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ABSTRACT

Kinematic-based origami structure, with its flexible design space, powerful
deformation capability, and wide range of property tunability, plays a crucial role in
designing large deformation mechanical metamaterials. However, existing studies on
origami metamaterials have not yet developed systematic approaches in terms of single
degree-of-freedom (DOF) structures with multiple deformation modes and property
tuning strategies. In this dissertation, a series of innovative designs of single DOF
reconfigurable origami, including zero-thickness origami, thick-panel ori-kirigami, and
modular origami, are proposed to analyse the property tunability of metamaterials. The
highlights of this dissertation are as follows.

Firstly, a straightforward algorithm that combines motion compatibility conditions
and graphic representation is developed to accurately assess the mountain-valley (MV)
crease reconfiguration and obtain duplicate configurations in origami structures with 4-
crease vertices and their tessellations. The analysis has revealed three types of two-
dimensional (2D) oligo-modal origami tessellations characterised by a consistent
number of MV assignments independent of tessellation size. A three-dimensional (3D)
pluri-modal cellular origami structure is proposed that exhibits in-plane negative, zero
and positive Poisson's ratios (NPR/ZPR/PPR) through MV crease reconfiguration.

Secondly, by embedding vertically transferable joints (VTJ) into the thick-panel
structure, a single DOF reconfigurable ori-kirigami unit and its tessellations integrating
origami, kirigami, and ori-kirigami motion branches are designed. Explicit solutions of
the closure equations of the assemblies are derived to analyse the effects of the design
parameters on the kinematic behaviour of the reconfigurable unit, thus enabling a single
mechanical metamaterial to combine the properties of anisotropic or isotropic NPR,
large deployable ratio, and multiple load-bearing capacity.

Thirdly, a single closed-loop spatial seven-revolute (7R) linkage in modular
origami form is proposed. The effects of geometric parameters on the kinematic
bifurcation behaviour of this basic unit are systematically analysed. According to the
kinematic bifurcation behaviour of the 7R unit, two types of single DOF reconfigurable
2D modules are constructed. A back-to-back assembly of the modules and their
tessellations 1s employed to realise tunability in all crystallographic planar symmetry

groups under variable stiffness materials or pneumatic actuation. It’s also found that 2D



modules in shoulder-to-shoulder assembly and their constructed 3D prismatic structures
exhibit in-plane NPR, ZPR and PPR, and even arbitrary in-plane and out-of-plane
Poisson’s ratio signs.

Finally, the bifurcation behaviour of an open-chain planar linkage group (PLG) in
a single DOF modular cube under symmetry constraints is analysed, revealing the
tuneable Poisson’s ratio, chirality, and stiffness that accompany the kinematic
bifurcation of this reconfigurable 3D module. To enhance the programmability of
metamaterials, a combinatorial design strategy is proposed, i.e., mixing modules with
PPR and ZPR, based on geometric and kinematic compatibility. The reconfigurability
of the modules is utilized to achieve independent programming of Poisson’s ratio in the
orthogonal plane of the metamaterial over a wide range from —oo to +o. At last, a class
of single DOF reconfigurable prismatic structures with NPR, ZPR, and PPR are
developed inspired by the modular cube.

In summary, the design method of single DOF reconfigurable origami with multi-
shape change capability, directed by kinematic bifurcation theory, is systematically
studied in this dissertation, thus providing the theoretical foundation and technical
support for developing large deformation mechanical metamaterials with tunability and

programmability as well as their engineering applications.

KEY WORDS: Reconfigurable linkage with bifurcation behaviour; Origami
metamaterial; Zero-thickness origami; Thick-panel ori-kirigami; Modular origami
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background and Significance

Metamaterials refer to a class of functional materials with artificially designed
periodic or non-periodic microstructures that exhibit extraordinary physical properties
beyond those of natural materials!!l. Recognized as a ground-breaking scientific
advancement, metamaterials were acknowledged in Science as one of the ten most
significant scientific advancements of the first decade of the 21st century, classified as
one of the "Six Areas of Disruptive Basic Research" by the US Department of Defense,
and listed in China’s 13th Five-Year Plan for the Development of National Strategic
Emerging Industries!?. Mechanical metamaterials'®“l, a frontier branch in metamaterial
research, refer to structures with negative/zero properties such as negative/zero
Poisson’s ratio®8l, stiffness!”®l, and thermal expansion[g'lo], and ultra-properties, such
as ultra-stiffness!*¥, ultra-light!*?, as well as structures with vanishing shear modulus*®l,
and so on. Nowadays, mechanical metamaterials have also evolved into information
processing and logical computing capabilities!***®]. Generally, these unique properties
of metamaterials are derived from the geometry and spatial tessellation of cell
microstructure rather than material composition. Therefore, it is critical to rationally
design microstructure and spatial arrangement of unit cells to achieve unprecedented
physical properties. Despite the strides made, traditional mechanical metamaterials
confront three significant limitations: a narrow strain range, non-tuneable mechanical
behaviours, and fixed properties after fabrication®. The prevailing trend in
metamaterial research has transitioned towards multifunctionality and high adaptability,
necessitating tuneability, i.e., enabling the adjustment of material properties through
either active or passive deformation control, and programmability, where the
mechanical property is a function of controllable parameters, e.g., geometric parameters,
boundary conditions, and topological configurations?°!.

Origami, an ancient art of folding paper that originated in China and flourished in
Japan, transforms 2D sheet materials into complex 3D structures along predefined
crease patterns/?!l. Evolved beyond traditional constraints, modern origami techniques
have progressed from the pure fold (Fig. 1-1(a)), which involves the use of a single
sheet of paper without cutting or bonding, to the realms of kirigami (including cut-only

kirigami and ori-kirigami) (Fig. 1-1(b)), which introduces cuts, and modular origami
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(Fig. 1-1(c)), where multiple sheets can be cut and bonded. Despite the art’s rich
aesthetic history, the combination of modern origami structure and modern science and
technology extends far beyond the art itself and now has inspired a wide range of
applications in aerospacel??, architecturel?®l, transportation!?, flexible electronics?®l,
energy absorption?®l gripper?”, medical manipulator %81 and even virtual reality
devicel®, as shown in Fig. 1-2. Due to their flexible design space, reliable large
deformations, reconfigurable topology, and scale-free properties, kinematics-
dominated rigid origami structures play a significant role in the design of mechanical
metamaterials with tuneability!®! and programmability®*?. However, the current
works mainly focus on origami metamaterials that deform along a single motion path.
Despite attempts to enhance programmability by exploring reconfigurable
metamaterials with multiple kinematic paths through origami, kirigami, and modular
origami techniques, these endeavours turn out to be typically either a limited number
of configurations with insignificant shape changes or with multi-DOFs, resulting in an
unreliable and challenging controllable deformation process. Due to the lack of
guidance from the underlying mechanism, the designs of reconfigurable metamaterial
with multi-pathway but one DOF are rare. Differing from a multi-DOFs system,
kinematic bifurcation refers to a critical point in a mechanical system at which the
system transitions from one reliable kinematic path to another requiring minimal
external intervention. Therefore, a single DOF system with kinematic bifurcation
capabilities is an excellent candidate for designing reconfigurable metamaterials, since
it can be deformed into various configurations while also having a predefined and

reliable path.

Fig. 1-1 Artworks for origami, kirigami, and modular origami. (a) An origami crane folded from
a sheet of paperl®l; (b) a kirigami tower, RES Octagon Star!®, involves cuts in a sheet of paper;

(c) a modular origami toy, Snapology!®®], created by multiple sheets of paper.
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This dissertation is focused on the rational design of mechanical metamaterials
with large deformation from the perspective of single DOF reconfigurable linkage in
the form of origami, which enables the metamaterials to be equipped with the ability to
tune their mechanical behaviours without redesigning or reassembling the architecture.
It is of great scientific and engineering significance to expand the variety of origami
structures, to guide the development of tuneable metamaterials, and to promote the
application of reconfigurable mechanisms in shape-morphing systems, such as flexible

metamaterials, morphing architectures, and deployable structures.

External
force

Pivotal point

Fig. 1-2 Origami engineering. (a) An origami-based deployable solar array [%; (b) the metre-
scale inflatable shelter?]; (c) high-load capacity origami transformable wheel[24]; (d) curved
display [?1; (e) energy absorption structure with a kirigami-inspired pyramid foldcorel?®l; (f)

origami soft gripper!?”l; (g) kirigami-inspired miniature manipulator for teleoperated
microsurgery!?®l; (h) active mechanical haptics for immersive virtual reality based on curved

origami®; (i) modular origami-based mechanical metamaterials with static non-reciprocity!®el,
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1.2 Review of Previous Works
1.2.1 Origami Kinematics

Kinematics deals with the relationship between input and output motions in terms
of position, velocity and acceleration within the mechanical system, which refers to an
assembly of bodies connected by joints with a specific topological structuref®’]. The
creases and components in rigid origami form can be modelled as revolute joints and
links of the linkage form. So, an origami structure consisting of pieces of paper or
origami blocks is a mechanism!®. Compared to geometric methods®*® and numerical
algorithms[**#!, kinematic theories show significant advances when applied to quickly
assess rigid foldability, accurately describe the folding and unfolding process, and
innovatively create origami designs.

Origami studies undoubtedly begin with the predefined crease pattern. For zero-
thickness origami, the best-known rigid vertex with four creases meeting at one point
is kinematically a spherical 4R linkage with one DOF*2%%l as shown in Fig. 1-3(a).
Similarly, when six creases meet at one vertex, it forms a spherical 6R linkage with
three DOFsl . Additionally, a rigid pattern comprising multiple origami vertices can
be viewed as a mobile network of spherical linkages*®l, as shown in Fig. 1-3(b). A
closed-loop pattern is considered rigidly foldable only if the motion transmitted through
the creases returns to its input position, which also serves as the compatibility condition

for the corresponding linkage form.

(a) (b)

Fig. 1-3 Linkage forms of zero-thickness origami vertices and their tessellations. (a) Four-crease
vertex with zero thickness and corresponding spherical 4R linkagel*?; (b) origami pattern with

multiple four-crease vertices and corresponding mobile network of spherical linkages[*].
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In this case, the folding behaviours can be analysed using the matrix method based
on the Denavit-Hartenberg (D-H) notation[*®l. For spherical linkages consisting of n
links, the lengths &,,,,, and offsets R; of each link are zero since the axes cross at a

single point. As a result, the closure equation can be expressed as

Q,1Qs--Qyy =15 (1-1)

where 1, represents the 3X3 identity matrix, and when i+1>n, it is replaced by 1,
and the transformation matrix Q;,;,; between the coordinate systems at joints i+1 and i
is

Cosf, —COSe;,,SiNG,  sing;,,, sing,

Q(m)i =|sing  cos @ i.1) COS 6, —sin Q1) COS 6, (1-2)
0 SIN &) COS ;.1
and
cos sin @, 0
Qi(i+1) = Q(_i}rl)i =| ~C0S &,y sing,  cos @j(iq) COS ¢ sin i(iv) (1-3)

sing;,, SiNG, —sing;,,) COS6,  COSe;,,

Here, o, is the twist angle from axes z; to z;,; positively about axes X;,; and 0. is
the angle from X; to X,, along the positive direction of Z;. The explicit function
between the input angle 6, and the output angle €., can be derived from Eq. (1-1).

Meanwhile, origami is no longer limited to zero-thickness sheets*24547-4%1 The
thickness of various rigid materials cannot be disregarded, and related engineering
applications have plagued their folding and unfolding problems. Most structures
involving thick panels are derived from conventional origami, initially based on the
zero-thickness model. Hinges are translated to the top and bottom surfaces of the thick
panels, thereby constructing thick-panel origami by connecting adjacent thick panels*’].
The thick-panel form’s four-crease, five-crease, and six-crease vertices can be modelled
as spatial overconstrained 4R, 5R and 6R linkages!*’], respectively. Taking the thick-
panel form of the Miure-ori in Fig. 1-4 as an example, it leads to assemblies of Bennett
4R linkages with identical link lengthstl.

In this case, the folding kinematic behaviours of the entire the thick panel origami
structure can be described by the closure equation for a single close-loop spatial linkage

consisting of n links, i.e.,
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T21T32-"T1n = |4 (1-4)

where

Cosf, —COSay,,,SinG  sing,sing @, CosE,
_|sin@  cosa,,y COSE  —SiNgy;, COSH &,y SING
L sina gy, COS R

0 0 0 1

(1-5)

Since the panels must be adjusted to accommodate thickness, most existing
solutions to deployable thick panel structures have uneven surfaces in the fully unfolded
state. Zhang and Chen proposed a uniform-thickness panel form of a six-crease pattern,
i.e., diamond thick-panel™® from the mobile assembly of plane-symmetric Bricard 6R
linkages. By introducing the cuts, Yang et al. constructed a uniform-thickness panel
form of the Miura-ori fold with single DOF, which can be folded from a flat array to
compact bundles without any voids®%, kinematically is an assembly of 8R closed chains.
The matrix method proved to be a powerful tool for the design and analysis of these

zero-thickness and thick-panel origami structures.

Fig. 1-4 Linkage forms of thick-panel origami vertices and their tessellations[*’]. (a) The Miura-
ori vertex in thick-panel form and corresponding Bennett 4R linkage; (b) the Miura-ori pattern and

corresponding mobile network of spatial linkages.

For relatively simple origami forms, e.g., kirigami with only cuts and 2D modular
origami, which are kinematically planar linkages and their networks®!, the simplest
and most effective method of kinematic analysis besides the D-H method is the vector
method®2. On the other hand, highly complex mechanisms, for which it is difficult to
obtain explicit solutions, can be analysed using additional symmetry constraints®® or
numerical methods®¥. In both ori-kirigami and modular origami, which involve folds
and cuts, the basic unit of kinematic analysis is no longer a vertex but independent
closed loops formed by the creases and rigid components around the cut or hole, which

6
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may be equivalent to planar, spherical and spatial linkages, or even a hybrid of these in
kinematics. The analysis and design of this class of origami structures is a kinematic

challenge.

1.2.2 Reconfigurable Mechanisms

Over the past two decades, reconfigurable mechanisms have gained significant
importance across various fields for their ability to provide multiple functionalities
within a single structure, enabling them to perform various tasks. Research on
reconfigurable mechanisms can be traced back to the 1990s. Two new types of
mechanisms were identified: kinematotropic linkages® and metamorphic
mechanismsl®]. The former exploits the bifurcation phenomenon, extending it to
involve mobility change with changes in relative orientations of joint axes®®l, while the
latter, inspired by metamorphosis, undergoes form, topology, and configuration
alterations, extending the context from biology to changes in the main structural
parameters of a mechanism (mobility, connectivity, overconstrainedness, and
redundancy)®’]. In the following development of reconfigurable mechanisms, various
ways to achieve reconfiguration were investigated and developed®-°],

Of particular interest in this dissertation lies in reconfigurable linkages with
kinematic bifurcation. Currently, single-loop overconstrained spatial linkages have
emerged as a valuable resource for designing such reconfigurable linkages. Chen and
You observed the kinematic bifurcation in a spatial 6R linkage formed by merging two
extended Myard 5R linkages[®. They also analysed bifurcations of a two-fold
symmetric 6R deployable linkage!®”]. Later, Song and Chen constructed reconfigurable
spatial 6R linkages with one DOF, employing summation/subtraction of existing
overconstrained linkages!® 7%, This approach has paved the way for synthesising
numerous reconfigurable linkages with bifurcation behaviours’tl. Besides, kinematic
analysis is also a powerful tool for unravelling the kinematic bifurcation of specific
linkages. For example, Chen and Chai discovered the bifurcation of a special line and
plane-symmetric Bricard linkage from the kinematic paths based on closure
equations!’?, as shown in Fig. 1-5(a). Feng et al. revealed bifurcation cases of the plane-
symmetric Bricard 6R linkage under different geometric conditions by deriving explicit
solutions of closure equations using the matrix method!”®], as shown in Fig. 1-5(b).

Zhang and Dail™! delved into the reconfiguration properties of the plane-symmetric
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Bennett plano-spherical 6R hybrid linkage, leveraging screw theory. Li et al. proposed
a reconfigurable Goldberg 6R linkage(Fig. 1-5(c)) features one Goldberg 6R motion
branch, two line-symmetric Bricard 6R motion branches, and one Bennett motion
branch!™!. Tang and Dai explored a class of multi-bifurcated double-centered linkages
combined with higher order kinematic analyses and singular value decomposition!”®!,
as shown in Fig. 1-5(d). Lu et al. presented the analysis of bifurcations of the doubly
collapsible Bricard 6R linkage through the projection of configuration spacel’’). In
addition to the fascinating overconstrained 6R, non-overconstrained 7R linkages and
8R linkages with variable and mobility topology are also the focus of reconfigurable

researchl78-83],
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Fig. 1-5 Reconfigurable 6R linkages with kinematic bifurcation. (a) A special line and plane-
symmetric Bricard linkagel’?; (b) plane-symmetric Bricard 6R 1inkage[73]; (c) line-symmetric

Goldberg 6R linkage!” (b) double-centered 6R linkagel”®l.



Chapter 1 Introduction

However, traditional reconfigurable linkages often entail complex components and
actuation methods, raising concerns about reliability, weight, and energy consumption.
In contrast, origami-inspired designs are another primary resource for single-loop
reconfigurable linkage, with the advantages of simple components and lightweight. It
was revealed that the flat-unfolded state of a single four-crease vertex is a kinematic
singularity of spherical 4R linkage that can bifurcate into two or more kinematic paths

following different MV assignments[®l, as exemplified in Fig. 1-6.

Branch 1 Bifurcation configuration Branch II

o

Fig. 1-6 Mountain-valley crease reconfiguration of the double corrugated vertex in spherical 4R

linkage form. Mountain and valley creases are indicated by red solid lines and blue dotted lines.

This simple mountain-valley crease reconfiguration, which involves switching
creases between mountain and valley and activating/deactivating creases, has in turn
sparked the development of various reconfigurable linkages. For example, Zhang and
Dai proposed reconfigurable plane-symmetric double spherical 6R linkage!®! (Fig.
1-7(a)), Sarrus-motion linkagel®®l, and 8R linkage!®"! inspired by closed-loop kirigami.
Ma and Dai presented the planar-spherical 6R and the Bennett-spherical 6R linkage,
both of which have three motion branches inspired by the kirigami fold®®. Feng and
Chen presented a novel 6R linkage and a variation of doubly collapsible octahedral
Bricard 6R linkage by applying the kirigami technique to rigidly foldable origami twist
patterns®. Liu and Chen transferred a rigid kirigami pattern into a double spherical
linkage (Fig. 1-7(b)) with kinematic bifurcation behaviour®. Through the analysis of
kinematic compatibility of a multi-loop origami pattern formed by four four-crease
vertices, Liu and Chen proposed three types of reconfigurable 6R linkages with the
kirigami technique, including a double spherical linkage, a planar-spherical linkage,
and a parallel 6R linkage!®!]. Tang and Dai presented an eight-bar linkage (Fig. 1-7(c))
derived from a rotatable kaleidocycle whose bifurcated motions were revealed by screw

theory®. Wang and Dai presented work on a fortune teller origami fold-inspired
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reconfigurable 8R linkage (Fig. 1-7(d)) and its evolved Bricard 6R and Bennet 4R
linkages[®®l. Interdisciplinary research on linkages and origami not only offers a method
to analyse the motion behaviour of origami patterns but also fosters the discovery of

novel reconfigurable linkages with kinematic bifurcation.

@ (b)

Fig. 1-7 Single-loop reconfigurable linkages inspired by origami designs. (a) and (b)
reconfigurable 6R linkages!®°; (c) and (d) reconfigurable 8R linkages[®23],

Compared with single-loop reconfigurable linkage, multi-loop reconfigurable
linkage is characterised by a large number of loops and a complex structure!®’l. Among
multi-loop reconfigurable linkages, one of the notable ones is the single DOF
reconfigurable polyhedral linkage, which is a unique multi-loop reconfigurable linkage
that adopts polyhedral layouts and allows its global shape to be changed during
deployment. Rdschel investigated the self-motions of a Fulleroid-like mechanism based
on a cube and the conditions for its movability!®®. Li et al. presented the construction
method of single DOF reconfigurable deployable polyhedral mechanisms by inserting
straight elements®! shown in Fig. 1-8(a) and angulated elements 7l into the vertices
and faces of polyhedrons. They also contributed to the single DOF reconfigurable
deployable cube mechanism (Fig. 1-8(b)) by inserting 4-parallelogram mechanisms
into six quadrilateral faces(®®l. Hao et al. further analysed the constraints of the adjacent
faces of the single DOF cube mechanism, and then obtained the possible motion modes

[99]

of the cube mechanism Liu et al. developed a group of N-sided antiprism
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mechanisms based on an asymmetric 8R linkage!*°’], as shown in Fig. 1-8(c). They have
investigated the bifurcation characteristics of mechanisms by analyzing the
infinitesimal motions of eight-bar linkages at the singular configurations. Zhang
constructed reconfigurable polyhedrons with eight kaleidocycles, which have two
motion paths following cuboid symmetry and tetrahedral symmetry°. Although many
single DOF deployable polyhedral linkages have been constructed!%2%®1 only a few
have demonstrated reconfigurable properties. Designing and analysing such

reconfigurable polyhedral linkages remains a significant challenge in kinematics.
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Fig. 1-8 Reconfigurable polyhedral linkages with single DOF. (a) Constructed by reconfigurable
straight elements[®®l; (b) constructed by reconfigurable parallelogram linkages!®®; (c) constructed

by asymmetric 8R linkage,

In general, multi-DOFs systems and single-DOF systems with kinematic
bifurcation are two widely adopted methods to achieve reconfiguration between
different shapes or configurations. Multi-DOFs linkages provide versatility through
independent motion in various directions, often requiring multiple locking devices or
actuators to operate synchronously at each joint. Compared to multi-DOFs linkages,
single DOF reconfigurable linkages based on kinematic bifurcation are particularly

desirable because they require minimal external intervention to switch or remain in a
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given configurationt’%. Note that this choice between different motions is only
available in the particular bifurcation points; once the linkage has left this particular
configuration, its motion is again determined by a single parameter.

Various tools have been used to study the bifurcation of reconfigurable linkages,

including singular value decomposition of the equilibrium matrix[*05-1071

screw
theory®6881%8]  matrix method">#%7 and so on. Among them, the matrix method is a
commonly used method for kinematic analysis of planar, spherical, and spatial linkages
by considering the topological structure and geometric conditions, and its advantage is
that it not only determines the mobility but also gives explicit closure equations that
can be used to reveal the kinematic bifurcation and configuration evolution of

reconfigurable linkages.

1.2.3 Origami Mechanical Metamaterials

One could consider kirigami and modular origami as variations of origami due to
their apparent similarities and are frequently related to conventional origami. However,
origami, kirigami, and modular origami work on fundamentally different principles,
although there is a crossover between the three. Therefore, mechanical metamaterials
induced by the folding behaviour based on origami, kirigami, and modular origami are

presented.

1.2.3.1 Origami-based Mechanical Metamaterials

The current research interest of conventional rigid origami-based mechanical
metamaterials is on those with four-crease vertices (one-DOF type), the Miura
pattern®! and its variations, and six-crease vertices (multi-DOFs type), e.g., the
waterbomb™% and Resch®¥ patterns, and other patternsl®¥. Although there are some
other rigid origami patterns, such as wrapping origamil*!l, more attention is paid to
them as non-rigid cases, so they are not discussed further.

The best-known four-crease vertex pattern is the Miura-ori, which consists of
repeating parallelograms that form a tessellation on the sheet. As shown in Fig. 1-9(a),
the Miura-ori pattern can be folded from a flat sheet into a compact arrangement with
one DOF motion while demonstrating fascinating mechanical properties, the most
intuitively notable of which is its auxetic behaviour (also known as negative Poisson’s

ratio). Pioneering work by Schenk and Guest involved the auxetic mechanical
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metamaterials based on the Miura-ori pattern, exhibiting transversal contracting
deformation under external vertical compression loading'?. Meanwhile, Wei et al.
showed that the in-plane and out-of-plane Poisson’s ratios of Miura-ori folds are equal
in magnitude but opposite in sign, independent of material properties**1.

While the mechanical properties of Miura-ori origami are intriguing, the original
single-layer Miura-ori origami is inherently confined to folding into planar structures,
posing limitations on its potential applications. To address this limitation, efforts have
been made to develop 3D deployable mechanical metamaterials with more complex
geometries and performances while retaining their original properties, such as flat
foldability and negative in-plane Poisson’s ratio, by connecting identical or different
Miura-ori origami sheets layer by layer**21141151 Alternatively, using the concept of
gradient, Ma et al. introduced a unidirectional geometric variation into the origami
structure'®]. Subsequently, they developed 2D graded and 3D graded cellular
structures based on the Miura-ori pattern (Fig. 1-9(b)), which are capable of generating
periodically graded stiffness and superior energy absorption!**”). Another avenue for
obtaining 3D cellular structures involves the summation and subtraction of tubular
origami (Fig. 1-9(c-f)). This method involves the construction of a rigid tubular
structure by joining pieces of paper containing the vertices of Miura-ori or Miura-
variant, followed by the creation of a new stacked origami structure by joining common
sides or corners using such a tubular origami structure as a basic unitl**®12%_ As shown
in Fig. 1-9(c), Filipov et al. introduced an innovative approach by coupling rigidly
foldable origami tubes in a “zipper” fashion!**®). This novel configuration exhibits
significantly higher bending stiffness than the original Miura-ori origami tube.
Remarkably, the metamaterials exhibit tuneable stiffness spanning about four orders of
magnitude, achieved by altering the loading direction and folding ratio. Using Miura-
based closed-loop origami units, Mousanezhad et al. designed a set of foldable tubes,
and further constructed a 3D cellular structure (Fig. 1-9(d)) that has one DOF with flat-
foldability in out-of-plane and in-plane folding directions™®’. Tachi et al. drew
inspiration from the Miura-ori pattern and designed a Tachi-Miura polyhedron
bellow*?!, as illustrated in Fig. 1-9(e). Subsequent studies revealed that mechanical
metamaterials based on this Tachi-Miura polyhedron bellow could transition between
load-bearing and collapsed states, exhibiting features such as negative Poisson’s ratios

and bi-stability??212%], Wang et al. proposed a 3D metamaterial with negative Poisson’s
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ratios simultaneously in the in-plane and out-of-plane directions™™®l, by incorporating
Miura-ori into the re-entrant honeycomb, as shown in Fig. 1-9(f). This hybrid Miura-
based metamaterial enables the programmability of Poisson’s ratios from mild to

extreme authenticity since it is a function of geometry and configuration of the

microstructural.
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Fig. 1-9 Rigid origami-based mechanical metamaterials with a single deformation path. (a) The
Miura-ori pattern with in-plane NPR[!*2; (b) graded cellular structures®l; (c) cellular origami
metamaterial formed by zipper-coupled tubes(**l; (d) cellular structure formed by Miura-based
closed-loop origami units*?%; (e) Tachi-Miura polyhedron!*?-12%; (f) hybrid Miura-based

metamateriall118],
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For mechanical metamaterials based on an origami pattern consisting of six-crease
vertices, each origami vertex equivalent spherical 6R linkage with three DOFs, thus
significantly increasing the overall DOFs when tessellated. Although the folding or
unfolding process of such multi-DOFs systems is particularly challenging, it is of
considerable value in certain applications, particularly those involving shape morphing,
due to its high flexibility. The mechanical metamaterials based on these six-crease
patterns generally manifest in two predominant configurations: planar or shell-like and
tubular. In the planar category, the research focus for the waterbomb and Resch patterns
is on the algorithmic generation of highly adaptable programmable curvatures or
surfaces, exploiting the flexibility inherent in multi-DOFs systems®*124125] Tyrning
attention to tubular structures, the waterbomb pattern has attracted significant attention
in metamaterial design due to its programmable stiftness and 3D shape, coupled with
compression-torsion deformation due to its rich deformation modes such as contraction,
torsion, etc®3126:1101271 Tn particular, when forming a tubular structure, Resch’s origami
still has a good ability to withstand axial loads due to its negative Poisson’s ratio and
self-locking phenomenon!*?®l,

The geometry of origami provides a facile platform to explore the various desired
mechanical properties of a wide class of constraint-based metamaterials. On the one
hand, the characteristic of a reliable large deformation path is essential for tuneable
properties, making rigid origami widely used in designing the microstructure of
metamaterials. On the other hand, the deformation pattern of these rigid origami-based
metamaterials is similar to the zero-energy motion of the underlying mechanism.
Therefore, external forces can easily excite deformation. However, most of the
currently reported rigid origami-based mechanical metamaterials with a single DOF can
only deform along a single motion path.

