Has rotation centre off mirrors? 

p3 
Yes: p31m No: p3m1 

4-fold 
Has mirrors at 45°？ 

p4 
Yes: p4m No: p4g 

6-fold p6m p6 

 

At this point, twelve out of the seventeen wallpaper groups with 1-fold, 2-fold, and 

4-fold rotational symmetry have been successfully constructed using a module with n=4. 

As depicted in Fig. 4-11(a), the modules exhibit consistent connections across different 

wallpaper groups. Consequently, it becomes feasible to realize these twelve symmetry 

groups through a single, unified structure. Yet it is impossible to construct the other five 

wallpaper designs using the module with n=4 since this would not induce 3-fold and 6-

fold rotational symmetry, and thus turning to modules 6 (Fig. 4-11(b)). Fig. 4-11(b) 

shows examples of constructing such 5 wallpaper groups with modules for n=6. The 

beehive structure is formed with 6 identical modules in a circle around the center 

module by merging rectangular panels. Depending on whether the center module has 

point group c3, d3, c6, or d6, the obtained beehive structure belongs to the wallpaper 

groups p3, p3m1, p6 or, p6m. Note that the p31m wallpaper group is constructed a little 

differently in that the center module has d6 symmetry and surrounding it are six 

modules with c3 symmetry, and neighbouring d3 modules are mirror images of each 
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other, with the axis passing through the center of d6 modules. Similarly, the modules 

are connected in the same way in these five wallpaper groups, so that they can be 

realized in a single structure. Overall, only two sets of structures with n=4 and n=6, are 

sufficient to realize seventeen 2D space groups. 

 

Fig. 4-11 Seventeen wallpaper patterns constructed by the modules with n=4 and 6. (a) Twelve 

wallpaper groups with 1-fold, 2-fold, and 4-fold rotational symmetry; (b) five wallpaper groups 

with 3-fold and 6-fold rotational symmetry. 
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It is worth noting that the two tessellations, the former of which has two DOFs and 

the latter of which has one DOF (See Appendix E for detailed proof). 

4.3.4 Methods of Active Symmetry Tuning  

4.3.4.1 Mechanical Load Plus Variable Stiffness Materials 

In the following investigation, an exploration of a simple mechanical load control 

mechanism aimed at tuning symmetry is undertaken. A control mechanism involving a 

simple mechanical load and variable stiffness beams made of thermal-responsive 

materials is first investigated. As shown in Fig. 4-12(a), the beam is composed of a type 

of commonly used polymers, polylactic acid (PLA, thickness, 1mm), and a Polyimide 

(PI) film heater (thickness, 0.1mm). At room temperature ( 25 CT =  ), the PLA beam 

has a Young’s modulus of about 2.34 Gpa and can work as a rigid beam (“0” state). 

However, when the temperature increases to 90 C   due to PI electrothermal film, 

Young’s modulus of PLA drops sharply below 5MPa and the beam turns to a flexible 

state (“1” state). Moreover, after cooling to room temperature with the help of the clamp, 

PLA can be fully recovered to a high Young’s modulus state and used again as a flat 

and rigid beam. Next, eight thin sheets connecting the two platforms in the origami 

module are replaced with the proposed variable stiffness beams, labelled as A-H, each 

with an independently controlled PI film heater, as shown in Fig. 4-12(b). Note that to 

avoid unpredictable kinematic paths of the module at the bifurcation point, the design 

parameters of the module are carefully modified so that 1  cannot reach π / 2 , i.e., set 

/ cos( / 2)b a   or / 1l a  . Taking the origami module in Fig. 4-12(b) as an example 

(
o4, 90n = =  , 2/ 3 / 4b a =  , and / 3 / 4l a =  ), 1 π / 2    throughout the folding 

process due to / 1l a   . Therefore, the unit is not able to switch from M1 to M2. 

However, one can actively manipulate the stiffness of certain beams to produce a 

phenomenon similar to the shape on the bifurcation path when the module is 

compressed from its initial configuration (fully unfolded configuration). Specifically, 

as shown in Fig. 4-12(c) left and right, if beam F is in a rigid state “0” (flexible state 

“1”) and beam E is in a flexible state “1” (rigid state “0”), beam F(E) rotates rigidly 

while beam E(F) undergoes a bending deformation under uniaxial compression load. 

At the same time, the trapezoidal panels of the lower platform do not move while the 

rectangular panels of the upper platform swing towards the rigid beam (red arrows). In 

contrast, if beams E and F attached to the two side lines of a rectangular panel are in a 
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high stiffness state, both beams are generating rotations without deformation, while the 

two trapezoidal panels are close to each other under mechanical loading, as shown in 

Fig. 4-12(c) middle. 

 

 

Fig. 4-12 Active symmetry tuning by mechanical loading with variable stiffness materials. (a) A 

PLA sheet with thickness=1mm and a PI film heater with thickness=0.2mm are bound together; 

(b) origami module with eight variable stiffness beams; (c) deformation mechanisms of a pair of 

neighbouring beams E and F. (d) The prototype with 
o4, 90n = = , and 4/ 3 /1 lb a a= =, . (e) 

Example of tuning the module from d4 symmetry to partially compressed d2 configuration with 

beams coded “10011001”. (f) Experimental results with d4, c2, d1, c4, d2, d1, and c1 symmetries. 
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As a result, one can actively encode the stiffness of the beams in some symmetrical 

way so that the module takes on a shape with that symmetry when compressed. As 

shown in Fig. 4-12(d-f), specimens were compressed by a vertical testing machine 

(Instron 5982) with a transparent fixture (37mm displacement and a 0.5 mm s-1 loading 

rate). The deformation process was recorded with the camera mounted above. If all 

eight beams A-H in the module are in a rigid state “00000000”, the module is 

compressed as a deployable mechanism under uniaxial compressive loading from its 

initial state to a smaller square, preserving d4 symmetry. If one chooses to energize the 

films (about 30s) on the four beams A, D, E, and H so that the beams are stiffened in 

state “10011001”, the d4 symmetry tunes to d2 symmetry under compression (Fig. 

4-12(e)). To enable the module to be tuned to other symmetries, clamps are used during 

the cooling of the beams (about 10 mins), and then they are recovered to their initial 

configuration before the stiffness of the beam is recorded. In summary, upon 

compression, these rectangular panels apply a moment to the beams, rotating rigid ones 

(“0” state) and bending flexible ones (“1” state) and forcing the module to change their 

shape as well as symmetries. When the stiffnesses of the beams in the prototype are 

coded as “00000000”, “00100010”, “00010010”, “10101010”, “10011001”, 

“10010110”, and “01011001”, the module displayed shapes with d4, c2, d1, c4, d2, d1, 

and c1 point groups respectively under uniaxial compression load with transparent 

fixture (Fig. 4-12(f)). 

4.3.4.2 Pneumatic Actuation 

Moving beyond mechanical load and variable stiffness beams, a more responsive 

solution is explored, utilizing air pockets to tune the symmetry of the module and its 

tessellation. As shown in Fig. 4-13(a), eight inflatable pockets labeled as A-H are 

arranged on both sides of the four hinges of a single module (
o4, 90n = = , / 2b a  , 

and / 1l a =  ). Upon pressurization, these pockets apply a moment to the hinges, 

opening them and forcing the origami modules to change their shape. It was found that 

there are a total of three relative orientations for two neighboring triangular panels in a 

7R unit for all possible configurations for modules with n=4, i.e., 

o o

6 6 6  0,  90 ,  180  = = =  . As shown in Fig. 4-13(b), inflating air pocket B alone 

leads to the 
o

6 90 =  configuration, while inflating air pocket A alone results in the 

o

6 180 =  configuration.  
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Fig. 4-13 Pneumatic actuation. (a) Prototype for pneumatic actuation; (b) mechanism of 

pneumatic actuation; (c) experimental results with d4, c2, d1, c4, d2, d1, and c1 symmetries where 

air pockets in the prototype are coded as “0000000”, “00010001”, “00000101”, “01010101”, 

“10001000”, “01000110”, and “01010010”; (d) twelve configurations featuring distinct symmetry 

groups of a single 2×2 tessellation. 
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As a result, by strategically pressurizing specific air pockets, various 

configurations with desired symmetry groups can be achieved within seconds (Fig. 

4-13(c)). For instance, fully unfolded configurations in paths II, III, and V with c2, d1, 

or d2 point groups can be attained from the d4 state (“0000000”) in approximately 1 

second, with only two air pockets (D and H, F and H, or A and E) being pressurized 

(“00010001”, “00000101”, “10001000”). Moreover, fully unfolded configurations in 

path IV with c4 point groups can be reached from the d4 state by pressurizing four air 

pockets (B, D, E, and H, i.e., “01010101”). Similarly, fully unfolded configurations in 

paths VI and VII with d1 and c1 point groups can be achieved from the d4 state by 

pressurizing three air pockets (B, F, and G, or B, D, and G, i.e., “01000110”, and 

“01010010”). Having demonstrated that the shape of the origami module can be 

controlled by pressurizing embedded air pockets, this approach is now extended to the 

2×2 tessellation. As depicted in Fig. 4-13(d), 8, 12, or 16 air pockets are strategically 

positioned on either side of the hinge used to connect the triangular panels, thereby 

achieving any one of 12 configurations with in 1.5s corresponding to the twelve 

wallpaper groups in Fig. 4-11(a) through the pressurization of the air pockets. It is 

noteworthy that constant actuation is not necessary to maintain these configurations 

with distinct symmetry groups, indicating low energy consumption. Additionally, this 

method does not require precise control of the angle to achieve the desired configuration 

and avoids the disadvantage of the low accuracy of the pneumatic actuation. 

4.4 Modular Origami Tuneable in All Signs of Poisson’s Ratio 

4.4.1 2D Modules Design and Deformation Mechanism Analysis 

In section 4.3, the 7R linkage in the form of modular origami was used to construct 

reconfigurable modules in the form of back-to-back assembly. In this section, the 

second type of reconfigurable modules is to be constructed in the form of shoulder-to-

shoulder assembly of this 7R unit. The structure and geometry of these basic units are 

illustrated in Fig. 4-14(a). The only modification from the original structure is the 

replacement of trapezoidal panels with octagonal panels featuring alternating side 

lengths of ( )2 cos / 2a    and 1t  . Importantly, this alteration does not impact the 

relationship between 1 7-   since either the trapezoidal panels or the octagonal panels 

are just alternative forms of the same link. Subsequently, four 2D modules with a single 

DOF are constructed by arranging n identical basic units around a vertical axis in the 
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form of shoulder-to-shoulder assembly, as illustrated in Fig. 4-14(b), where the angle 

  in components satisfies 

 ( )2 π / ,  3,  4,  5,  6.n n n = − =   (4-6) 

 

 

Fig. 4-14 Reconfigurable modules constructed in the form of shoulder-to-shoulder assembly. (a) 

modified 7R unit; (b) 2D modules with different numbers and design parameters of 7R units. 

 

It has been revealed in section 4.2 that when the unit is reconfigured between the 

M1 and M2 branches, it undergoes substantial geometric alterations. Without loss of 

generality, let / cos( / 2)b a = , then the 7R linkage in the form of modular origami in 

all four 2D modules are equipped to reconfigure between M1 and M2 paths. 

Consequently, when the modules reach the bifurcation configuration with dihedral 

angles 
o

1 90 = , each rectangular panel in these 2D modules can independently choose 

to swing toward or away from the centre of the polygon prism base. Namely, the 2D 

module with ( )2 π /n n = −  can be classified into 2n
 cases, depending on the number 

and location of the basic units observed in either case I or case II. For a 2D module 

featuring a regular 4-sided polygon projection, there are always two rectangular panels 

with independent swing directions along the x or y direction. Therefore, it is worth 

highlighting that the 2D modules with n=4 exhibit three possible states along either the 

x or y direction: (i) two rectangular panels positioned close to the polygon prism base, 

(ii) one rectangular panel positioned close to the polygon prism base while the other is 

away from it, or (iii) both rectangular panels positioned away from the polygon prism 

base. Such orthogonal decoupling behaviour leads to three possible variations in either 
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the overall width (W) or the breadth (B) dimensions of the 2D module with n=4, which 

can be calculated 

 

1 1 1 3 2

2 2 3 2

3 3 1 3 2

( ) 2 cos 2 2

( ) 2 2  

( ) 2 cos 2 2

W B a t a t

W B t a t

W B a t a t





= − + + +

= + +

= + + +

  (4-7) 

where 1 [0,  π / 2]  . 

To further illustrate this concept, an example of the variation in normalized width 

(W/t) with respect to the dihedral angle is presented 1 , as depicted in Fig. 4-15. When 

two rectangular panels are positioned near the base of the prism (“-1” state), the rotation 

of the thin sheet results in an increased normalized width (W/t). Conversely, when one 

rectangular panel is positioned near the polygon prism base while the other is located 

farther away (“0” state), the overall size of W/t remains constant. In the case where both 

rectangular panels are positioned away from the polygon prism base (“1” state), the 

rotation of the thin sheet leads to a decreased normalized width (W/t). In general, the 

normalized width (W/t) in the x direction is likely to exhibit an increase, remain constant, 

or decrease with an increasing dihedral angle. Similarly, these three possibilities also 

apply to the normalized breadth (B/t) in the y direction. 

For the 2D module with n=4, 
42  cases are exactly the combination of these three 

types of dimensional variations in the W and B directions. As shown in Fig. 4-16, they 

are further subdivided into four distinct kinematic paths that share a common 

bifurcation point at 
o

1 90 =  , considering the similarity in orthogonal directions. 

Obviously, in paths I-IV, the reconstructed module undergoes significant alterations in 

its external dimensions, which are highlighted by red dotted lines.  

 

 

Fig. 4-15 Three possible states for two rectangular panels along either the x or y direction and 

corresponding variations in the overall dimensions of the 2D module with n=4. 
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Fig. 4-16 Top views of kinematic paths of the 2D module featuring a regular 4-sided polygon 

projection when the 7R unit switches between M1 and M2. 