Recently, Chen et al. investigated the effect of MV creases on the rigid foldability
of double corrugated patterns®! and square twist patterns“>1?°1%01 which opened the
gate for reconfigurable origami. Nowadays, reconfigurable origami, i.e., exhibits crease
topological morphing by switching MV creases, or activating/inactivating creases, has
rapidly emerged as the research frontier and hot spot!*31:132], This remarkable capability
enables these structures to be folded into multiple shapes while exhibiting enhanced
tuneable mechanical properties, making them highly suitable for multifunctional

applications. For example, the morph pattern demonstrated a smooth switchable
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Poisson’s ratio ranging from negative infinity to positive infinity when it undergoes
topological reconfiguration between a Miura-ori mode and an Eggbox mode through
the re-assignment of MV creases (Fig. 1-10(a))**3l. Another example is the Tachi-Miura
Polyhedron (Fig. 1-10(b)), whose rich reconfigurations are compatible in a large
tessellation, providing a new paradigm for designing heterogeneous metamaterials
yielding a wide range of design spacel*®4l. Furthermore, a variant of the stacked Miura-
ori origami structure with multi-stability and shape reconfigurability achieves basic and

compound logic gates!***%] as shown in Fig. 1-10(c).
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Fig. 1-10 Reconfigurable origami-based mechanical metamaterials deform along multiple motion
paths. (a) The morph pattern with sign switchable Poisson’s ratiol*®l; (b) reconfiguration of Tachi-
Miura polyhedron for heterogeneous metamaterialst*34; (¢) variant of the stacked Miura-ori

origami for the mechanical logic gate®],

It can be seen that configuration reconfigurations of one DOF rigid origami unlock
new possibilities for the tunability of mechanical properties. However, the kinematic
nature of all these reconfigurable origamis is that of spherical linkages and their
assembly, resulting in a limited design space for conventional origami. Although there
are examples that exploit the kinematic bifurcation of single DOF mechanisms, the
shape transformations of these reconfigurable origamis are not significant. The major
challenge at the structural design level is now to delve further into reconfigurable
structures with significant shape changes to achieve breakthroughs in mechanical

properties.
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1.2.3.2 Kirigami-based Mechanical Metamaterials

Kirigami-based mechanical metamaterials refer to a type of metamaterial that
incorporates kirigami principles, that exploit additional DOFs offered by cuts to expand
the range of accessible geometries. As a result, after cutting the paper appropriately
based on kirigami techniques, the folding process could generally be easier to obtain a
wider variety of metamaterials with different types of deformations. Unlike origami,
kirigami is not usually categorized by patterns, kirigami patterns are categorized into
two groups: (a) cut-only kirigami, and (b) ori-kirigami.

Rigid kirigami techniques involving only cutting are usually used to create rotating
units in a continuous flat sheet that generate auxetic behaviour in 2D mechanical
metamaterials. By careful cutting, a continuous sheet can be strategically divided into
a tessellation of polygon facets connected at hinge points, e.g., a rigid square structure
that is a planar 4R linkage with a single DOF in kinematics™®. The organized
arrangement of these rigid units, coupled with their rotational motion in either
clockwise or anti-clockwise directions, contributes to the creation of auxetic behaviour,
as shown in Fig. 1-11(a). The rotating square unit structure is the simplest 2D structure
with a rotating motif. By scaling and tilting these basic square unit structures,
rectangular and parallelogram unit structures are obtained. Moreover, the substitution
of the rotating unit with two or more heterogeneous unit types, as depicted in Fig.
1-11(b), introduces notable variations!*3’l. One such prominent case is the triangular
unit, also known as the Kagome lattices!**]. Since each independent loop has six joint
points (planar 6R mechanism, if the point is considered as a revolute joint), it is a typical
multi-DOFs system with a much richer range of transformed modes and their
corresponding physical properties. Kagome lattices offer an ideal platform to
investigate how to control the large deformation of multi-DOFs systems during
expansion and contraction, in response to specific constraints such as symmetry or
synchronous actuation. For example, Kagome lattices (see Fig. 1-11(c)) could exhibit
negative Poisson’s ratio -1, when the triangular units rotate against every joint and
deformation is locally isotropic (d3 symmetry), or its Poisson’s ratio as a function of
the nominal strain, when it is producing a pattern of alternately tilted distorted
hexagonal pores (c2 symmetry). In addition, to generating auxetic behaviour,
hierarchical kirigami patterns composed of rigid square units allow for extreme
expandability (>800%)%%140(see Fig. 1-11(d) and (e)) and 2D shape changes!!41:14?]
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(see Fig. 1-11 (f)). Furthermore, rigid kirigami can also be deformed into a 3D
configuration without panel deformation. As shown in Fig. 1-11(g) and (h), when the
thickness of the panel is small enough to be ignored, the deformation of joint points
turns from a single DOF revolute joint to a 3-DOFs ball joint, and together with an
optimization algorithm, the rotating structure starting from a continuous plane can also
achieve programmable 3D shapes**3246l. Despite their powerful deformation ability,
the DOFs increase dramatically as the size increases, making the deformation process

challenging to control.
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Fig. 1-11 Cut-only kirigami-based 2D and 3D mechanical metamaterials. (a) Auxetic behaviour

generated by rotating square units!*%l; (b) various rotating unit structures**l; (c) a Kagome lattice

and its corresponding two collapsing modes!*%l; (d) and (e) are examples of hierarchical kirigami
patterns with extremely large strains*3%140l; (f) kirigami-based inverse design enables

transformation between two 2D target shapes**; (g) kirigami designs for 3D shape programming

based on rotating square units?* and (h) rotating triangular units451461,

18



Chapter 1 Introduction

Rigid kirigami design involving cutting and folding (referred to ori-kirigami) is an
emerging approach, where a structure is cut off appropriate parts, and then folded to
close the missing part to form a 3D structure. First of all, a fundamental strategy
involves the strategic introduction of cuts and creases within a continuous flat sheet.
The purpose of these cuts is to release the constraints between the panels so that the
remaining panels can be rotated around these creases due to their mobility. A
noteworthy example is the lattice kirigami proposed by Castle et al., where they
introduce defects into the sheets, including cutting and removing (or adding) wedges
and then performing dislocations or disclinations to form 3D structurest*4”1%8l. Sussman
et al. further proposed algorithmic lattice kirigami, where a single kirigami pattern can
be robustly manipulated into a variety of three-dimensional shapes by adjusting the
mountain and valley creases™™®, as shown in Fig. 1-12(a). Another example is a
checkerboard pattern featuring pop-up and pop-down blocks. This configuration is
achieved by selectively removing panels of the checkerboard pattern alternately in two
directions. Xie et al. established parametric relationships between the crease pattern,
volumetric, and kinematic parameters of the checkerboard patternt*>?. Based on the
kirigami checkerboard pattern, Zhang and Paik developed a lightweight kirigami
metamaterial (see Fig. 1-12(b)) that can withstand high loads (2875 times its own
weight)[*?l. Another noteworthy contribution is the zigzag kirigami (see Fig. 1-12(c))
proposed by Eidini, where the unit cell of the patterns comprises two zigzag strips
surrounding a hole with a parallelogram shape!®1%2 Tt is proved that zigzag kirigami-
based mechanical metamaterials not only retain the characteristics of the Miura-ori,
including negative Poisson’s ratio, flat-foldable, and developable, but also perform
lower density and higher programmability than Miura-ori.

Furthermore, adding creases to existing rigid kirigami patterns and cuts to existing
rigid origami, is another potential method for designing novel kirigami patterns, albeit
at the cost of introducing potentially undesirable multi-DOFs, whilst enriching the
deformation modes of the metamaterials!*>*'%. For example, Yin et al. added more
creases to rotating square and triangular structures to reconstruct the underlying
patterns*®¥, as shown in Fig. 1-12(d). The results showed that the supplemented folds
did not only enrich the structural reconfiguration beyond sole cuts but also
demonstrated that multi-DOFs in the deformation of unit cells enable metamaterials to

perform diverse mechanical properties. Jamalimehr et al. designed a class of rigidly
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foldable cellular metamaterials, with unit cells obtained by removing the centre panel
of a pattern of origami twist family[*%®l, as shown in Fig. 1-12(e). These metamaterials
can be flat folded and locked into several states that are stiff across multiple directions,
even including the deployment direction.

Finally, an innovation involves strategically arranging creases and cuts at the
surfaces and edges of polyhedrons to obtain rigid kirigami patterns™>® 1571, For example,
Zhang et al. innovatively transformed a cuboid into a foldable 3 DOF kirigami design
(Fig. 1-12(f)), which evolved into a tri-stable kirigami meta-structure with specific
elastic joints, enabling a frequency-reconfigurable antenna with three programmable

working frequencies!*®,

S
0200 58S
TR COY7

\\"I
o K
v B

N Ty
= :

Mode IV

__ Mode Il

Fig. 1-12 Ori-kirigami-based mechanical metamaterials. (a) Cuts and creases are introduced in a

continuous flat sheet4%1%8]; (b) checkerboard kirigamil'?; (c) zigzag kirigami*521%; (d) adding
creases to existing rigid kirigami patterns’®¥; (e) remove some of the panels from a rigid origami
pattern!*®3l; (f) arranging creases and cuts at the surfaces and edges of polyhedrons to obtain rigid

kirigami patterns5°],

In general, existing rigid kirigami metamaterials achieve tuneable and
programmable mechanical properties by releasing continuous constraints in structures

and significantly increasing the kinematic degrees of freedom. The vast majority of
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existing designs, with only a few exceptions, exemplified by single DOF examples that
deform solely between two final configurations, feature multi-DOFs unit cells. The
absence of kinematic guidance in these design methods typically necessitates a
substantial number of cuts and the removal of sufficient panels to grant mobility,
allowing the remaining panels to rotate in-plane and out-of-plane and form intricate yet
uniform shapes. As a result, to utilize the diverse kinematic modes inherent in these unit
cells to achieve programmable properties, the deformation process must occur under
certain symmetry, boundary, and actuation conditions. Currently, a critical challenge is
determining the number, size, and direction of cuts and folds, to design unit cells with
one or less DOF yet with a variety of deformation modes, facilitating the programming

of properties in kirigami metamaterials.

1.2.3.3 Modular Origami-based Mechanical Metamaterials

Modular origami, an extension of conventional origami and kirigami techniques,
can be traced back to the paper folding of polyhedron units by origami artists6%-161,
This technique involves folding multiple pieces of paper and then interlocking or
connecting these folded modules to create intricate and diverse 3D structures, as shown
in Fig. 1-13. Notably, certain modular origami structures exhibit shape transformation
due to inherent mobility, which imparts unconventional physical properties to the entire
structure. This characteristic has positioned modular origami as a compelling avenue
for designing 3D metamaterials that take advantage of their simplicity and versatility.
Yang et al. introduced a spatial overconstrained 6R linkage in modular origami, i.e., the
Sarrus 6R linkage[*%?], characterized by single DOF linear motion, and constructed a
series of 3D modular metamaterials with negative Poisson’s ratio*®®l (Fig. 1-13(a)) and
even programmable almost constant Poisson’s ratio in three orthogonal directions6
(Fig. 1-13(b)). Ma et al. developed a 3D modular origami-based meta-structure!®, as
shown in see Fig. 1-13(c), which also kinematically equivalent assembly of Sarrus 6R
linkage and planar 4R linkage mechanisms featuring continuous mechanism motion
and bi-stability, enabling programmable control of both mechanism motion and
structural deformation through careful adjustment of geometric parameters and joint
stiffness. The examples of modular origami-inspired mechanical metamaterials in Fig.

1-13 have only one deformation path, which means that the ability to tune their

properties is limited.

21



Doctoral Dissertation of Tianjin University

Fig. 1-13 Modular origami-inspired mechanical metamaterials with a single deformation path. (a)
(a) A Sarrus linkage-based 3D modular structurel*6l; (b) 3D metamaterials with programmable

almost constant Poisson’s ratiol'®l; (c) 3D modular metamaterials with customized bi-stability™6®],

As a branch of origami, the appeal of modular origami lies not only in its visual
appeal arising from simple folding but also in more powerful, yet pervasive, rich
configurations. For example, Yang et al.[!®®l assembled single DOF lantern modules
(formed by introducing folds and cuts in pieces of paper before glueing them together)
into large-scale metamaterials. Since a single module has two mutually compatible
deformation modes, each module can have its mechanical properties independently
prescribed from their adjacent neighbours, ultimately realizing decoupling local
mechanics from the large-scale structure in modular metamaterials. Inspired by the
geometries of snapology origami, Overvelde et al. presented a transformable
metamaterial (see Fig. 1-14(a)) endowed with multiple degrees of freedom, wherein the
shape, volume, and stiffness can be actively controlled through the incorporation of air
pockets*®”]. Building on that work, Overvelde et al. also introduce a robust design
strategy based on space-filling tessellations of polyhedra to create three-dimensional
reconfigurable materials with a wide range of qualitatively different deformations*68],
as shown in Fig. 1-14(b). Inspired by the above pioneering works of Overvelde, Xiao
et al. recently proposed an inverse design approach for complex 3D curvilinear modular
structures with reconfigurability rather than tessellating a constant building block%],
as shown in Fig. 1-14(c). Li and Yin innovatively assembled 3D kirigami-inspired
modules with multiple transformation paths, each consisting of eight closed-loop
connected cubes, as shown in Fig. 1-14(d), kinematically equivalent to a multi-DOFs

spatial 8R linkage, which greatly enhances the reconfigurability and shape re-

22



Chapter 1 Introduction

programmability in architected matter™’%l. Expanding on their work, Li and Yin further
developed kirigami inspired module for reconfigurable metamaterials with diverse
structures and unique properties, including reconfigurable 2D metamaterials
undergoing chirality phase transitions and 3D metamaterials with programmable
deformation modes!*™!], as shown in Fig. 1-14(e). Very recently, inspired by the 3D
modular origami design with decoupled planar 4-bar linkage motions in the three
orthogonal planes, Hu et al. propose a type of transformable mechanical metamaterials
that can be reversibly transformed among null-, uni-, bi-, tri-, quadra-, penta-, and hexa-
modes, leading to tuneable mechanical properties and reprogrammable wave

functionalities™, as shown in Fig. 1-14(f).

3D kirgami-inspired Architected surface with
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Fig. 1-14 Modular origami-inspired mechanical metamaterials with multiple deformation paths.
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(a) A snapology-inspired transformable metamaterial with multi-DOFs[*¢7]; (b) reconfigurable
prismatic architected materials!'®®l; (c) the inverse design of 3D reconfigurable curvilinear
modular origami structuresl'®; (d) an eight cube-based kirigami module-based reconfigurable and
reprogrammable architected matter!*’?; (e) 3D transformable modular kirigami-based

programmable metamaterialst*’!; (f) 3D metamaterials transformed for different zero modes!*°l.
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From a mechanism point of view, modular origami tends to be an alternative form
of'a hybrid network of planar, spherical, and spatial linkages, and it is its induced multi-
DOFs that add rich deformation modes to the origami structure. Modular origami, a
sub-category of origami structures, is more flexible in design and richer in configuration
than conventional origami and kirigami, but as well as being plagued by the problem
of multi-DOFs. Therefore, if one start from the reconfigurability of the underlying
linkage of modular origami and its mobile network, it is possible to design single DOF
structures with multiple deformation modes, which will entail a great advancement in

the tunability and programmability of mechanical metamaterials.

1.3 Aim and Scope

The primary objective of this dissertation is to develop single DOF reconfigurable
origami structures endowed with the capability of multiple shape reconfigurations, and
further to develop a series of mechanical metamaterials with tuneable properties, to lay
a robust theoretical foundation for realising the leap of metamaterials from theoretical
research to engineering applications.

In this process, the principles of reconfigurable linkages will be used to guide the
design of origami structures with one DOF. Then, the kinematic bifurcation and
configuration evolution of origami structures will be analysed according to developed
kinematic models. Next, the geometric and kinematic compatibility between different
bifurcation configurations will be exploited to determine the connections between the
unit cells and to construct homogeneous and heterogeneous 2D or 3D mechanical
metamaterials concerning networking methods for reconfigurable and deployable
structures. Finally, the analytical relationships between geometry, deformation,
topology, and properties are to be established to explore the qualitative and quantitative

tuning strategies for the physical properties of origami metamaterials.

1.4 Main Contents

This dissertation consists of six chapters, which are outlined as follows, while a
diagram of the main contents is shown in Fig. 1-15.
Chapter 1 introduces the existing kinematic theory and its application in the

analysis and design of various origami structures as well as the current state of research
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on reconfigurable mechanisms. Besides, mechanical metamaterials induced by the

folding behaviour based on origami, kirigami, and modular origami are also reviewed.
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Fig. 1-15 Diagram of the main contents of this dissertation.
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Chapter 2 presents a straightforward algorithm that combines graphic
representation and motion compatibility conditions to assess the reconfigurability of
one-DOF origami structures with 4-crease vertices as well as their 2D and even 3D
cellular tessellations.

Chapter 3 focuses on the reconfigurable thick-panel ori-kirigami design using
vertically transferable joints and the investigation of the influence of design parameters
on the folding behaviour under different motion branches. In addition, the properties of
single DOF tessellation are also investigated, including Poisson’s ratio, deployable ratio,
and load-bearing capacity.

Chapter 4 discusses modular origami design from the perspective of alternative
forms of single-loop linkage with kinematic bifurcation. Then, based on the
deformation characteristics of different bifurcation configurations, compatible
connections between reconfigurable units are proposed for the design of single DOF
modules, followed by their constructed mechanical metamaterials with tuneable 2D
symmetry groups and customised sign of Poisson’s ratios.

Chapter 5 reveals the bifurcation behaviour of a single DOF modular cube by the
kinematic model of an open-chain PLG under symmetric constraints. Then, Poisson’s
ratio, chirality, and stiffness of a single polyhedron module during reconfiguration were
also studied. Further, a combinatorial design strategy, i.e., stacking different bifurcation
configurations in 3D space, is proposed to enhance the programmability of Poisson’s
ratio. Finally, the modular cube is generalised to a series of single DOF reconfigurable
prism structures, all of which have NPR/ZPR/PPR.

Chapter 6 summarises the main achievements and plans for future work, which
conclude this dissertation.

At the crossover of kinematics, structural engineering, mechanics and materials,
this endeavour guides the use of kinematic bifurcation from the perspectives of MV
crease reconfiguration, transferable hinges, reconfigurable closed-loop spatial linkage
and open-chain planar linkage, to design and analyse single DOF zero-thickness
origami, thick-panel ori-kirigami, and modular origami structures with multiple shape
reconfigurations. In addition, the tunability and programmability of the properties of

the developed mechanical metamaterials have been investigated.
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Chapter 2 Mountain-Valley Crease Reconfiguration of 4-Crease
Origami Vertices and Tessellations

2.1 Introduction

Origami studies undoubtedly begin with the predefined crease pattern, where the
most basic rigid-foldable unit for origami designs with one DOF is a four-crease vertex.
Most of these studies have concentrated on the fixed crease topology in which an
origami pattern folds between two final shapes with a clearly defined MV assignment.
Reconfigurable origami-inspired folding has recently gained significant attention due
to its potential to achieve multi-shape changes through crease topological morphing,
resulting in multi-functionality from a single original structure. Hence, an essential
understanding of the topological reconfiguration of four-crease vertices origami and
their tessellations is critical to creating advanced functionalities. For any origami
pattern with an un-predefined MV assignment, from the kinematic point of view, one
of the major challenges is to identify the reconfigurability by inspecting all bifurcation
paths precisely. However, there is no generic method that can identify the specific MV
assignments with qualitatively different rigid folding behaviour in an origami
tessellation consisting of four-crease vertices, which forms the goal of this chapter.

The layout of the chapter is as follows: in section 2.2, a Depth First Search (DFS)
algorithm[*"? that combines graphic representation and motion compatibility conditions
for evaluating the reconfigurability of origami structures composed of double
corrugated, Miura-ori, and symmetric Eggbox vertices is developed. In section 2.3, the
efficiency and accuracy of the method are demonstrated by searching for all rigid MV
assignments of well-known 2D origami tessellations. Additionally, a 3D cellular
origami example is presented in section 2.3, showcasing all possible rigid MV
assignments as well as variations in typical folding behaviour. Finally, conclusions are

drawn in section 2.4.

2.2 Evaluation Method for Reconfigurability
2.2.1 Kinematics of the Four-crease Vertices and Their Assemblies

Starting with a four-crease vertex where four panels P; (i = 1, 2, 3, 4, counted

clockwise) are connected by four creases C, on the pattern and characterized by four
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sector angles ¢, , as shown in Fig. 2-1. Referring to the vertex widely used to
construct rigid origami patterns, the generic four-crease vertex is categorised into three
types: double corrugated, Miura-ori, and Eggbox vertices with symmetric features
(Although symmetry is not required for general eggbox vertices, more attention is paid
to symmetric one for flat-foldability). Both the double corrugated and Miura-ori
vertices  satisfy the flat-foldability a,,to,,=a,,ta,, and developability
a,to,tag,ta,=2n . The difference is that the former can be folded flat without
collinear creases, while the latter possesses a pair of collinear creases. The symmetric
Eggbox vertex loses developability while keeping the flat-foldability. The geometric

parameters for these three types of vertices are

a,=a, 0x=f, a,=n—-a, a,=n-f (2-1)
A =0y =0Q, 0y =0y =T-0 (2-2)

and
QA =0Qp=0a, Oy =0,=0, a+f#n (2-3)

respectively. Note that &, is set as the smallest sector angle.

4-crease vertex double corrugated vertex

Ps

flat-foldability

developability

collinearity I undevelopability collinearity

and symmetry

——

Symmetric Eggbox vertex Miura-ori vertex

Fig. 2-1 Evolution among a generic four-crease vertex and three types of vertices, i.e., double

corrugated, Miura-ori, and symmetric Eggbox vertices.
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To describe their rigid motions, panels and creases are represented by links and
revolute joints, as shown in Fig. 2-2. Therefore, a single four-crease vertex with creases
intersecting at one point is kinematically a spherical 4R linkage and can be analysed
with the matrix method in kinematicst>32173. For the double corrugated vertex shown
in Fig. 2-2 (a), the kinematic relationship between the revolute variable 6; and the

geometric parameter ¢, can be derived following D-H notations®, i.c.,

tanﬁ SinM
2 2
_ 6,--6, 6,-6 2-4)
tan& sin Y7 % 1 T (
2
or
tanﬁ Cosm
2 2
- L 6,=0, 0,--0 2.5
tané cos Yt %2 S 4 .
2 2

There are two sets of solutions in Egs. (2-4) and (2-5), and their corresponding
kinematic paths 6, vs 0, as well as MV assignments of the vertex are plotted in Fig.
2-2(a), where the geometric parameters with «=30° f=100° are taken as an
example. There are two different MV assignments MV-I and MV-II, whose kinematic
paths are path I and path II, respectively. Here is a trick to distinguish between these
two crease topologies for the double corrugated vertex, i.e., if the two adjacent creases
of crease C, have the same MV assignments, then it belongs to MV-1, otherwise it is
MV-IL. Both the fully unfolded and folded configurations are bifurcation points, at the
unfolded one, MV assignments switch between MV-I and MV-II, while such switching
cannot happen as folded one due to the physical interference, i.e., the panels cannot
protrude each other. Note that flipping the paper results in the simultaneous interchange
of all MV creases, a condition deemed equivalent in crease topology within this study.

Turning attention to the Miura-ori vertex in Fig. 2-2(b), three sets of solutions can

be obtained, i.c.,

0,=06,=0, 6, =0, (2-6)
tan ﬁ
922 = cosar,, 6,=6, 6,=-0, (2-7)
tan—=
2

or
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0,=-0, 0,=0,=n (2-8)

The kinematic paths and corresponding MV assignments of the Miura-ori vertex
with a =30° are plotted in Fig. 2-2(b). The unfolded configuration at point (0, 0) is
one of the bifurcation points where the Miura-ori vertex can achieve the switch of crease
topology between MV-I and MV-II assignments. When the vertex in path I is fully
folded where panels P, and p, are fitted together, it can switch into path III at another
bifurcation point (0, + ) . After that, creases C; and C; are active, and creases C, and
C, become inactive. There are two sets of closure equations for symmetric Eggbox
vertex shown in Fig. 2-2(c), i.e.,

91:03

tan % = %((cos a,, +sina,, cota,,) cot%— (cosa,, —sina,, cot oy, ) tan %)) (2-9)

tan % = % ((cosay, +sina,, coter,,) cot%— (cosar,, —sina,, Cot ;) tan %))
or
0,=-6, 0,=0,=n (2-10)

The kinematic paths and corresponding MV assignments of the symmetric Eggbox
vertex are divided into two cases based on the geometric parameters >.¢;,;) < 2m (Fig.
2-2(c) top) or Zai(m) >2n (Fig. 2-2(c) bottom). Despite having only two kinematic
paths, the symmetric Eggbox vertex exhibits three distinct MV assignments. During
motion along path I, a crease topological transition occurs by switching one of its
creases between a mountain and a valley. Specifically, in the case of 2 a,;, <2, one
of four mountain creases of the symmetric Eggbox vertex, i.e., crease C,, switches into
a valley crease when panels P, and P, are coplanar, thus achieving a Miura-like mode
of folding motion. In the case of >, > 27, the symmetric Eggbox vertex has two
mountain creases and two valley creases, and the crease C, is changed from a mountain
crease to a valley crease when panels P, and P, are coplanar, also achieving a Miura-
like folding motion. On path 1T in both cases of X, <2r and X, > 2, the

creases C, and C, are inactive, leading to MV-III.
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(a)
Double corrugated 0, =30 p=100"
vertex T
—path
Ps — path I
p.
o 0
<]/ = /
@ z, MV-11
Pi P. —m/2
a\zia)a:s:ﬁ_’ - ey 9[
Oy =T~ 0y, =T0-f8 T _g/2 0 /2 T
(b)
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Fig. 2-2 Kinematics of three types of 4-crease vertices. (a-c) From left to right are origami
vertices with un-predefined MV assignment, linkage form, and kinematic paths 6, vs 6, plus MV

assignments for the double corrugated, Miura-ori, and symmetric Eggbox vertices, respectively.
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To illustrate proposed approach, the quadrilateral mesh shown in Fig. 2-3(a) was
taken as an example. As depicted in Fig. 2-3(a), this pattern containing multiple vertices
can be conceptualised as an assembly of spherical 4R linkages. The coordinate frames

F. (~=A, B, C, D) following the D-H notations are established at the joints of each
spherical 4R linkage, as shown in Fig. 2-3(b). Sector angles Otik(m) at vertex k are
marked clockwise and «, is the smallest sector angle. The explicit function between
the input angle Gik and the output angle 49,k+1 about vertex k is given by Egs. (2-4)-

(2-10), which can also be represented concisely in implicit function form as

fil((i+1) (6¥) = 6", . Hence, as shown in Fig. 2-3(b), the compatibility condition® of the

i+l

corresponding linkage form is
D
[[f =1 (2-11)
k=A

The expression establishes a link between the MV assignments and bifurcation
paths by considering geometric parameters and kinematic variables. This relationship
enables the transformation of evaluating the number of rigid or valid MV assignments

of a pattern containing several vertices into a solvable combinatorial problem.