 

The deformation due to the mechanism motion of the modules can be effectively 

characterized by Poisson’s ratio calculated by dividing that lateral strain by the negative 

of the longitudinal strain 

 W B
BW HB

B H

 
 

 
= − = −，   (4-8) 

where W , B , and H  are infinitesimal strains in the x, y, and z directions, respectively, 

which are given in terms of the module dimensions by 

 ,  ,  W B H

dW dB dH

W B H
  = = =   (4-9) 

where dW, dB, and dH are an incrementally small changes in the module dimensions 

W, B, and H due to the applied load. To demonstrate the variation in external dimensions 

during reconfiguration, a prototype of the 2D module with / 2,  90b a = =   is 

fabricated, as shown in Fig. 4-17. When the 2D module enters the four paths in Fig. 

4-17 from the bifurcation point, it corresponds exactly to the four deformation modes. 
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Fig. 4-17 Prototype of the 2D module with / 2,  90b a = =  and its reconfiguration 

between four kinematic paths 

 

It can be observed that the module in path I is contracted from a larger square at 

the bifurcation point (configuration ⑨) towards 
o

1 0 =   to its smallest size 

(configuration ①) or the module is expended towards 
o

1 180 =   to its biggest size 

(configuration ⑤). Throughout this deformation, infinitesimal strains B   and W  

remain equal negative or positive values ( 0W B =   or 0W B =   as shown in Fig. 

4-18(a) and (e). Consequently, the in-plane Poisson’s ratios BW   were strain-

independent and always equal to -1, indicative of an NPR mode. If the module chooses 

path II at the bifurcation point, there will be a contraction (⑨→②) or expansion (⑨→

⑥) of the module in the B direction but no deformation in the W direction. In this case，

0, 0W B =  , as shown in Fig. 4-18(b) or 0, 0W B =  , as shown in Fig. 4-18(f), and 

0BW = , demonstrating a ZPR mode. When the module bifurcates to path III, it will 

contract transversely while expand vertically (⑨→③, 0, 0, 0W B BW       as 

shown in Fig. 4-18(c)), or vice versa (⑨→⑦, 0, 0, 0W B BW      as shown in Fig. 

4-18(g)), akin to conventional PPR mode. Notably, when the module bifurcating to path 
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IV, this deformation mode does not alter the global dimensions of the module (⑨→④ 

or ⑧, as shown in Fig. 4-18(d) and (h)), resulting only in internal rearrangements (IRM).  

Similarly, as shown in Appendix E, if the 7R unit is operating in motion mode M3, 

there are four distinct kinematic paths can be identified based on the number of pairs 

and positions of nested-in triangular prisms. In contrast, the modules in the 

reconfiguration process do not change significantly in their external dimensions. 

Therefore, subsequent discussion will focus mainly on the case of bifurcation between 

M1 and M2. 

 

 

Fig. 4-18 Plots of W  and B  vs deformation degree in kinematic paths for the modules. 

4.4.2 3D Modules Design and Deformation Mechanism Analysis 

Moreover, as depicted in Fig. 4-19, a variety of 3D modules are formed by 

integrating the aforementioned 2D modules in the form of shoulder-to-shoulder 

assembly onto faces of four carefully selected polyhedrons for the sake of simplicity 

and ease of scalability, i.e., triangular prism (N=3), rectangular prism (N=4), pentagonal 

prism (N=5), and hexagonal prism (N=6). These selected prisms solid are characterized 

by N-sided polygons on two end faces and N rectangles on lateral faces. Within this 

arrangement, the 2D module embedded on end faces exhibits a projection of an n-sided 

polygon, with the number of its basic units represented by en N= .  
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Fig. 4-19 Construction of 3D modules based on four selected polyhedrons, i.e., triangular prism 

(N=3), rectangular prism (N=4), pentagonal prism (N=5) and hexagonal prism (N=6). 

 

Conversely, the 2D modules attached to the lateral faces are always rectangular 

and consist of 4ln =  basic units. Furthermore, the 2D modules on adjacent lateral faces 

are interconnected by a shared V-shaped link, characterized by ( )2 π /cl N N = −  , 

which has evolved from the rectangular prisms in the basic unit. On the other hand, 

neighbouring 2D modules on end faces and lateral faces are connected by means of 

shared L-shaped links (
o90ce = ). Meanwhile, the geometry of the basic units on the 

end and lateral faces are defined as 
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 = tan( / 2),  = tan( / 2)e l cl e l cla a t t    (4-10) 

in which the subscripts e or l indicate that the parameter pertains to a module on the end 

face or lateral face. 

When analysing the 3D modules shown in Fig. 4-20, which function as 

mechanisms with one DOF, there are two essential kinematic compatibility conditions. 

Firstly, the dimensions of the n 2D modules located on the lateral faces must be identical 

in the z direction. Secondly, the projections of the 2D modules on end faces and lateral 

faces should share the same external contour in the xoy plane. The latter condition can 

be mathematically expressed as 

 
2 2 2 2

PQ + PN MQ + MN=   (4-11) 

where these four lines labelled as PQ, PN, MQ, and MN in Fig. 4-20 consist of two 

segments, each with lengths t and 1sina a  .  

 

 

Fig. 4-20 Kinematic compatibility conditions for 3D modules. 
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Additionally, the sign in 1sina a    is negative when the V-shaped or L-shaped 

links swing towards the centre of the polygon prism base, while the sign is positive 

otherwise. Therefore, Eq. (4-11) can be rewritten as 

2 2 2 2

1 1 1 1( sin ) +( sin ) ( sin ) +( sin )l l l l e e e e l l l l e e e et a a t a a t a a t a a   +  +  = +  +   

  (4-12) 

By combining Eq. (4-10) and Eq. (4-12), the second kinematic compatibility 

condition can be deduced, which necessitates the 2D module on the end faces of 3D 

modules (N=3, 5, 6) to maintain an 𝑁-fold symmetry (simultaneous contraction or 

expansion in the overall dimensions in xoy plane). As aforementioned, the 2D module 

with 4ln =  exhibits three types of dimensional variations along the z direction, i.e., 

increase, remain constant, or decrease in the H direction. As a result, there exist NPR, 

ZPR, and PPR deformation modes in the yoz plane, respectively, for 3D modules with 

triangular, pentagonal, and hexagonal prism contours, respectively, as shown in Fig. 

4-21.  

 

 

Fig. 4-21 Deformation modes for 3D modules with triangular prism (N=3), rectangular prism 

(N=4), pentagonal prism (N=5) and hexagonal prism (N=6). 
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For the 3D module with a rectangular prism (N=4) contour, there are l ea a=  and 

l et t=  according to Eq.(4-10). Therefore, Eq. (4-11)can be simplified as 

 PQ MQ ,  PN MN= =   (4-13) 

Equation (4-13) shows that there is also orthogonal decoupling behaviour of the 

3D module in the x and y directions. Thus, there exist a total of 33 27=  cases of 3D 

modules that are combinations of three states of the relative positions of the two links 

(denoted as “-1”, “0”, and “1” as shown in Fig. 4-22(a)) in the x, y, z directions, as 

shown in Appendix F. The marker next to configurations, ( ), ,
,  , , 1,  0,  and 1

x y z
C x y z = − , 

indicates that rectangular panels in the x, y, z directions are positioned in “-1”, “0”, and 

“1” states. Among these 27 cases, a consistent configuration is observed at the 

bifurcation point when the angle 1  of the 2D modules on the three orthogonal planes 

equals 90o. Due to their similarity in three orthogonal directions, these 27 cases can be 

further divided into 6 different states, one of whose configurations is displayed in Fig. 

4-22(b). 

The deformation mechanism of the 3D module with N=4 is divided into six modes 

(Fig. 4-23) when it is reconfigured between different states which are characterized by 

in-plane Poisson’s ratio BW   and out-of-plane Poisson’s ratios WH  . First, the 3D 

module in mode I is contracted from a larger cube to the smallest size when the 2D 

modules on three orthogonal planes shrink simultaneously from the bifurcation point 

( 0W B H  = =  ). Hence, Poisson’s functions are given by -1BW WH = = . Then, if 

the rectangular panel in the yoz plane along the z direction is reconstructed to a state 

where one is far from the centre of the polygon prism base and the other is close to the 

centre of the polygon prism base, it is observed the deformation along the z direction is 

zero ( 0,  0W B H  =  = ), so the Poisson’s ratio WH  becomes zero (mode II) while 

BW   remains -1. Next, in mode III, rectangular panels in the yoz plane along the z 

direction all in a state far from the centre of the polygon prism base, both the strain H  

and Poisson’s ratio WH  of the module turns to be positive ( 0,  0W B H  =   ), and 

BW  is -1, the same as mode I and II. After that, one of the rectangular panels in the xoy 

plane along the y direction is reconstructed to a state away from the centre of the 

polygon prism base (mode IV); three strains are negative, zero and positive and values 

respectively ( 0,  0,  0W B H   =  ). Furthermore, if one of the rectangular panels in 

the xoy plane along the y direction is reconstructed to a state away from the center of 
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the polygon prism base (mode V), the global dimensions in the xoy plane have not 

changed despite the internal rearrangement, so 0,  0W B H  =    two of strains will 

switches to zero ( 0,  0W B = =  ). As a result, the module degenerates into a one-

dimensional material that is stretched in the z direction ( 0H  ). Finally, one of the 

two rectangular panels in mode V on the yoz plane is reconstructed away from the 

polygon prism base back to a state close to the polygon prism base. The 3D module in 

mode VI is undergoing internal rearrangement in three orthogonal planes, but its global 

dimensions, B, W, H, remain constant ( 0,  0,  0W B H  = = = ).  

 

 

Fig. 4-22 Configurations for the 3D module with N=4. (a) The configuration of the 3D 

module (N=4) is a combination of three states of the relative positions of the two L-shaped links in 

three directions. (b) Six typical configurations. 
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Fig. 4-23  Deformation modes for 3D modules with rectangular prism (N=4) contour. 

4.5 Conclusions 

In this chapter, the use of the kinematic bifurcation behaviour inherent to a single 

DOF spatial 7R linkage was proposed for the design of a reconfigurable modular 

origami. A comprehensive kinematic analysis was conducted on the modular origami 

unit first, particularly focusing on the effects of geometric parameters on the number, 

range, and evolution of the motion branches.  

Subsequently, these units can be assembled back-to-back into various single DOF 

modules with folded n-polygon and unfolded 2n polygon shapes. It was demonstrated 

experimentally that the shape and symmetry of such origami modules can be actively 

tuned and controlled in a completely predictable manner by strategically activating 

variable stiffness beams or air pockets. The investigation revealed that it has the 

potential to realize all three class of discrete symmetry groups, including ten point 
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groups, seven line groups, and seventeen space groups, within a unified design 

framework. Notably, due to the rich configurations arising from the bifurcation, two 

modules, i.e., n=4 and n=6 modules, are sufficient to realize ten crystallographic point 

groups. The linear tessellation of n=4 modules is sufficient to realize seven line groups 

by manipulating the reconfiguration of modules within tessellations. Meanwhile, the 

planar tessellation of modules with n=4 and n=6 can realize all seventeen space groups. 

Lastly, a shoulder-to-shoulder assembly scheme of 7R units is also proposed to 

construct single DOF reconfigurable 2D modules. In addition, the geometric 

dimensional variations induced by the reconfiguration between different configurations 

are investigated based on the kinematic model, and the effect on the sign of Poisson’s 

ratio is theoretically analysed. Furthermore, a variety of single DOF 3D modules are 

formed by integrating the aforementioned 2D modules on the faces of four carefully 

selected polyhedrons for simplicity and ease of scalability, i.e. triangular prism (N=3), 

rectangular prism (N=4), pentagonal prism (N=5) and hexagonal prism (N=6). 

Theoretical analysis suggests that the proposed 3D modules can achieve either purely 

negative, zero or positive Poisson’s ratios due to orthogonal decoupling behaviour 

arising from kinematic bifurcation. Among them, the 3D module with a rectangular 

prism (N=4) contour is tuneable in all signs of in-plane and out-plane Poisson’s ratio.  

Due to length constraints, this chapter focuses on the reconstruction-induced 

changes in properties such as Poisson's ratio and symmetry, and the structure presented 

in this chapter also has the potential for tuneable dynamic properties. An example of 

bistability using the origami module is presented in Appendix H. 

公式节 (下一节)  
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 3D Programmable Metamaterials Based on 

Reconfigurable Polyhedron Module 

5.1 Introduction  

Highly overconstrained polyhedron mechanisms with multiple loops in a 

polyhedral layout have more regular shapes and simpler networking than single-loop 

linkage, which are expected to be directly used as modules for constructing modular 

origami-based 3D metamaterials. However, due to the complex topology, single DOF 

polyhedron mechanisms with reconfigurability have rarely been reported. In chapter 4, 

the construction of single DOF reconfigurable polyhedral mechanisms by embedding 

single DOF reconfigurable 2D modules into the surface of the polyhedrons was 

presented. The investigation in this chapter delves into the kinematics of the Wohlhart 

cube[182], a single DOF geometric construct derived from embedding the planar linkage 

groups (PLGs) with multiple DOFs onto the surface of the polyhedron.  

On the other hand, the shape-reconfigurable system through structural instability 

or structural deformation has also been identified as an effective method to realize 

tunability and programmability in mechanical metamaterials. However, in most of the 

current research, the unit cells in the metamaterial tessellation are of one type with 

identical deformation properties, which leads to the fact that the resultant metamaterials’ 

characteristics are limited to a small range during the flexible deformation, making it 

suitable only for a task with specific functional requirements. A new way to design 

programmable metamaterials is paved through the kinematic bifurcation of 

reconfigurable polyhedron modules in this chapter. 

The layout of this chapter is as follows. In section 5.2, the bifurcation behaviour 

of a single DOF Wohlhart cube is revealed by the kinematic model of an open-chain 

PLG under symmetric constraints. The changes in properties, including geometry 

dimensions, Poisson’s ratio, chirality, and stiffness, induced by the reconfiguration of a 

single module between distinct paths are analysed in section 5.3. Furthermore, to 

enhance the programmability of metamaterials, a combinatorial design strategy, i.e., 

stacking different bifurcation configurations in 3D space, is proposed in section 5.4. In 

section 5.5, reconfigurable polyhedron modules are extended from the Wohlhart cube 

to a series of single DOF reconfigurable regular prisms. Final conclusions are drawn in 

section 5.6. 
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5.2 Kinematics of the Polyhedron Module 

5.2.1 Geometry of Wohlhart Cube 

The mechanical basis of the module with the Wohlhart cube is depicted in Fig. 5-1. 