0, —~ 0, =0, —0. =0, ~0, =0, —0.
l 0 =0,

Fig. 2-3 Motion compatibility of assemblies of spherical 4R linkages. (a) The quadrilateral mesh

origami and the corresponding mobile assembly and (b) the motion transmission path.
2.2.2 Graphic Representation of Origami Modules

The above kinematic method to understand the reconfigurability of crease patterns
is powerful and efficient for a single four-crease vertex, but rather complicated for

multi-vertices tessellations due to the inherent complexity arising from the mutual
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nesting of motion loops. In contrast, graphic representation, where objects and
connections are represented by shapes and lines, works perfectly here. Taking
inspiration from the concept of modularity, a single loop unit, encompassing several
four-crease vertices, can be initially perceived as a module, and then the physical
vertices and modules can be translated into a graphic representation. As illustrated in
Fig. 2-4(a), double corrugated vertices with MV-I and MV-II assignments are denoted
by central blue and red circles with black boundaries, respectively, whereas Miura-ori
vertices with MV-I and MV-II assignments are depicted by central blue and red circles
without boundaries (Fig. 2-4(b)). The symmetric Eggbox vertices with MV-I and MV-
IT assignments (Fig. 2-4(c)) are represented by the central blue and red upward triangles
with black boundaries, respectively, in the case of 2.¢;,,) <2m. In contrast, the
downward triangle is used in the case of 2.¢ ., > 2m. It is noteworthy that the vertex
with MV-III assignments is considered a defective configuration, as the motion curve
of this type of vertex indicates that the panel of vertices connected to vertices with M V-
IIT assignments remains fixed. Thus, meaningless defected configurations with MV-III
assignments at both Miura-ori and symmetric Eggbox vertices are excluded. Meanwhile,
each vertex is assigned a value of “0” or “1” based on conformity to MV-I or MV-II
assignments. After that, the compatibility condition in Eq. (2-11) is used to find all valid
M-V assignments of the module. It is worth noting that each vertex has two general
path options. As a result, there are up to sixteen combinations for quadrilateral-mesh
modules. However, there are kinematic relationships between neighbouring vertices,
and many of these sixteen combinations are invalid and can be assessed one by one

using Eq. (2-11).

(a) (b) (c)
double corrugated Miura-ori vertex Eggbox vertex
I vertex I I Eﬁﬂ., y<2n E oL, >2n
“U1> . “l” .“G” . “l'n AL.‘.O” A“l“ v “0” v “l'n

Fig. 2-4 Graphic representations of a single vertex. The blue and red fillings represent MV-1 and
MV-I11 assignments, respectively, while circles with black boundaries, circles without boundaries,
and triangles with upward or downward orientations represent (a) double corrugated, (b) Miura-

ori, and (c) symmetric Eggbox (X, <2m and X e, > 2n) vertices, respectively.
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Fig. 2-5 Graphic representations of eighteen typical modules consisting of double corrugated,

Miura-ori, symmetric Eggbox vertices and their hybridization.
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Here, eighteen typical modules distinguished by vertex type and geometric
parameters derived from well-known origami patterns are listed in Fig. 2-5, whose
prototypes are displayed in Appendix A. Each MV assignment corresponds to the graph
for any of the modules one by one. As shown in Fig. 2-5, modules are schematically
indicated by graphs, where each line represents a connection and circles or triangles on
four corners represent four vertices. It is straightforward that modules 1-10, 11-13, and
14-15 are composed of pure double corrugated, Miura-ori, and symmetric Eggbox
vertices, respectively, while hybrid vertices form modules 16-18. Modules 1-5 can be
rigidly folded along six different MV assignments according to compatibility conditions.
With the enhancement of the constraint generated by the geometry in modules 6-9, the
number of valid MV assignments is decreased to four or even two. The common point
of modules 1-9 is that two vertices possess MV-I assignments, and the other two satisfy
MV-II assignments. Nevertheless, module 10, consisting of a pure double corrugated
vertex, requires all four vertices to simultaneously satisfy MV-1 or MV-II assignments.
Modules 11-13 with Miura-ori vertices have four similar crease topologies, i.e., one
column for MV-I and the other column for MV-II, or vice versa, or cases that all for
MV-I or MV-I1. As for modules 14-15 with symmetric Eggbox vertices, the number of
valid MV assignments is four or two, depending on the location of the smallest sector
angle. Module 16 is a hybrid of two double corrugated and two symmetric Miura-ori
vertices, while modules 17 and 18 are a hybrid of two Miura-ori and two symmetric
Eggbox vertices. In the former, the Miura-ori vertex can only be MV-II assignments,
while the latter only requires that two vertices in the same column belong to either MV-

I or MV-II simultaneously.

2.2.3 Algorithm Design for Origami Tessellation with Size mxn

After addressing the reconfigurability analysis of origami modules based on
compatibility conditions, the reconfigurability of origami tessellations using graphic
representation and algorithms was further investigated. At first, the origami tessellation
is abstracted into a checkerboard with size mxn (m and n are numbers of vertices in the

. Taking the double corrugated

mxn

orthogonal directions), described by a matrix A=(g;)

pattern (Fig. 2-6(a)) parameterised by ¢ and f as an example, it consists of 3x4 four-
crease vertices without predefined MV assignments. So, the 3x4 checkerboard is

characterised by a matrix A= (a,.j )3 - Next, composed modules are founded according

to geometric parameters. As shown in Fig. 2-6(a), it consists of two types of modules
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(exactly modules 1 and 2 in Fig. 2-5), one considered as the basic module and the other
considered as the connection module to constrain neighbouring basic modules, which
can be easily distinguished by the geometry of the central quadrilateral panel. It was
found that the two modules in double corrugated pattern share six types of MV
assignments with distinct graphic representations, according to Fig. 2-5. Hence, the null

0 1] |0 1
matrix A, , of the module can be assigned values and expressed as {0 J, L 0},

00 10 10 11 ] ] ) )
, , , and . Finally, the notoriously difficult issue of
11 10 01 00

compatibility conditions for origami tessellations under different MV assignments is
transformed into the interesting discrete mathematical problem of filling a
checkerboard with graphic representations of modules, which can be easily tackled with

the aid of programming languages.

(a)
null null
i:i [null nu]l:|

basic module

a, dy, dydy
A=|a, a,, a, a,, i:i [nullnu]l:|
null null
. a.?t a32 a?.? a34
3x4 tessellation

connection module
(b)
V[J,(l
/f\
Vw.u Vl.- VI,Z"—]
0000 / \\
d, d,, dyyd,y, Vm-l,ﬂ V,.m,, Vm—[} erl_l"—l
a,, a,, d;, d, . ali
T e T valid valid turn the matrix
node V, DFS algorithm one of results back to pattern

Fig. 2-6 Algorithm design for origami tessellation with size m>n. (a) A tessellation without
presupposed MV assignments consists of basic modules, and the connection module can be
described as a checkerboard with size m>n and a null matrix. (b) The matrix can be further

assigned values according to graphic representations of modules.

As shown in Fig. 2-6(b), the challenge of identifying origami tessellations with

size m X n is first conceptualized as the pursuit of valid visit sequences in a m-layered

graph where each layer contains 2" nodes (corresponding to 2" cases of an origami
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tessellation row). For any two adjacent layers, connect Viyj,je(O, 2"’1) and

Vi ke (0, 2”_1) if row j and row k can form a valid origami tessellation (see lines

1-9 of Algorithm 1). Upon constructing the graph, for each node V, ;, je€ (O, 2”’1) in
the first layer, conduct a depth-first search with V, ; as the current node and an empty

visit sequence (see lines 10-12 of Algorithm 1). The algorithm investigates each branch
to its fullest, guaranteeing comprehensive path coverage (see lines 14-23 of Algorithm
1). When a branch’s end is reached, DFS backtracks to the previous decision point,
allowing for the examination of alternative paths (see lines 16-19 of Algorithm 1). This
process of moving forward and then backtracking enables a thorough exploration of the
graph, uncovering every possible path starting from the source node. Therefore, at the
end of the process, each valid node visit sequence (i.e., the matrix A) discovered by
the algorithm can be turned back to an origami pattern with valid MV assignment.

Algorithm 1: Mountain-valley crease reconfiguration
Input: n, m
Output: valid results

1 For j from 0 to 2"*:

2 For k from 0 to 2"*":

3 If row [j] and row [k] form a valid origami tessellation:
4 Fori from 0 to m — 2:

5 Connect V,; and V,,,

6 end for

7 end if

8 end for

9 end for

10 Forifrom0to 2"*:

11 DFS(V,,)

12 end for

13 Return valid results

14 Function DFS(hode):

15 Append node to the sequence

16 If the length of the sequence is equal to m then
17 Append the sequence to valid results

18 return

19 end if

20 For i in node’s adjacent nodes of next layer:
21 DFS(i)

22 end for

23 Delete node from the sequence

For a m-layered graph where each layer contains 2" nodes, the computational

complexity of the algorithm to identify all possible paths is usually at least O(2™").

37



Doctoral Dissertation of Tianjin University

However, the rules (e.g., &; 4.y +&;,1; .0+ =2 ) of basic and connection
modules established according to the graphic representation and motion compatibility
conditions prune the connections between nodes of any two adjacent layers (from 2°"
to 2"+2), so the size of the search space is effectively reduced. Therefore, the

computational complexity of the algorithm is significantly simplified to O(mx2"+2™).

2.3 Reconfigurability of Origami Tessellations
2.3.1 2D Origami Tessellations

In this section, the proposed algorithm is examined with 2D tessellations of
different 4-crease vertices. First, the variations in the number of valid MV assignments
of the double corrugated pattern as the size of the tessellation increases is examined.
For a 2x2 double corrugated pattern, there are six valid MV assignments. As raising the
size of the tessellation, it is noticed an exponential growth in the number of valid MV
assignments for mxn tessellation. Furthermore, it is also observed that the rate of
increase in the number is the same regardless of whether a new column or row is added.
Based on the graph evaluations and algorithm feedback, the number of valid MV
assignments for mxn tessellations can be summarised as 2" +2" -2 . Fig. 2-7(a)
visually illustrates search results for the number of valid MV assignments (black bars)
for a double corrugated pattern with nxn tessellation. Note that the algorithm is highly
efficient in terms of time consumption, see Appendix B for details. Another advantage
of utilising the graphic representation. and DFS algorithm is the ability to remove
duplicates by assessing the symmetry of the matrix A . For example, the two graphic
representations of 4x4 double corrugated tessellations depicted in Fig. 2-7(b) are valid
MV assignments. However, upon rotating one of them by 180°, it is discovered that it
perfectly overlaps the other, indicating that they are essentially the same geometric
configuration. Consequently, only one of the two MV assignments is unique. The valid
and unique MV assignments for nxn double corrugated tessellations are displayed in
Fig. 2-7(a), bar charts with section lines. Out of the six rigid MV assignments available
for 2x2 double corrugated tessellations, only four are valid and unique. Moreover, for
4x4 double corrugated tessellation, only eighteen out of thirty valid MV assignments

are unique, whose prototypes and graphic representation are shown in Fig. 2-7(c).
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Fig. 2-7 The search results for the number of valid MV assignments of a double corrugated
pattern. (a) Valid or unique MV assignments of a nxn double corrugated pattern tessellations. (b)
Duplicates by assessing the symmetry of the matrix. (c¢) The eighteen unique MV assignments and

corresponding graphical representations of 4x4 double corrugated pattern tessellations.
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Research on rigid origami has promoted a substantial number of well-known
patterns. the reconfigurability of these patterns based on intuitive rules in Fig. 2-5(b) is
further investigated. Tab. 2-1 summarises the component modules and the number of

valid MV assignments of these well-known patterns!!> 26 4549,

As mentioned,
combining modules 1 and 2 produces a double corrugated pattern. There are two
tessellation methods of square twist, i.e., fitting modules 3, 4, and 5 creates the first
type of square twist tessellation, while fitting modules 1 and 3 creates the second type.
Since the modules in double corrugated pattern and square twist tessellations share rules,
the number of their valid MV assignments are the same, i.e., 2" + 2" —2 . Meanwhile,
the number of valid MV assignments of a generalised Mars pattern is 2" —2 .
Remarkably, the number of valid MV assignments in a dual square twist is always four
with increasing system size, two of which are unique due to the centre symmetry of the
pattern, while both the numbers of valid MV assignments in the generalised Huffman
pattern and Helical pattern remain two. This means that the dual square twist,
generalised Huffman pattern and Helical pattern displayed in Fig. 2-8 belong to oligo-
modal origami with a constant number (>2) of zero-energy deformation modes
independent of tessellation size*°l. Besides, the Miura-ori pattern and its derivatives,
i.e., the Chicken wire tessellation and the Arc-Miura tessellation, exist 2" valid MV
assignments. It found that the number of valid MV assignments for Eggbox tessellation

and quadrilateral creased pattern depends on the even/odd of # yet is independent of m.

Tab. 2-1 The number of valid MV assignments for well-known origami patterns

Tessellations Component Size Va.hd M-V
modules assignments
modules 1 and 2 mxn 2" 42" -2
Double corrugated tessellation
<> <> modules 3, 4, and 5 mxn omon_ 2

Square twist pattern
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Square twist pattern

Helical pattern

Miura-ori pattern

Chicken wire tessellation

S

Arc-Miura tessellation

modules 1 and 3

module 6

modules 3, 6 and 7

module 9

module 10

module 11

module 12

module 13

mxn 2" 42" -2

mxn 2" -2

mxn, m, n>4,

and m, nare 4 (2 of which are

even unique)
numbers

mxn 2

mxn 2

mxn 2"

mxn 2"

mxn 2"
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7 mxmn, o(n+1)/2
{ nis old
module 14 and 15
> mxn,
[ . 2n/2
e n is even
Eggbox pattern
mxn, n is old o(n-n/2
e _ module 16
mxn, nis
2n/2
even

Quadrilateral creased pattern

(a) -

Fig. 2-8 Three types of oligo-modal origami with a constant number of MV assignments
independent of tessellation sizes. (a) Dual square twist pattern, (b) Huffman pattern, and (c)

Helical patterns.
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2.3.2 3D Cellular Origami Structure

In this section, the proposed method is extended to 3D cellular origami structures.
The tunability of mechanical properties induced by mountain-valley crease
reconfiguration is explored by both theoretical models and experimental results. Fig.
2-9(a) shows different views of a 3D cellular origami structure composed of mxnxp
Miura-ori tubular origami units'#1®l. Unlike conventional stacking methods, this
cellular structure adopts a shifted stacking strategy between layers of tubular origami
units, resulting in a consistent one-unit disparity between the number of tubular units
in layers p-1 and layer p. Upon examining the top view of the cellular origami, a
standard 2D Miura-ori tessellation becomes apparent, implying the independence of the
number of valid MV assignments on parameter m. The front view, depicting 3x3%3
tessellation, can be abstracted as a chessboard, as illustrated in Fig. 2-9(a). To facilitate
the algorithm’s solution, basic and connected modules in the yoz plane are identified.
As shown in Fig. 2-9(b), the basic module is constructed using two identical Miura-ori
sheets and two rectangular connecting sheets, resulting in two identical Symmetric
Eggbox vertices parameterized by > ¢, <2n on the left and two identical symmetric
Eggbox vertices parameterized by Zai(m) >2n on the right, forming a Miura-ori
tubular origami represented by a rectangular lattice with six nodes. Since this tubular
origami corresponds to an assembly of six spherical 4R linkages, six graphic
representations (MV assignments) emerge. Additionally, two neighbouring Miura-ori
tubular origami in the z-direction, along with the subsequent layer, share four rhombic
sheets, abstracted as a trapezoidal lattice with four graphic representations (MV
assignments) termed connection module 1 (Fig. 2-9(c)). Another consideration involves
neighbouring Miura-ori tubular origami in the y-direction, sharing rectangular
connecting sheets and forming connection module ii. This module is represented as a
square lattice with four nodes corresponding to four symmetric Eggbox vertices,
encompassing sixteen MV assignments and graphic representations (Fig. 2-9(d)). The
proposed algorithms yield insights into the number of valid and unique configurations
with different tessellation sizes, revealing an exponential increase in valid and unique
configurations as the tessellation size expands (Fig. 2-9(e)). Since there is no symmetry
when the number of rows p are even numbers, the number of unique configurations is
the same as the number of valid configurations. Whereas when the number of rows p

are odd, the number of unique configurations is approximately half the number of valid
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configurations due to horizontal symmetry. It is noted that the increase of the size
number from two to three contributes directly to the surge of the overall variety of the

tessellations (The runtime of the algorithm is provided in Appendix B).

(a)

O vy TS m

n

Cellular origami

basic module connection module i
m =
\&
F ) ' ,

Eggbox Miura-ori  Eggbox I::I
vertex vertex vertex

I0;;.y<2n za >2n

i(i+

(d)

i(i+1)

connection module ii

@ valid MV assignments

= O unique MV assignments 107458866
=) e =
) = 214912116
I:I o 320796
6642 3348

Number of M-V assignments
10°

10" 10
- E:‘
=

(=]

2 3 4 5
Size(p*n, p=n)

Fig. 2-9 Reconfigurability of 3D cellular origami structure. (a) Views of cellular origami
structure and chessboard of 3x3x3 tessellation in the front view. (b-d) Graphic representations of
the basic module, connection modules i and ii. (e) The result of the search for the number of valid

and unique configurations with different tessellation sizes.
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For a simple 3x3x3 tessellation, it is surprising that more than 6x10° valid
configurations exist. These configurations are switched through a common bifurcation
point, where the Miura vertices are flat unfolded, as shown in Fig. 2-10(a) left. In the
discussion of these specific examples discovered during the exploration process, three
typical graphic representations are presented in Fig. 2-10(a) right. Notably, all Miura-
ori vertices in these cases adhere to the MV-II assignment. In graphic representation I,
the symmetric Eggbox vertices conform to the MV-II assignment, resulting in a concave
shape for the tubular origami module. Moving to graphic representation II, a unique
configuration emerges wherein the symmetric Eggbox vertices in the top and bottom
layers exhibit both M V-1 and M V-II assignments, while those in the middle layer adhere
solely to the MV-II assignment. Consequently, the entire 3x3x3 cellular origami
structure manifests convexity at the top and bottom ends and concavity at the middle
layer. Finally, in graphic representation III, the symmetric Eggbox vertices adhere to
the MV-I assignment, yielding all tubular origami modules with a convex contour.
Meanwhile, the folding process of the three typical configurations is shown in Fig.
2-10(b). Apparently, the geometric dimensions of the structure, namely the width (W),
breadth (B), and height (H) in the x, y, and z directions, undergo significant changes
during the folding process. For a mxnxp cellular origami structure, its dimensions are

W =2msin(arccos(cos« / cos @))
B=2nbcosg+acosa / cos ¢ (2-12)
H=pc+n,bsing+n, bsing—n_ bsing

where a, b, and c are length parameters, ¢ is the angle describing the folding ratio, 7ep
is the number of layers in the two end-sheets’ convex, while m,, and m,, are the
number of layers in the middle sheets’ convex and concave configurations, respectively.

Particularly intriguing are the changes in dimensions within the yoz plane. The
structure is observed to undergo contraction, remains unchanged, or stretches along the
z direction in three cases while being contracted in the y direction monotonically, as
shown in Fig. 10(b), indicating negative, zero and positive in-plane Poisson’s ratio
(NPR/ZPR/PPR). To verify these findings, a theoretical model of Poisson’s ratio is
established by means of the kinematic model. The in-plane Poisson’s ratio Vg, of the

structure is defined as!*33176]

dH B
VBH:_EXE (2-13)
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Fig. 2-10 The 3x3x3 tessellation. (a) The bifurcation configuration of the tessellation and its three

typical configurations as well as graphic representations. (b) Folding process of the prototype.

Consequently, equation (2-13) can be written as

_ n,bcosp+n, bcosp—n_ bcose y 2nbcosgp+acosa / cos g
—2nbsing+acosatangsec ¢ pc+n,bsing+n bsing—n_bsing

Van

(2-14)
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The quantitative Poisson’s ratio experiments on these three typical configurations
of the 3>3>43 tessellation have also been performed. The tested sample was compressed
between two smooth flat platens (the one on top is transparent) along the x direction, as
shown in Fig. 2-11(a). The compression tests are conducted using a vertical testing
machine (Instron 5982) by applying an 80mm displacement and a 0.5 mm s! loading
rate. Due to the prestressing of the hinges made of tape, the compression test of three
cases starts from a partially folded configuration rather than a fully unfolded
configuration. The motion of the markers used to define the contours in the yoz plane
was captured by a CSI Vic-3D9M digital image correlation (DIC) system with a camera
resolution of 2704x3384 pixels and a frame period of 500 ms. Thus, the Poisson’s ratio

associated with the generic frame i of the experimental movie, was computed through

H..—-H, B
Vo = ——HL L 2-15
BH Bi+1_Bi H. ( )

In Fig. 2-11(b), the experimental results (markers) are compared with the
theoretical prediction (continuous lines) provided by Eq. (2-14), where the folding ratio
is defined as (WmaX -W ) /W, . The analysis shows that experiments and theory are in
good agreement although the results differ slightly due to fabrication defects. Figure
Fig. 2-11(b) shows that the Poisson’s ratio Vg, of case I remains negative and changes
from -0.48 to -0.13, while the Poisson’s ratio Vg, of case Il fluctuates around zero, and
the Poisson’s ratio Vg, of case Il remains positive and changes from 0.41 to 0.10. It is
also noted that experimental results and the theoretical curve for both positive and
negative Poisson’s ratio at higher folding ratios with experimental values converging
towards zero. This phenomenon is mainly due to the thickness of the material.
Specifically, the analysis of the theoretical Poisson’s ratio is based on a kinematic model,
where the cardboard is ideally zero-thickness materials. In fact, each piece of cardboard
in the prototype is only 0.2 mm thick. However, the 3x3x3 tessellation consists of 12
layers stacked together in the W direction at higher folding ratios, even without
considering the thickness of the tape (0.02mm). Consequently, the dimensional change
of the prototype in the H direction will be small with compression nears its end. Overall,
these results demonstrated that it is achievable to rationally design origami
metamaterials with negative, zero and positive in-plane Poisson’s ratio (NPR/ZPR/PPR)
under large deformation by manipulating the MV assignments, which has not yet been

reported previously in conventional origami sheets.
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Fig. 2-11 Quantitative analysis of Poisson’s ratio. (a) The experimental setups. The black speckles
of the panels are used to evaluate the dimensions. (b) Comparison of experimental and theoretical

results. Data are expressed as the mean and standard deviation of three tests.

2.4 Conclusions

In this chapter, the challenge of searching for MV assignments that satisfy rigid
foldability in large 2D origami tessellations or 3D cellular structures is addressed by
transforming it into a chessboard coloring problem and employing programming
language for its solution. Specifically, origami tessellation is divided into combinations
of modular units. Subsequently, the motion compatibility conditions for assemblies of
spherical linkages are used to establish basic rules for the graphic representation of
these modules. Eventually, the DFS algorithm is employed to systematically traverse
the chessboard, seeking graphical solutions that adhere to the established rules and
ultimately transforming them back into origami patterns with specific MV assignments.
This method not only provides an analytical value and their precise assignments of MV
creases but also eliminates a significant number of duplicate geometric configurations.
The efficiency and accuracy of proposed method have been demonstrated through a
series of 2D origami tessellations, and further extended to 3D cellular origami structures.
In this process, three types of oligo-modal origami tessellations that exhibit a constant
number (>2) of rigid MV assignments independent of tessellation size, and a pluri-
modal cellular origami whose number exponentially increases with tessellation size,
have been identified. Additionally, the analysis of the theoretical and experimental
results of mechanical properties reveals that negative, zero, and positive in-plane
Poisson’s ratio can be achieved under large deformation by manipulating the MV

assignments within a single origami structure.
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Chapter 3 Integration of Origami, Kirigami and Ori-Kirigami in
Thick Panels by Transferable Joints

3.1 Introduction

The challenge of evaluating the reconfigurability of four-crease origami vertices
and their tessellations for zero-thickness structures was addressed in chapter 2.
However, modern origami extends beyond zero-thickness sheets, with the thickness of
rigid materials gaining significance, particularly in engineering applications requiring
heightened strength or rigidity. It is found that most studies of origami-based
reconfigurable structures focused on zero-thickness origami, except for a few known
examples of thick-panel origami. Despite the development of various approaches to
accommodate thickness in origami-based designs, the physical interferences arising
from thick-panel transformations present challenges in reconfigurable structures. This
arises from the necessity to accommodate panel thickness in various folded or unfolded
configurations.

On the other hand, joint axes in conventional thick-panel origami are typically
located at the top and bottom edges of the panel, while thick-panel kirigami aligns them
in the thickness direction. However, ori-kirigami introduces unique design principles,
where joint axes can be at the panel’s edge or within its thickness simultaneously.
Generally, a revolute joint, commonly used to connect two links, provides one DOF
relative motion. Once installed, the direction of the joint axis and corresponding linkage
parameters are determined. The variations in joint axis orientation prevent connectivity
between thick-panel origami, kirigami, and ori-kirigami. This chapter seeks to integrate
them using Jacob’s Ladder toy-inspired vertically transferable joints (VTJ).

The outline of this chapter is as follows. In section 3.2, the design of the thick-
panel ori-kirigami unit is presented, integrating origami, kirigami, and ori-kirigami
motion branches by embedding VTJ into flat-foldable six-crease vertices, and the
effects of design parameters on the kinematic behaviours are revealed. In section 3.3,
the focus is on the tessellation of the reconfigurable units and their accompanied
tuneable mechanical properties, including Poisson’s ratio, deployable ratio, and load-

bearing capacity. The concluding remarks are presented in section 3.4.

49



Doctoral Dissertation of Tianjin University

3.2 Single Reconfigurable Unit with Vertically Transferable Joints
3.2.1 Vertically Transferable Joints

Extending parallel transferrable joint inspired by the Jacob’s Ladder toy™*’’], the
VTIJ technique is introduced, as shown in Fig. 3-1(a) and (b). Each panel is intricately
linked to three non-stretchable tapes, A, B, and C. Notably, tapes A and C are attached
to the side surface of panel P, and extend down in the thickness direction to the bottom
surface of panel P, . In contrast, tape B is attached to the side surface of panel P, and
extends down in the thickness direction to the bottom surface of panel P,. Such an
arrangement of interlaced non-stretchable tapes allows each panel to act as an R joint
(one DOF) at either of its two edges. Consequently, when the joint axis relocates from
the edge of the bottom surface to that of the side surface at an unfolded configuration
(which is also the bifurcated configuration), the mountain crease transitions into an R
joint whose axis is in the thickness direction, graphically depicted by the red dashed
line plus a grey circle and arrow in Fig. 3-1(a). Meanwhile, by connecting the top and
side surfaces of two panels with three interlaced tapes, as shown in Fig. 3-1(b), the axis
of the joint can be transferred from the edge of the top panel surface (valley mountain
crease) to the thickness direction, graphically indicated by the blue dashed line plus a
grey circle and arrow. Despite each VTJ comprising two joints, only one joint operates

after passing through the unfolded configuration.

Mode I Bifurcation Configuration Mode 11 Graphic
representation

Y

& : Mountain crease

replaced by VTJ

M
Eh Valley crease
‘ replaced by VTJ

Fig. 3-1 Vertically transferrable joint technique. (a) Mountain crease replaced by VTJ and

(b) valley crease replaced by VTJ. Arrows and grey circles accompany these representations,
where arrowheads indicate the direction of joint transfer, and circles signify the joint axes located

in the direction of thickness.
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The proposed VTJ can be selectively activated to be located on the upper and lower
surfaces of the panel or in the thickness direction by controlling the adsorption of the
strip to the panel. Taking the case in Fig. 3-1(a) as an example, when the tapes B (A and
C) are adsorbed on the panel P, (P, ), the two panels can only be folded in the way of
R joint at mountain creases. And when strip B (A and C) is adsorbed on panel P, (P,),
the two panels can only be opened in the way of the joint whose axes located in the

direction of thickness.
3.2.2 Characterization of a Single Unit

At the nucleus of integration design is the single diamond vertex, as illustrated in
Fig. 3-2(a) left, which is characterized by four diagonal mountain creases (represented
by red solid lines) and two co-linear valley creases (represented by blue dashed lines),
converging at a point. The square base height is denoted by 2/, and the design angle is
represented by a. Transforming these facets into panels of uniform thickness ¢ yields an
assembly where adjacent panels are connected by six revolute joints C; (i =1, 2, ..., 6).
The axis of these joints aligns either along the panels’ bottom or top edges for mountain
or valley creases, respectively. Fig. 3-2(a) right presents the reconstruction of this
origami vertex. Then replacing four joints (C;, C,, C, and C;) of the original pattern
with VTJs obtains the modified unit as shown in Fig. 3-2(a) right. The replacement of
mountain or valley creases by VTJs is visually highlighted by red and blue dotted lines
plus arrows and grey circles, respectively. Arrows and grey circles accompany these
representations, where arrowheads indicate the direction of joint transfer, and circles
signify the joint axes located in the direction of thickness. Consequently, the modified
unit undergoes a metamorphosis, now comprising six triangular panels intricately
interlinked by ten joints, and its thick-panel form is presented in Fig. 3-2(b).

Obviously, co-linear creases in the modified unit could enable the entire unit to
work as open-chain mechanisms with mobility, where an R joint is connected by two
links, but more interesting are these single-loop linkage cases. In fact, VJTs serve to
lock and unlock joints, allowing for the adjustment of joint axis orientation on the top
and bottom surfaces of panels or in the thickness direction without increasing DOF,
thereby reconfiguring the type of linkages to form a transformable vertex with multiple

motion branches. Thus, there are 2* =16 potential combinations of activated joints.
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Only 10 are unique considering plane symmetry, and only five of these have mobility
for single-loop linkage cases (Appendix C).

(a) ¢, c (b)
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— :Mountain crease +<€--- : Mountain crease replaced by VTJ @ : Multiple joints overlapped

Py i P p. ¥ ps
s : s C, : c,
¢, ¢,
original unit modified unit thick panel form

-- : Valley crease “<--- : Valley crease replaced by VTJ
Fig. 3-2 Diamond pattern-based integration design. (a) Modified unit with vertical transferable

joints evolved from six-crease vertex; (b) thick-panel form of the modified unit.

3.2.3 Motion Branches of a Single Unit

3.2.3.1 Thick-Panel Origami Motion Branch

Starting from the basic mode, the diamond origami branch (depicted in Fig. 3-3),
unlocks all four transferable joints C,, C,, C, and C;, positioning their axes on the top
or bottom surfaces of the panels. This setup transforms the single unit into a two-fold
plane-symmetric Bricard 6R linkage, following the geometric condition

Q, =8y =85 =85 =1, 8y=8,=0
O, =2N— 0 =2~ 0, Qpy =2~ Q=N =20, Qyy =2 — QY= (3-1)
R=R,=R,=R,=R, =R, =0

where 0 < <m/4, to ensure flat foldability.
Further, the kinematic relationships underlying this linkage are deduced through

the following expressions[*’]

") 1 ®,
= , = = = ’tan—z—tan— 3—2
O =@y Po=Q3=P5=@g > cosa 5 (3-2)

where @; denotes dihedral angles.

Equation (3-2) shows that the relationship between dihedral angles is independent
of the thickness 7 and edge length /. Meanwhile, the kinematic curves between ¢, and
@, are plotted in Fig. 3-4(a), where points i-ii-iii-iv-v in black and red correspond to
configurations in Fig. 3-4(b) and (c) of the vertex with o =30° and a=45°,

respectively. Regardless of the variation of design angles a, there always exist two fixed
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points (0, 0) and (=, m), implying that the unit is flat-foldable and flat-deployable.
While general design angles (0 < @ <t/ 4) may yield voids and tabs in the fully folded
configuration, as shown in Fig. 3-4(b), the special case of o =45° enables ideal folding

from a flat square panel into a compact stack (Fig. 3-4(c)).

(a) (b) :

c % Cs
P: i P
o

20| ps Ps
Ps ! Ps

Cy Cs

3 i s

Fig. 3-3  Thick-panel origami branch of a modified unit in diamond vertex mode. (a) Crease

pattern of the unit; (b) thick-panel form of the unit.
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Fig. 3-4 Relationship between dihedral angles ¢, and ¢, and corresponding configurations in
thick-panel origami branch. (a) The kinematic paths of a single unit. The path for the case of
a =30° line a is in black, and the one for the case of & =45° is in red. (b) Motion sequence of

the unit with a =30° ; (c) motion sequence of the unit with ¢« =45°.
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3.2.3.2 Thick-Panel Kirigami Motion Branch

A kirigami branch arises when activating four joints (C,, C,, C, and C, in Fig.
3-5(a)) located in the thickness direction among transferable joints. This particular
geometric configuration results in the automatic dormancy of joints C; and C; within a
single modified unit, as visually indicated by the grey lines in Fig. 3-5(a). Consequently,
panels P, and P,, as well as P; and P; operate as a unified entity, respectively.
Therefore, the thick-panel form depicted in Fig. 3-5(b), featuring a single loop unit
composed of four panels, can be deemed kinematically equivalent to a planar 4R

linkage.

(a)

20| Ps Ps

Fig. 3-5 Thick-panel kirigami branch of the modified unit. (a) Crease pattern of the unit; (b)

thick-panel form of the unit.

The geometric condition governing this linkage is listed as follows:
8, =8y = 8y =8y =| (3-3)
whose relationship between the dihedral angles is
P=0, =03 =, (3-4)

The relationships between @, and @, for varying « , coupled with their
configurations, are illustrated in Fig. 3-6(a-c). Intriguingly, these relationships remain
independent of the design parameters « . As angle ¢, increases, it can be seen that the

rectangular unit first opens in-plane and then closes to form an isosceles triangle.

3.2.3.3 Thick-Panel Ori-kirigami Motion Branches

Attention is then turned to ori-kirigami scenarios where certain joint axes are

located at the top and bottom edges of the panel, while others are aligned with the
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thickness direction. As a result, a total of three different ori-kirigami branches were
found to exist in a single unit.
(a) 7

ViV
- a=30° “)

— a=45°

iv(iv)

0, /2 ifi(iii)

(b)

a=30° Y =

() i

a=45°

Fig. 3-6 Relationship between dihedral angles ¢, and ¢,, and corresponding configurations in

thick-panel origami branch.

Firstly, as illustrated in Fig. 3-7(a), the two transferable joints ¢> and cs in the
modified unit with axes located in the bottom of the panel surfaces and the other two
transferable joints c1 and c4 with axes located in the thickness direction are activated.
Consequently, the corresponding thick-panel ori-kirigami branch I, as shown in Fig.
3-7(b), exhibits a two-fold plane-symmetric property. This particular configuration
corresponds to a two-fold plane-symmetric Bricard 6R linkage, characterised by the
following geometric condition

&, =y, =3, =3, =Isina, a;=a,=0
A =2m—0g =712,0,, =2 -0 =7—20, 0y, =27 — )y =31 12  (3-5)
R =R,=0,R,=—R, =R, =—R, =-lcosex

and the relationship between angles can be conducted with matrix method, i.e.,

DL =Py Py =@z =P5 =P

3-6
2cosa cos(a + @, 1 2)* —cos g, sinasin(a +¢,) =0 (3-6)
1 2 1

The depiction of the kinematic curve describing the relationship between ¢, and

¢, , coupled with the folding process for a single loop unit with design angles set at
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a=30° and o =45° are shown in Fig. 3-8(a-c). For general situations, i.c.,
O0<a<m/4, the opening of panels P, and P,, P, and P; within two faces facilitate
the transformation of the unit from an initial rectangle configuration into a stack. The
illustrated example in Fig. 3-8(b) with & =30° (i-ii-iii-iv-v, black line) encapsulates
this folding dynamic, wherein, in the fully folded configuration v, @, is non-zero,
indicating the presence of voids and tabs. However, in the special case of o =45°, the
limit configuration v reaches point (0, 0). As a result, a single unit can be folded from
the flat state of the rectangle to a compact prism state (i-ii-iii-iv-v, red line), with an
area reduced to half of its original size and a height doubled, whose motion sequence is

illustrated in Fig. 3-8(c).

(a)
<

¢ C(.
P> [ P
(¢4

20| Ps Ps
p-l p‘

Cy Cs

Cs

Fig. 3-7 Thick-panel ori-kirigami branch I of the modified unit with two-fold plane-symmetry.

(a) Crease pattern of the unit; (b) thick-panel form of the unit.

(a) T —
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— a=45° 4
’,x"iii
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iy,
Jiv
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(b) @,
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a=30° @ = = =
(e .
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Fig. 3-8 Relationship between dihedral angles ¢, and ¢, and corresponding configurations in

thick-panel ori-kirigami branch I with two-fold plane-symmetry.
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Secondly, in addition to the two-fold plane-symmetric case in Fig. 3-7 and Fig.
3-8, strategically activating the VTJs may also trigger other ori-kirigami branches with
solo symmetric plane. As shown in Fig. 3-9(a), the axes of the activated VTJs C, is
located at the top of the panel surfaces, while the axes of the other three activated VTJs
C,, C,, and C; are located in the thickness direction. In this case, the thick-panel ori-

kirigami branch II works as Bennett 6R linkage with geometric condition

a, =8y =1, ay=2a5=0ay, =8, =t
a, =0 =0,a,,=2n—0y =120, =2n-0, = (3-7)
R =R,=R;=R,=R,=R;=0

Then, the relationship between dihedral angles can be obtained with the matrix method,

0, =@, 0 = @5, Isin(g, 1 2) =tsin(g, 1 2)
arcsin(sinasin(p, /2))+ @, =@,/ 2+ (3-8)
sin g, = cos(¢, / 2) / arcsin(sin asin(g, / 2))

(a)

© C(:
P | P
o
| e X P
ps i p:
c, H c,
Cy

Fig. 3-9 Thick-panel ori-kirigami branch II of the modified unit with solo symmetry plane. (a)

Crease pattern of the unit; (b) thick-panel form of the unit.

The kinematic paths @, vS @, and the corresponding motion sequences of the ori-
kirigami branch II with & =30° and 45° are shown in Fig. 3-10(a-c). Both paths have
the same starting point (n/ 2, 0) and ending point (n, n), which indicates that one
side of the unit can always be folded compactly while the other side can only be partially
opened within the plane, as demonstrated by motion sequence in Fig. 3-10(b) and (c).

Thirdly, the exploration extends to ori-kirigami branch III, as shown in Fig. 3-11(a),
where VTJs C, and C; are located at the bottom of the panel surfaces, while one of

VTlJs €, and C, is located at the top of the panel surface and the other in the thickness
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direction. As a result, the thick-panel ori-kirigami branch III in Fig. 3-11(b) conforms
to a plane-symmetric Bricard 6R linkage with geometric condition
a, =agy =Isina, a,,=a,=0,a, =a, =t
A =2M— 0y =T/ 2,0, =2T— 0y =1—2Q, Ay, =20 — Qs = (3-9)
R =R;=R,=R, =0, R, =—R; =-lcosa

(a) T

----- a=30° )
— a=45° ;
@, w2 ii;f‘_
Fyal
0 iii(iii)
0 /2
0 top view
b 3
(b) i ii
_ _ __—
a=30°,1/1=1/2

(c) i iii top view

= ﬁ% —
a45°,m\ﬁ2/z@ — P

Fig. 3-10 Relationship between dihedral angles ¢, and ¢, and corresponding configurations in

1

A

thick-panel ori-kirigami branch II.

Using explicit closure equations of the general plane-symmetric Bricard 6R linkage
derived by Feng!™l, the relationship between dihedral angles can be conducted, i.e.,
P, =P P3=Ps5
sin a(cos @, sin ¢, +€0S 20 COS @, COS ¢, ) +SiN 201 COS 2 COS @,
sin 2a:sin o cos @, —C0S 20 COS &

t(—cos ¢, CoS @, +C0S 2cx COS @, SiN @,) +sin &
t(sin2asing,) +1cosa

(3-10)

an &=t 20r _sin a(cos ¢, Sin ¢, +C0S 22 COS @, COS ;) +SiN 202 COS 2 COS @,
2 sin 2a:sin o Cos ¢, — COS 2 COS &
tan 2 Ccos ¢, (COS ¢, +sin ¢, COS 2c7)

2 cos a(cos ¢, Sin @, —C0S 2 COS @, COS @,) +SiN & Sin 2¢x COS @,
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(a) (b) xz:
(& zl Cs
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20| Ps Ps
Ps ! Ps
G, Cs
¢y

Fig. 3-11 Thick-panel ori-kirigami branch III of the modified unit with solo symmetry plane. (a)

Crease pattern of the unit; (b) thick-panel form of the unit.
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Fig. 3-12 Relationship between dihedral angles ¢, and ¢, and corresponding configurations in

thick-panel ori-kirigami branch III. (a) The kinematic paths with &z =30° when t/1=1/4 and

t/1=+/212; (b) the kinematic paths with oz =45° when t/1=1/4and t/1=+2/2, respectively;

(c-f) motion sequence of the unit with different design parameters.
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Equation (3-10) shows that the relationship between dihedral angles is dependent
on the angle « , the thickness ¢, and the edge length /, simultaneously. To investigate
the effect of design parameters on the motion of structure, o =30°,t/1=1/4 (black
line) and ¢ =45°,t/1 =1/4 (red line) are chosen at first. As shown in Fig. 3-12(a).
when the dihedral angle @, =0, @, goes to 18.19° and 15.50° under the above two
design parameters. The fact that ¢; # 0 means that the unit does not have a flat and
compact folded configuration, which can be visually demonstrated by the V-shaped
limit configuration iii of the motion sequence in Fig. 3-12(c) and (e). However, when
t/l=sina, taking o =30°,t/1=1/4 (black line) and a =45°1t/1=1/4 (red line) in
Fig. 3-12(b) as examples, @, becomes 0, which means the structures are folded towards
flattened configurations even with void (limit configuration iii in Fig. 3-12(d) and (f)).

In summary, investigation so far has demonstrated the remarkable reconfigurability
of a single unit with VTJs. Specifically, by strategically activating the axis orientation
of the transferable joints, a single unit can exhibit five single DOF motion branches,
namely origami, kirigami, and ori-kirigami I-III, as shown in Fig. 3-13. The effect of
the design parameters on the folding behaviour of the unit is analysed using the closure
equations of the underlying linkage. Remarkably, the unit exhibits excellent properties
when the angle o =45° and t/| =sina . Therefore, subsequent analysis of tessellation

will focus on the case of & =45° and t/| = \/5/2.

3.3 Tessellation of Reconfigurable Units with Tuneable Properties
3.3.1 Tessellation Method and Motion Branches

The formation and connectivity of tessellations utilizing modified units are
illustrated in Fig. 3-14. Initially, the modified unit with o =45° undergoes a reflection
symmetry operation along the horizontal direction. Then, the unit and its mirrored
counterpart are interconnected by two joints connecting panels P, and p’,, as well as
Ps and P, whose axes are located along the thickness. Subsequently, resulting
assemblies undergo mirroring along the vertical axis and then joined through two VTJs
to form a 2x2 tessellation, as depicted in Fig. 3-14. An analysis of the overall DOF of
the tessellation reveals a spatial 8R linkage formed at the centre of the four units whose
configuration can be defined by two neighbouring cells in the rows. Each unit has one

DOF, and the connection between two neighbouring cells in the rows is defined by a
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single input, i.e., a joint at the valley crease or a planar 4R linkage. Consequently, the

overall DOF of the tessellation is one.

Origamibranch

> =
a=45°,1/1=\2/2 .
Kirigami branch
~ 4 =
. P> AP e T
.‘\ K
Ps v 6 ~
Pay Ps
¢ -
L 4
e
T
Ly
&
L>

Fig. 3-13 The prototype of a single unit with « =45°, | =40mm, t = 28.28mm . Triangular panels

are made of cardboard and non-stretchable tapes are made of high density polyethylene fibre.

3.3.1.1 Origami Motion Branch of the Tessellation

Upon the selection of a thick-panel origami branch by the modified unit, the 2x2
tessellation undergoes deformation in accordance with the crease pattern depicted in
Fig. 3-15(a). Since the units in two adjacent rows are connected to each other by hinges
in the thickness direction, p, and P, as well as Ps and p‘5 will each work as one large

triangular panel when the valley folds connecting them are in action. The folding
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process of the 2x2 origami tessellation, as depicted in Fig. 3-15(b), aligns with the

standard diamond patterns of the thick panel, a well-known single DOF system,

resulting in a reduction of the area to 1/8 of the original and an increase in thickness by

8 times. As the number of rows of the tessellation increases, unidirectional bending

propensity causes the panels to self-intersect, eventually leading to the formation of a

tubular structure (iii-iv-v in Fig. 3-15(c)). Meanwhile, the flat thick panels can also be

folded into a compact stack within a single DOF mode by keeping some of the co-linear

creases dormant (iii-ii-i in Fig. 3-15(c)).
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Fig. 3-14 The formation and connectivity of 2x2 tessellation.

(b)

2

2

Fig. 3-15 Tessellations of thick-panel origami mode. (a) Crease pattern of 2x2 origami

tessellation; (b) and (c) are single DOF motion sequence of 2x2 and 4x4 origami tessellations.
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3.3.1.2 Kirigami Motion Branch of the Tessellation

When the modified unit opts for a thick-panel kirigami motion branch, the trend of
the 2x2 tessellation deforms following the crease pattern depicted in Fig. 3-16(a).
Initially, all units in the tessellation are in planar 4R linkage mode (level-I deformation),
as illustrated in Fig. 3-16(b). As the unit reaches its limit configuration, two
neighbouring cells in the rows come into contact and merge, thereby triggering the
level-I1 deformation of the 2x2 tessellation, where it functions as a single R joint, as
demonstrated in Fig. 3-16(c). As the number of units increases, the tessellation
transforms into a standard rotating square structure!*’® during level-II deformation, as
demonstrated by the motion sequence of the 2x2 tessellation in Fig. 3-16(d). For either

level-I or level-II deformation, there is only in-plane deformation.

(a) (c) level-II

(d)

SO IL
0 e @D+ @ ¢ €
APEP4R4D
-85 3 B¢ B
RLRLRLRL
PV W IV 2N
s P4 P4 pd

Fig. 3-16 Tessellations of thick-panel kirigami mode. (a) Pattern of 2x2 tessellation and its (b)
level-l deformation and (c) level-1l deformation; (d) single DOF motion sequence of 4x4 origami
tessellations, where i-ii-iii correspond to configurations in level-I deformation, iii-iv-v correspond

to configurations of in level-ll deformation.

3.3.1.3 Ori-Kirigami Motion Branches of the Tessellation

Lastly, consider the ori-kirigami cases. When the modified unit selects a thick-
panel ori-kirigami motion branch I, the 2x2 tessellation trend deforms following the
crease pattern shown in Fig. 3-17(a). Studies have shown that a single ori-kirigami |
unit can be folded from the flat state of a prism to another prism state (Fig. 3-8), with

its area reduced to half of the original size and height doubled. However, in tessellations,
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units are only allowed to fold to half of their final state due to panel interference
between adjacent units. As a result, the 2x2 tessellation is folded from a planar state
into a square arch, as shown in Fig. 3-17(b). As the number of rows increases, the
tessellation can eventually fold into a square prism, as shown in Fig. 3-17(c).

When the modified unit selects the thick-panel ori-kirigami branch II, the 2x2
tessellation deforms according to the crease pattern shown in Fig. 3-18(a). Due to the
opening or closing of the triangular panels at both ends only within their respective
faces, the internal triangles rotate around the valley creases, causing the 2x2 tessellation
to fold from a planar state into an inverted V-shape with an angle of 90°. For the 4x4
tessellation, it can be seen as two inverted V-shapes with angles of 90° connected

within the plane to form a square arch, as demonstrated in Fig. 3-18(c).

(a) (b)

=
" Z\A@\\'%‘Tvz\» =
AT }\VV \y"‘,\4‘\'2\'71\

e N

Fig. 3-17 Tessellations of thick-panel ori-kirigami I. (a) Crease pattern of 2x2 tessellation; (b) and

—
i

(c) are single DOF motion sequences of 2x2 and 4x4 tessellations.

As shown in Fig. 3-19(a) and (b), the 2x2 tessellation is folded from a planar state
into a square arch, when the modified unit selects the ori-kirigami branch III. Although
both tessellation of ori-kirigami branches III and I are folded into square arches, the
fully folded configuration of the tessellation of ori-kirigami branch III exhibits
triangular panels on either side of the arch in face-to-face contact, unlike the line-to-
line contact in the tessellation of ori-kirigami branch I. Furthermore, when the
tessellation of thick-panel ori-kirigami mode III comprises more than three rows, it
becomes incompatible. This is due to the tendency for the tessellation to bend in both

directions because of the presence of cuts in the unit, as shown in Fig. 3-19.
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(a) (b)

Fig. 3-18 Tessellations of thick-panel ori-kirigami mode II. (a) Crease pattern of 2x2 tessellation;

(b) and (c) are single DOF motion sequence of 2x2 and 4x4 tessellations.

(a) (b)

Fig. 3-19 Tessellation of thick-panel ori-kirigami mode III. (a) Crease pattern of 2x2 tessellation;

(b) single DOF motion sequence of 2x2tessellations.

The folding process of the prototype, depicted in Fig. 3-20, demonstrates how
transferable joints enhance the reconfigurability of a single thick-panel structure, where
triangular panels made of cardboard are connected by high-density polyethylene fibre.
Starting from the fully unfolded configuration, by keeping the axes of any of the
transferable joints located on the upper and lower surfaces of the panel, the uniform-
thickness panels can be folded into a compact volume with no gaps in diamond origami
mode. Alternatively, by keeping the axes of all the transfer hinges located in the
thickness direction, the uniform-thickness panels can be deformed in the plane in the
kirigami branch. If some of the joints are in the top and bottom surfaces of the panel
and some are located in the thickness direction, the uniform-thickness panels can be
transformed into multiple configurations in three ori-kirigami I-III branches. It is worth
noting that with this careful design, the folding process in either thick-panel origami,

kirigami, or ori-kirigami modes is a single DOF.
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Fig. 3-20 Singe DOF folding process of the prototype with « =45°, | =40mm, t =28.28mm.
3.3.2 Tuneable Properties of the Tessellation

When the tessellation enters different motion branches, besides changes in shape,
there may also be variations in properties. Therefore, this section will discuss the
tunability of the Poisson’s ratio, deployable ratio, and load-bearing capacity associated

with reconfiguration.

3.3.2.1 Poisson’s Ratio

Apparently, the dimensions of the tessellations have changed significantly. Of these,
the most intriguing is the auxetic behaviour exhibited when the tessellation goes into
the kirigami branch with only in-plane deformation. As shown in Fig. 3-16 (d), the

dimensions are marked by the red dashed line. At the beginning state of level-I, the
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dimensions of the mxn tessellation, i.e., the width W, and breadth B, in the x and y

directions, are derived as

W, =n(4lsin(e, / 2) + 2l tan a cos(g, / 2))

. (3-11)
B, =m(2l cos(g, / 2) + 21 tan asin(¢, / 2))

where m and » are the number of rows and columns of the unit in the tessellation.

Meanwhile, the dimensions W, and B, of the tessellation in level-II are

W, = 2n((2v/2lsin(/ 2)) + (2421 cos(/ 2)))

(3-12)
B, = m((2v/2lsin(¢/ 2)) + (221 cos(p/ 2)))
Therefore, in-plane Poisson’s ratio Vg, are
b= dW, y B, 3cos2a—-cos(2a —¢,) —3cosg, +1 3.13)
"W dB, W, 3cos2a+cos(2a—g¢,) +3cosg + 1 -
and
dw, B,
Vew =~ Xo—=-1 3-14
BW dB, W, (3-14)
for level-I and level-1I deformations, respectively.
(a) 20 : : (b) 20
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Fig. 3-21 Dimension and Poisson’s ratio variations of the 4x4 kirigami tessellation. (a) Variations

in dimensions; (b) variations in Poisson’s ratio.
The normalised dimension variations and the corresponding Poisson’s ratio Vg,
for the geometric parameters are | =40mm, o« =/ 4 are plotted in Fig. 3-21(a) and (b).

During level-I deformation (i-ii-iii in Fig. 3-21(c)), the tessellation first undergoes a
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bidirectional expansion of anisotropy, transforming from a small square to a rectangular
contour, exhibiting NPR. Then, the breadth B, slowly increases while the width W,
starts to contract (PPR). Subsequently, as the width B, reaches its maximum size, it
begins to contract simultaneously with the width W, , resulting in NPR behaviour again.
After reaching the bifurcation point at ¢, =7, the dihedral angle ¢, remains constant,
and the tessellation further deforms according to level-II (iii-iv-v in Fig. 3-21(c)). It is
found that Poisson’s ratio has a constant value of -1, which indicates that the tessellation
is isotropic. Overall, the in-plane Poisson’s ratio Vg, in kirigami branch can be highly
anisotropic or isotropic negative within the same structure as it transitions between

level-I or level-II deformations.
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Fig. 3-22 The simulation results of the in-plane Poisson’s ratios v, when the tessellation enters
the origami branch, ori-kirigami branches I-III. (a)-(d) refer to origami and ori-kirigami branches

I-I11, respectively.
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There are both in-plane and out-of-plane deformations as the tessellation enters
the other four motion branches, so the dimensions B and ¥ are defined as projections
in the xoy plane. The in-plane Poisson’s ratios Vg, are provided in Fig. 3-22(a)-(d). In-
plane negative Poisson’s ratios also exist as the tessellation enters the other four motion
branches. The discontinuity in Poisson’s ratio curve for the origami branch at ¢, =102°
is due to a change in the projection of the outer contour in the xoy plane. The
discontinuity of the Poisson’s ratio curves for the other cases is due to the transition of

the Poisson’s ratio between positive infinity and negative infinity.

3.3.2.2 Deployable Ratio

The deployable ratio of a deployable structure is a measure of how efficiently it
can be packed for transportation or storage relative to its deployed size. A higher
deployable ratio would mean that the structure can be packed into a smaller volume,
which is desirable for transportation and storage efficiency. Here, deployable, is defined
as the projection of the maximum folded or unfolded surface area along respective
motion branches to flat panel state, where a value greater than 1 means it is deployable,
and a value less than 1 means it is folded. As shown in Fig. 3-23, deployable ratio of
origami, kirigami, and ori-kirigami branches I-III are 0.125, 3.08, 1.5, 2.65, and 1. The
origami branch is the one with the smallest deployable ratio (0.125 times) among the
five motion branches, while the kirigami branch is the largest deployable ratio (3.08

times). It means that the deployable of the entire reconfigurable unit is about 1/24, from

the smallest to the largest projection surface, as shown in Fig. 3-23.

= N

]

Deployable ratio

ori- kiri- ori-kiri I ori-kiri Il ori-kiri ITI
Fig. 3-23 Deployable ratio of five motion branches. The labels ori-, kiri-, ori-kiri I-III on the x-

axis refer to origami, kirigami, and ori-kirigami branches I-1II, respectively.
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3.3.2.3 Load-Bearing Capacity

To explore the load-bearing capacity of the reconfigurable thick panel, 2x2
tessellations are fabricated with cardboard, which were compressed between two
smooth flat platens along x, y, z directions, as shown in Fig. 3-24(a). The specimens in
fully folded or fully unfolded configurations, along with origami, kirigami, and ori-
kirigami I-III branches, were subjected to compression testing using a vertical testing
machine (Instron 5982) with a loading rate of 0.5 mm s™'. Experimental force-
displacement curves for origami, kirigami, and ori-kirigami I-III branches are presented

in Fig. 3-24 (b)-(e), respectively.
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Fig. 3-24 Compression experiments with folding or unfolding configurations along motion
branches. (a) Experimental setup; (b)-(f) experimental force-displacement curves for origami,

kirigami, ori-kirigami I-III branches, respectively.
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Fig. 3-25 Normalised maximum force for origami, kirigami, ori-kirigami I-1II branches.