First, the planar link group (PLG) is constructed with four identical rigid links of sides 

a and b attached to the square centre body (side length a×a×b) through revolute (R) 

joints. The folding angle   determines the configuration of PLG by keeping rigid links 

rotationally symmetric and rotating about the centre O clockwise or anti-clockwise. 

Second, six identical clockwise rotation PLGs lying on faces of regular hexahedron are 

interconnected by R joints on the edges of cube connectors (side length b) to form a 

Wohlhart cube, which is a highly overconstrained system with only one DOF working 

as an expandable cube. The focus here is on its reconfigurability. 

 

 

Fig. 5-1 The Wohlhart cube formed by connecting PLGs with cube connectors. (a) The geometry 

of rigid link, square centre body, and cube connector; (b) views of the clockwise rotation PLG and 

the anti-clockwise rotation PLG; (c) overview of the Wohlhart cube. 

5.2.2 Reconfigurability of PLG in the Wohlhart Cube 

A coordinate system for any PLG in the Wohlhart cube is set up, as shown in Fig. 

5-2. Because A, B, C, D are coplanar points on the edge of cube connectors, AB, BC, 

CD, and DA are straight lines. Besides, ∠ABC, ∠BCD, ∠CDA and ∠DAB are right 

angles. So, points A, B, C, and D form a rectangle. The origin O of the coordinate 

system is in the centre of the rectangle ABCD, the x axis is parallel to AB, and the y 

axis is parallel to BC. Angles ∠AEH, ∠BFE, ∠CGF, ∠DHG and ∠AOE  are 

indicated as 1 2 3 4,  ,  ,,       and δ, respectively. The coordinate of the centre of the 

rectangle EFGH is (u, v). Then, the coordinates of points A, B, C, and D always satisfy 

 
A D B C A B C D

A B C D A D B C

, , ,

, , ,

x x x x y y y y

x x x x y y y y

= = = =

= − = − = − = −
 (5-1) 
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Fig. 5-2 The coordinate systems of PLG. 

 

Equation (5-1) can be written as 

 

( ) ( )

( ) ( )

( ) ( )
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2 cos sin sin 0

2 cos sin sin 0

2 cos sin sin 0

2 cos sin sin 0

0

0

0

0

u a a a

u a a a

v a a a

v a a a

    

    

    

    

    

    

    

    

+ +

+ + + −

+ + + −

+ + +

− + − + + =

+ + + + − =

− + − + +

+

− =

=

=

− =

=

+ + + − =

 (5-2) 

If the centre body rotates only, i.e., u=0, v=0,  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 3 4 2

1 3 2 4

s

0

in sin cos cos

c i

0, 0

0,os cos s n sin

       

       

+ + +− = =+

+ + + − +

−

− = =
 (5-3) 

which can be simplified as 

 

1 3 1 3 2 4 2 4

1 3 1 3 2 4 2 4 0

2 2
sin( ) sin( )

2 2

2 2
sin( )

2
sin( )

cos( ) 0  sin( ) 0
2 2

sin( ) 0  cos(
2

)
22

         

         

− + +
= =

− + +

− + + − + +
= =

，

，

 (5-4) 

Equation (5-4) yields 

 1 3 2 4= ,  =     (5-5) 

Then, substituting Eq. (5-5) back into Eq. (5-2) result in 

 2 1 2 1 2 12 2
sin( )(cos( )+sin( ))=0

2 2 2

       + +− + +
 (5-6) 

There are two solutions according to Eq. (5-6), i.e., 

 1 2=   (5-7) 
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or 

 1 2 +2 π
= + π,  

2 4
n n Z

 +
−   (5-8) 

When θ1=θ2=θ3=θ4, according to Eq. (5-2), the relationship between θ1 and δ is  

 1

π
sin = 2sin( + + )

4
    (5-9) 

If substituting Eq. (5-8) into Eq. (5-6), then 

 1 2

π
=0 = +2 π

2
n  + −，  (5-10) 

If the centre body translates only, i.e., δ=0, Eq. (5-2) becomes  

4 1 4 1 2 3 2 3

1 2 1 2 3 4 3 4

π π π π
2 π or 2 π,  2 π or 2 π

2 2 2 2

π π π π
2 π or 2 π,  2 π or 2 π

2 2 2 2

n n n n

n n n n

       

       

= − − + = + + = − − + = + +

= − − + = + + = − − + = + +

  (5-11) 

and  

 

1 2 3 4 1 2 3 4

1 2 1 4

3 4 2 3

sin +cos sin cos =0,  cos sin +cos +sin =0

sin cos cos sin
1,  1

sin cos sin cos

       

   

   

+ + +

+ +
= − = −

+ +

 (5-12) 

Only two of sixteen combinations in Eq. (5-11) satisfy Eq. (5-12), i.e.,  

 
4 1 2 3

1 2 3 4

π π
2 π 2 π,  

2 2

π π
+ 2 π 2 π

2 2

n n

n n

   

   

= − − + = − − +

= + = + +

,

,

 (5-13) 

and 

 
4 1 2 3

1 2 3 4

π π
2 π,  2 π,

2 2

π π
2 π,  2 π

2 2

n n

n n

   

   

= + + = + +

= − − + = − − +

 (5-14) 

Combining Eq. (5-13), Eq. (5-2) can be further simplified as  

 1sin ,  0u a v= =  (5-15) 

Combining Eq.(5-14), Eq. (5-2) can be further simplified as  

 10,  cosu v a = =  (5-16) 

In summary, there are four sets of closure equations, i.e.,  

case I: 1 2 3 40,  0  = = =u v    = = ,  and Eq. (5-9);   
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case II: 1 2 1 3 2 4

π
0,  0,  0,  = +2 π,  = =

2
u v n      = = = + − , ;  

case III: 10,  sin ,  0u a v = = =  and Eq. (5-13);  

case IV: 10,  0,  cosu v a = = =  and Eq.(5-14). 

 

 

Fig. 5-3 The kinematic paths and corresponding configurations. (a) Kinematic paths 2 1  vs  , 

(b) kinematic paths 1  i vs  , and (c) bifurcation behaviours, where i, iii, iv, vi, vii, ix are motion 

sequences, while ii, v, and viii are the bifurcation configurations.  
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Kinematic paths 2 1  vs   and bifurcation behaviours of PLG in Wohlhart cube are 

illustrated in  Fig. 5-3(a), while the kinematic paths 1  i vs   of the four cases are plotted 

in Fig. 5-3(b). Let the link length equal to π  to present all variables results in one graph. 

If taking 1  as the input, the other variables in four cases are determined, which means 

that the PLG in all four cases is a one DOF system under symmetry constraints. The 

motion range is different in the four cases to avoid physical interference. Note that i, iii, 

iv, vi, vii, ix are motion sequences, while ii, v, and viii are the bifurcation configurations. 

It can be seen that i-ii-iii correspond to configurations of the linkage in case I, viii-vii-

ii-iv-v correspond to configurations of the linkage in case II, vi-v correspond to 

configurations of the linkage in case III, and viii-ix correspond to configurations of the 

linkage in case IV. To distinguish their motion characteristics, configurations i and iii 

are named clockwise and anti-clockwise rotation PLGs, respectively. Configurations iv 

and vii are named translation PLG because the virtual platform (AB, BC, CD, DA) is 

translational relative to the centre body. Configurations vi and ix are named as locked 

PLGs as the distance of AB, CD in vi and AD, BC in ix remain a. In general, PLG can 

switch to rotation or translation through bifurcation point ii. It can also switch between 

translation PLG and locked PLG through bifurcation points v and viii. 

5.2.3 Bifurcation Behaviours of the Polyhedron Module 

Then the virtual-centre-based method[102] are introduced, i.e., implanting PLGs 

into the polyhedron base’s faces to construct the Wohlhart cube. As shown in Fig. 5-4(a), 

components (left) and polyhedron base (right) with its six faces are labelled as 1f  to 6f  

and twelve edges are denoted by 1e  to 12e . The eight vertices are indicated as A, B, C, 

D, E, F, G and H. 1O  to 6O  are six face centres. As shown in Fig. 5-4(b), a clockwise 

rotation PLG is implanted in a manner that the bottom face of PLG is placed on square 

face f1 with the centre located on the centre of ABCD. Then the ends of links are laid at 

four perpendiculars to face 1f , i.e., 5 6 7 ,,  ,  e e e and 8e , respectively. One can implant a 

rotation or translation PLG similarly into the face 2f  formed by DCGH and connect it 

with the previous PLG by cube connectors in the second step. The former causes the 

polyhedron base’s contour to be a regular hexahedron, so the PLGs to be implanted on 

the remaining four square faces should be rotation units (Fig. 5-4(b), top). The latter 

causes the polyhedron base’s contour to be a right square prism, so the rectangular face 

can only be a translation PLG, and the square faces can only be implanted with rotation 

PLG (Fig. 5-4(b), middle). In the second step, the implanted object on the face 2f  can 
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also be a locked PLG, with the result that the length of the CD is a (Fig. 5-4(b), bottom). 

Then, the polyhedron base’s contour to be a locked right square prism with one side 

length is constant, and its rectangular faces can only be implanted with locked PLGs, 

while implanted rotation PLGs on the square faces are also locked in a fully folded 

configuration. Further, using the same procedure and integrating more PLGs into the 

polyhedron base, three configurations of the Wohlhart cube with different motion 

characteristics are constructed. 

 

 

Fig. 5-4 The construction method of the Wohlhart cube. (a) Components and polyhedron base; 

(b) construction of the Wohlhart cube with rotation, translation, and locked PLGs. 
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The detailed analysis on the kinematic characteristics of the Wohlhart cube in Fig. 

5-5(a) reveals that there are three distinct kinematic paths, i.e., expandable cube (EC) 

path, elongated prism (EP) path or locked twist (LT) path, and two bifurcation points 

between EC and EP paths, EP and LT paths. Considering whether the rotation direction 

of each rotation PLG is clockwise or anti-clockwise about coordinate axes, there are a 

total of 32 ( 62 / 2=  , it is considered as one case when all the PLGs rotate in the 

opposition direction after passing B0) cases for EC path, i.e., 
f p

0EC -EC -Bi i
, where the 

subscript i (=1, …, 32) represents the i-th path, and superscript f and p represent fully 

folded and partially folded configurations respectively. Meanwhile, the EP path is 

divided into three cases ( EP , EP , and EPx y z ) according to the orientation, and so is the 

LT path ( LT , LT , and LTx y z ). Configuration 0B  is one of the kinematic bifurcation 

points where this module can switch between EC and EP paths. Configurations

B , B ,and Bx y z , the folded state of the module in the EP path as well as the unfolded 

state of the module in the LT path, are another type of bifurcation points, where the 

module can switch between EP and LT paths.  

 

 

Fig. 5-5 Kinematic bifurcation of the Wohlhart cube. (a) The kinematic paths of the module. 

0B , B , B  and Bx y z
 are bifurcation configurations; (b) the reciprocate process of the prototype from 

f f

1EC  to LTz
with a=80mm, b=40mm. 
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A complete motion process of the prototype from 
f f

1EC  to LTz  demonstrates the 

analytical results, as shown in Fig. 5-5(b), where parameters are selected as a=80mm, 

b=40mm. Due to the similarity in the three orthogonal directions, only the property in 

z-direction is discuss in the following analysis. 

5.3 Properties of a Single Polyhedron Module  

5.3.1 The Variations of Geometric Dimensions of the Module 

Apparently, the geometric dimensions of the module, i.e., the width, breadth, and 

height in x, y, and z directions, have undergone significant changes during the motion 

process. The completed motion curves of this module with three paths are shown in Fig. 

5-6. Here the detailed path 
p p p

1 0 z zEC -B -EP -B -LTz  is taken as an example to demonstrate 

the properties of the module. It can be observed that the module in the EC path is 

expanded from a smaller cube to a larger one as the rotation angles in orthogonal planes 

increase with   = = . Once the module reaches the bifurcation point B0 

( π / 4  = = = ), there are two possible paths; one is that the module is kept in the 

EC path as a cube to fold up with   = =  moving toward π / 2 , the other one is that 

the module switches into EP path with PLGs on the four side faces shrink inward in a 

translational way. When 0 =  on the EP path, 0 =  or π / 2  depending on the 

rotation direction of PLGs on the top and bottom faces, the module reaches Bz 

bifurcation configuration, where the EP path is at the limited end. Hence, the module 

can return to the EP path or bifurcate to the LT path with two rotation PLGs on top and 

bottom faces locked at 0 =  or π / 2 , and four PLGs on the side faces twist clockwise 

or anti-clockwise about z-axis when  = . 

The geometrical dimensions are calculated according to the contour projection on 

the orthogonal planes. Hence, the geometrical dimensions of the module in the EC path 

in the x, y, and z direction are 

 = = = sin cos 2sin cos +2W B H a a a b   + +  (5-17) 

while dimensions W and B of the module in the EP path are the same as those in 

Equation (5-17), and 

 = 2 cos +2H a a b+  (5-18) 

where [0,  π / 2] =  .  
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For the module in the EP path, the folding angle   in rotation PLGs is a function 

of   in translation PLGs, and the mathematical expression is  

 sin =(sin cos 2sin cos 1) / 2    + + −  (5-19) 

The variation of geometric dimensions of the module in the LT path is mainly 

divided into two stages with / 1a b  . When ( )arcsin /b a =  , the projection of 

four PLGs on the side faces in the xoy plane is always within the projection of the 

rotation PLG ( 0 or π / 2 = ) on top and bottom faces, resulting in W and B remaining 

constant 2a b+ . When the folding angle ( )arcsin /b a =  , W and B become 

elongated simultaneously. Therefore, the dimensions of the module in the LTz
 path are 

 
2 ,              if sin /  or 

=
2 sin ,     if sin /  and 

a b b a a b
W B

a a b a a b



 

+  
= 

+  
 (5-20) 

and 

 2 2 cosH a b a = + +  (5-21) 

where [0,π / 2] =  . 