At the same time, the normalised maximum force ( F,,, / weight) is shown in Fig.
3-25. Notably, fully folded configurations devoid of any gaps or steps under the origami
branch exhibited the highest load-bearing capacity. For instance, paperboard specimens
weighing 45g could withstand up to 677.03N under compression along the x direction
(1505 times their own weight), 705.45N along the y direction (1567 times their own
weight), and 78.89N along the z direction (175 times their own weight). However, when
the flat panel was fully unfolded under the kirigami branch, it became collapsible in
either the x or y direction (Fig. 3-24 (c)). The tessellation exhibits a self-locking
phenomenon arising from interference between panels in the fully unfolded
configuration, owing to the combination of creases and cuts, thereby imparting a
notable load-bearing capacity. As shown in Fig. 3-24 (d), paperboard specimens in
locked configuration under the ori-kirigami branch I can withstand up to 38.88N under
compression along the x-direction, 33.31N along the y direction, and 121.89N along the
z direction, corresponding to 86, 74, 271 times of its own weight, respectively. Such a
self-locking phenomenon also exists when the tessellation is in ori-kirigami branches
IT and 111, as shown in Fig. 3-24 (e) and (f). However, in the fully unfolded configuration
under the ori-kirigami branches II, compression along the y or z direction forces the
contacting panels to open, resulting in only marginal load-bearing capacity along the x
direction (42 times their own weight). In contrast, in the locked state of the ori-kirigami
branches III, the triangular panels on either side of the arch are in face contact,
significantly reinforcing the load-bearing capacity in all three directions compared to
ori-kirigami branches II, as demonstrated by the test results in Fig. 3-24 (f). Specifically,
Specifically, specimens weighing 45¢g exhibited the ability to withstand up to 215.06N
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under compression along the x direction, 58.21N along the y direction, and 157.47N
along the z direction, translating to 478, 129, and 350 times their own weight,

respectively.

3.4 Conclusions

In this chapter, the VTJs technique is proposed to design reconfigurable thick-
panel structures. Starting from an origami vertex with uniform thickness, replacing
some of the R joints with VTJs gives the origami structure, which otherwise has a single
deformation mode, the ability to be reconfigurable. By strategically activating the VTJs,
the reconfigurable unit can undergo various folding behaviours, including origami,
kirigami, and three cut-and-fold kirigami motion branches. The kinematic analysis
revealed that the choice of design parameters, particularly the angle of the panels and
the thickness-to-length ratio, significantly influences the folding behaviour of the
structure. Furthermore, the results show that this reconfigurable unit can be tessellated
to form large-scale structures with a single DOF while also preserving the motion
branches, thus enabling a single mechanical metamaterial to combine the properties of
anisotropic (varies from —oo to +o0) or isotropic (-1) NPR, large deployable ratio (about

1/24), and multiple load-bearing capacity (0.4-1567 times its own weight).
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Chapter 4 Tuneable Metamaterials Based on Spatial 7R Linkage
in Modular Origami Form

4.1 Introduction

The phenomenon of reconfiguration triggered by kinematic bifurcation in a single
closed-loop linkage has attracted the attention of researchers and proved to be a
valuable resource for the design of advanced mechanisms. Therefore, the primary aim
of this chapter is to first design alternative forms of reconfigurable single-loop spatial
mechanisms with a modular origami appearance with more regular shape, richer
geometry and enhanced functionality. Subsequently, 2D or 3D modules will be
constructed, taking into account the geometric and kinematic compatibility between the
different bifurcation configurations, so as to exploit their inherent kinematic bifurcation
to achieve advanced mechanical properties for a wide range of metamaterials.

The chapter outline is structured as follows. In section 4.2, a modular origami unit
based on a single DOF spatial 7R linkage is introduced initially. The folding process of
the unit is described using a kinematic model, facilitating systematic analysis of
kinematic properties under varied geometric parameters. In section 4.3, a set of single
DOF reconfigurable 2D modules arranged in a back-to-back assembly scheme are
presented. The tunability of these modules and their tessellations through
reconfiguration within all 2D symmetry groups under the control of a simple
compression load, aided by thermal-responsive materials or pressurization schemes, is
also explored. In section 4.4, a 2D origami module is created through a shoulder-to-
shoulder assembly scheme of units. Subsequently, these 2D origami modules are
integrated onto the surfaces of regular prisms, yielding a series of reconfigurable
polyhedrons with NPR, ZPR, and PPR, or even customizable Poisson’s ratio signs.

Finally, this chapter is concluded by the conclusions in section 4.5.

4.2 Kinematics of the Spatial 7R Linkage in Modular Origami Form
4.2.1 Characterization of Modular Origami Unit

The 3D structure of the simple unit operating in plane-symmetry mode is
illustrated in Fig. 4-1(a), which is composed of two rectangular panels, two triangular

panels, two thin sheets, and a trapezoidal panel. These components are bonded together
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along edges to form a closed loop. The unit is parameterized by edge lengths
a, b, I, t, t,, t,, sector angles «, B, ¥, and folding angles @,-¢,. Assuming that all
components are rigid, and the structure can fold only along the connected edges that act
as R joints whose axes are indicated by red centre lines in Fig. 4-1(a). Such a modular
origami unit is kinematically equivalent to a spatial 7R linkage, as shown in Fig. 4-1(b),
and thus it is a single DOF system referring to the Kutzbach criterion*’®l. Following
the D-H notation], parametric constraints of this linkage form in Fig. 4-1(b) of the
modular origami unit are derived as
a, =4, ay =0, Ay =a, A =0, A6 =D, ag; =b, a71:0
a,=0, a,=a, a,, =0, a=3712, 0,=0, &, =0, a; =712  (4-1)
R =R,=R,=R;=R, =0, R, =-R,=atan(a/2)

Fig. 4-1 The geometric design of Spatial 7R Linkage in modular origami form. (a) Components

of modular origami unit and (b) its equivalent 7R linkage.

The linkage features joints 1 and 2 aligned parallel, joints 3 and 4 aligned parallel,
while parallel joints 5, 6, and 7 are all simultaneously perpendicular to joints 1 and 4.
Thus, in modular origami form, the trajectories of the rectangular and triangular panels
always lie in the same plane that is parallel to the trapezoidal panel, and the two
rectangular panels preserve the angle n—« , during the folding process determined by
a single kinematic variable. Referencel® states that the singularity of this linkage
occurs when two triangular panels are coplanar (@; = 7 ) or when two thin sheets are
parallel (¢, =n/2). Therefore, for general geometric design parameters, there are a
total of four possible motion branches of the modular origami unit (Fig. 4-2), i.e., M1
and M2 involve symmetric and asymmetric configurations with bulged-out triangular
panels, while M3 and M4 involve symmetric and asymmetric configurations with

nested-in triangular panels.
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Fig. 4-2 Four possible motion modes M 1-M4 of the modular origami unit.

To describe the folding motions of four modes in Fig. 4-2, lines AG and BG are
drawn along the edges of the rectangular panel to intersect at point G, and lines DI and
CI are drawn along the lateral sides of the trapezoidal panel to intersect at point I, so
ZAGB = ZCID =« . Draw lines DH and CH that are perpendicular to DI and CI
leading to ZCHD =n—a . Meanwhile, line DE is the common perpendicular of lines
AG and DH, and line CF is the common perpendicular of lines BG and CH. In

symmetric modes,

AG| and |BG| are equal to @—acos ¢, , while in asymmetric mode,
|AG| and |BG| are equal to @+ aC0S¢,, where + means one is positive and the other is
negative. Notice that line AB is the diagonal of planar quadrilateral OAGB. And,
|AD|=|BC|=a,

OA| = |OB| =D . Therefore, folding angles ¢,-¢, are derived, i.e.,
D=0 =03 =@y, 5=,
ps=¢,=(n+p,—a)l2-p (4-2)
bsin % =(acos¢g, +a) cos%

for motion branch M1,
=0, =T—=P =T— P,

252 sin? % = a%(cos’¢, +1) —a’cosa(cos’p, —1)

2 _h2 2
. TP arecos 2a°cosg, —b” +b°cos g B 3
2 2absin%(cosw1 -1
2 2 K2
o, :%+&—arccos 2a°cosg, +b* —b“cosg, B

2absin%(cos(pl +1)

75



Doctoral Dissertation of Tianjin University

for motion branch M2,
=P =T—P3 =TL—,

2h2 sin? % = a%(cos’ep, +1) —a’cosa(cos’p, —1)

2 R 2
o = 3_n %% _arccos 2a°cos@, —b” + b cos g, B (4
2 2absin%(c05(p1 -1)
2 2 B2
0, = 37”+&—arccos 2a°cos¢, +b° —b cosg, B

2absin % (cosgp, +1)

for motion branch M3, and
O =@ =03 =Py Q5=
(p5=(p7=(3n—(p6—a)/2—ﬂ (4-5)

bsin%z (a005¢>1+a)cos%

for motion branch M4.

It shows that once the input angle ¢, € [0, @] is given, the other dihedral angles
@,-¢; can be determined, also implying that the linkage is one DOF. Meanwhile, the
relationships among the dihedral angles ¢@;-¢, are not affected by 7, t, 1, t,.

4.2.2 Effect of Geometric Parameters on Motion Behaviours

4.2.2.1 Effect of Geometric Parameters on Kinematic Bifurcation

Further investigation revealed that the design parameters b/a and a of the 7R
linkage exert a profound influence on the number, range, and evolution of the motion
branches, referring to detailed relationships between ¢,-¢, . The motion behaviours of
this modular origami unit have been studied carefully, which can be divided into six
cases, as shown in Fig. 4-3. The bifurcation configurations Bij (i,j=1,2,3,4) of motion
branches Mi and Mj are located next to the arrows. The ellipse is filled with purple if
the module has a complete cycle of motion (¢, reachable =) on the Mi motion path,
otherwise (¢, inaccessible m), it is blank. If there is interference in the motion path,
which can be eliminated by adjusting the angle f or y, the edges of the ellipse are

represented as grey, otherwise it is black.
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cos(a/Z) 1/2+1/2tan(a/2) 2cos(a/2) b/a
s S p—
= B, gl 1
@ @?5 P, e G0 G
- = B &9n,, | =
.}--13 (M3 ':‘. 51;:':@ _ry'iﬁ' f’ya} ) "IM_’{B":'M;}
B,/ B, B,, /¥

Fig. 4-3 Effects of geometric design parameters (b/a and ) on motion branches.

To better understand the effect of parameter changes on kinematic behaviour,
particular parameters were carefully selected by increasing b/a while keeping

a=2f=2y=90". The resulting kinematic paths and configurations are illustrated in

Fig. 4-4(a) and Fig. 4-4(b-g), respectively. In case (D: , Where
b/a<cos(a/2),leading to ¢, <m/2, there is only one bifurcation between M1 (blue
line) and M3 (green line) that occurs at @; =7 for the modular origami unit.
Kinematic paths @; VS ¢, and the motion sequence of the modular origami unit in case
@O with b/a=1/2 are shown in Fig. 4-4(a) and (b). Moving to case @:
IDC| <|OA|+|OB| , i.e., cos(a/2)<bla<(l/2+1/2tan(c)) , there are

four motion branches M 1-M4 sharing five bifurcation points, as the example in case @

with b/a=3/4 shown in Fig. 4-4(a) and (c). The bifurcations B, and B,, occur at
@, = w1 2, where two thin sheets swinging in the same or opposite direction, while B,
and B,, occur at ¢, = 7, where bulged-out triangular panels change to nested-in state,
or vice versa. In case 3®: |OA|+|OB| = , e, b/a=(1/2+1/2tan(x)), the

bifurcation behaviour is similar to that of the case @) except that ¢, is able to reach its

limit angle 7 in modes M2 and M4. The example of the modular origami unit with
b/a=1 in Fig. 4-4(@ and (d) is in this case. In case @:
(@/2+1/2tan(ax)) <b/a<2cos(ax/2) , there are four motion branches, M1-M4,
sharing only three bifurcation points B,,, B,; and B,,, as shown in Fig. 4-4(a) and (e),.
Unlike case @), M2 and M4 in case @ are disconnected due to @5 <7 . When
|OA|+|OB|:|DC|+2|AD|COSa , e, case ®: b/a=2cos(a/2), the bifurcation
behaviour of case ® is similar to that of case @ except that ¢, in all four modes M1-
M4 is able to reach its limit angle n. The example of the modular origami unit with
bla=\2 in Fig. 4-4(a) and (f) is in this case. When |OA|+|OB| >|DC|+ 2|AD|cosa (case
®: b/a>2cos(e/2)), there is only one bifurcation between modes M1 and M2 in

this case that occurs at @ =7/2 for the unit because angle ¢; is unable to reach.
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The example in case ®& with b/a= \/§ is shown in Fig. 4-4(a) and (g). Referring to
the motion curves and the motion sequences, when the unit is reconfigured between the
M1 and M2 branches, it undergoes substantial geometric alterations. Conversely, when
reconfiguring between M3 and M4, the changes are localized in comparison to those
between M1 and M2. In addition, on path M1, the unit symmetrically expands or

contracts, while on path M2, it consistently adopts an asymmetric configuration.

(a) 1 bla=1/2,a=90° 2 bla=3/4,a=90° 3 bla=1,a=90°
iii — Ml i — MI1— M2 vii VI — MI— M2
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24
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Fig. 4-4 Effect of geometric parameters on kinematic bifurcation. (a) Kinematic paths of the unit
under different design parameters of cases (D-6) (assuming o =28 = 2y =90° ), where the curve
for motion branches M1, M2, M3, and M4 are in blue, black, green and red respectively. And

physical interference is indicated by dotted lines. (b-g) The motion sequence of the modular

origami unit in cases (D-(6), where b/a changes from 1/2t0 3/4, 1, 5/4, \/5 , and\/§.

4.2.2.2 Effect of Geometric Parameters on Physical Interference

Meanwhile, due to physical interference, a section of the motion curves on the
paths in Fig. 4-4(a) is dotted, which means it is not achievable. Nonetheless, these
physical interferences can be eliminated by adjusting the angle g or y of the triangular
panels (the outline of the ellipse in Fig. 4-3 is represented as dotted), since g and y
are not design parameters of the underlying 7R linkage. For example, it is possible for
two nested-in triangular panels to squeeze against each other over a portion of the
kinematic path on the M3 and M4 paths in case (D-5). Physical interferences in case
(D-®) can be eliminated by adjusting the angle 7 of the triangular panels to expand the
motion range and increase the motion mode. Taking case &) as an example, when
y =45° (Fig. 4-5(a) left), the angle ¢, on path M3 cannot reach /2 due to the
physical interference, and thus M4 cannot be realized. But when the angle ¥ <30° (Fig.
4-5(a) right), the angle ¢, on path M3 canreach 7 /2, and thus M4 becomes realizable.
In Fig. 4-5(b), an example of the motion sequence of the unit in case & with y =30°
is plotted, and it is noted that the path M4 can be realized. Meanwhile, physical
interferences in case 6 can be eliminated by adjusting the angle B of the triangular
panels, thus extending the motion range. In case ©), when [ =45 (Fig. 4-5(c) left),
the angle @, on path M3 cannot reach n due to physical interference. As f decreases,
the motion range of path M2 increases (Fig. 4-5(c) middle and right). Until S equals
35° and @, can reach n. An example of the motion sequence of the unit in case ©

with 8 =35"is plotted in Fig. 4-5(d), where path M2 has a full cycle of motion.
4.3 Reconfiguration of Origami Modules and Their Tessellations

4.3.1 Tunability in Two Families of Rosette Groups

Having identified the modular origami unit with remarkable bifurcation
behaviours, it is shown that it can be assembled back-to-bake to form origami modules

whose shape can be significantly altered. As shown in Fig. 4-6, origami modules with
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a folded n-sided (n=3, 4, 5, 6) shape and an unfolded 2n-sided shape are constructed.
To achieve compact folding, the parameter conditions should be satisfied as
a=2nln, f=(n—-a)l2, y=al2 bla=1/sin(a/2),and t, = 2a. Without loss of
generality, all modular origami units have t, =t, =a/2 . First, n modular origami units
with @ =2n/n are arranged in a circular array around the z-axis, where two adjacent
modular origami units share a rectangular area. Next, to ensure that the mechanical
assembly with » units still has a single DOF and can form a desired unfolded shape,
two additional sheets with a length range 1<|/a<1/tan (a/ 2)+t2/ a are added
between two adjacent units, enabling all trapezoidal panels to move in the same plane.
Consequently, a set of modules is constructed, which can also be considered as two
platforms connected by eight thin sheets in the middle, as shown in Fig. 4-6.

It is found that the geometric parameters of modular origami units for n=3, 4, 5,
and 6 all fall into the case of b/a>cos(a/2). Thus, each basic unit is equipped with
the ability to switch between motion branches M1 and M2 through its inherent
kinematic bifurcations. At the same time, the two adjacent units plus the two added
sheets also form a 7R linkage with & =0. The bifurcation behaviour of this 7R linkage
for connection in the M1 branch is similar to that of the basic units, expanding or
contracting in a symmetrical way. However, in the M2 branch, it degenerates into a
parallelogram linkage. It is noted that the state of this connecting linkage is not
independent but is determined by the two thin sheets in the two neighbouring basic
units. When the two sheets swing in opposite directions it is M1 and vice versa it is M2.
Given the objective of constructing modules with symmetry changes, it becomes
imperative to focus on branches M1 and M2, characterized by substantial changes in
dimensions. Consequently, setting | =a to avoid branches M3 and M4. Due to the
compatibility between the units, origami modules inherit the reconfigurability of the
units, which can be reconstructed into different configurations depending on the number
and location of the units in the M1 or M2 state. Taking a module for n=4 as an example,
there exists a total of 25 (1+2°+2*) kinematic paths when four basic units are in all
branches M1 or M2, or two basic units are in branch M1 and the other two are in branch
M2. However, due to the similarity in orthogonal directions (see Appendix D for details),

only the seven unique cases in Fig. 4-7 will be discussed.
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Fig. 4-5 Effect of geometric parameters on physical interference. (a) ¢, VS ¢, for kinematic
paths of modified modular origami unit in case B with different angles y; (b) the motion sequence
of the modular origami unit in case & with y =30°; (c) ¢; Vs ¢, for kinematic paths of modified
modular origami unit in case 6 with different angles f ; (d) the motion sequence of the modular

origami unit in case 6 with =35°. The physical interference is denoted as dotted lines.

It can be observed that in the early stage of unfolding, the module with the four
units in the M1 state travels along path 1 governed by ¢, (¢, €[0, ©/2]) where the
module expands bi-directionally from a smaller square in the xoy plane to a larger one,
or vice versa (path I in Fig. 4-7). This expansion continues until the configuration is
reached the configuration where all dihedral angles ¢ =7n/2 . At this juncture,
corresponding to the configuration with maximum height, a kinematic bifurcation
occurs, resulting in an instantaneous growth of DOFs and the activation of multiple
kinematic paths. Post-bifurcation, the module can seamlessly switch into mono-
directional contracted rectangle paths, denoted as paths II and III in the xoy plane. In
this configuration, the two basic units are in the M1 state, and the other two are in the
M2 state. This setup induces a change in only one dimension in the x or y directions, as
the two sheets attached to the ends of the rectangular panel in that direction effectively
form a parallelogram. Alternatively, the module switches into invariant square paths IV-
VII in the xoy plane (both dimensions invariant in x and y directions) with the four units
in the M2 state or two units in the M1 state and the other two in the M2 state where any
two sheets attached to the same square panel swing in the same direction.

Besides the geometric dimensions, the symmetry of the module in the xoy plane
has undergone significant changes upon reconfiguration, since the module at the
bifurcation point can access a new kinematic path that causes a break in symmetry. Here,
even though the origami module is in 3D, the focus is mainly on the shape variations
of the top platform consisting of rectangular and triangular panels within the xoy plane,
because there are only three typical configurations with two symmetries of the bottom
platform. To better understand symmetry changes during the reconstruction, notions
appear to be handy. Geometrically, for a finite object in 2D, its symmetry according to
groups of transformations that leave invariant under reflection and rotation is divided
into two types (two families of Rosette Groups)!®l: those with both rotational and

reflectional symmetry, denoted by dn, and those with only rotational symmetry, denoted
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by cn, where n represents the number of reflection axes or the order of rotational
symmetry. Meanwhile, the reflection axes a are represented by red center lines and
black dotted lines, while the centers of 2-, 3-, 4- and 6-fold rotational symmetries are

represented by rhombus, triangles, squares, and hexagons respectively.

(a) n=3,a=120" n=4,0=90° n=5,a=72° n=6,0=60"
I

Fig. 4-6 Construction of origami modules by a back-to-back assembly. (a) A folded n-sided (n=3,
4,5, 6) shape and an unfolded 2n-sided shape as the target shapes. The dotted grey line shows the

shape of the bottom platform. (b) Origami modules are formed by a back-to-back assembly.

As aforementioned, the unit configurations on the path M1 are mirror symmetric,
while the unit configurations on the path M2 are asymmetric. Thus, the module in the
expanded square path I has d4 symmetry, i.e., 4-fold rotational symmetry plus
reflections in four axes, since all four units are simultaneously in a same mirror
symmetric configuration in branch M1 (¢, €[0, ©/2]). Its symmetry reduces to c2 or
d1 upon switching to paths II or III in Fig. 4-7. Specifically, when the module bifurcates
into the motion branch II where the symmetric unit in branch M1 (U,, U;) and the
asymmetric unit in branch M2 (U, , U,) alternates, it exhibits global chirality, i.e., c2.
And when symmetric (U,, U,) and asymmetric units (U;, U,) occur in pairs, there
is only mirror symmetry. It can be seen that this global chirality originates from the
symmetry of the location of the units in the M1 or M2 state. Other possibilities are that
when the module switches to path IV where four basic units are simultaneously in the
same asymmetric configuration in branch M2, the symmetry may change to c4.

Although all four identical units are themselves asymmetric, they are in an orientation
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of 4-fold rotational symmetry and thus giving rise to a global chirality c4. The dihedral
angle of units @, €[0, m/2), presenting c4 with left-handed, and when the dihedral
angle of units¢, € (n/2, 7], presenting c4 with right-handed. Furthermore, when the
module follows path V, four units are in a symmetric configuration in branch M1 in
which two units (U,, U, ) belong to ¢, €[0, m/2) and the other two (U, U;) belong
to ¢ € (n/2, m]. Such an assignment breaks the rotational symmetry, but due to the
mirror symmetry of the unit itself, two reflection lines perpendicular to each other are
formed, leading to a d2 symmetry. For the module on path VI, configurations of U,
and U, are in branch M2 and configurations of U, and U, are in branch M1 (one
belongs to @, €[0, 7/ 2) and the other belongs to ¢, € (n/2, m]), thus the module has
only one reflection axes, i.e., d1 symmetry. Lastly, for the module on path VII, two units
belonging to different motion intervals on the M1 branch are neighbouring and the
module becomes asymmetry, i.e., cl symmetry. In summary, the symmetry of the
module for N=4, « =90°, may be d4, c4, d2, c2, dl, and cl. The motion bifurcation
and symmetry changes for n=3, 5, and 6 are also investigated. Similarly, the symmetry
changes when the origami module is reconstructed from a bifurcated configuration
(¢, =1/ 2) to bifurcated paths. As a result, the module for »=3 has d3, ¢3, and c1 point
groups (Fig. 4-8(a)), the module for n=5 has d5, c¢5, and c1 point groups (Fig. 4-8(b)),
while the module for n=6 has d6, c6, d3, c3, d2, c2, d1, and c1 point groups (Fig. 4-8(c)).

U

=
R
1

/—//‘/ﬁ—‘
path 1 path 11

d4 c2 dl
--- reflection axes {) centers of 2-fold rotation O centers of 4-fold rotation

Fig. 4-7 Reconfiguration of the origami module with N =4, @ =90° accompanied by tuneable
symmetries. The key reflection axes are represented by centre lines, while the centres of 2-fold
and 4-fold rotational symmetry are represented by rhombus and squares, respectively.
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(a) (b)
@ n=3 n=5

path I path IT path III path I path 11 path ITI

® &2

c3
path VIII

&
5 &

-~ reflection axes ¢ centers of 2-fold rotation A centers of 3-fold rotation O centers of 6-fold rotation

Fig. 4-8 Reconfiguration of the origami modules with #=3, 5, and 6 accompanied by tuneable

symmetries.
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In general, varying the design parameters « , and then arranging n=2n/«
modular origami units into a circular array around the z-axis allows us to obtain 2D
geometric objects with arbitrary dn or cn point groups. Meanwhile, the crystallographic
restriction theorem restricts the value of n can only be 1, 2, 3, 4, and 6 for both symmetry
families. Therefore, only two single DOF modules with #»=4 and n=6 are sufficient to
construct ten 2D crystallographic point groups, i.e., d1, d2, d3, d4, d6, cl, c2, ¢3, c4,
¢6. The findings are validated by fabricating and testing centimeter-scale prototypes of
the modules as shown in Fig. 4-9. These examples prove that the dimensions and
symmetry of the module can be tuned by manually applying a force, and all ten 2D
crystallographic point groups predicted by analysis can be easily realized because of a

single DOF with powerful bifurcation capability.

Fig. 4-9 Prototypes with ten 2D crystallographic point groups, i.e., d1, d2, d3, d4, d6, c1, c2, ¢3,

c4, c6, constructed from only two modules with n=4 and n=6.
4.3.2 Tunability in Seven Frieze Groups

From a single module, attention is now shifted to its periodic border, or frieze
pattern generated by repeating in one direction since these 2D line groups are related to
tessellations'’#l. In mathematics, there are only seven different symmetry groups of
frieze patterns, called frieze groups, also known as 2D line groups, i.e., pl11, plal,
pmll, plml, pl12, pma2, pmm?2. A guide to recognizing these frieze groups is provided
in Tab. 4-1[187],
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Tab. 4-1 Guide to recognizing frieze groups!*&,

Has perpendicular reflections?

Yes; Has horizontal reflection axis? No; Has horizontal reflection axis or glide reflection?

Yes; Has horizontal
No; Has 2-fold rotation? No; Has 2-fold rotation?
Yes: reflection axis?
pmm?2 . . . . . .
Yes: pma2 | No:pmll | Yes: pmll No: pIm1l Yes: pl12 No: p111
(a) Translation unit and (b) Periodic border designs

its basic generating region

A TR
KA Z

N N
L ETKA

T2

KA

Y
| !ﬁj’)}lmymi pma2

--- reflection axes --- glide reflection axes < centers of 2-fold rotation

Fig. 4-10 All seven frieze patterns constructed by the modules with n=4, a =90°. (a)

Translation unit and its basic generating region (grey area); (b) periodic border designs.

Here, all seven distinct symmetry groups have been achieved with just a linear
tessellation of modules with n=4, as shown in Fig. 4-10(a) and (b), whose DOFs are

equal to the number of modules. Specifically, let’s focus on the frieze pattern with line
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group pll11, which is created by repeatedly applying a translation to an asymmetric
module with point group cl. Then, the symmetry becomes plal if the arrangement of
modules is reconstructed by applying glide reflection and translation on the asymmetric
module with the point group cl, or it turns to pml1l by continuously reflecting the
module with the point group cl about reflection axes. Next, if all modules are
reconstructed to the state with point group dl or c¢2 and are in a translational
arrangement, the linear tessellation has line groups plml or pl112. To construct the
pma2 design, neighbouring modules with the point group c2 in the p112 design need to
be reconstructed into mutually chiral configurations (180° rotational symmetry). Finally,
the pmm?2 design is generated by reconstructing neighbouring modules with point group
dl in the pIml design into mirror configurations. It’s important to note that all seven
frieze patterns are generated by the same number of modules in the same connection
(merging rectangular panels), and the difference between these designs lies in the states
of bifurcation configurations. Thus, any unique pattern can be reconstructed into other

six cases with different line groups.
4.3.3 Tunability in Seventeen Wallpaper Groups

Consider a geometric object that is regularly repeated by translation in two non-
parallel directions. It turns out that any infinitely repeating 2D pattern falls into one of
seventeen classes based on its symmetries, including translation, rotation, reflection,
and glide reflection, known as plane symmetry groups, planar crystallographic groups,
or wallpaper groups. A guide for recognizing wallpaper groups is shown in Tab. 4-2[181,

On one hand, 1- or 2-fold wallpaper groups can be constructed by directly applying
symmetry operations to the seven frieze patterns described above, as shown in Fig.
4-11(a). For example, p1, pg, or pm are obtained by filling the plane with copies of a
frieze pattern p111, plal, or pm11 placed directly above/below each other in an ordered
fashion. Additionally, a p2 wallpaper group can be obtained if the frieze pattern p112 is
stacked in a shifted manner. Furthermore, wallpaper groups cm, pmm, or cmm are
obtained by continuous reflection of frieze patterns plal, pmm2, or pma2, respectively.
Note that pgg and pmg wallpaper patterns result from the glide reflection of the plal
and plml frieze patterns, respectively. Moreover, motifs with lower symmetry using
combinatorial operations or directly with motifs with higher symmetry are expected to

realize 4-fold wallpaper patterns. For example, a p4g wallpaper group can be
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constructed by rotating the module with a d1 point group (path VI in Fig. 4-7) four
times and then applying bi-directional translations. Directly repeating modules with

point groups d4 or ¢4 in both directions construct the p4m or p4 wallpaper group.

Tab. 4-2 Guide to recognizing wallpaper groups4.

Has reflection?
Rotation
Yes No
Has glide axis off mirrors? Has glide reflection?
none
Yes: cm No: pm Yes: pg No: pl
Has perpendicular reflections? Has glide reflection?
Yes; Has rotation centre off
2-fold
mirrors? No: pmg Yes: pgg No: p2
Yes: cmm No: pmm
Has rotation centre off mirrors?
3-fold p3
Yes: p31lm No: p3ml
Has mirrors at 45°?
4-fold p4
Yes: p4m No: p4dg
6-fold p6ém p6

At this point, twelve out of the seventeen wallpaper groups with 1-fold, 2-fold, and
4-fold rotational symmetry have been successfully constructed using a module with n=4.
As depicted in Fig. 4-11(a), the modules exhibit consistent connections across different
wallpaper groups. Consequently, it becomes feasible to realize these twelve symmetry
groups through a single, unified structure. Yet it is impossible to construct the other five
wallpaper designs using the module with n=4 since this would not induce 3-fold and 6-
fold rotational symmetry, and thus turning to modules 6 (Fig. 4-11(b)). Fig. 4-11(b)
shows examples of constructing such 5 wallpaper groups with modules for n=6. The
beehive structure is formed with 6 identical modules in a circle around the center
module by merging rectangular panels. Depending on whether the center module has
point group c3, d3, c6, or db, the obtained beehive structure belongs to the wallpaper
groups p3, p3ml, p6 or, pébm. Note that the p31m wallpaper group is constructed a little
differently in that the center module has d6 symmetry and surrounding it are six

modules with ¢3 symmetry, and neighbouring d3 modules are mirror images of each
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other, with the axis passing through the center of d6 modules. Similarly, the modules
are connected in the same way in these five wallpaper groups, so that they can be
realized in a single structure. Overall, only two sets of structures with n=4 and n=6, are

sufficient to realize seventeen 2D space groups.

(a)
«plal ,pmll
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(b)

Fig. 4-11 Seventeen wallpaper patterns constructed by the modules with #»=4 and 6. (a) Twelve

wallpaper groups with 1-fold, 2-fold, and 4-fold rotational symmetry; (b) five wallpaper groups
with 3-fold and 6-fold rotational symmetry.
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It is worth noting that the two tessellations, the former of which has two DOFs and

the latter of which has one DOF (See Appendix E for detailed proof).

4.3.4 Methods of Active Symmetry Tuning

4.3.4.1 Mechanical Load Plus Variable Stiffness Materials

In the following investigation, an exploration of a simple mechanical load control
mechanism aimed at tuning symmetry is undertaken. A control mechanism involving a
simple mechanical load and variable stiffness beams made of thermal-responsive
materials is first investigated. As shown in Fig. 4-12(a), the beam is composed of a type
of commonly used polymers, polylactic acid (PLA, thickness, Imm), and a Polyimide
(PI) film heater (thickness, 0.1mm). At room temperature (T =25°C), the PLA beam
has a Young’s modulus of about 2.34 Gpa and can work as a rigid beam (“0” state).
However, when the temperature increases to 90°C due to PI electrothermal film,
Young’s modulus of PLA drops sharply below 5MPa and the beam turns to a flexible
state (“1” state). Moreover, after cooling to room temperature with the help of the clamp,
PLA can be fully recovered to a high Young’s modulus state and used again as a flat
and rigid beam. Next, eight thin sheets connecting the two platforms in the origami
module are replaced with the proposed variable stiffness beams, labelled as A-H, each
with an independently controlled PI film heater, as shown in Fig. 4-12(b). Note that to
avoid unpredictable kinematic paths of the module at the bifurcation point, the design
parameters of the module are carefully modified so that ¢, cannot reach ©/2, i.e., set
b/a<cos(a/2) or | /a<1. Taking the origami module in Fig. 4-12(b) as an example
(N=4,0=90°, b/a=3y2/4, and |/a=3/4), ¢, <n/2 throughout the folding
process due to |/a<1. Therefore, the unit is not able to switch from M1 to M2.
However, one can actively manipulate the stiffness of certain beams to produce a
phenomenon similar to the shape on the bifurcation path when the module is
compressed from its initial configuration (fully unfolded configuration). Specifically,
as shown in Fig. 4-12(c) left and right, if beam F is in a rigid state “0” (flexible state
“1”) and beam E is in a flexible state “1” (rigid state “0”), beam F(E) rotates rigidly
while beam E(F) undergoes a bending deformation under uniaxial compression load.
At the same time, the trapezoidal panels of the lower platform do not move while the
rectangular panels of the upper platform swing towards the rigid beam (red arrows). In

contrast, if beams E and F attached to the two side lines of a rectangular panel are in a
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high stiffness state, both beams are generating rotations without deformation, while the
two trapezoidal panels are close to each other under mechanical loading, as shown in

Fig. 4-12(c) middle.

(a) Flat and rigid beam Flexible state ~ Recovery with fixtures Back to
flat and rigid state

PI film heater

F
«o” S g
/ Fixtures //
< -‘~" | '*““
222 t0 90°C ,,, toroom temperature

PLA

EEREEE R R RN

< y 0
' weF
Fl| BN
E E F E H
— ||| — !
NS NI A

“10011001”
N+F
——t
—
43 =
Initial configuration Partially compressed configuration
“00000000” “00100010” “00010010” “10101010” “10011001™ “10010110” “01011001”

Fig. 4-12 Active symmetry tuning by mechanical loading with variable stiffness materials. (a) A

PLA sheet with thickness=1mm and a PI film heater with thickness=0.2mm are bound together;
(b) origami module with eight variable stiffness beams; (c) deformation mechanisms of a pair of
neighbouring beams E and F. (d) The prototype with n=4,2 =90° ,and b/a=11=3a/4. (e)
Example of tuning the module from d4 symmetry to partially compressed d2 configuration with

beams coded “10011001”. (f) Experimental results with d4, c¢2, d1, c4, d2, d1, and c1 symmetries.
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As aresult, one can actively encode the stiffness of the beams in some symmetrical
way so that the module takes on a shape with that symmetry when compressed. As
shown in Fig. 4-12(d-f), specimens were compressed by a vertical testing machine
(Instron 5982) with a transparent fixture (37mm displacement and a 0.5 mm s-1 loading
rate). The deformation process was recorded with the camera mounted above. If all
eight beams A-H in the module are in a rigid state “00000000”, the module is
compressed as a deployable mechanism under uniaxial compressive loading from its
initial state to a smaller square, preserving d4 symmetry. If one chooses to energize the
films (about 30s) on the four beams A, D, E, and H so that the beams are stiffened in
state “10011001”, the d4 symmetry tunes to d2 symmetry under compression (Fig.
4-12(e)). To enable the module to be tuned to other symmetries, clamps are used during
the cooling of the beams (about 10 mins), and then they are recovered to their initial
configuration before the stiffness of the beam is recorded. In summary, upon
compression, these rectangular panels apply a moment to the beams, rotating rigid ones
(“0” state) and bending flexible ones (“1” state) and forcing the module to change their
shape as well as symmetries. When the stiffnesses of the beams in the prototype are
coded as “00000000”, ‘001000107, 000100107, 10101010, 10011001,
“10010110”, and “01011001”, the module displayed shapes with d4, c2, d1, c4, d2,d1,
and cl point groups respectively under uniaxial compression load with transparent

fixture (Fig. 4-12(f)).

4.3.4.2 Pneumatic Actuation

Moving beyond mechanical load and variable stiffness beams, a more responsive
solution is explored, utilizing air pockets to tune the symmetry of the module and its
tessellation. As shown in Fig. 4-13(a), eight inflatable pockets labeled as A-H are
arranged on both sides of the four hinges of a single module (N =4,a =90°, b/a<+/2,
and |/a=1). Upon pressurization, these pockets apply a moment to the hinges,
opening them and forcing the origami modules to change their shape. It was found that
there are a total of three relative orientations for two neighboring triangular panels in a
7R unit for all possible configurations for modules with »n=4, 1i.e.,
©, =0, ¢, =90°, ¢, =180°. As shown in Fig. 4-13(b), inflating air pocket B alone
leads to the ¢, =90° configuration, while inflating air pocket A alone results in the

@, =180° configuration.
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(b) Airpocket B

(a) Air pockets A-H

(c)

Initial

(d)

Fig. 4-13 Pneumatic actuation. (a) Prototype for pneumatic actuation; (b) mechanism of

pneumatic actuation; (c) experimental results with d4, c2, d1, c4, d2,d1, and ¢l symmetries where
air pockets in the prototype are coded as “0000000”, 000100017, “00000101”, “010101017,
“100010007, “01000110”, and “010100107; (d) twelve configurations featuring distinct symmetry

groups of a single 2x2 tessellation.
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As a result, by strategically pressurizing specific air pockets, various
configurations with desired symmetry groups can be achieved within seconds (Fig.
4-13(c)). For instance, fully unfolded configurations in paths II, III, and V with ¢2, d1,
or d2 point groups can be attained from the d4 state (“0000000”) in approximately 1
second, with only two air pockets (D and H, F and H, or A and E) being pressurized
(000100017, “000001017, “10001000"). Moreover, fully unfolded configurations in
path IV with c4 point groups can be reached from the d4 state by pressurizing four air
pockets (B, D, E, and H, i.e., “01010101”). Similarly, fully unfolded configurations in
paths VI and VII with d1 and cl point groups can be achieved from the d4 state by
pressurizing three air pockets (B, F, and G, or B, D, and G, i.e., “01000110”, and
“01010010”). Having demonstrated that the shape of the origami module can be
controlled by pressurizing embedded air pockets, this approach is now extended to the
2x2 tessellation. As depicted in Fig. 4-13(d), 8, 12, or 16 air pockets are strategically
positioned on either side of the hinge used to connect the triangular panels, thereby
achieving any one of 12 configurations with in 1.5s corresponding to the twelve
wallpaper groups in Fig. 4-11(a) through the pressurization of the air pockets. It is
noteworthy that constant actuation is not necessary to maintain these configurations
with distinct symmetry groups, indicating low energy consumption. Additionally, this
method does not require precise control of the angle to achieve the desired configuration

and avoids the disadvantage of the low accuracy of the pneumatic actuation.

4.4 Modular Origami Tuneable in All Signs of Poisson’s Ratio
4.4.1 2D Modules Design and Deformation Mechanism Analysis

In section 4.3, the 7R linkage in the form of modular origami was used to construct
reconfigurable modules in the form of back-to-back assembly. In this section, the
second type of reconfigurable modules is to be constructed in the form of shoulder-to-
shoulder assembly of this 7R unit. The structure and geometry of these basic units are
illustrated in Fig. 4-14(a). The only modification from the original structure is the
replacement of trapezoidal panels with octagonal panels featuring alternating side
lengths of 2acos(«/2) and ;. Importantly, this alteration does not impact the
relationship between ¢,-¢; since either the trapezoidal panels or the octagonal panels
are just alternative forms of the same link. Subsequently, four 2D modules with a single

DOF are constructed by arranging » identical basic units around a vertical axis in the
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form of shoulder-to-shoulder assembly, as illustrated in Fig. 4-14(b), where the angle

a in components satisfies

a=(n-2)n/n,n=3 4,5, 6. (4-6)

(a) (b) n=3, a=60" n=4,6=90"

Fig. 4-14 Reconfigurable modules constructed in the form of shoulder-to-shoulder assembly. (a)

modified 7R unit; (b) 2D modules with different numbers and design parameters of 7R units.

It has been revealed in section 4.2 that when the unit is reconfigured between the
M1 and M2 branches, it undergoes substantial geometric alterations. Without loss of
generality, let b/a=cos(a /2), then the 7R linkage in the form of modular origami in
all four 2D modules are equipped to reconfigure between M1 and M2 paths.
Consequently, when the modules reach the bifurcation configuration with dihedral
angles ¢, =90°, each rectangular panel in these 2D modules can independently choose
to swing toward or away from the centre of the polygon prism base. Namely, the 2D
module with o = (n —2)n/n can be classified into 2" cases, depending on the number
and location of the basic units observed in either case I or case II. For a 2D module
featuring a regular 4-sided polygon projection, there are always two rectangular panels
with independent swing directions along the x or y direction. Therefore, it is worth
highlighting that the 2D modules with n=4 exhibit three possible states along either the
x or y direction: (i) two rectangular panels positioned close to the polygon prism base,
(1) one rectangular panel positioned close to the polygon prism base while the other is
away from it, or (iii) both rectangular panels positioned away from the polygon prism

base. Such orthogonal decoupling behaviour leads to three possible variations in either
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the overall width (W) or the breadth (B) dimensions of the 2D module with n=4, which
can be calculated
W, (B,) =—2acos¢, + 2t, + 2a +t,
W,(B,) =2t, +2a+t, (4-7)
W, (B,) = 2acos¢, + 2t, + 2a +t,
where ¢, €[0, n/2].

To further illustrate this concept, an example of the variation in normalized width
(W/f) with respect to the dihedral angle is presented ¢,, as depicted in Fig. 4-15. When
two rectangular panels are positioned near the base of the prism (“-1” state), the rotation
of the thin sheet results in an increased normalized width (W/t). Conversely, when one
rectangular panel is positioned near the polygon prism base while the other is located
farther away (“0” state), the overall size of W/t remains constant. In the case where both
rectangular panels are positioned away from the polygon prism base (“1” state), the
rotation of the thin sheet leads to a decreased normalized width (W/t). In general, the
normalized width (W/f) in the x direction is likely to exhibit an increase, remain constant,
or decrease with an increasing dihedral angle. Similarly, these three possibilities also
apply to the normalized breadth (B/¢) in the y direction.

For the 2D module with n=4, 2* cases are exactly the combination of these three
types of dimensional variations in the /¥ and B directions. As shown in Fig. 4-16, they
are further subdivided into four distinct kinematic paths that share a common
bifurcation point at ¢, =90°, considering the similarity in orthogonal directions.
Obviously, in paths I-IV, the reconstructed module undergoes significant alterations in

its external dimensions, which are highlighted by red dotted lines.
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Fig. 4-15 Three possible states for two rectangular panels along either the x or y direction and

corresponding variations in the overall dimensions of the 2D module with n=4.
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p,=0" p,=45° »,=90° ¢»,=135" »,=180"

Path I

Path 11

Path IV

Ll
H
L

Fig. 4-16 Top views of kinematic paths of the 2D module featuring a regular 4-sided polygon

projection when the 7R unit switches between M1 and M2.

The deformation due to the mechanism motion of the modules can be effectively
characterized by Poisson’s ratio calculated by dividing that lateral strain by the negative

of the longitudinal strain

Vo ==, v, =L (4-8)

where &, , &, and &, are infinitesimal strains in the x, y, and z directions, respectively,

which are given in terms of the module dimensions by

Lo aw a8 _dH
wTW BT BTN R

(4-9)
where dW, dB, and dH are an incrementally small changes in the module dimensions
W, B, and H due to the applied load. To demonstrate the variation in external dimensions
during reconfiguration, a prototype of the 2D module with b/a= \/E , a=90" is
fabricated, as shown in Fig. 4-17. When the 2D module enters the four paths in Fig.

4-17 from the bifurcation point, it corresponds exactly to the four deformation modes.
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<= NPR «» 7PR «=» PPR = |RM

Fig. 4-17 Prototype of the 2D module with b/a=+2, @ =90 and its reconfiguration

between four kinematic paths

It can be observed that the module in path I is contracted from a larger square at
the bifurcation point (configuration @) towards ¢ =0° to its smallest size
(configuration D) or the module is expended towards ¢ =180° to its biggest size
(configuration ). Throughout this deformation, infinitesimal strains &; and &,
remain equal negative or positive values (&, =&z <0 or &, =& >0 as shown in Fig.
4-18(a) and (e). Consequently, the in-plane Poisson’s ratios Vg, Wwere strain-
independent and always equal to -1, indicative of an NPR mode. If the module chooses
path II at the bifurcation point, there will be a contraction (©—®)) or expansion (©—
©®) of the module in the B direction but no deformation in the ¥ direction. In this case,
&y =0,&5 <0, as shown in Fig. 4-18(b) or &, =0,&; >0, as shown in Fig. 4-18(f), and
Vew =0, demonstrating a ZPR mode. When the module bifurcates to path III, it will
contract transversely while expand vertically (© — ®), &, <0, >0,vy, >0 as
shown in Fig. 4-18(c)), or vice versa (9—@), &, >0,&; <0,vg, >0 as shown in Fig.

4-18(g)), akin to conventional PPR mode. Notably, when the module bifurcating to path
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IV, this deformation mode does not alter the global dimensions of the module (9—®@
or (8, as shown in Fig. 4-18(d) and (h)), resulting only in internal rearrangements (IRM).

Similarly, as shown in Appendix E, if the 7R unit is operating in motion mode M3,
there are four distinct kinematic paths can be identified based on the number of pairs
and positions of nested-in triangular prisms. In contrast, the modules in the
reconfiguration process do not change significantly in their external dimensions.
Therefore, subsequent discussion will focus mainly on the case of bifurcation between

M1 and M2.
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Fig. 4-18 Plots of ¢, and ¢, vs deformation degree in kinematic paths for the modules.
4.4.2 3D Modules Design and Deformation Mechanism Analysis

Moreover, as depicted in Fig. 4-19, a variety of 3D modules are formed by
integrating the aforementioned 2D modules in the form of shoulder-to-shoulder
assembly onto faces of four carefully selected polyhedrons for the sake of simplicity
and ease of scalability, i.e., triangular prism (N=3), rectangular prism (N=4), pentagonal
prism (N=5), and hexagonal prism (N=6). These selected prisms solid are characterized
by N-sided polygons on two end faces and N rectangles on lateral faces. Within this
arrangement, the 2D module embedded on end faces exhibits a projection of an n-sided

polygon, with the number of its basic units represented by n, =N .
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Fig. 4-19 Construction of 3D modules based on four selected polyhedrons, i.e., triangular prism

(N=3), rectangular prism (N=4), pentagonal prism (N=5) and hexagonal prism (N=6).

Conversely, the 2D modules attached to the lateral faces are always rectangular
and consist of N, =4 basic units. Furthermore, the 2D modules on adjacent lateral faces
are interconnected by a shared V-shaped link, characterized by o, =(N —2)1r/ N,
which has evolved from the rectangular prisms in the basic unit. On the other hand,
neighbouring 2D modules on end faces and lateral faces are connected by means of
shared L-shaped links (¢, =90°). Meanwhile, the geometry of the basic units on the

end and lateral faces are defined as
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a,=qtan(e, 1 2), t,=ttan(e, / 2) (4-10)

in which the subscripts e or / indicate that the parameter pertains to a module on the end
face or lateral face.

When analysing the 3D modules shown in Fig. 4-20, which function as
mechanisms with one DOF, there are two essential kinematic compatibility conditions.
Firstly, the dimensions of the # 2D modules located on the lateral faces must be identical
in the z direction. Secondly, the projections of the 2D modules on end faces and lateral
faces should share the same external contour in the xoy plane. The latter condition can

be mathematically expressed as
[PQ" +[PNJ" =[MQ[" +[MN[ (4-11)

where these four lines labelled as PQ, PN, MQ, and MN in Fig. 4-20 consist of two
segments, each with lengths 7 and atasing,.

Triangular prism Rectangular prism Pentagonal Prism Hexagonal Prism

sing,,

=T T

. . . 1, :
a-asing,, f a~asing I a~asing,
P
N P N N
a,-a,sing,, a,-asing,, P a,-a,sing,,
1, 2, 1, 1,
1 M Q t M . Q 1 M . t .
Q " arasing,, ' arasing,, " arasing,, " arasing,;
a,=60° a,=90° = =108 a,=120°

Fig. 4-20 Kinematic compatibility conditions for 3D modules.
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Additionally, the sign in @t asing, is negative when the V-shaped or L-shaped

links swing towards the centre of the polygon prism base, while the sign is positive

otherwise. Therefore, Eq. (4-11) can be rewritten as

iae Sin¢le)2 = (t

o 5in¢1|)2+(te +a,

(t +a

By combining Eq. (4-10) and Eq. (4-12), the second kinematic compatibility

condition can be deduced, which necessitates the 2D module on the end faces of 3D

6) to maintain an N-fold symmetry (simultaneous contraction or

b

5

b

3
expansion in the overall dimensions in xoy plane). As aforementioned

modules (V-

4 exhibits three types of dimensional variations along the z direction, i.e.,

with N,

increase, remain constant, or decrease in the H direction. As a result, there exist NPR,

ZPR, and PPR deformation modes in the yoz plane, respectively, for 3D modules with

triangular, pentagonal, and hexagonal prism contours, respectively, as shown in Fig.

4-21.

ZPR

NPR

Fig. 4-21 Deformation modes for 3D modules with triangular prism (V-

4), pentagonal prism (N=

(N=
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For the 3D module with a rectangular prism (N=4) contour, there are @, =a, and

t, =t, according to Eq.(4-10). Therefore, Eq. (4-11)can be simplified as
PQI=[MQ], [PN[=[MN (4-13)

Equation (4-13) shows that there is also orthogonal decoupling behaviour of the
3D module in the x and y directions. Thus, there exist a total of 3°* =27 cases of 3D
modules that are combinations of three states of the relative positions of the two links
(denoted as “-17, “0”, and “1” as shown in Fig. 4-22(a)) in the x, y, z directions, as

X, y,z=-1 0, and 1,

shown in Appendix F. The marker next to configurations, C(x,y,z)’
indicates that rectangular panels in the x, y, z directions are positioned in “-1”, “0”, and
“1” states. Among these 27 cases, a consistent configuration is observed at the
bifurcation point when the angle @, of the 2D modules on the three orthogonal planes
equals 90°. Due to their similarity in three orthogonal directions, these 27 cases can be
further divided into 6 different states, one of whose configurations is displayed in Fig.
4-22(b).

The deformation mechanism of the 3D module with N=4 is divided into six modes
(Fig. 4-23) when it is reconfigured between different states which are characterized by
in-plane Poisson’s ratio Vg, and out-of-plane Poisson’s ratios Vy,, . First, the 3D
module in mode I is contracted from a larger cube to the smallest size when the 2D
modules on three orthogonal planes shrink simultaneously from the bifurcation point
(& = €5 =&y <0). Hence, Poisson’s functions are given by Vg, =V =-1. Then, if
the rectangular panel in the yoz plane along the z direction is reconstructed to a state
where one is far from the centre of the polygon prism base and the other is close to the
centre of the polygon prism base, it is observed the deformation along the z direction is
zero (&, =& <0, €, =0), so the Poisson’s ratio V,,,; becomes zero (mode II) while
Vgy remains -1. Next, in mode III, rectangular panels in the yoz plane along the z
direction all in a state far from the centre of the polygon prism base, both the strain &,
and Poisson’s ratio V,; of the module turns to be positive (&, =& <0, &, >0), and
Vew 18 -1, the same as mode I and II. After that, one of the rectangular panels in the xoy
plane along the y direction is reconstructed to a state away from the centre of the
polygon prism base (mode IV); three strains are negative, zero and positive and values
respectively (&, <0, € =0, &, >0). Furthermore, if one of the rectangular panels in

the xoy plane along the y direction is reconstructed to a state away from the center of

105



Doctoral Dissertation of Tianjin University

the polygon prism base (mode V), the global dimensions in the xoy plane have not
changed despite the internal rearrangement, so &, =&z <0, &, >0 two of strains will
switches to zero (&, =0, €5 =0). As a result, the module degenerates into a one-
dimensional material that is stretched in the z direction (&, >0). Finally, one of the
two rectangular panels in mode V on the yoz plane is reconstructed away from the
polygon prism base back to a state close to the polygon prism base. The 3D module in
mode VI is undergoing internal rearrangement in three orthogonal planes, but its global

dimensions, B, W, H, remain constant (&, =0, & =0, g, =0).

State | =
State I1

]
State I11 ) H _ i
State IV s

State V 'H' ! _\—:,‘. ]

State VI

Z ™
P

Bifurcation
configuration

Fig. 4-22 Configurations for the 3D module with N=4. (a) The configuration of the 3D
module (N=4) is a combination of three states of the relative positions of the two L-shaped links in

three directions. (b) Six typical configurations.
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® Modell ® Modelll

(=1,-1.0)

£,<0, £,<0, £,=0 0 €,<0, £,<0, ¢,>0

= &n | =t

== & 0.2 /."’ -— &

==&y R ==&y
&
y!

50 100 0 50 100 0 50 100

Deformation degree(%) Deformation degree(%) Deformation degree(%)
® ModelV ® ModeV ® Mode VI
Crony 4 Ciooy
&€,= 0 811 5/1>0 EH_O &4 0 8”—
0.4
_— &y
0.2 = Cn
==&y
gi el 0
-0.2
: : -0.4
0 50 100 0 50 100 0 50 100
Deformation degree(%) Deformation degree(%) Deformation degree(%)

Fig. 4-23 Deformation modes for 3D modules with rectangular prism (N=4) contour.

4.5 Conclusions

In this chapter, the use of the kinematic bifurcation behaviour inherent to a single
DOF spatial 7R linkage was proposed for the design of a reconfigurable modular
origami. A comprehensive kinematic analysis was conducted on the modular origami
unit first, particularly focusing on the effects of geometric parameters on the number,
range, and evolution of the motion branches.

Subsequently, these units can be assembled back-to-back into various single DOF
modules with folded n-polygon and unfolded 2z polygon shapes. It was demonstrated
experimentally that the shape and symmetry of such origami modules can be actively
tuned and controlled in a completely predictable manner by strategically activating
variable stiffness beams or air pockets. The investigation revealed that it has the

potential to realize all three class of discrete symmetry groups, including ten point
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groups, seven line groups, and seventeen space groups, within a unified design
framework. Notably, due to the rich configurations arising from the bifurcation, two
modules, i.e., =4 and n=6 modules, are sufficient to realize ten crystallographic point
groups. The linear tessellation of =4 modules is sufficient to realize seven line groups
by manipulating the reconfiguration of modules within tessellations. Meanwhile, the
planar tessellation of modules with n=4 and n=6 can realize all seventeen space groups.
Lastly, a shoulder-to-shoulder assembly scheme of 7R units is also proposed to
construct single DOF reconfigurable 2D modules. In addition, the geometric
dimensional variations induced by the reconfiguration between different configurations
are investigated based on the kinematic model, and the effect on the sign of Poisson’s
ratio is theoretically analysed. Furthermore, a variety of single DOF 3D modules are
formed by integrating the aforementioned 2D modules on the faces of four carefully
selected polyhedrons for simplicity and ease of scalability, i.e. triangular prism (N=3),
rectangular prism (N=4), pentagonal prism (N=5) and hexagonal prism (N=6).
Theoretical analysis suggests that the proposed 3D modules can achieve either purely
negative, zero or positive Poisson’s ratios due to orthogonal decoupling behaviour
arising from kinematic bifurcation. Among them, the 3D module with a rectangular
prism (N=4) contour is tuneable in all signs of in-plane and out-plane Poisson’s ratio.
Due to length constraints, this chapter focuses on the reconstruction-induced
changes in properties such as Poisson's ratio and symmetry, and the structure presented
in this chapter also has the potential for tuneable dynamic properties. An example of

bistability using the origami module is presented in Appendix H.
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Chapter 5 3D Programmable Metamaterials Based on
Reconfigurable Polyhedron Module

5.1 Introduction

Highly overconstrained polyhedron mechanisms with multiple loops in a
polyhedral layout have more regular shapes and simpler networking than single-loop
linkage, which are expected to be directly used as modules for constructing modular
origami-based 3D metamaterials. However, due to the complex topology, single DOF
polyhedron mechanisms with reconfigurability have rarely been reported. In chapter 4,
the construction of single DOF reconfigurable polyhedral mechanisms by embedding
single DOF reconfigurable 2D modules into the surface of the polyhedrons was
presented. The investigation in this chapter delves into the kinematics of the Wohlhart
cubel®®?l a single DOF geometric construct derived from embedding the planar linkage
groups (PLGs) with multiple DOFs onto the surface of the polyhedron.