 

 

Fig. 5-6 The variations of geometric dimensions of the module in the x, y, and z directions 

following the EC path, EP path or LT path (a) The kinematic paths; (b) overall view of typical 

configurations; (c) front and top views of typical configurations.  
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5.3.2 Mechanical Properties for a Single Module 

5.3.2.1 Poisson’s Ratio for a Single Module 

The Poisson’s ratios 
HB  in the yoz plane and 

BW  in the xoy plane are defined as 

 ,  HB BW

dB H dW B

B dH W dB
 = −  = −   (5-22) 

Therefore, Poisson’s ratios of the module in the EC path are given by 

 = 1HB BW  = −  (5-23) 

and Poisson’s ratios of the module in the EP path are then derived as 

 
2 cos 2

tan ( 2 sin 2 )
HB

a a b

a a b




 

+ +
=

+ +
 (5-24) 

and 

 1BW = −  (5-25) 

In addition, Poisson’s ratios of the module in the LT path are 

 

0,                                      if sin /  or 

2 cos 2
,         if sin /  and 

tan ( 2 sin )

HB

b a a b

a a b
b a a b

a a



 


 

 


= + +
  +

 (5-26) 

and 

 
0,       if sin /  or 

1,     if sin /  and 
BW

b a a b

b a a b






 
= 

−  
 (5-27) 

Theoretical Poisson’s ratios of the module as functions of folding angles and 

geometric parameters in EC, EP, and LT paths are shown in Fig. 5-7(a-c), respectively. 

It is evidently observed that Poisson’s ratios 
HB  and 

BW  of the module in the EC path 

are always -1 independent of geometric parameters (see Fig. 5-7(a)), when the structure 

is elongated simultaneously in three orthogonal directions. On the contrary, the module 

in the EP path is anisotropic. Specifically, Poisson’s ratios 
HB of the module in the EP 

path varies continuously in positive values (see Fig. 5-7(b)). Theoretical results also 

suggest that the Poisson’s ratios in the EP path are insensitive to variations in 

geometrical parameters /a b , as shown in Fig. 5-7(b). Poisson’s ratio HB  decreases 

sharply from infinity to 1 as the structure expands from a compact prism to a fully 

unfolded cube. Meanwhile, regardless of the geometric parameter /a b , the Poisson’s 

ratios νBW of the module in the EP path remain -1. As for the module in the LT path, 
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Poisson’s ratios 
HB  and 

BW  maintain 0 for b a , because the projection of four PLGs 

on the side faces in the xoy plane is always within the projection of the rotation PLG 

( 0 or π / 2 = ) and the length and width remain constant a+2b (see Fig. 5-7(c)). If b<a, 

HB  and 
BW  of the module in the LT path remain 0 until ( )arcsin /b a =  , then 

HB  suddenly drops to and remains at -1 while 
BW  suddenly increases to a positive 

value and then gradually decreases to 0. One can further program this step point of 

Poisson’s ratios by changing the geometrical parameters /a b . The interval of the ZPR 

mode lengthens as the value of /a b  decreases, eventually reaching a full ZPR mode 

throughout the deformation process once / 1a b  . 

 

 

Fig. 5-7 Theoretical Poisson’s ratios of the module as functions of folding angles and 

geometric parameters. (a) EC, (b) EP, and (c) LT paths. 

 

A tension and compression experiment for a single module was then conducted. 

The experimental setup is depicted in Fig. 5-8(a). To reduce the gravitational effect, the 

experiment was carried out on a vertical testing machine (Instron 5982). The specimen 

was sandwiched between two fixtures, allowing rotational displacement at both ends. 

The specimen was then tensioned (compressed) with 160mm displacement and a 0.5 

mm s-1 loading rate. The deformation process was captured by a CSI Vic-3D9M digital 
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image correlation (DIC) system with a camera resolution of 2704×3384 pixels and a 

frame period of 500ms. For DIC capture, the square faces of the cube connection were 

painted with black speckles. Based on the coordinate information of the black speckles 

in the measurement areas, the width W and breadth B under different heights H can 

measured. As measuring the angle directly is difficult, the normalized displacement is 

defined as folding ratios in the loading direction. The recorded deformation process 

shows that W, B, and H of the module in the EC path increase simultaneously during 

tension (i-ii-iii-iv-v in Fig. 5-8(b)). Then the specimen goes through another stage (vi-

vii-viii-ix-x in Fig. 5-8(b)) after passing through the bifurcation configuration 0B  , 

where W and B decrease while H increases continuously. After bifurcation point Bz , 

both W and B of the specimen in the LT path are equal to 2a b+  (xi-xii-xii in Fig. 5-8(b)) 

during compression, until the projection of rotation PLGs ( 0 or π / 2 = ) on the xoy 

plane cannot cover that of four PLGs on the side faces (xiii-xiv-xv in Fig. 5-8(b)). The 

quantitative values of the experimental results are in good agreement with theoretical 

HB  and 
BW , although results differ slightly at the 75-100 % stage due to gravity.  

 

 

Fig. 5-8 Experiments and results of Poisson’s ratio test of a single module. (a) The uniaxial 

tension and compression experimental setup for a single module; (b) comparison of theoretical and 

experimental Poisson’s ratios of a module in EC, EP, and LT paths with / 2a b = . 



Doctoral Dissertation of Tianjin University 

122 

 

5.3.2.2 Tuneable Chirality of the Module 

From the red arrow-arcs marked in Fig. 5-6 and the experiments in Fig. 5-8, it can 

be inferred that this module also exhibits distinct chirality properties when moving 

along different kinematic paths. First, in the EC path, all six rotation PLGs on six faces 

twist clockwise or counter-clockwise independently to generate enhanced local 

chirality. Second, in the EP path, only two rotation PLGs on two opposite faces normal 

to the elongated direction have the local chirality, while the other four do the translation 

with no chirality. Third, in the LT path, two rotation PLGs on the top and bottom faces 

are locked at 0 or π / 2 = , and four PLGs on the side faces twist clockwise or anti-

clockwise about z axis when  =  to produce a global chirality.  

5.3.2.3 Tuneable Stiffness of the Module 

Additionally, the stiffness will also change significantly when the module is 

switched between different paths. Assuming that the energy of the modules is composed 

of deformation from linear elastic rotational joints, and fk   as the rotational spring 

modulus of unit length, the stored energy U of the system is given by 

 
2 2 2

1 1 1,0 2 2 2,0 ,0

1
[ ( ) ( ) ... ( ) ]

2
f i i iU k b n n n     = − + − + + −   (5-28) 

where ,0i  is the natural dihedral angles (in the undeformed state) of i-th type of joint, 

in  is the number of i-th type of joint, and b is defined as the length of cube connectors. 

The force F along z direction is  

 /
dU dU dL

F
dL d d 

= =   (5-29) 

where L is the displacement in the z direction. 

The stiffness along z direction is thus given by 

 

2

2
( ) /

d U d dU dL
K

dL d dL d 
= =   (5-30) 

Let’s first consider configuration 
f

1EC as the natural state. As shown in Fig. 5-9, 

dots of the same color represent the same working mode of the spring under the current 

path, and i  is the angle of i-th type of joints. The rotation angles of the spring of the 

module in 
p

1EC  path are  

 ( )1 1 1,0 2 2 2,0 1 1 1,  = arccos cos sin         = −  = −= + −  (5-31) 



Chapter 5 3D Programmable Metamaterials Based on Reconfigurable Polyhedron Module 

123 

 

where φ changes from 0 to π/4. 

 

 

Fig. 5-9 Types of joints and their rotation angles under different paths when configuration f

1EC  is 

taken as the natural state. Dots of the same color represent the same working mode of the spring 

under the current path. in  and i  are the number and angle of i-th type of joints respectively.  

 

For the module in EPz path, rotation angles are 

( )

( ),

3 3 3

1 1 1,0 2 2 2,0

3 3 3 0

4 4 4,0 5 5 5,0 6 6 6,0

π / 2 ,  =3π / 2 arccos cos sin

= arcsin((sin cos sin(arccos cos sin ) -1) / 2)

=π / 2 ,  =π / 2+ ,  =π

   

   

     

 

        

− − − −

+ +

 = − =  = −

 = −

 = −  = − − −

−

−=

 (5-32) 

where φ changes from π/4 to 0. 

For the module in LTz  path, rotation angles are 

 

1 1 1,0 2 2 2,0 3 3 3,0

4 4

3

4,0 5 5 5,0

6 6 6,0 7

3 3

7 ,03 7

π / 2,  =3π / 2,  =

=π / 2 ,  =π / 2+

=π ,  =π+

        

     





 

     

 = −  = −  = −

 = −  = −

 = −  =

=

−

− −

 (5-33) 

where φ changes from 0 to π/2.  

The displacement in the z direction of three paths are  

( )

( )EP

L

EC

T

( cos sin sin arccos cos sin )

(arcsin((sin cos sin(arccos cos s

( )

2 cos 2in ) -1) / 2

2 cos 2

)L a a

L a a

L a a a a   

  





= + + − −

+ + −

= −

−=  (5-34) 

The kinematic paths and corresponding normalized energy, force and stiffness of 

the module are shown in Fig. 5-10(a). We define normalized energy, force stiffness, and 

height as ( )/ fU k b  , / fF k  , / fKb k   and max/H H  , respectively. Normalized energy 
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ECU , force 
ECF , and stiffness 

ECK  increase sharply as PLGs on six faces move form 

0  = = =  toward π / 4  = = = , as shown in Fig. 5-10(b-d). At the bifurcation 

point 
0B  , the module deformation energy is unsmooth increasing state (non-

differentiable point) as spring joints of PLG on four lateral faces are further rotated as 

the others on two end faces return toward the natural state (Stored elastic potential 

energy is released), resulting the force is discontinuous and the stiffness switches from 

+∞ to -∞. Subsequently, the stiffness 
EPK  in the EP path will undergo a change from 

negative to positive with the increase of deformation. Meanwhile, the bifurcation point 

Bz   is also a non-differentiable point of system energy, and the stiffness 
LTK   of the 

module in the LT path increases at a lower level under compression as the joints on the 

top and bottom faces are locked. It can be concluded that the stiffness is tuneable when 

the module switches between different paths. 

Generally, the stiffness is independent of natural configuration ( ,0i ) due to 

 1 1 2 2( ... ) /f i i

dL
K k b n n n

d
  


= + + +  (5-35) 

The exception is that the dihedral angle 
i  is the transcendental function of  , donated 

as ( )i if = . Then the stiffness can be expressed as 

'' ' ' '' ' '

1 1 1,0 1 1 1 1 ,0 1[ (( ( ) ) ( ) ( ) ( )) .. (( ( ) ) ( ) ( ) ( ))]f i i i ik b n f f f f n f f f f
K

dL

d

         



− + + + − +
=

  (5-36) 

Next, the effect of natural configuration on stiffness are investigated. The stiffness 

of the module in the natural state of configurations 0B an d Bz are plotted in Fig. 5-11(a) 

and (b). In general, the module shows different energy and force with different natural 

configurations, although the kinematic path is the same. It can be observed that the 

stiffness of ECK  and EPK  are completely different in three cases. The reason is that the 

stiffness is related to the initial configuration because the dihedral angle i   is the 

transcendental function of  . On the contrary, the stiffness LTK  in the three cases are 

identical because the dihedral angle i  is the linear function of  . In summary, the 

stiffness is tuneable when the module is in different paths. Furthermore, designing the 

natural state of the module before fabrication is also a potential way to regulate the 

stiffness of ECK  and EPK . 
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Fig. 5-10 Tuneable stiffness of the module. (a) The kinematic paths and corresponding normalized 

energy in (b), force in (c), and stiffness in (d) of the module when configuration EC
f 

1 is taken as 

the natural state. 

5.3.2.4 The Controllable Reconfiguration Methods 

Based on the properties on the Poisson’s ratios and chirality and stiffness, it is also 

found that the reconfiguration of one module among three kinematic paths can be 

controlled through the relative displacements of the cube connectors or the combination 

of force or torque applied to the square central bodies at the bifurcated points, as shown 

in Fig. 5-12 and Fig. 5-13. 
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Fig. 5-11 Stiffness of the module in the natural state of configurations 0B  in (a) and zB  in (b). 

 

 

Fig. 5-12 Control the bifurcated paths by the relative displacements of the cube connectors. 



Chapter 5 3D Programmable Metamaterials Based on Reconfigurable Polyhedron Module 

127 

 

As shown in Fig. 5-12, for the single module, the bifurcated path can be controlled 

by the relative motion of the corner cubes. At bifurcation configuration 
0B , when some 

of the cube connectors move toward the module centre, the module moves in the EC 

path, and when the two opposite cube connectors on the top face move towards the face 

centre and along the positive z direction at the same time, it follows the EP path. At the 

bifurcation configuration Bi
 (i=x, y, z), when the one set of cube connectors on the top 

or bottom of the elongated prism are locked at the same distance, the module moves in 

the LT path, and when they are expanded away from the face centre, it follows the EP 

path.  

Alternatively, the direction of the force F or torque T applied to the square central 

bodies at the bifurcated points can be controlled so as to choose the desired path. As 

shown in Fig. 5-13, when the module is at bifurcation configuration 
0B , the tension 

force on two opposite square central bodies makes the module move along the EP path, 

or the torque on the adjacent square central bodies leads the module to the EC path. 

When the module is at bifurcation configuration Bi
 (i=x, y, z), the compression force 

on two square central bodies of locked PLGs in the i-direction makes the module move 

in the LT path whilst the module tends to the EP path under torque if the PLGs is 

unlocked. 

 

 

Fig. 5-13 Control the bifurcated paths by the combination of force or torque applied to the 

square central bodies at the bifurcated points. 
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5.4 3D Metamaterials with Programmable Poisson’s Ratio 

If tessellating the module through translation and array in 3D space, periodic 

metamaterials in Fig. 5-14(a) can be created, whose properties are determined by the 

single module. In Fig. 5-14(b), this idea is demonstrated by a 2×2 tessellation of 

modules. The connection between modules is represented by orange solid lines, which 

is realized by quick-drying glue in the physical model. This 2×2 tessellation has the 

capability to continuously reconstruct between NPR (I-II-III), PPR (III-IV-V), and 

ZPR(V-VI) modes, relying on the modules switching between EC path, EP path, and 

LT path, as shown in Fig. 5-14(c). It is worth noting that the stage of the PPR behaviour 

of modules in LT path does not occur, due to physical interference between the square 

centre bodies of PLGs. The current tuneable range of Poisson’s ratios for periodic 

metamaterials, using bifurcations of the module, is [-1, +∞). However, its 

programmability is still very limited as theoretical results in Fig. 5-14 suggest that 

Poisson’s ratios in EC and EP paths are insensitive to variations in geometrical 

parameters /a b . 