On the other hand, the shape-reconfigurable system through structural instability
or structural deformation has also been identified as an effective method to realize
tunability and programmability in mechanical metamaterials. However, in most of the
current research, the unit cells in the metamaterial tessellation are of one type with
identical deformation properties, which leads to the fact that the resultant metamaterials’
characteristics are limited to a small range during the flexible deformation, making it
suitable only for a task with specific functional requirements. A new way to design
programmable metamaterials is paved through the kinematic bifurcation of
reconfigurable polyhedron modules in this chapter.

The layout of this chapter is as follows. In section 5.2, the bifurcation behaviour
of a single DOF Wohlhart cube is revealed by the kinematic model of an open-chain
PLG under symmetric constraints. The changes in properties, including geometry
dimensions, Poisson’s ratio, chirality, and stiffness, induced by the reconfiguration of a
single module between distinct paths are analysed in section 5.3. Furthermore, to
enhance the programmability of metamaterials, a combinatorial design strategy, i.e.,
stacking different bifurcation configurations in 3D space, is proposed in section 5.4. In
section 5.5, reconfigurable polyhedron modules are extended from the Wohlhart cube
to a series of single DOF reconfigurable regular prisms. Final conclusions are drawn in

section 5.6.
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5.2 Kinematics of the Polyhedron Module
5.2.1 Geometry of Wohlhart Cube

The mechanical basis of the module with the Wohlhart cube is depicted in Fig. 5-1.
First, the planar link group (PLG) is constructed with four identical rigid links of sides
a and b attached to the square centre body (side length axaxb) through revolute (R)
joints. The folding angle « determines the configuration of PLG by keeping rigid links
rotationally symmetric and rotating about the centre O clockwise or anti-clockwise.
Second, six identical clockwise rotation PLGs lying on faces of regular hexahedron are
interconnected by R joints on the edges of cube connectors (side length b) to form a
Wohlhart cube, which is a highly overconstrained system with only one DOF working

as an expandable cube. The focus here is on its reconfigurability.

4] K

- ks &

b @ Rigidlillk
b b

Fig. 5-1 The Wohlhart cube formed by connecting PLGs with cube connectors. (a) The geometry

(a) (b)

of rigid link, square centre body, and cube connector; (b) views of the clockwise rotation PLG and

the anti-clockwise rotation PLG; (c¢) overview of the Wohlhart cube.
5.2.2 Reconfigurability of PLG in the Wohlhart Cube

A coordinate system for any PLG in the Wohlhart cube is set up, as shown in Fig.
5-2. Because A, B, C, D are coplanar points on the edge of cube connectors, AB, BC,
CD, and DA are straight lines. Besides, Z/ABC, £/BCD, ~/CDA and £DAB are right
angles. So, points A, B, C, and D form a rectangle. The origin O of the coordinate
system is in the centre of the rectangle ABCD, the x axis is parallel to AB, and the y
axis is parallel to BC. Angles ZAEH, /BFE, Z/CGF, /DHG and ZAOE are
indicated as 6,, 6,, 6,, 0,, and J, respectively. The coordinate of the centre of the
rectangle EFGH is (u, v). Then, the coordinates of points A, B, C, and D always satisfy

Xa = X5 Xg = Xcs Ya = Y81 Ye = Yo
Xa =X Xe = X5, Ya ==Y ¥ = Ve

(5-1)
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Fig. 5-2 The coordinate systems of PLG.

Equation (5-1) can be written as
cos(o+6,
2

( +sin(5+6,)-sind =0
cos(S5+6

(

(

)+sin(5+6,)

)+sin(5+6;)-sins =0
)+sin(5+6,)—sin5 =0
) +sin(

cos(5+6,)+sin(5+6,)-sins =0

Cos(o +6,
2u—acos(6+6,)—asin(s+6,)+asins =0

(6+6) )

2u+acos(5+6,)+asin(6+6,)—asind =0

2v—acos(s+6,)—asin(5+6,)+asins =0
( (6+6)

2v+acos(s+6,)+asin(5+6,)-asing =0

If the centre body rotates only, i.e., u=0, v=0,

sin(6+6,)—sin(6+6,)=0,cos(5+6,)—cos(5+6,)=

0
cos(5+6,)—cos(5+6,)=0,sin(5+6,)—sin(5+6,)=0

which can be simplified as
20+6,+06, 26+6,+0
2

26 +6,+6

sin(91;93)cos( )=0, sin(92;H4)sin(

26 +6,+06,

sin(2=%)sin( y=0, sin(Z2=%) cos(
2 2
Equation (5-4) yields
@:%’@ZQ
Then, substituting Eq. (5-5) back into Eq. (5-2) result in

Sin(ezgel)(cos(zawzwl 25+§2+91)):0

)+sin(

There are two solutions according to Eq. (5-6), i.e.,

01292
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4):0

4y =0

(5-2)

(5-3)

(5-4)

(3-5)

(5-6)

(5-7)
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or
0,+0,+26 _

2
When 61=60,=60:=04, according to Eq. (5-2), the relationship between ¢ and o is

—%+nn, nez (5-8)

sin5:\/§sin(6?l+5+%) (5-9)

If substituting Eq. (5-8) into Eq. (5-6), then
5=0, 6,+6,= —g+2nn (5-10)

If the centre body translates only, i.e., 0=0, Eq. (5-2) becomes

6, =—91—§+2nn or 6, =6?1+g+2nn, 6, =—93—g+2nn or 6, =03+g+2nn

6, =6, —§+2nn or 6, :92+§+2nn, 0, :—94—§+2nn or 6, :94+g+2nn

(5-11)
and
sin g, +cos é, +sin g, +cos 6,=0, cosd, +sin g, +cos,+sin 6,=0
sing,+cos¢, _ , cos+sing, _ (5-12)
sin@,+cosd,  sind,+cosb,
Only two of sixteen combinations in Eq. (5-11) satisfy Eq. (5-12), i.e.,
6, =-0,—=+2nm, 6, =—-0,— =+ 2nn,
2 2 (5-13)
T T
6, =¢92+E+2n1r, 0,=0, +E+ 2nm
and
o, =6?1+E+ 2nm, 6, =¢93+E+2nn,
2 2 (5-14)
T T
6, =-0, —E+ 2nm, 0, =—94—§+2nn
Combining Eq. (5-13), Eq. (5-2) can be further simplified as
u=asing, v=0 (5-15)
Combining Eq.(5-14), Eq. (5-2) can be further simplified as
u=0, v=acosé (5-16)

In summary, there are four sets of closure equations, i.e.,
case : U=0, v=0, §,=6,=6,=6, and Eq. (5-9);
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case II: 5=0, u=0, v=0, 6, +6,=—=+2nx, 6,=06,, 6,=6,;

case III: 6 =0, u=asing, v=0 and Eq. (5-13);

case IV: 0 =0, u=0, v=acosd, and Eq.(5-14).

(a) (b) case | case I1
T n 0,/0,
6,/6./0,
/2 n/2 05
= casel = caselll u=0,v=0 §=0,u=0,v=0
— casell case IV 0 0
viii il N
n 7 < nog2n? -m/2
. N 4 .
e 5 v
x/2 |7 V1 / p: -n -7
1 P -t -2 0 7n/2 = -1
03 0 / // 91
case 11
L £ T
-n/2 iii V4 ) s / ‘\‘94
X //0 / W,
/2 % / Vw2
- -, lf‘ (} /‘\‘
o o-w2 0 w2 oow / A
() 0 — fu — 0
1 N o=0,v=0 /
| /
/2 |\ /2
- \"~_ /! -
-t -m/2 0 a2 n - -m/2 0 @2 b
0, a,
A, B A ¢+ B A, . B
E F E F E F
B Z H G H G H G
D+ * C D ¥ D» C
F v v vi
G
A B E F
C % A E F B A
i F o . .
H G
iii

B
: H
. D H
D vii C

ix
Fig. 5-3 The kinematic paths and corresponding configurations. (a) Kinematic paths 6, vs 6, ,
(b) kinematic paths &, vs 8,, and (¢) bifurcation behaviours, where 1i, iii, iv, vi, vii, ix are motion

sequences, while ii, v, and viii are the bifurcation configurations.
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Kinematic paths 6, VS 6, and bifurcation behaviours of PLG in Wohlhart cube are
illustrated in Fig. 5-3(a), while the kinematic paths &, VS 8, of the four cases are plotted
in Fig. 5-3(b). Let the link length equal to 7 to present all variables results in one graph.
If taking 6, as the input, the other variables in four cases are determined, which means
that the PLG in all four cases is a one DOF system under symmetry constraints. The
motion range is different in the four cases to avoid physical interference. Note that 1, iii,
1v, vi, vii, iX are motion sequences, while ii, v, and viii are the bifurcation configurations.
It can be seen that i-ii-iii correspond to configurations of the linkage in case I, viii-vii-
1i-iv-v correspond to configurations of the linkage in case II, vi-v correspond to
configurations of the linkage in case III, and viii-ix correspond to configurations of the
linkage in case IV. To distinguish their motion characteristics, configurations i and iii
are named clockwise and anti-clockwise rotation PLGs, respectively. Configurations iv
and vii are named translation PLG because the virtual platform (AB, BC, CD, DA) is
translational relative to the centre body. Configurations vi and ix are named as locked
PLGs as the distance of AB, CD in vi and AD, BC in ix remain a. In general, PLG can
switch to rotation or translation through bifurcation point ii. It can also switch between

translation PLG and locked PLG through bifurcation points v and viii.
5.2.3 Bifurcation Behaviours of the Polyhedron Module

Then the virtual-centre-based method*®? are introduced, i.e., implanting PLGs
into the polyhedron base’s faces to construct the Wohlhart cube. As shown in Fig. 5-4(a),
components (left) and polyhedron base (right) with its six faces are labelled as f; to f;
and twelve edges are denoted by €, to €, . The eight vertices are indicated as A, B, C,
D, E, F, G and H. O, to O, are six face centres. As shown in Fig. 5-4(b), a clockwise
rotation PLG is implanted in a manner that the bottom face of PLG is placed on square
face f1 with the centre located on the centre of ABCD. Then the ends of links are laid at
four perpendiculars to face f,, ie., €&, €, €, and €, respectively. One can implant a
rotation or translation PLG similarly into the face f, formed by DCGH and connect it
with the previous PLG by cube connectors in the second step. The former causes the
polyhedron base’s contour to be a regular hexahedron, so the PLGs to be implanted on
the remaining four square faces should be rotation units (Fig. 5-4(b), top). The latter
causes the polyhedron base’s contour to be a right square prism, so the rectangular face
can only be a translation PLG, and the square faces can only be implanted with rotation

PLG (Fig. 5-4(b), middle). In the second step, the implanted object on the face f, can
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also be a locked PLG, with the result that the length of the CD is a (Fig. 5-4(b), bottom).
Then, the polyhedron base’s contour to be a locked right square prism with one side
length is constant, and its rectangular faces can only be implanted with locked PLGs,
while implanted rotation PLGs on the square faces are also locked in a fully folded
configuration. Further, using the same procedure and integrating more PLGs into the
polyhedron base, three configurations of the Wohlhart cube with different motion

characteristics are constructed.

N H

Connector

PLGs

Result

Fig. 5-4 The construction method of the Wohlhart cube. (a) Components and polyhedron base;

(b) construction of the Wohlhart cube with rotation, translation, and locked PLGs.
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The detailed analysis on the kinematic characteristics of the Wohlhart cube in Fig.
5-5(a) reveals that there are three distinct kinematic paths, i.e., expandable cube (EC)
path, elongated prism (EP) path or locked twist (LT) path, and two bifurcation points
between EC and EP paths, EP and LT paths. Considering whether the rotation direction
of each rotation PLG is clockwise or anti-clockwise about coordinate axes, there are a
total of 32 (=2°/2, it is considered as one case when all the PLGs rotate in the
opposition direction after passing Bo) cases for EC path, i.e., EC/-ECP -B,, where the
subscript i (=1, ..., 32) represents the i-th path, and superscript f and p represent fully
folded and partially folded configurations respectively. Meanwhile, the EP path is
divided into three cases (EP,, EP,, and EP,) according to the orientation, and so is the
LT path (LT,, LT, and LT,). Configuration B, is one of the kinematic bifurcation
points where this module can switch between EC and EP paths. Configurations
B,. B,.and B, the folded state of the module in the EP path as well as the unfolded
state of the module in the LT path, are another type of bifurcation points, where the

module can switch between EP and LT paths.

EP’ B LT’ LT.

f«——Locked twist (LT) paths—]
prism (EP) paths ———>]

Fig. 5-5 Kinematic bifurcation of the Wohlhart cube. (a) The kinematic paths of the module.
B,, B,, B, and B, are bifurcation configurations; (b) the reciprocate process of the prototype from

EC] to LT! with a=80mm, »=40mm.
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A complete motion process of the prototype from EC] to LT, demonstrates the
analytical results, as shown in Fig. 5-5(b), where parameters are selected as a=80mm,
b=40mm. Due to the similarity in the three orthogonal directions, only the property in

z-direction is discuss in the following analysis.

5.3 Properties of a Single Polyhedron Module
5.3.1 The Variations of Geometric Dimensions of the Module

Apparently, the geometric dimensions of the module, i.e., the width, breadth, and
height in x, y, and z directions, have undergone significant changes during the motion
process. The completed motion curves of this module with three paths are shown in Fig.
5-6. Here the detailed path EC!-B-EP?-B,-LT! is taken as an example to demonstrate
the properties of the module. It can be observed that the module in the EC path is
expanded from a smaller cube to a larger one as the rotation angles in orthogonal planes
increase with ==y . Once the module reaches the bifurcation point Bo
(a=p=y=mnl4), there are two possible paths; one is that the module is kept in the
EC path as a cube to fold up with & = =y moving toward =/ 2, the other one is that
the module switches into EP path with PLGs on the four side faces shrink inward in a
translational way. When SB=0 on the EP path, =0 or n/2 depending on the
rotation direction of PLGs on the top and bottom faces, the module reaches B;
bifurcation configuration, where the EP path is at the limited end. Hence, the module
can return to the EP path or bifurcate to the LT path with two rotation PLGs on top and
bottom faces locked at « =0 or /2, and four PLGs on the side faces twist clockwise
or anti-clockwise about z-axis when =y .

The geometrical dimensions are calculated according to the contour projection on
the orthogonal planes. Hence, the geometrical dimensions of the module in the EC path

in the x, y, and z direction are
W =B=H=asina +acosa +a~/2sin acosa +2b (5-17)

while dimensions W and B of the module in the EP path are the same as those in
Equation (5-17), and
H=a-+2acos +2b (5-18)

where o= €|0, n/2].
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For the module in the EP path, the folding angle « in rotation PLGs is a function

of f in translation PLGs, and the mathematical expression is
sin B=(sinar +cosa ++/2sinacosar —1)/ 2 (5-19)

The variation of geometric dimensions of the module in the LT path is mainly
divided into two stages with a/b>1. When ﬁzySarcsin(b/a), the projection of
four PLGs on the side faces in the xoy plane is always within the projection of the
rotation PLG (« =0 or m/2) on top and bottom faces, resulting in W and B remaining
constant a+2b . When the folding angle =y >arcsin(b/a), W and B become
elongated simultaneously. Therefore, the dimensions of the module in the LT, path are

a+2b, ifsing<b/aora<b
=B= _ . (5-20)
a+2asing, ifsing>b/aanda>Db
and
H =a+2b+2acosf (5-21)

where y = €[0,n/2].
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Fig. 5-6 The variations of geometric dimensions of the module in the x, y, and z directions
following the EC path, EP path or LT path (a) The kinematic paths; (b) overall view of typical

configurations; (c) front and top views of typical configurations.
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5.3.2 Mechanical Properties for a Single Module

5.3.2.1 Poisson’s Ratio for a Single Module

The Poisson’s ratios v,,; in the yoz plane and vy, in the xoy plane are defined as
dB H _ aw B

Vg =——X——, Vg = X — 5-22
"B dH ™ w dB (>-22)
Therefore, Poisson’s ratios of the module in the EC path are given by
Vig=Vaw =—1 (5-23)
and Poisson’s ratios of the module in the EP path are then derived as
2 2
Vi = a+ acos,_B+ b (5-24)
tan S(a+2asin S+ 2b)
and
Vew =—1 (5-25)
In addition, Poisson’s ratios of the module in the LT path are
0, ifsing<b/aora<b
= o 5-26
Vre a+2acosﬂ4_r2b : ifsing>b/aanda>b (5-26)
tan g(a+2asin j)
and
0, ifsing<b/aora<b
BW o (5-27)
-1, ifsing>b/aanda>b

Theoretical Poisson’s ratios of the module as functions of folding angles and
geometric parameters in EC, EP, and LT paths are shown in Fig. 5-7(a-c), respectively.
It is evidently observed that Poisson’s ratios v, and v, of the module in the EC path
are always -1 independent of geometric parameters (see Fig. 5-7(a)), when the structure
is elongated simultaneously in three orthogonal directions. On the contrary, the module
in the EP path is anisotropic. Specifically, Poisson’s ratios v,,, of the module in the EP
path varies continuously in positive values (see Fig. 5-7(b)). Theoretical results also
suggest that the Poisson’s ratios in the EP path are insensitive to variations in
geometrical parameters a/b, as shown in Fig. 5-7(b). Poisson’s ratio v, decreases
sharply from infinity to 1 as the structure expands from a compact prism to a fully
unfolded cube. Meanwhile, regardless of the geometric parameter a/b, the Poisson’s

ratios vew of the module in the EP path remain -1. As for the module in the LT path,
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Poisson’s ratios v,; and v, maintain 0 for b > a, because the projection of four PLGs
on the side faces in the xoy plane is always within the projection of the rotation PLG
(a =0 or =/ 2) and the length and width remain constant a+2b (see Fig. 5-7(¢)). If b<a,
Vs @nd vy, of the module in the LT path remain 0 until £ =y <arcsin(b/a), then
v, suddenly drops to and remains at -1 while v, suddenly increases to a positive
value and then gradually decreases to 0. One can further program this step point of
Poisson’s ratios by changing the geometrical parameters a/b . The interval of the ZPR
mode lengthens as the value of a/b decreases, eventually reaching a full ZPR mode

throughout the deformation process once a/b <1.

(a) (b) (c)
15 15 ™ 15
alb=1 ¥ a/b=1
-=a/b=2 \\ -=a/b=2
.10 e @ID=S 10 v alb=s 10 5.
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= = 5 . = 5 %,
H 5 S N VA T G
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Fig. 5-7 Theoretical Poisson’s ratios of the module as functions of folding angles and

geometric parameters. (a) EC, (b) EP, and (c¢) LT paths.

A tension and compression experiment for a single module was then conducted.
The experimental setup is depicted in Fig. 5-8(a). To reduce the gravitational effect, the
experiment was carried out on a vertical testing machine (Instron 5982). The specimen
was sandwiched between two fixtures, allowing rotational displacement at both ends.
The specimen was then tensioned (compressed) with 160mm displacement and a 0.5
mm s loading rate. The deformation process was captured by a CSI Vic-3D9M digital
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image correlation (DIC) system with a camera resolution of 2704x3384 pixels and a
frame period of 500ms. For DIC capture, the square faces of the cube connection were
painted with black speckles. Based on the coordinate information of the black speckles
in the measurement areas, the width 7 and breadth B under different heights H can
measured. As measuring the angle directly is difficult, the normalized displacement is
defined as folding ratios in the loading direction. The recorded deformation process
shows that W, B, and H of the module in the EC path increase simultaneously during
tension (i-ii-iii-iv-v in Fig. 5-8(b)). Then the specimen goes through another stage (vi-
vii-viii-ix-x in Fig. 5-8(b)) after passing through the bifurcation configuration B,
where W and B decrease while H increases continuously. After bifurcation point B, ,
both W and B of the specimen in the LT path are equal to a+2b (xi-xii-xii in Fig. 5-8(b))
during compression, until the projection of rotation PLGs (a =0 or /2) on the xoy
plane cannot cover that of four PLGs on the side faces (xiii-xiv-xv in Fig. 5-8(b)). The
quantitative values of the experimental results are in good agreement with theoretical

v.s and v, , although results differ slightly at the 75-100 % stage due to gravity.
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Displacement
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~ 4 DIC control -
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Fig. 5-8 Experiments and results of Poisson’s ratio test of a single module. (a) The uniaxial
tension and compression experimental setup for a single module; (b) comparison of theoretical and

experimental Poisson’s ratios of a module in EC, EP, and LT paths with a/b=2.
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5.3.2.2 Tuneable Chirality of the Module

From the red arrow-arcs marked in Fig. 5-6 and the experiments in Fig. 5-8, it can
be inferred that this module also exhibits distinct chirality properties when moving
along different kinematic paths. First, in the EC path, all six rotation PLGs on six faces
twist clockwise or counter-clockwise independently to generate enhanced local
chirality. Second, in the EP path, only two rotation PLGs on two opposite faces normal
to the elongated direction have the local chirality, while the other four do the translation
with no chirality. Third, in the LT path, two rotation PLGs on the top and bottom faces
are locked at « =0 or /2, and four PLGs on the side faces twist clockwise or anti-

clockwise about z axis when g =y to produce a global chirality.

5.3.2.3 Tuneable Stiffness of the Module

Additionally, the stiffness will also change significantly when the module is
switched between different paths. Assuming that the energy of the modules is composed
of deformation from linear elastic rotational joints, and K, as the rotational spring

modulus of unit length, the stored energy U of the system is given by
1
U= 5 kb[n, (¢, _§01,o)2 +n, (9, _(/72,0)2 (% _(/’i,o)z] (5-28)

where ¢, ; is the natural dihedral angles (in the undeformed state) of i-th type of joint,
n, is the number of i-th type of joint, and b is defined as the length of cube connectors.
The force F along z direction is

~du  du / dL

Fo—o - =
dL de de

(5-29)

where L is the displacement in the z direction.
The stiftness along z direction is thus given by

_dy_d 4, d (530)
dl2 de dL’ de )

Let’s first consider configuration EC] as the natural state. As shown in Fig. 5-9,
dots of the same color represent the same working mode of the spring under the current
path, and ¢, is the angle of i-th type of joints. The rotation angles of the spring of the

module in EC} path are

AP =0 — Qo =0, Ap, =0, —, =, +arccos(cos @, —sin gol) (5-31)
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where ¢ changes from 0 to w/4.

Fig. 59 Types of joints and their rotation angles under different paths when configuration EC] is
taken as the natural state. Dots of the same color represent the same working mode of the spring

under the current path. n, and ¢, are the number and angle of i-th type of joints respectively.

For the module in EP, path, rotation angles are
Ap =0 —po=112—p, Ap, =@, —p,,=3n]2—p—arccos(cosp—siny)
A, = @, — @, ;= arcsin((sin ¢ + cos ¢ +sin(arccos (cos ¢ —sin )) -1) / 2) (5-32)
AQ, =@, =@y 0=n] 2=y, Apy = 05— s 0=n] 2+ 3, Ay =0, — =1 — @,
where ¢ changes from n/4 to 0.
For the module in LT, path, rotation angles are
Ap =0~ =1l2, Ap, =0, —,,=3n] 2, Ap, = 0, — @, ;=@
AQy =0, — Q0= 2— @, Aps =@ — @ =] 2+, (5-33)
AQs =P = P 0= = @5y AP =01 =1 =Ty
where ¢ changes from 0 to n/2.
The displacement in the z direction of three paths are
Lcc = (acosg+asing+asin(arccos(cos g —sin ¢))) —a
Le, = 2acos(arcsin((sin ¢ + c05¢+sin(arccos(c05qo—sin (p)) -1)/2)- J2a (5-34)
L =2acosp—2a
The kinematic paths and corresponding normalized energy, force and stiffness of
the module are shown in Fig. 5-10(a). We define normalized energy, force stiftness, and

height asU / (kfb), F/k;, Kb/k, and H/H_, , respectively. Normalized energy
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U, force F.., and stiftness K. increase sharply as PLGs on six faces move form
a=p=y=0 toward o = f=y=mn/4, as shown in Fig. 5-10(b-d). At the bifurcation
point B, , the module deformation energy is unsmooth increasing state (non-
differentiable point) as spring joints of PLG on four lateral faces are further rotated as
the others on two end faces return toward the natural state (Stored elastic potential
energy is released), resulting the force is discontinuous and the stiffness switches from
+00 to -o0. Subsequently, the stiffness K, in the EP path will undergo a change from
negative to positive with the increase of deformation. Meanwhile, the bifurcation point
B, is also a non-differentiable point of system energy, and the stiffness K, of the
module in the LT path increases at a lower level under compression as the joints on the
top and bottom faces are locked. It can be concluded that the stiffness is tuneable when
the module switches between different paths.

Generally, the stiffness is independent of natural configuration (¢, ) due to

K :kfb(n1g01+nzgo2+...+ni¢)i)/g—L (5-35)
@

The exception is that the dihedral angle ¢, is the transcendental function of ¢, donated
as @ = f. (go) Then the stiffness can be expressed as
K = kb[n ((f,(¢) _(01,0) 1:1" (p)+ f '1((P) f '1((”)) +.+0((f,(0) - (Di,o) flu((o) + f Ii (o) f ‘i (@))]
dL
de

(5-36)

Next, the effect of natural configuration on stiffness are investigated. The stiffness

of the module in the natural state of configurations B, and B, are plotted in Fig. 5-11(a)
and (b). In general, the module shows different energy and force with different natural
configurations, although the kinematic path is the same. It can be observed that the
stiffness of K. and K, are completely different in three cases. The reason is that the
stiffness is related to the initial configuration because the dihedral angle ¢, is the
transcendental function of @. On the contrary, the stiffness K ; in the three cases are
identical because the dihedral angle @; is the linear function of ¢@. In summary, the
stiffness is tuneable when the module is in different paths. Furthermore, designing the
natural state of the module before fabrication is also a potential way to regulate the

stiffness of K¢ and Kgp.
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Fig. 5-10 Tuneable stiffness of the module. (a) The kinematic paths and corresponding normalized

energy in (b), force in (c), and stiffness in (d) of the module when configuration EC] is taken as

the natural state.

5.3.2.4 The Controllable Reconfiguration Methods

Based on the properties on the Poisson’s ratios and chirality and stiffness, it is also

found that the reconfiguration of one module among three kinematic paths can be

controlled through the relative displacements of the cube connectors or the combination

of force or torque applied to the square central bodies at the bifurcated points, as shown

in Fig. 5-12 and Fig. 5-13.
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Fig. 5-11 Stiffness of the module in the natural state of configurations B, in (a) and B, in (b).
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Fig. 5-12Control the bifurcated paths by the relative displacements of the cube connectors.
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As shown in Fig. 5-12, for the single module, the bifurcated path can be controlled
by the relative motion of the corner cubes. At bifurcation configuration B, when some
of the cube connectors move toward the module centre, the module moves in the EC
path, and when the two opposite cube connectors on the top face move towards the face
centre and along the positive z direction at the same time, it follows the EP path. At the
bifurcation configuration B, (i=x, y, z), when the one set of cube connectors on the top
or bottom of the elongated prism are locked at the same distance, the module moves in
the LT path, and when they are expanded away from the face centre, it follows the EP
path.

Alternatively, the direction of the force F or torque 7 applied to the square central
bodies at the bifurcated points can be controlled so as to choose the desired path. As
shown in Fig. 5-13, when the module is at bifurcation configuration B, the tension
force on two opposite square central bodies makes the module move along the EP path,
or the torque on the adjacent square central bodies leads the module to the EC path.
When the module is at bifurcation configuration B, (i=x, y, z), the compression force
on two square central bodies of locked PLGs in the i-direction makes the module move
in the LT path whilst the module tends to the EP path under torque if the PLGs is

unlocked.