 

 

Fig. 5-14 Periodic metamaterials with reconfigurability. (a) 3D metamaterial by tessellating 

multiple modules; (b) 2×2 tessellation, whose connection between modules is represented by 

orange solid lines; (c) the motion sequences of the physical model of a 2×2 tessellation, where I-

II-III is NPR mode, III-IV-V is PPR mode, V-VI is ZPR mode. 
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5.4.1 The Series Assembly with (mz+nz) Modules 

To enhance the programmability of metamaterials, a combinatorial design strategy 

is proposed, as shown in Fig. 5-15. Generally, under uniaxial tension F, PPR material 

tends to contract in the direction perpendicular to the applied load (Fig. 5-15(a)). In 

contrast, the NPR material elongates simultaneously along and perpendicular to the 

load directions when stretched. If the deformation of two neighbouring units in the 

loading direction is consistent all the time, the two units can be stacked together in the 

direction perpendicular to the applied load. This combinational rule can also be 

extended to 3D PPR material and NPR materials. Take two modules, one in the PPR 

state on the EP path, and one in the NPR state on the EC path (Fig. 5-15(b)). The 

dimensions of rotation PLGs are equal as long as their folding angle α is the same, 

which provides the possibility to connect two modules in EP and EC paths through the 

shared faces of four cube connectors (see orange lines in Fig. 5-15(b)). For ease of 

visualization, a green right square prism and a blue regular hexahedron with bumps and 

dents texture are used for connection to schematically represent the modules in PPR 

(state “1”) and NPR (state “0”) modes, respectively.  

 

 

Fig. 5-15 Schematic diagram of a two-module assembly with one in PPR state and one in NPR 

state. (a) Connection rules for two modules and their (b) visualizations. 

 

The series assembly with ( z zm n+ ) modules in Fig. 5-16(a) is then constructed, of 

which 
zm  modules in the PPR state and 

zn  modules in the NPR state. Each module is 

equipped with the ability to switch between the state “1” and “0” through their inherent 

kinematic bifurcations. Thus, this unique series assembly after fabrication, is expected 
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to be reconstructed into ones with arbitrary proportions and arrangement order of PPR 

and NPR modules. For example, if partial modules switch from the “1” state to the “0” 

state or vice versa without changing the total number of units, the proportion of NPR 

and PPR modules /z zn m  changes. As 
zm  and 

zn  are any non-negative whole number, 

/z zn m  could be any rational number within [0,  )+ .  

 

Fig. 5-16 The series assembly with ( z zm n+ ) modules. (a) Reconfiguration of module states to 

regulate   /z zn m  ( 1 1 2 2 3 3z z z z z zm n m n m n+ + += = ); (b) a series assembly of zm  PPR and zn  NPR 

modules with a/b=2 and its contour plot of Poisson’s ratio HB . 

 

The geometrical dimensions of the series assembly with (
z zm n+ ) modules are 

 = = 2 sin +2W B a a b+   (5-37) 

and 

 = ( 2 cos 2 ) ( 2 sin 2 )z zH m a a b n a a b + + + + +   (5-38) 

where 
zm  and 

zn  are the numbers of modules in PPR and NPR states, respectively, and 

β is the folding angle of the module in the EP path that varied in [0, π/4]. Therefore, 

Poisson’s ratios of the series assembly with ( z zm n+ ) modules are 

 
(1 2cos ) (1 2sin )+2 ( )

= =
( tan )( (1 2sin ) 2 )

z z z z
HB

z z

am an b m ndB H

dH B n m a b

 


 

+ + + +
−  −

− + +
  (5-39) 

and 

 -1BW =   (5-40) 

Notice that the combined design strategy introduces a new design parameter for 

the Poisson’s ratio, i.e., the proportion of NPR and PPR modules /z zn m  . Then, its 

analytical contour plot indicates Poisson’s ratio HB   of the series assembly with 

/ 2a b =  covering the entire design space (-∞, +∞) in Fig. 5-16(b) as reconfiguration of 

module states is a rapid and effective way to regulate /z zn m . Specifically, HB  keeps 
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negative during the whole folding motion if /  1z zn m  . Otherwise, 
HB  changes from 

a negative value to −  with   increasing, then switches to +∞ at ( )arctan /z zn m = , 

and finally reaches a positive value. The series assembly with different values of /z zn m

exhibits distinct but predictable mechanical properties, which provides a new paradigm 

for the programmability of Poisson’s ratio. 

Further, uniaxial tension experiments with series assemblies ( / 2,z zn m =

 / 1,  / 1/ 2z z z zn m n m= = ) was conducted. Theoretical analysis suggests that there may 

be a switchable Poisson’s ratio effect, which means that the height of the specimen may 

increase first and then decrease. Therefore, the vertical loading is changed to horizontal 

loading, and the new experimental setup is shown in Fig. 5-17(a). The specimen is 

suspended in the diagonal direction on a fixed frame. One end of the specimen is 

directly glued (solid orange lines) on the frame, and the other end is fixed on the slider 

located on the frame. The slider is connected with the fixture of the displacement control 

system by Kevlar ROPE tows (diameter = 0.3mm). The specimen was then tensioned 

with 160mm displacement and a loading rate of 0.5 mm s-1. The deformation process is 

captured by the same DIC system with Fig. 5-8.  

The comparative plot of theoretical and experimental results for two-module 

assembly with / 2a b =   and / 1z zn m =   are shown in Fig. 5-17(b). Similar to 

/ 1z zn m = , the results for three-module assembly with / 2z zn m =  in Fig. 5-17(c) show 

that Poisson’s ratio 
HB  remains negative and decreases with the deformation degree, 

while 
BW  fluctuates around -1. Then one of the PPR modules is reconstructed to NPR 

state to set / 1 / 2z zn m =  (Fig. 5-17(d)). The transition of 
HB  from -852.89 to 375.47 

is observed, while 
BW   remains close to -1. The natures and trends of mechanical 

response between theoretical and experimental results remain similar, as shown in Fig. 

5-17(b-d). However, the difference of values 
HB  grows prominent since the effect of 

gravity on deformation is more significant with the increase in the number of modules. 

5.4.2 Metamaterials with the 3D Tessellation of Modules 

The metamaterials can be further built in 3D space by tessellating multiple series 

assemblies. Two design schemes for 3D metamaterials are proposed as follows. 

Scheme I: identical series assemblies composed of 
zm  modules in the PPR state 

and zn   modules in the NPR state are parallelly and periodically tessellated (Fig. 

5-18(a)). There are i and j such columns in the x and y directions, respectively. Each 
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column’s Poisson’s ratios are identical. Therefore, the Poisson’s ratios of the whole 

metamaterial are the same as a single column, i.e., 
HB   can also be encoded by 

regulating the proportion of modules in PPR or NPR states according to Fig. 5-16, while 

BW  remains -1. 

Scheme II: series assemblies with (
x xm n+ ), ( y ym n+ ), and (

z zm n+ ) modules in 

x, y, z directions respectively are implanted to form the frame of a cuboid tessellation 

(Fig. 5-18(b)). Note that the corners are always NPR modules because their three 

common-point faces are used to connect the other three modules simultaneously, i.e., 

in  ≥2 (i=x, y, z). Therefore, /i in m   could be any rational number within 

[ ( )2 / 2 ,  im+ + ). The total number and proportion of modules in PPR or NPR states 

of series assemblies on parallel edges are identical, but the arrangement order of 

modules is not strictly limited.  

 

 

Fig. 5-17 Experiments and results of Poisson’s ratio test of series assemblies ( / 1,z zn m =

/ 2,  / 1/ 2z z z zn m n m= = ). (a) The uniaxial tension experimental setup for series assembly; (b-d) 

comparative plots of theoretical and experimental Poisson’s ratios of modules stacked in series 

with / 1,  / 2 and / 1/ 2z z z z z zn m n m n m= = = .  
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For scheme II, its analytical expressions for W, B, and H are 

 ( 2 cos ) ( 2 sin ) 2 ( )x x x xW m a a n a a b m n = + + + + +  (5-41) 

 ( 2 cos ) ( 2 sin ) 2 ( )y y y yB m a a n a a b m n = + + + + +  (5-42) 

 ( 2 cos ) ( 2 sin ) 2 ( )z z z zH m a a n a a b m n = + + + + +  (5-43) 

where ,x xm n  are numbers of PPR and NPR modules in the x direction, and ,y ym n  are 

numbers of PPR and NPR modules in the y direction, and ,z zm n  are numbers of PPR 

and NPR modules in the z direction. 

In this case, Poisson’s ratios 
HB  in the yoz plane and 

BW  in the xoy plane are  

 
( tan )( (1 2cos ) (1 2sin ) 2 ( ))

=
( tan )( (1 2cos ) (1 2sin ) 2 ( ))

y y z z z z

HB

z z y y y y

n m am an b m n

n m am an b m n

  


  

− + + + + +
−

− + + + + +
  (5-44) 

and 

 
( tan )( (1 2cos ) (1 2sin ) 2 ( ))

( tan )( (1 2cos ) (1 2sin ) 2 ( ))

x x y y y y

BW

y y x x x x

n m am an b m n

n m am an b m n

  

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− + + + + +
= −

− + + + + +
  (5-45) 

where [0,π / 4]  is the folding angle of the module in the EP path. 

Since Eq. (5-44) and Eq. (5-45) have similar forms, the focus here is mainly on 

Poisson’s ratios 
HB  in the yoz plane. For any negative Poisson’s ratio 

HB , it requires 

 
/ tan

0
/ tan

y y

z z

n m

n m





−


−
 (5-46) 

because H/B are always positive for all values of β. 

This requirement is reduced to two derivatives dB and dH have the same sign, i.e.,  

 / tan 0,  / tan 0y y z zn m n m −  −   (5-47) 

or 

 / tan 0,  / tan 0y y z zn m n m −  −   (5-48) 

We can get two sets of solutions from the above equations, i.e., 

 0 arctan(min( / ,  / ))y y z zn m n m   (5-49) 

or 

 arctan(max( / ,  / )) / 4y y z zn m n m     (5-50) 

Then, Poisson’s ratios HB  are positive for the other values of β∈[0, π/4], i.e.,  

 arctan(min( / ,  / )) arctan(max( / ,  / ))y y z z y y z zn m n m n m n m   (5-51) 
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Fig. 5-18 Metamaterials with 3D tessellation of mechanism modules. (a) Design scheme I, where 

each column consists of ( z zm n+ ) modules. (b) design scheme II of 3D metamaterials with 

( x xm n+ ), (
y ym n+ ), ( z zm n+ ) modules in x, y, z direction (c-d) The contour plots of HB  and BW  

for 3D metamaterials in scheme II as a function of /i in m  (i=x, y, z) when / 2a b = and   π / 6 = . 

 

Based on the above analysis, it can be inferred that the Poisson’s ratios of the 3D 

metamaterial in Fig. 5-18(b) can be programmed by regulating the combination ratios 

of PPR and NPR states on EP and EC paths in three directions, /i in m   (i=x, y, z), 

independent as well as the folding angle   related to the configuration. First of all, let 

us fix / 2a b =   and / 6 =   to see the effect of /i in m   on the Poisson’s ratios. For 

HB  , there are two boundaries (Fig. 5-18(c)), i.e., / tan  and / tany y z zn m n m = =  , 

which are the transitions of 
BW  between negative and positive, and divide the design 

space ( ,  − + ) into four regions. Poisson’s ratio HB  can be encoded as any negative 

values once /y yn m   and )/ 0,  ta( nz zn m   , or /z zn m   and )/ tan  ( ,z zn m  +  . 

Otherwise, HB   is positive. Apparently, /x xn m   and /y yn m   play the same role in the 

programming of 
BW , see Fig. 5-18(d). Moreover, /z zn m  and /x xn m  are independent 

variables of HB  and BW  as characterized in Eq. (5-44) and Eq. (5-45), implying that 

Poisson’s ratios HB  and 
BW  can be programmed independently. Meanwhile, similar 
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to the single module and series assemblies, the Poisson’s ratios of the whole 

metamaterial can be tuned by configurations described by folding angle  , and they 

are not insensitive to variations in geometrical parameters /a b .  

To demonstrate the programming on the characteristics of metamaterials’ 

Poisson’s ratios, let us take an example with ( 6x xm n+ = ), ( 5y ym n+ = ), ( 8z zm n+ = ) 

modules and / 2a b =   (Fig. 5-19). Every module except those eight on the cuboid 

corners can switch between the PPR and NPR states on EP and EC paths. Hence, there 

are a total 140 modes with distinct characteristics of Poisson’s ratios. In the extremal 

mode that all the modules in the tessellation are in NPR state, and the metamaterial will 

be of 3D negative Poisson’s ratios with -1HB BW = = .  

Let us take a random mode with / 2,  / 3 / 2,  / 1x x y y z zn m n m n m= = = (Fig. 5-19, 

mode I), the metamaterial is with 3D negative Poisson’s ratios as both 
HB  and 

BW  

decrease monotonically in negative values due to /  1i in m  (blue solid lines in Fig. 

5-19(b) and (c)). Then, two NPR modules in each x-direction series assembly are 

reconfigured to PPR state to set / 1 / 2x xn m =  while keeping   / 3/ 2,  / 1y y z zn m n m= =  

(mode II). It is observed that 
HB  is the same as that of mode I (the grey dash line 

coincides with the blue solid line in Fig. 5-19(b)), while 
BW  changes from negative to 

positive passing zero with the increasing folding angle β (grey dash line in Fig. 5-19(c)). 

Next, one NPR module in each y-direction series assembly is reconfigured to PPR state 

to set / 2 / 3y yn m =  while keeping / 1/ 2,  / 1x x z zn m n m= = (mode III), both 
HB  and 

BW  have experienced significant changes due to the change of /y yn m . It is noted that 

HB  increases from -0.71 to +∞ with  , while 
BW  first increases from -0.78 to +∞, 

then switches to -∞ at 33.69 =  , and finally reaches -1.63 (black solid lines in Fig. 

5-19(b) and (c)). Furthermore, if one set / 1/ 3z zn m =  by reconfiguring two NPR 

modules to PPR state and keep / 1/ 2,  / 2 / 3x x y yn m n m= = , 
HB  will decreases from -

1.86 to -∞ , then switches to +∞ at 18.42 =  , and finally reaches -0.41 (red dash line 

in Fig. 5-19(b)) due to the change of /z zn m  compared to mode III, while the value of 

BW   is the same with that in mode III as Poisson’s ratio BW  is independent of /z zn m

(the red dash line coincides with the black solid line in in Fig. 5-19(c)). These four 

modes present the typical characteristics of 3D Poisson’s ratios, i.e., both in-plane and 

out-plane negative ratios, one negative and one positive, or switching between the 

negative and positive several times during the deformation of metamaterials.  
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Fig. 5-19 The reconstruction of the metamaterial with ( 6x xm n+ = ), ( 5y ym n+ = ), ( 8z zm n+ = ) 

modules. (a) Bifurcation configurations in four typical modes and their Poisson’s ratios HB  in (b) 

and BW  in (c), where / 2,  / 3 / 2,  / 1x x y y z zn m n m n m= = =  in mode I, 

/ 1/ 2,  / 3 / 2,  / 1x x y y z zn m n m n m= = =  in mode II, / 1/ 2,  / 2 / 3,  / 1x x y y z zn m n m n m= = = in mode 

III, and / 1/ 2,  / 2 / 3,  / 1/ 3x x y y z zn m n m n m= = = in mode IV. 

5.5 A Family of Single DOF Reconfigurable Polygon Prisms 

Up to this point, the exposition has underscored the strides made in the 

advancement of single DOF reconfigurable modules formed by embedding multi-DOFs 

PLGs into a cube for use in metamaterials with tuneable programmable mechanical 

properties. Directing the focus back to the intricate process of constructing a Wohlhart 

cube, considerations are extended beyond the confines of a cube. Specifically, if 

ambition extends to the construction of not just a cube but also encompasses triangular 

prisms (N=3), rectangular prisms (N=4), pentagonal prisms (N=5), and hexagonal 

prisms (N=6), as delineated in section 4.4.2 of chapter 4, a distinct class of single DOF 

reconfigurable polygonal prisms can be derived, as visually depicted in Fig. 5-20.  
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Fig. 5-20 Construction of single DOF reconfigurable polygon prisms. 

 

Within these novel configurations, the PLGs embedded on the end faces consist of 

( )en N rigid links of side length 1ea b  and en -sided regular polygon characterized by 

the angle ( )2 π /e N N = −  and side length ea , where the subscript e indicates that the 

parameter pertains to a PLG on the end face. In contrast, the components attached to 

the lateral faces are always 4ln =  PLGs constructed with four identical rigid links of 

sides la  and 1b  attached to the square centre body where the subscript l  indicates that 

the parameter pertains to a PLG on the lateral face. Simultaneously, the connector 

undergoes a transformation, assuming the form of a panel resembling a kite. This 

distinctive panel is delineated by an angle e , two equal opposite angles measuring 
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90   each, and possesses a thickness 1b  , along with side lengths 1b   and 2b  

( 2 1 ( )tan π / 2 / 2eb b =  − ). 

To achieve the reconfiguration between expandable prism paths and elongated 

prism paths, as illustrated in Fig. 5-21, it is imperative that the maximum external circle 

size of the PLGs on end faces surpass or at least equal the diameter of the internal 

tangent circle formed by the PLGs on the lateral faces when fully unfolded in perfect 

symmetry. Conversely, for the reconfiguration between elongated prism paths and twist 

prism paths, a crucial stipulation is that the connection distance between two adjacent 

connectors in the fully folded configuration must align with both the length of the link 

and the side length of the polygon on the end faces, denoted as e . 

 

 

Fig. 5-21 The motion process of single DOF reconfigurable polygon prisms in expandable prism 

paths, elongated prism paths and twist prism paths. 

 

In cases where N=3 and 4, ensuring l ea a=  satisfies the reconfiguration conditions. 

However, for cases where N=5 and 6, additional panels, characterized by a thickness 

denoted as t, must be introduced to the kite shape with an angle e  along both sides to 

satisfy the first condition, following relationship: 

 sin(π / )( / sin(π / )) / 2 2 / 2e e l lN a a N a a t+ = + +  (5-52) 
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At the same time, the second condition is necessary: 

 2e la a t= +  (5-53) 

As a result, the culmination of these design considerations ensures that all 

polygonal prisms undergo continuous bifurcation between expandable prism paths, 

elongated prism paths, and twist prism paths seamlessly. This intrinsic kinematic 

bifurcation is accompanied by distinctive mechanical behaviours, namely NPR, PPR, 

and ZPR, as visually depicted in Fig. 5-21.  

5.6 Conclusions 

In this chapter, the kinematics of the Wohlhart cube were analysed, revealing three 

kinematic paths, EC, EP, and LT paths that intersect at bifurcation points, 

0B and B //B Bx y z  . Taking a single mechanism as the module, it can switch among 

distinct Poisson’s ratios, NPR, PPR, and ZPR under the EC, EP, and LT paths through 

the bifurcation. Hence, Poisson’s ratios can be tuned with the motion of the module but 

are not sensitive to the geometric parameters. Such module also exhibits tuneable 

chirality and stiffness along the different kinematic paths. Further studies found that 

modules in EC path with NPR state and that in EP path with PPR state can deform 

cooperatively due to compatible topological features, which provides a new paradigm 

to form a series assembly of the module, whose Poisson’s ratios can be programmed by 

regulating the proportion of modules in PPR or NPR states through the reconfiguration 

of each module between NPR and PPR states. Next taking this series assembly as a 

column, 3D metamaterials can be constructed by implanting the columns as the frame 

of a cuboid tessellation. Owing to the reconfigurability of the module, one can 

independently program the Poisson’s ratios in orthogonal planes within a wide range 

from -∞ to +∞ by adjusting the ratio of the number of modules in PPR and NPR states, 

which greatly enhances the flexibility in the design of 3D metamaterials with 

programmable Poisson’s ratios. Finally, the chapter is concluded with the development 

of a family of single DOF reconfigurable polygon prisms based on the Wohlhart cube, 

thereby establishing a comprehensive foundation for the subsequent exploration and 

application of these intriguing mechanisms.   
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 Final Remarks 

At the crossover of kinematics, structural engineering, mechanics, and materials, 

the design of single DOF reconfigurable zero-thickness origami, thick-panel ori-

kirigami, and modular origami with multi-shape reconfigurations is systematically 

investigated in this dissertation. The investigation is based on the theory of kinematic 

bifurcation from the perspectives of MV crease reconfiguration, transferable hinges, 

reconfigurable closed-loop spatial linkage and open-chain planar linkage, which serves 

as theoretical foundations and technical support for the development of large-

deformation mechanical metamaterials with tunability and programmability. The main 

achievements of this dissertation are summarized in this chapter, and opportunities for 

future work are highlighted. 

6.1 Main Achievements  

First, the challenge of searching for MV assignments that satisfy rigid foldability 

in large 2D origami tessellations or 3D cellular structures has been addressed by 

transforming the problem into a chessboard colouring problem and using programming 

language to solve it. The origami tessellation is initially divided into combinations of 

modular units, and the motion compatibility conditions for assemblies of spherical 

linkages are used to establish basic rules for the graphic representation of these modules. 

The DFS algorithm is then employed to systematically traverse the chessboard, seeking 

graphical solutions that adhere to the established rules, and translating them back into 

origami patterns with specific MV assignments. This method provides analytical value 

and precise assignments of MV creases while eliminating duplicate geometric 

configurations. The method has been demonstrated through a series of well-known 2D 

origami tessellations, including double corrugated tessellation, square twist pattern, 

generalised Mars pattern and so on. It has also been extended to 3D cellular origami 

structures. In this process, three types of oligo-modal origami tessellations that exhibit 

a constant number (≥2) of rigid MV assignments independent of tessellation size have 

identified. These types are the dual square twist, generalised Huffman pattern, and 

Helical pattern. Additionally, pluri-modal cellular origami is proposed, whose number 

of rigid MV assignments exponentially increases with tessellation size. The analysis of 

the theoretical and experimental results of mechanical properties shows that 
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NPR/ZPR/PPR can be achieved under large deformation by manipulating the MV 

assignments within a single origami structure. This research provides a strong 

theoretical foundation and technical support for the design of multifunctional structures 

based on mountain-valley crease reconfiguration. 

 

• Reconfigurable thick-panel ori-kirigami based on VTJs 

Inspired by the Jacob’s Ladder Toy, a design featuring VTJs has been proposed, 

enabling the redirection of the joint’s axis from the top or bottom panel surface to the 

side surface without increasing the DOF through kinematic bifurcation behaviour. An 

ori-kirigami unit was then constructed by replacing the four R joints in the origami 

vertices of a diamond thick-panel with VTJs. Kinematic analysis reveals that this single 

DOF unit with uniform thickness can transition between an origami, a kirigami, and 

three ori-kirigami motion branches through the manipulation of vertically transferable 

joints, thereby altering the underlying linkage type. Subsequently, the thick-panel ori-

kirigami unit and its horizontal mirrors were interconnected by R joints with axes in the 

thickness direction, while the basic unit and its vertical mirrors were linked by VTJs to 

create a 2×2 tessellation. By maintaining the axes of any transferable joints situated on 

the upper and lower surfaces of the panel, the uniform-thickness panels can be folded 

into a compact volume with no gaps in the origami branch. Conversely, by ensuring 

that the axes of all transfer hinges are located in the thickness direction, the uniform-

thickness panels can be deformed in-plane in the kirigami branch. If some joints are 

positioned on the top and bottom surfaces of the panel and others are located in the 

thickness direction, the uniform-thickness panels can assume multiple configurations 

in three ori-kirigami I-III branches. As the tessellation transitions between different 

motion branches, it demonstrates significant tunability in terms of deployable ratio 

(with a maximum deployable ratio of 24), Poisson’s ratio (ranging from anisotropic 

values varying from −∞ to +∞ to isotropic values of -1), and load-bearing capacity 

(ranging from 0.4 to 1567 times its own weight). This endeavour not only enhances the 

diversity of kirigami and ori-kirigami techniques but also paves the way for utilizing 

transferable joints to realize one DOF reconfigurable thick-panel structure with tunable 

properties. 
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• Tuneable metamaterials based on spatial 7R linkage in modular origami form 

A modular origami unit with a single-loop spatial 7R linkage with one DOF is first 

proposed. Its kinematic model is established, and the effects of geometrical parameters 

on the kinematic behaviours are systematically analyzed. The designed units can be 

intricately assembled back-to-back to create diverse one DOF reconfigurable modules, 

exhibiting significant symmetry changes. Experimental demonstrations showcase the 

active tuning and control of the shape and symmetry of these origami modules through 

the strategic activation of variable stiffness beams or air pockets. The investigation 

highlights the potential to realize various 2D discrete symmetry groups, encompassing 

ten point groups, seven line groups, and seventeen space groups (wallpaper groups), all 

within a unified design framework. Subsequently, a shoulder-to-shoulder assembly 

scheme for 7R units is proposed to construct another type of single DOF reconfigurable 

2D modules. Geometric dimensional variations induced by reconfiguration between 

different configurations are investigated based on a kinematic model. The effect on the 

sign of Poisson’s ratio is theoretically analyzed. Additionally, a variety of single DOF 

3D modules are formed by integrating the 2D modules on the faces of carefully selected 

polyhedrons. Theoretical analysis indicates that these proposed 3D modules can 

achieve purely negative, zero, or positive Poisson’s ratios due to the orthogonal 

decoupling behaviour arising from the kinematic bifurcation. Notably, the 3D module 

with a rectangular prism (N=4) contour is tuneable in all signs of in-plane and out-plane 

Poisson’s ratio. 

• 3D programmable metamaterials based on reconfigurable polyhedron 

modules 

A comprehensive analysis of the kinematics of the Wohlhart cube has been 

conducted based on closure equations for planar linkage groups under symmetry 

constraints, revealing three distinctive kinematic paths, EC, EP, and LT paths that insert 

as at bifurcation points, 0B and B /B /Bx y z . When considering a single mechanism as the 

module, it is demonstrated that the module can switch among distinct Poisson’s ratios 

(NPR, PPR, and ZPR) along the EC, EP, and LT paths through the bifurcation. Notably, 

Poisson’s ratios can be actively tuned with the folding ratio, yet is almost independent 

of the geometrical parameters. Furthermore, the module exhibits tunable chirality and 

stiffness along different kinematic paths. Subsequent investigations highlight that 
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modules following the EC path with the NPR state and those in the EP path with the 

PPR state can deform compatibly due to compatible topological features. This 

discovery introduces a novel paradigm for forming a series assembly of modules, where 

the Poisson’s ratios can be programmed by regulating the proportion of modules in PPR 

or NPR states through the reconfiguration of each module between NPR and PPR states. 

Building upon this concept, a series assembly is considered as a column, and 3D 

metamaterials are constructed by implanting these columns as the frame of a cuboid 

tessellation. Leveraging the reconfigurability of the module, it becomes possible to 

independently program the Poisson’s ratios in orthogonal planes over a wide range from 

-∞ to +∞. At last, reconfigurable polyhedron modules with NPR, ZPR, and PPR are 

extended from the Wohlhart cube to a series of single DOF reconfigurable polygon 

prisms. The metamaterials with switchable Poisson’s ratio, local and global chirality 

and tuneable stiffness in a wider tuneable range are of great application potentials in 

shape-morphing systems for various fields, such as flexible metamaterials, morphing 

architectures, bioengineering tissue and robotics. 

6.2 Future Work 

This dissertation is dedicated to explore the application of kinematic bifurcation 

to design single DOF origami structures with multiple shape reconfigurations, and to 

develop them into mechanical metamaterials with tuneable properties. To enhance the 

practical use of this type of metamaterial, several potential topics can be further 

explored. 

First, due to the rich reconfigurability, proposed method that combines graphic 

representation and motion compatibility conditions can discover unique homogeneous 

configurations in many zero-thickness origami structures, especially heterogeneous 

configurations that are hard to find by human heuristics, providing potential 

applications for reconfigurable metamaterials and deployable structures with 

multifunctional requirements. Thanks to the explicit solutions of the closure equation 

of spherical 4R linkage, proposed method can be highly useful when dealing with the 

reconfigurability of four-crease origami pattern. With the more profound analysis of the 

kinematics of spherical 5R and 6R linkages, it is believed that this method can be 

extended to origami structures with four-, five-, and six-crease mixed vertices, which is 

next target. 
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Second, in this work, a series of novel designs with thick-panel origami, kirigami 

and ori-kirigami motion branches are obtained by embedding transferable joints into a 

flat-foldable six-crease pattern. The design method is expected to be extended to flat-

foldable four-crease and even non-flat-foldable crease patterns and hybrid origami 

vertex patterns to construct novel origami structures. Among these deformation modes, 

the thick-panel ori-kirigami modes couple a global out-of-plane deformation with a 

local in-plane deformation, which is expected to induce fantastic mechanical properties. 

Hence, the hybrid network of planar-spherical-spatial linkages needs to be investigated 

in depth to explore the innovative design of such novel thick-panel ori-kirigami mode.  

In addition, non-periodic mechanical metamaterials exhibit excellent tunability 

and programmability for hybrid networks formed by different bifurcation 

configurations. A major challenge is how to accurately identify all possible 

configurations of reconfigurable networks of modular origami, and then establish the 

parametric analytical relationship between the unit cell’s configurations, network 

topologies and metamaterials’ properties, so as to lay the foundation for reverse 

designing the unit cell’s configurations and network topologies with the required 

properties. In addition, this dissertation presented a series of mechanical metamaterials 

with rich geometrical and shape variations, focusing on physical properties such as 

Poisson’s ratio, symmetry, stiffness, etc., caused by deformation mechanisms. In the 

future, a multidisciplinary cross-disciplinary approach can be carried out to study the 

essential correlation between these underlying geometry and shape changes, especially 

symmetry changes, and acoustics, electromagnetism, and topology[183–186]. 

Further, mechanical metamaterials based on kinematic bifurcation significantly 

reduce the complexity of control compared to multi-DOFs systems, but there are still 

challenges in cooperative control as well as bifurcation control in the face of mechanical 

metamaterials with small cell sizes and large numbers of unit cells. Employing smart 

materials to actuate hundreds or even thousands of hinges in metamaterials is clearly a 

potential but inefficient approach. The current exploratory study shows that the 

controllability of this type of metamaterials can be improved from the perspective of 

linkage and structure coupling design by adopting physical interference, instability, and 

other “mechanically intelligent” ways of designing the unit cells. At the same time, the 

“interference” property of smart materials in bifurcation control is enhanced while the 

actuation property is weakened, and the actuation position and actuation mode of 
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metamaterials are optimized, which is expected to realize efficient bifurcation control 

under simple mechanical load by combining mechanical intelligence and material 

intelligence. 

Finally, after solving the design and actuation of metamaterials based on kinematic 

bifurcation, a major problem is the processing and fabrication of such metamaterials. 

At present, 3D or 4D printing technology can effectively process three-dimensional 

complex structures, but its accuracy is limited and it cannot accurately process the cell 

at the micron and nanometre level. Most of the existing results belong to laboratory 

technology, and it is impossible to carry out large-scale and mass production and 

promotion in industrial manufacturing. Therefore, it is urgent to investigate the 

processing and manufacturing methods that can produce fine cellular metamaterials in 

large quantities for engineering applications.  
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Appendix 

A. The Prototypes Made up of Cardboard of 18 Typical Modules  
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Fig. A1 Prototypes and graphic representations of eighteen typical modules. 

 

B. Runtime of the Algorithm 

The runtime of the algorithm is provided in Fig. B1, performed on a Linux Ubuntu 

20.04 server with two Intel Xeon Silver 4310 2.10 GHz CPUs, 128GB memory. For the 

2D tessellation, the runtime of the algorithm for obtaining valid MV assignments 

increases from about 1×10-4s to 4.17s when the tessellation size is increased from 2×2 

to 10×10, and even with the removal of duplicate configurations, it takes only 4.48s. 

For a large 3D tessellation, e.g., 5×5×5 tessellations (contains 2×108 valid MV 

assignments), it takes about 43.17s to compute all MV assignments that satisfy rigid 

foldability and 2222.23s to remove duplicate configurations. These results fully 

demonstrate the efficiency of the proposed algorithm. 

 

 

Fig. B1 Runtime of the algorithm for (a) the n×n double corrugated pattern and (b) the m×n×p 

cellular origami structure. 
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C. All Unlocking Possibilities of VTJs in a Single Reconfigurable Ori-

Kirigami Unit 

 

 

Fig. C1 All unlocking possibilities of VTJs in a single reconfigurable ori-kirigami unit. (a) 

Linkage form of the thick-panel unit after the crease has been replaced by VTJs; (b) sixteen 

unlocking options, where case 1, case 3, case 6, case 8, case 14, and case 16 have global mobility. 

 

D. All 25 Configurations of the Origami Module with n=4. 

 

 

Fig. D1 All 25 Configurations of the origami module with n=4. 
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E. Analysis of the Degrees of Freedom of the Tessellations 

The results of the kinematic analysis in sections 4.2 and 4.3 show that the module 

is single DOF. The upper platform of the module is always located in the plane. Two 

rectangular panels in the same 7R unit make a relative translational motion along the V 

shape of angle  . Hence, each 7R unit can be regarded as a prismatic joint, then the 

2×2 tessellation of the modules with n=4 obtained in Fig. E1(a) left can be simplified 

as an equivalent mechanism with four prismatic joints donated by 1P  to 4P  as indicated 

in Fig. E1(a) right. Therefore, referring to the Grübler-Kutzbach criterion[187], DOF of 

the equivalent mechanism can be determined by DOF 1( )
g

i

i

d n g f= − − + , where d is 

given by the dimension of the displacement subgroup associated with the kinematic 

chain (d=2 for the mechanism with only prismatic joints), n is the number of rigid links, 

g is the number of kinematic pairs, and fi is the number of DOFs for the ith kinematic 

pair. Hence, DOF of planar 4P mechanism is DOF 2 4 4 2( )1 4= − − + = .  

 

 

Fig. E1 The schematic diagram of equivalent mechanism with prismatic joints for the 

tessellation of the modules with n=4. 

 

As the number of modules in the horizontal direction increases, another loop is 

formed, again creating a 4P ( 5P  to 8P ) mechanism. The middle modules connecting the 

two planar 4P mechanisms is single degree of freedom. Therefore, prismatic joints ( 9P  

to 10P ) can be added to form planar 3P mechanisms ( 2P , 5P , 9P , or 3P , 8P , 10P ,) with 

one DOF to represent this constraint, as shown in Fig. E1(b). Consequently, DOF of 

2×3 tessellation of the modules with n=4 is 2. Similarly, as the number of modules in 

https://www.sciencedirect.com/topics/engineering/prismatic-joint
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the vertical direction increases, the DOFs are maintained at 2, because two adjacent 

planar 4P mechanisms on the outer loop share a single DOF planar 3P mechanism. 

Overall, the DOFs of the tessellation of the modules with n=4 are constant 2. 

Using a similar approach, the DOF of the tessellation of the modules with n=6 is 

constant 1, since its equivalent mechanism with prismatic joints is and assembly of 

planar 3P mechanisms with one DOF, as indicated in Fig. E2. 

 

 

Fig. E2 The schematic diagram of equivalent mechanism with prismatic joints for the 

tessellation of the modules with n=6. 

 

F. Kinematic Paths When the Basic Unit Switches Between M1 and M3 

 

 

Fig. F1 Top view of kinematic paths of the 2D module with / 2,  90b a = =  when the basic 

unit switches between M1 and M3.  
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G. 27 Cases of 3D Modules with a Rectangular Prism (N=4) Contour 
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Fig. G1 33 27=  cases of 3D modules with a rectangular prism (N=4) contour. The marker at the 

top left of configurations, 
( ), ,

,  , , 1,  0,  and 1
x y z

C x y z = − , indicates that rectangular prisms in the x, 

y, z direction are positioned in “-1”, “0”, and “1” states and that the sign of the infinitesimal strains 

B , W , and H  strain is either negative, zero or positive. 
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H. Utilising Flexible Beam for Achieving Bistability 

The introduction of a flexible beam offers the potential for achieving bistability. 

As shown in Fig. H1(a), a 2D module with 
o

3 2 1/ 2, 90 , / 2b a t t t a= = = = =  and 

o45 = = in a back-to-back assembly is employed to exemplify this concept. In this 

case, the fully folded module exhibits bi-directional expansion along path I, even past 

the bifurcation point 1 π / 2 =  , ultimately reaching the end configuration where 

1π / 2 π  . In this fully unfolded configuration, the rectangular panels form multiple 

trapezoids with rigid sheets, granting the module load-bearing capacity (Fig. H1(b)).  

 

 

Fig. H1 Bi-stable module using flexible beam. a) Rigid unfolding process of the module; b) 

load-bearing state; (c) origami module containing flexible beams; (d) experimental setup; (e) 

experimental results of force-displacement curve; (f) recorded deformation processes. 

 

To implement bistability, the rigid sheets connecting the two platforms in the 

origami module are replaced with eight flexible beams (made of PET, t=0.2mm) A 

quasi-static test was conducted using a vertical testing machine (Instron 5982) with a 

transparent fixture (60mm displacement and a 0.5 mm s-1 loading rate), as depicted in 

 (c). The deformation process was recorded by cameras positioned above and in 

front of the setup. The recorded force-displacement response during folding and 

unfolding is displayed in Fig. H1(e), while corresponding recorded deformed 
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configurations presented in Fig. H1(f). In the initial phase, as the displacement 

increased, the beam started to bend, leading to a nearly linear increase in the recorded 

force from 0 N. As the displacement continued to increase, the beam began to rotate 

around the connecting edge with the panel, and the force started to decrease. When the 

two connecting edges of the beam approached a horizontal position, a snap-through was 

observed, resulting in a negative force (-2.4 N) and reaching the second stable state of 

the structure. Finally, the entire module was compacted, and the force began to increase 

dramatically as the distance decreased, with the load reverting its sign to positive. 

  



Doctoral Dissertation of Tianjin University 

172 

 

 

 



中文大摘要 

173 

 

中文大摘要 

机械超材料是一种人工设计的新型复合材料或结构，由于特殊的胞元几何

和空间排布，表现出自然材料所不具备的非常规机械特性。随着对超材料的深

入研究，机械超材料的发展经历了从基于固定拓扑几何结构的定性设计，逐渐

演变为在使用过程中通过拓扑的主动或被动变化对其性能进行调控和编程的阶

段。因此，涌现出一大批利用结构的形状变形来实现大变形机械超材料的可调

控性和可编程性的方法。在这些方法中，基于机构运动的机械超材料的变形模

式类似于底层机构的零能量运动，使得胞元间形变传递衰减较小，变形路径可

靠且易于建模，这对于实现可调控性和可编程性至关重要。 

刚性折纸是一类基于机构运动的折纸结构，通过沿预定折痕将二维材料折

叠成复杂的三维结构。在其成型过程中，变形仅发生在折痕区域，而主体板面

则不发生扭曲或拉伸等变形。刚性折纸为基于机构运动的大变形机械超材料设

计提供了一种新思路。刚性折纸的运动学模型主要是球面机构及其网格，虽然

具有明确的几何参数与机械性能的理论模型关系，但其变形模式相对单一。包

括纯剪纸与折剪一体的剪纸技术通过引入剪痕突破了机构胞元球面几何的束缚，

使得其设计更加灵活。模块化折纸结构作为折纸领域的生力军，与折纸与剪纸

不同，它允许粘接并具有无穷的设计空间和丰富的变形模式。然而，针对单一

结构的多变形模式机械超材料，现有的折纸设计缺乏底层机构理论指导，导致

超材料的胞元要么形状变化不显著，要么是需要相对复杂控制的多自由度系统。 

除了多自由度，实现多构型重构的另一种机构学方法是运动分岔，它指的

是多条运动路径的交点。运动学分岔与多自由度系统的不同之处在于，前者只

能在分岔点的运动路径之间切换。一旦通过该点，后续运动就由选定的路径决

定。因此，具有运动学分岔能力的单自由度折纸结构使其成为设计具有可调性

能的大变形超材料的理想选择。除了特殊拓扑的胞元结构，胞元间的连接方式

对超材料的大变形行为也有着决定性的作用。因此，可以借鉴机构组网的研究

成果，根据胞元的变形特征，利用平面、球面、与空间机构的混合机构网格研

究不同分叉构型之间的几何与运动协调性，以保持和协调胞元的运动变形与重

构特征，从而利用超材料可靠的、可重构的大变形来实现性能的可调控性可编

程性。 

综上所述，机械超材料在构建过程中面临的一大难题是可调控和可编程性

性。尽管基于机构运动的折纸结构在设计空间、变形能力、性能调控范围等方
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面的优势明显，但在具有多变形模式的单自由度结构设计、以及性能调控和编

程策略方面，仍然缺少系统的研究方法。 

本文基于可重构机构的设计方法与组网原理，旨在利用机构的运动分岔来

实现多形状重构的单自由度折纸结构的创新设计，以期发展为具有可调和可编

程性能的机械超材料。本文首先以零厚度四折折痕纸图案为研究对象，提出了

一种结合机构运动协调条件和图形表示的通用算法，在大型 2D 和 3D 折纸镶嵌

中精准辨识所有满足刚性可折叠性的山谷线分布方案并去除重复构型。其次，

基于可垂直转移铰链技术，设计了具有折纸、纯剪纸、折-剪纸变形模式的单自

由度可重构厚板结构。接着，设计了基于单环路空间 7R 机构的模块化折纸单元，

提出两种单元装配方案，形成了两套单自由度折纸模块，并分别发展为可实现

所有晶体学平面对称群和可定制泊松比符号的可重构 2D 和 3D 超材料。最后，

研究了开环平面连杆组的运动学为行为，揭示了单自由度立方体模块在运动分

叉过程中伴随着的可调的泊松比、手性以及刚度等特性。还提出了组合设计策

略，以增强 3D超材料的泊松比的可编程性。本文的工作主要包括如下四个部分： 

• 四折痕折纸及其镶嵌的山谷线重构 

在本文第二章中，将在大型二维折纸镶嵌或三维蜂窝结构中寻找所有满足

刚性可折叠性的山谷线分布方案转化为棋盘着色问题，并使用编程语言进行求

解，解决了这一难题。首先，采用模块化思想，将折纸镶嵌划分为由基本模块

和连接模块组成的棋盘格。随后，利用球面 4R 机构网格的运动协调条件，建立

这些模块图形与矩阵的表达形式。最后，利用深度优先算法系统地遍历棋盘，

寻找符合既定规则的图形方案，并最终将其转换为具有特定折痕图的折纸图案。

这种方法不仅精确提供了的所有满足刚性可折叠性的山谷线分布方案，还利用

图案的对称性消除了大量重复的几何构型。所提出的方法通过一系列著名的二

维折纸镶嵌（包括 double corrugated 图案，square twist 图案，generalised Mars 图

案等）得到验证，并进一步扩展到三维蜂窝折纸结构。在研究过程中，发现了

三种类型的寡模态折纸图案，即 dual square twist 图案， generalised Huffman 图

和 Helical 图案，其特点是山谷线分布数量（≥2）与镶嵌大小无关，设计了山谷

线分布数量随镶嵌大小呈指数增长的多模式蜂窝折纸结构。其理论分析和实验

结果表明，可以通过操纵单个零厚度折纸结构中的山谷线分布，实现在大变形

下的负、零和正的面内泊松比可调。 

第二章工作为基于山谷线重构原理的多功能结构设计提供了理论基础与技

术支撑。 

• 基于可转移铰链的可重构厚板剪纸 
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针对工程折展结构的厚度不能忽略、多模式折叠过程中存在严重的物理干

涉等问题，第三章从可重构铰链的视角，提出了具有厚板折纸、剪纸、折-剪纸

模式的单自由度可重构厚板剪纸结构。 

首先，受 Jacob’s Ladder Toy 的启发，提出了垂直转移铰链。该可重构铰链

通过运动分叉行为，能够改变铰链的轴线方向而不增加系统的自由度。然后，

将 diamond 厚板折纸顶点中的四个普通旋转铰链替换为垂直转移铰链，构造了

一个可重构剪纸单元。该可重构单元具有厚板折纸、剪纸、折-剪纸等五条运动

分支。接着，通过求解可重构单元在不同运动分支下对应的机构的闭环方程，

分析了设计参数对折叠行为的影响。通过轴线位于厚度方向的旋转铰链连接基

本单元及其水平镜像，同时用垂直转移铰链连接基本单元及其垂直镜像，构造

了具有单自由度特性的 2×2 镶嵌。当可重构单元中垂直转移铰链在展平构型下

的全部解锁为位于面板的上下表面时，表现为厚板折纸模式，其镶嵌从具有均

匀厚度的方形面板折叠为紧密无缝隙的一摞。当可重构单元中垂直转移铰链在

展平构型下的全部解锁为位于面板的厚度方向时，表现为剪纸模式，方形面板

其镶嵌可在面内打开。当可重构单元中垂直转移铰链在展平构型下部分解锁为

位于面板的厚度方向，部分解锁为位于面板的上下表面时，表现为三种厚板折-

剪纸模式镶嵌，同时产生面内和面外变形。折纸镶嵌在不同运动分支重构时，

均存在面内负泊松比。最有趣的是剪纸分支，该镶嵌存在两级变形。在第一级

变形过程中的泊松比是各向异性的，而当其进入第二级变形时，泊松比是各向

同性的-1。此外，还考虑了当折纸镶嵌进入不同的运动分支时，折展比的变化。

以平板构型为参考，折纸模式折叠后的截面投影为原来的 1/8，剪纸模式模式可

以展开到原来的 3 倍投影面积，整个结构的整体折展比可以达到 1/24。还研究

了五个运动分支完全折叠或完全展开构型下的承载能力，实验结果表明折纸运

动分支下的紧密折叠行为使得三个方向均能承载，45 克的卡纸模型能够承受

705N 的载荷，实现了 1567 倍自重的高承载能力，剪纸运动分支在展开构型下

两个方向均表现为易折叠的状态。同时折-剪纸分支 I 在展开构型下的自锁行为

使三个方向的承载能力分别达到 86，74，274 倍自重的承载，并且这种承载能

力还被折-剪纸分支 III 的面接触自锁构型得到显著增强。 

第三章所提出的设计方法不仅适用于构造多变形模式厚板结构，而且为从

机构学的角度深入理解折纸、剪纸、折-剪纸结构的折叠变形奠定了基础。 

• 基于单环路空间 7R 机构的性能可调超材料 

第三章的可重构厚板剪纸研究表明机构的运动分叉是实现折纸多构型变化、

超材料性能大范围可调的关键。因此，第四章将具有运动分叉的能力的连杆机
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构设计成构型更规则、参数更丰富，功能更强大模块化折纸，并发展为超材料。 

首先，提出了一种单环路的空间单自由度 7R 机构的模块化折纸单元。建立

了其运动学模型，系统分析了几何参数对该基本单元的运动分支的数量、区间，

构型演变规律，和物理干涉等运动学行为的影响。运动学分析结果表明，该 7R

单元可能存在 M1-M4 共 4 种典型的运动模式，且在 M1 和 M2 运动模式之间分

叉时，形状和对称性会发生明显变化。其次，以折叠后形成紧密的 n 多边形为

目标，将 n 个 7R 单元按照背靠背的方式装配在一起，并通过额外的连杆形成的

单环路约束，确保整个模块仍然具有一个自由度。通过合理设计几何参数，使

得每个单元在模块中仍然具有在 M1 和 M2 运动模式之间分叉的能力。系统地分

析了 2D 模块重构过程引起的面内对称性变化，其中 n=4 的模块和 n=6 的模块的

对称性变化涵盖了全部 10 个晶体学平面点群。接着，构造了模块的线性镶嵌和

平面镶嵌，其中 n=4 的模块的线性镶嵌可以实现全部 7 个晶体学平面线群，而

n=4和 n=6的模块的平面镶嵌涵盖了全部 17个晶体学平面空间群（壁纸组）。根

据模块的变形特点，提出了一种基于变刚度智能材料的对称性主动控制方法。

将模块中连接上下平台的八根梁用变刚度材料替代，然后通过电流独立地编码

控制变刚度梁处于“软”或“硬”状态，从而使整个模块在单轴压缩载荷下自

动的变形到所需的对称性构型。还提出了响应速度更快的气动控制方案。在单

个模块的四个关节处安装 8 个气囊，利用气囊通气变直效应，选择性的激活不

同的气囊，可以在 2秒内将模块及其镶嵌调控到所需的对称性构型。此外，将 n

个 7R 单元按照肩并肩的方式装配在一起，形成了一套新的单自由度 2D 模块。

基于运动学模型的变形分析结果表明，所有的模块都存在解耦的运动分叉行为，

其中 n=4 的 2D 模块表现出面内的负、零和正泊松比。将 n=3, 4, 5, 6 的 2D 模块

分别嵌入到正三、四、五、六棱柱的上下面，并用 n=4 的模块嵌入侧面，从而

构造出了一类能在负、零、正泊松比模式之间重构 3D多面体模块。其中立方体

模块存在 27 种分叉构型，涵盖了正交平面上所有的泊松比符号组合的可能性。 

第四章基于单环路空间 7R机构设计的两套单自由度机构模块及其构造的 2D

和 3D可调超材料实现了晶体学平面对称群和泊松比符号的全覆盖，充分展示了

从机构运动分叉角度设计性能可调的模块化折纸超材料的先进性。 

• 基于可重构多面体机构模块的三维可编程超材料 

与第四章的单环路机构相比，采用多面体布局的多环路过约束多面体机构

具有更规则的形状和更简单的组网方式，有望直接用作 3D模块化折纸超材料的

构建模块。第五章研究了嵌入多自由度平面连杆组而构建的单自由度 Wohlhart 

立方体的运动学行为，并发展为具有性能可大范围调控和编程的机械超材料。 
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首先，建立了开环平面连杆组在对称性约束下的运动学模型，推导了其闭

环方程以揭示了运动过程中存在的分叉现象。以不同分叉构型下的平面连杆组

为组件，协调地嵌入多面体的表面以重新构造 Wohlhart 立方体。发现单自由度

的 Wohlhart 立方体可以通过固有的运动学分岔在可膨胀立方体、拉长棱柱和锁

定的扭转路径之间连续重构。通过理论分析和实验结果共同证明了在分叉过程

中伴随着的负泊松比、正泊松比和零泊松比行为。还研究了在分叉过程中伴随

着的局部和整体手性，可调控的刚度，以及介绍了位移控制和力（扭矩）控制

两种潜在的模块分叉控制方案。接着，将多面体模块在三维空间内通过平移、

镜像、阵列等方式装配，构建了周期性的 3D超材料，能够通过运动分叉在负泊

松比、正泊松比和零泊松比模式之间连续切换。然而，它的可编程性仍然非常

有限，因为理论分析的结果表明泊松比对几何参数的变化不敏感。为增强超材

料的泊松比可编程性，基于几何与运动协调性提出了一种组合设计策略；取两

个模块，一个在拉长棱柱路径上处于正泊松比状态，一个在可膨胀立方体路径

上处于负泊松比状态，通过共用相邻面的方式连接在一起形成柱状装配体。利

然后用模块固有的运动学分岔能力，主动地调控柱状装配体中正泊松比和负泊

松比状态下的模块的比例。理论分析和实验结果表明，具有不同正泊松比和负

泊松比状态下的模块比值的柱状装配体表现出可编程的机械性能，为泊松比的

可调性提供了新的范式。混有正泊松比和负泊松比状态下模块的柱状装配体既

可以以周期性的方式继续组装，又可以在正交方向上组装成非周期超材料。这

种基于机构胞元协调运动的非周期性的 3D超材料将原来的周期性结构的泊松比

的设计空间从(-1,+∞)拓宽到了(-∞,+∞)。且正交方向上的泊松比
HB 和

BW 具有

和正泊松比和负泊松比状态下的模块比值相关的独立设计变量。因此通过重新

配置各个方向上模块在正泊松比或负泊松比状态下的比例，首次实现了超材料

在正交平面上的泊松比独立编程。最后，将伴随负、正、零泊松比模式的可重

构模块从 Wohlhart 立方体推广到了一类单自由度的可重构棱柱结构。 

第五章的工作为从基于运动分叉的可重构机构的角度探寻可编程超材料的

胞元创新设计和空间排布，以及通过重构的手段实现性能的编程开辟了新道路。 

• 总结与展望 

本文在机构学、结构工程、力学和材料等学科的交叉领域，系统研究了机

构分岔理论指导设计具有多形状变化能力的单自由度可重构模块化折纸的方法，

为发展具有可编程性和可调控性的大变形机械超材料及其工程应用提供理论基

础与技术支撑。 

由于时间与精力有限，未来本文的工作还可以在如下几方面进行深入研究： 
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(1) 结合运动协条件和图形表示的通用算法，可以进一步在具有丰富构型的

可重构折纸结构中发现独特的均质构型，并通过编程语言发现人力难以企及的

异质构型，这为设计和分析具有复杂机械特性的异质超材料提供了一种新思路。 

(2) 将转移铰链嵌入可平折四折痕甚至是不可平折的厚板单元以及混合四、

六折痕顶点的折纸图案中，有望构造新颖的可重构剪纸结构。深入研究混合平

面-球面-空间机构的网络，有助于折剪一体折纸和模块化折纸模式的创新设计。 

(3) 研究表明多自由度机构形成的单自由度机构网格表现出丰富的构型变化，

解决如何系统地用多自由度的机构单元构造单自由度的机构网格这一机构学难

题不仅可以实现多模式变形结构的创新设计，还有望带来物理性能的突破。 

(4) 基于不同分叉构型形成的混合机构网格的超材料表现出优异的可调性与

可编程性。当前的一大挑战是如何精准识别模块化折纸所有运动分支，然后建

立胞元构型、网格拓扑与超材料性能之间的参数化解析关系，为所需性能逆向

设计胞元几何构型与网格拓扑奠定基础，实现超材料性能调控的飞跃性突破。 

(5) 本文提出的一系列具有丰富的几何、形状变化的机械超材料，重点关注

变形引起的泊松比、对称性、刚度等物理性能的变化。这些机械超材料所具备

的复杂空间几何关系、多样的变形模式以及折叠诱发的全局强非线性本构关系，

为动力学研究带来了诸多新挑战和机遇。未来将加强对机械超材料折叠诱发的

动力学行为、包括双稳态和多稳态动力学行为的深入分析。同时，开展多学科

交叉的方式研究这些底层几何和形状变化尤其是对称性变化与电磁学、声学、

拓扑学的本质关联。 

(6) 最后，基于机构运动分叉的机械超材料同多自由度系统相比，虽然显著

降低了控制的复杂性，但面对胞元尺寸小、数量多的机械超材料，仍然存在协

同控制以及分叉控制方面的挑战。目前的探索性研究表明，可以从机构-结构耦

合设计的角度，采用物理干涉、稳态跳转等“机械智能”的方式设计机构胞元，

提高该类超材料的可控性；同时增强智能材料在分叉控制中的“干扰”属性而

弱化驱动属性，优化超材料的驱动位置和与驱动方式，结合“机械智能+材料智

能”的方式有望实现在简单机械载荷下的高效分叉控制。解决了大变形超材料

的设计与驱动之后，迎面而来的一大难题是大批量生产这类超材料的制造方法

与加工工艺。 

关键词：分叉可重构机构，折纸超材料，零厚度折纸，厚板折-剪纸，模块化

折纸 
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