LT path

Fig. 5-13Control the bifurcated paths by the combination of force or torque applied to the

square central bodies at the bifurcated points.
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5.4 3D Metamaterials with Programmable Poisson’s Ratio

If tessellating the module through translation and array in 3D space, periodic
metamaterials in Fig. 5-14(a) can be created, whose properties are determined by the
single module. In Fig. 5-14(b), this idea is demonstrated by a 2x2 tessellation of
modules. The connection between modules is represented by orange solid lines, which
is realized by quick-drying glue in the physical model. This 2x2 tessellation has the
capability to continuously reconstruct between NPR (I-II-III), PPR (III-IV-V), and
ZPR(V-VI) modes, relying on the modules switching between EC path, EP path, and
LT path, as shown in Fig. 5-14(c). It is worth noting that the stage of the PPR behaviour
of modules in LT path does not occur, due to physical interference between the square
centre bodies of PLGs. The current tuneable range of Poisson’s ratios for periodic
metamaterials, using bifurcations of the module, is [-1, +o0). However, its
programmability is still very limited as theoretical results in Fig. 5-14 suggest that
Poisson’s ratios in EC and EP paths are insensitive to variations in geometrical

parameters a/b.

(a) (c) NPR mode

A
A

2x2 tessellation ZPR mode PPR mode

Fig. 5-14 Periodic metamaterials with reconfigurability. (a) 3D metamaterial by tessellating
multiple modules; (b) 2x2 tessellation, whose connection between modules is represented by
orange solid lines; (c) the motion sequences of the physical model of a 2x2 tessellation, where I-

II-I1T is NPR mode, III-IV-V is PPR mode, V-VI is ZPR mode.
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5.4.1 The Series Assembly with (m +n;) Modules

To enhance the programmability of metamaterials, a combinatorial design strategy
is proposed, as shown in Fig. 5-15. Generally, under uniaxial tension F, PPR material
tends to contract in the direction perpendicular to the applied load (Fig. 5-15(a)). In
contrast, the NPR material elongates simultaneously along and perpendicular to the
load directions when stretched. If the deformation of two neighbouring units in the
loading direction is consistent all the time, the two units can be stacked together in the
direction perpendicular to the applied load. This combinational rule can also be
extended to 3D PPR material and NPR materials. Take two modules, one in the PPR
state on the EP path, and one in the NPR state on the EC path (Fig. 5-15(b)). The
dimensions of rotation PLGs are equal as long as their folding angle « is the same,
which provides the possibility to connect two modules in EP and EC paths through the
shared faces of four cube connectors (see orange lines in Fig. 5-15(b)). For ease of
visualization, a green right square prism and a blue regular hexahedron with bumps and
dents texture are used for connection to schematically represent the modules in PPR

(state “1””) and NPR (state “0”) modes, respectively.

(a) (b)  “17state

Tension

F ' F .
L - - J F:
-
PPR material '
F
« I F' ‘ — Connect
' ! L- - -
NPR dul
NPR material module

Fig. 5-15 Schematic diagram of a two-module assembly with one in PPR state and one in NPR

state. (a) Connection rules for two modules and their (b) visualizations.

The series assembly with (m, +n, ) modules in Fig. 5-16(a) is then constructed, of
which m, modules in the PPR state and n, modules in the NPR state. Each module is
equipped with the ability to switch between the state “1”” and “0” through their inherent

kinematic bifurcations. Thus, this unique series assembly after fabrication, is expected
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to be reconstructed into ones with arbitrary proportions and arrangement order of PPR
and NPR modules. For example, if partial modules switch from the “1” state to the “0”
state or vice versa without changing the total number of units, the proportion of NPR
and PPR modules n, /m, changes. As m, and n, are any non-negative whole number,

n, /m, could be any rational number within [0, +o0).
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— N <
0 =4 o 1
]
0 ’-—I 0 I
1 1 = 0
]
/8 /4

(m.,th.) (m_,tn.,) (m_;tn.;) (m_+n.) modules np' T

Fig. 5-16 The series assembly with (m, +n, ) modules. (a) Reconfiguration of module states to
regulate n,/m, (m,,n, =m,.nn,=m,n,); (b)aseries assembly of m, PPR and n, NPR

modules with a/b=2 and its contour plot of Poisson’s ratio v, .

The geometrical dimensions of the series assembly with (m, +n, ) modules are
W=B=a+2asin f+2b (5-37)

and

H=m, (a+2acos #+2b)+n,(a+2asin S+ 2b) (5-38)
where m, and n, are the numbers of modules in PPR and NPR states, respectively, and
f is the folding angle of the module in the EP path that varied in [0, n/4]. Therefore,

Poisson’s ratios of the series assembly with (m, +n, ) modules are

_ dB H_ am (1+2cosp)+an (1+2sin g)+2b(m, +n))
Vig=———x—=——1 z . - (5-39)
dH B (n, —m, tan B)(a(d+ 2sin S3) + 2b)

and
Vew =-1 (5-40)
Notice that the combined design strategy introduces a new design parameter for
the Poisson’s ratio, i.e., the proportion of NPR and PPR modules n, /m, . Then, its
analytical contour plot indicates Poisson’s ratio v, of the series assembly with
a/b =2 covering the entire design space (-oo, +o0) in Fig. 5-16(b) as reconfiguration of

module states is a rapid and effective way to regulate n, / m, . Specifically, v,; keeps
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negative during the whole folding motion if n, /m, > 1. Otherwise, v, changes from
anegative value to —o with /3 increasing, then switches to +ooat g =arctan(n,/m,),
and finally reaches a positive value. The series assembly with different values of n, /m,
exhibits distinct but predictable mechanical properties, which provides a new paradigm
for the programmability of Poisson’s ratio.

Further, uniaxial tension experiments with series assemblies ( n,/m, =2,

n,/m, =1 n,/m, =1/2) was conducted. Theoretical analysis suggests that there may
be a switchable Poisson’s ratio effect, which means that the height of the specimen may
increase first and then decrease. Therefore, the vertical loading is changed to horizontal
loading, and the new experimental setup is shown in Fig. 5-17(a). The specimen is
suspended in the diagonal direction on a fixed frame. One end of the specimen is
directly glued (solid orange lines) on the frame, and the other end is fixed on the slider
located on the frame. The slider is connected with the fixture of the displacement control
system by Kevlar ROPE tows (diameter = 0.3mm). The specimen was then tensioned
with 160mm displacement and a loading rate of 0.5 mm s™'. The deformation process is
captured by the same DIC system with Fig. 5-8.

The comparative plot of theoretical and experimental results for two-module
assembly with a/b=2 and n /m =1 are shown in Fig. 5-17(b). Similar to
n, /m, =1, the results for three-module assembly with n, /m, =2 in Fig. 5-17(c) show
that Poisson’s ratio v,,; remains negative and decreases with the deformation degree,
while v, fluctuates around -1. Then one of the PPR modules is reconstructed to NPR
state to set n, /m, =1/2 (Fig. 5-17(d)). The transition of v, from -852.89 to 375.47
1s observed, while v,, remains close to -1. The natures and trends of mechanical
response between theoretical and experimental results remain similar, as shown in Fig.
5-17(b-d). However, the difference of values v,; grows prominent since the effect of

gravity on deformation is more significant with the increase in the number of modules.
5.4.2 Metamaterials with the 3D Tessellation of Modules

The metamaterials can be further built in 3D space by tessellating multiple series
assemblies. Two design schemes for 3D metamaterials are proposed as follows.

Scheme I: identical series assemblies composed of m, modules in the PPR state
and n, modules in the NPR state are parallelly and periodically tessellated (Fig.

5-18(a)). There are i and j such columns in the x and y directions, respectively. Each
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column’s Poisson’s ratios are identical. Therefore, the Poisson’s ratios of the whole
metamaterial are the same as a single column, i.e., v,; can also be encoded by
regulating the proportion of modules in PPR or NPR states according to Fig. 5-16, while
Vgy remains -1.

Scheme II: series assemblies with (m, +n,), (M +n, ), and (m, +n, ) modules in
X, ¥, z directions respectively are implanted to form the frame of a cuboid tessellation
(Fig. 5-18(b)). Note that the corners are always NPR modules because their three
common-point faces are used to connect the other three modules simultaneously, i.e.,
n, >2 (i=x, y, z). Therefore, n /m. could be any rational number within
[2/ (2 +m, ), +00). The total number and proportion of modules in PPR or NPR states
of series assemblies on parallel edges are identical, but the arrangement order of

modules is not strictly limited.
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Fig. 5-17 Experiments and results of Poisson’s ratio test of series assemblies (n, /m, =1,
n,/m,=2,n,/m,=1/2). (a) The uniaxial tension experimental setup for series assembly; (b-d)
comparative plots of theoretical and experimental Poisson’s ratios of modules stacked in series

withn,/m, =1 n,/m,=2andn,/m, =1/2.
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For scheme II, its analytical expressions for W, B, and H are

W =m, (a+2acos f)+n, (a+2asin g)+2b(m, +n,) (5-41)
B=m,(a+2acos B)+n, (a+2asin B)+2b(m, +n, ) (5-42)
H =m,(a+2acos ) +n,(a+2asin g)+2b(m, +n,) (5-43)

where m_,n, are numbers of PPR and NPR modules in the x direction, and m,,n, are

numbers of PPR and NPR modules in the y direction, and m,,n, are numbers of PPR
and NPR modules in the z direction.

In this case, Poisson’s ratios v,; in the yoz plane and vy, in the xoy plane are
_(n,—m, tan B)(am,(1+2cos B) +an,(1+2sin B) +2b(m, +n,))
- (n, —m, tan g)(am, (1+2cos B) +an, (1+2sin B)+2b(m, +n,))

(5-44)

Vg

and
~ (n, —m, tan B)(am, (1+2cos B) +an, (1 +2sin ) +2b(m, +n,))

Vaw = - (5-45)
(n, —m, tan B)(am, (1+2cos B) +an, (1 +2sin ) +2b(m, +n,))

where [ €[0,n/4]is the folding angle of the module in the EP path.
Since Eq. (5-44) and Eq. (5-45) have similar forms, the focus here is mainly on

Poisson’s ratios v, in the yoz plane. For any negative Poisson’s ratio v, , it requires
n,/m, —tan g

S AN EE AN (5-46)
n,/m,—tan g

because H/B are always positive for all values of S.

This requirement is reduced to two derivatives dB and dH have the same sign, i.e.,

n,/m —tan >0, n,/m,—tan >0 (5-47)

or

n,/m —tan #<0, n,/m,—tan S <0 (5-48)

We can get two sets of solutions from the above equations, i.e.,

0< g <arctan(min(n, /m,, n,/m,)) (5-49)

or

arctan(max(n, /m,, n,/m,)) < B<xl4 (5-50)

Then, Poisson’s ratios Vg are positive for the other values of f € [0, n/4], i.e.,

arctan(min(n, /m,, n,/m,)) < g <arctan(max(n, /m,, n, /m,)) (5-51)
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(b)

Scheme 11

0 0.5 tang 1 1.5 2 0 0.5 tanp 1 1.5 2

n,/ m, n.\/ m,
Fig. 5-18 Metamaterials with 3D tessellation of mechanism modules. (a) Design scheme I, where
each column consists of (M, +n, ) modules. (b) design scheme II of 3D metamaterials with
(m, +n,), (m, +n,), (M, +n,) modules in x, y, z direction (c-d) The contour plots of v,z and vy,

for 3D metamaterials in scheme II as a function of n, /m; (i=x, y, z) when a/b=2and f=n/6.

Based on the above analysis, it can be inferred that the Poisson’s ratios of the 3D
metamaterial in Fig. 5-18(b) can be programmed by regulating the combination ratios
of PPR and NPR states on EP and EC paths in three directions, n. /m. (i=x, y, z),
independent as well as the folding angle f related to the configuration. First of all, let
us fix a/b=2 and B=7/6 to see the effect of n,/m, on the Poisson’s ratios. For
Vyg » there are two boundaries (Fig. 5-18(c)), i.e., n,/m =tangandn,/m, =tangs,
which are the transitions of v, between negative and positive, and divide the design
space (—oo, +0o0) into four regions. Poisson’s ratio v, can be encoded as any negative
values once n,/m and n,/m, (0, tang) , or n,/m, and n,/m, e (tans, +).
Otherwise, v, is positive. Apparently, n,/m, and n /m, play the same role in the
programming of vy, , see Fig. 5-18(d). Moreover, n,/m, and n ,/m, are independent
variables of v, and v, as characterized in Eq. (5-44) and Eq. (5-45), implying that

Poisson’s ratios v,; and v, can be programmed independently. Meanwhile, similar
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to the single module and series assemblies, the Poisson’s ratios of the whole
metamaterial can be tuned by configurations described by folding angle £, and they
are not insensitive to variations in geometrical parameters a/b .

To demonstrate the programming on the characteristics of metamaterials’
Poisson’s ratios, let us take an example with (m, +n, =6), (m, +n,=5),(m, +n, =8)
modules and a/b=2 (Fig. 5-19). Every module except those eight on the cuboid
corners can switch between the PPR and NPR states on EP and EC paths. Hence, there
are a total 140 modes with distinct characteristics of Poisson’s ratios. In the extremal
mode that all the modules in the tessellation are in NPR state, and the metamaterial will
be of 3D negative Poisson’s ratios with v, =vg, =-1.

Let us take a random mode with n, /m, =2, n /m =3/2, n,/m, =1(Fig. 5-19,
mode 1), the metamaterial is with 3D negative Poisson’s ratios as both v,; and v,
decrease monotonically in negative values due to n,/m, > 1(blue solid lines in Fig.
5-19(b) and (c)). Then, two NPR modules in each x-direction series assembly are
reconfigured to PPR state to set n, /m, =1/2 while keeping n /m =3/2,n,/m, =1
(mode II). It is observed that v, is the same as that of mode I (the grey dash line
coincides with the blue solid line in Fig. 5-19(b)), while v, changes from negative to
positive passing zero with the increasing folding angle f (grey dash line in Fig. 5-19(c)).
Next, one NPR module in each y-direction series assembly is reconfigured to PPR state
to set n, /m, =2/3 while keeping n,/m, =1/2, n,/m, =1(mode III), both v, and
vew have experienced significant changes due to the change of n, /m, . It is noted that
Ve Increases from -0.71 to +oo with g, while v, first increases from -0.78 to +oo,
then switches to -oo at £ =33.69°, and finally reaches -1.63 (black solid lines in Fig.
5-19(b) and (c)). Furthermore, if one set n,/m, =1/3 by reconfiguring two NPR
modules to PPR state and keepn, /m, =1/2, n /m =2/3, v, will decreases from -
1.86 to -oo , then switches to +oo at f=18.42°, and finally reaches -0.41 (red dash line
in Fig. 5-19(b)) due to the change of n, /m, compared to mode III, while the value of
Vgy 1S the same with that in mode III as Poisson’s ratio vy, is independent of n, /m,
(the red dash line coincides with the black solid line in in Fig. 5-19(c)). These four
modes present the typical characteristics of 3D Poisson’s ratios, i.e., both in-plane and
out-plane negative ratios, one negative and one positive, or switching between the

negative and positive several times during the deformation of metamaterials.
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Fig. 5-19 The reconstruction of the metamaterial with (m, +n, =6), (m +n, =5),(m, +n, =8)
modules. (a) Bifurcation configurations in four typical modes and their Poisson’s ratios v,z in (b)
and vy, in (c), where n,/m =2, n /m =3/2,n,/m, =1 in mode I,

n/m, =1/2,n/m, =3/2,n/m =1inmodell, n,/m =1/2,n /m =2/3, n,/m,=1in mode

IIL, and n, /m, =1/2,n /m, =2/3 n,/m, =1/3in mode IV.

5.5 A Family of Single DOF Reconfigurable Polygon Prisms

Up to this point, the exposition has underscored the strides made in the
advancement of single DOF reconfigurable modules formed by embedding multi-DOFs
PLGs into a cube for use in metamaterials with tuneable programmable mechanical
properties. Directing the focus back to the intricate process of constructing a Wohlhart
cube, considerations are extended beyond the confines of a cube. Specifically, if
ambition extends to the construction of not just a cube but also encompasses triangular
prisms (N=3), rectangular prisms (N=4), pentagonal prisms (N=5), and hexagonal
prisms (N=6), as delineated in section 4.4.2 of chapter 4, a distinct class of single DOF

reconfigurable polygonal prisms can be derived, as visually depicted in Fig. 5-20.
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Target shapes Construction End faces Lateral faces Connectors
results

End faces

Triangular prism
T
.

Lateral faces

Rectangular prism

Pentagonal Prism

Hexagonal Prism

n,=6,a,=120"

Fig. 5-20 Construction of single DOF reconfigurable polygon prisms.

Within these novel configurations, the PLGs embedded on the end faces consist of
n, (N ) rigid links of side length &, xb, and N, -sided regular polygon characterized by
the angle o, = ( N — 2) n/ N and side length a,, where the subscript e indicates that the
parameter pertains to a PLG on the end face. In contrast, the components attached to
the lateral faces are always N, =4 PLGs constructed with four identical rigid links of
sides @, and b, attached to the square centre body where the subscript | indicates that
the parameter pertains to a PLG on the lateral face. Simultaneously, the connector
undergoes a transformation, assuming the form of a panel resembling a kite. This

distinctive panel is delineated by an angle «,, two equal opposite angles measuring
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90° each, and possesses a thickness b, , along with side lengths b and b,

(b, =b xtan(n/2-a,/2)).

To achieve the reconfiguration between expandable prism paths and elongated

prism paths, as illustrated in Fig. 5-21, it is imperative that the maximum external circle

size of the PLGs on end faces surpass or at least equal the diameter of the internal

tangent circle formed by the PLGs on the lateral faces when fully unfolded in perfect

symmetry. Conversely, for the reconfiguration between elongated prism paths and twist

prism paths, a crucial stipulation is that the connection distance between two adjacent

Twist prism palhs—'|

|4—
| «—— Elongated prism paths ——]

connectors in the fully folded configuration must align with both the length of the link

and the side length of the polygon on the end faces, denoted as ¢, .

}<— Expandable prism paths —— \

Fig. 5-21 The motion process of single DOF reconfigurable polygon prisms in expandable prism

paths, elongated prism paths and twist prism paths.

a, satisfies the reconfiguration conditions.

3 and 4, ensuring &, =

In cases where V-

5 and 6, additional panels, characterized by a thickness

However, for cases where V-

denoted as ¢, must be introduced to the kite shape with an angle &, along both sides to

satisfy the first condition, following relationship:

(5-52)

a, /2+J§a, [2+t

sin(n/N)(a, +a, /sin(n/ N))
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At the same time, the second condition is necessary:
a,=a +2t (5-53)

As a result, the culmination of these design considerations ensures that all
polygonal prisms undergo continuous bifurcation between expandable prism paths,
elongated prism paths, and twist prism paths seamlessly. This intrinsic kinematic
bifurcation is accompanied by distinctive mechanical behaviours, namely NPR, PPR,

and ZPR, as visually depicted in Fig. 5-21.

5.6 Conclusions

In this chapter, the kinematics of the Wohlhart cube were analysed, revealing three
kinematic paths, EC, EP, and LT paths that intersect at bifurcation points,
B, and B, /B, /B, . Taking a single mechanism as the module, it can switch among
distinct Poisson’s ratios, NPR, PPR, and ZPR under the EC, EP, and LT paths through
the bifurcation. Hence, Poisson’s ratios can be tuned with the motion of the module but
are not sensitive to the geometric parameters. Such module also exhibits tuneable
chirality and stiffness along the different kinematic paths. Further studies found that
modules in EC path with NPR state and that in EP path with PPR state can deform
cooperatively due to compatible topological features, which provides a new paradigm
to form a series assembly of the module, whose Poisson’s ratios can be programmed by
regulating the proportion of modules in PPR or NPR states through the reconfiguration
of each module between NPR and PPR states. Next taking this series assembly as a
column, 3D metamaterials can be constructed by implanting the columns as the frame
of a cuboid tessellation. Owing to the reconfigurability of the module, one can
independently program the Poisson’s ratios in orthogonal planes within a wide range
from -oo to +oo by adjusting the ratio of the number of modules in PPR and NPR states,
which greatly enhances the flexibility in the design of 3D metamaterials with
programmable Poisson’s ratios. Finally, the chapter is concluded with the development
of a family of single DOF reconfigurable polygon prisms based on the Wohlhart cube,
thereby establishing a comprehensive foundation for the subsequent exploration and

application of these intriguing mechanisms.
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Chapter 6 Final Remarks

At the crossover of kinematics, structural engineering, mechanics, and materials,
the design of single DOF reconfigurable zero-thickness origami, thick-panel ori-
kirigami, and modular origami with multi-shape reconfigurations is systematically
investigated in this dissertation. The investigation is based on the theory of kinematic
bifurcation from the perspectives of MV crease reconfiguration, transferable hinges,
reconfigurable closed-loop spatial linkage and open-chain planar linkage, which serves
as theoretical foundations and technical support for the development of large-
deformation mechanical metamaterials with tunability and programmability. The main
achievements of this dissertation are summarized in this chapter, and opportunities for

future work are highlighted.

6.1 Main Achievements

First, the challenge of searching for MV assignments that satisfy rigid foldability
in large 2D origami tessellations or 3D cellular structures has been addressed by
transforming the problem into a chessboard colouring problem and using programming
language to solve it. The origami tessellation is initially divided into combinations of
modular units, and the motion compatibility conditions for assemblies of spherical
linkages are used to establish basic rules for the graphic representation of these modules.
The DFS algorithm is then employed to systematically traverse the chessboard, seeking
graphical solutions that adhere to the established rules, and translating them back into
origami patterns with specific MV assignments. This method provides analytical value
and precise assignments of MV creases while eliminating duplicate geometric
configurations. The method has been demonstrated through a series of well-known 2D
origami tessellations, including double corrugated tessellation, square twist pattern,
generalised Mars pattern and so on. It has also been extended to 3D cellular origami
structures. In this process, three types of oligo-modal origami tessellations that exhibit
a constant number (=2) of rigid MV assignments independent of tessellation size have
identified. These types are the dual square twist, generalised Huffman pattern, and
Helical pattern. Additionally, pluri-modal cellular origami is proposed, whose number
of rigid MV assignments exponentially increases with tessellation size. The analysis of

the theoretical and experimental results of mechanical properties shows that
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NPR/ZPR/PPR can be achieved under large deformation by manipulating the MV
assignments within a single origami structure. This research provides a strong
theoretical foundation and technical support for the design of multifunctional structures

based on mountain-valley crease reconfiguration.

e Reconfigurable thick-panel ori-kirigami based on VTJs

Inspired by the Jacob’s Ladder Toy, a design featuring VTJs has been proposed,
enabling the redirection of the joint’s axis from the top or bottom panel surface to the
side surface without increasing the DOF through kinematic bifurcation behaviour. An
ori-kirigami unit was then constructed by replacing the four R joints in the origami
vertices of a diamond thick-panel with VTJs. Kinematic analysis reveals that this single
DOF unit with uniform thickness can transition between an origami, a kirigami, and
three ori-kirigami motion branches through the manipulation of vertically transferable
joints, thereby altering the underlying linkage type. Subsequently, the thick-panel ori-
kirigami unit and its horizontal mirrors were interconnected by R joints with axes in the
thickness direction, while the basic unit and its vertical mirrors were linked by VTJs to
create a 2x2 tessellation. By maintaining the axes of any transferable joints situated on
the upper and lower surfaces of the panel, the uniform-thickness panels can be folded
into a compact volume with no gaps in the origami branch. Conversely, by ensuring
that the axes of all transfer hinges are located in the thickness direction, the uniform-
thickness panels can be deformed in-plane in the kirigami branch. If some joints are
positioned on the top and bottom surfaces of the panel and others are located in the
thickness direction, the uniform-thickness panels can assume multiple configurations
in three ori-kirigami I-IIT branches. As the tessellation transitions between different
motion branches, it demonstrates significant tunability in terms of deployable ratio
(with a maximum deployable ratio of 24), Poisson’s ratio (ranging from anisotropic
values varying from —o to +oo to isotropic values of -1), and load-bearing capacity
(ranging from 0.4 to 1567 times its own weight). This endeavour not only enhances the
diversity of kirigami and ori-kirigami techniques but also paves the way for utilizing
transferable joints to realize one DOF reconfigurable thick-panel structure with tunable

properties.
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e Tuneable metamaterials based on spatial 7R linkage in modular origami form

A modular origami unit with a single-loop spatial 7R linkage with one DOF is first
proposed. Its kinematic model is established, and the effects of geometrical parameters
on the kinematic behaviours are systematically analyzed. The designed units can be
intricately assembled back-to-back to create diverse one DOF reconfigurable modules,
exhibiting significant symmetry changes. Experimental demonstrations showcase the
active tuning and control of the shape and symmetry of these origami modules through
the strategic activation of variable stiffness beams or air pockets. The investigation
highlights the potential to realize various 2D discrete symmetry groups, encompassing
ten point groups, seven line groups, and seventeen space groups (wallpaper groups), all
within a unified design framework. Subsequently, a shoulder-to-shoulder assembly
scheme for 7R units is proposed to construct another type of single DOF reconfigurable
2D modules. Geometric dimensional variations induced by reconfiguration between
different configurations are investigated based on a kinematic model. The effect on the
sign of Poisson’s ratio is theoretically analyzed. Additionally, a variety of single DOF
3D modules are formed by integrating the 2D modules on the faces of carefully selected
polyhedrons. Theoretical analysis indicates that these proposed 3D modules can
achieve purely negative, zero, or positive Poisson’s ratios due to the orthogonal
decoupling behaviour arising from the kinematic bifurcation. Notably, the 3D module
with a rectangular prism (N=4) contour is tuneable in all signs of in-plane and out-plane

Poisson’s ratio.

e 3D programmable metamaterials based on reconfigurable polyhedron

modules

A comprehensive analysis of the kinematics of the Wohlhart cube has been
conducted based on closure equations for planar linkage groups under symmetry
constraints, revealing three distinctive kinematic paths, EC, EP, and LT paths that insert
as at bifurcation points, B, and B, /B, /B, . When considering a single mechanism as the
module, it is demonstrated that the module can switch among distinct Poisson’s ratios
(NPR, PPR, and ZPR) along the EC, EP, and LT paths through the bifurcation. Notably,
Poisson’s ratios can be actively tuned with the folding ratio, yet is almost independent
of the geometrical parameters. Furthermore, the module exhibits tunable chirality and

stiftness along different kinematic paths. Subsequent investigations highlight that
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modules following the EC path with the NPR state and those in the EP path with the
PPR state can deform compatibly due to compatible topological features. This
discovery introduces a novel paradigm for forming a series assembly of modules, where
the Poisson’s ratios can be programmed by regulating the proportion of modules in PPR
or NPR states through the reconfiguration of each module between NPR and PPR states.
Building upon this concept, a series assembly is considered as a column, and 3D
metamaterials are constructed by implanting these columns as the frame of a cuboid
tessellation. Leveraging the reconfigurability of the module, it becomes possible to
independently program the Poisson’s ratios in orthogonal planes over a wide range from
-0 to +oo. At last, reconfigurable polyhedron modules with NPR, ZPR, and PPR are
extended from the Wohlhart cube to a series of single DOF reconfigurable polygon
prisms. The metamaterials with switchable Poisson’s ratio, local and global chirality
and tuneable stiffness in a wider tuneable range are of great application potentials in
shape-morphing systems for various fields, such as flexible metamaterials, morphing

architectures, bioengineering tissue and robotics.

6.2 Future Work

This dissertation is dedicated to explore the application of kinematic bifurcation
to design single DOF origami structures with multiple shape reconfigurations, and to
develop them into mechanical metamaterials with tuneable properties. To enhance the
practical use of this type of metamaterial, several potential topics can be further
explored.

First, due to the rich reconfigurability, proposed method that combines graphic
representation and motion compatibility conditions can discover unique homogeneous
configurations in many zero-thickness origami structures, especially heterogeneous
configurations that are hard to find by human heuristics, providing potential
applications for reconfigurable metamaterials and deployable structures with
multifunctional requirements. Thanks to the explicit solutions of the closure equation
of spherical 4R linkage, proposed method can be highly useful when dealing with the
reconfigurability of four-crease origami pattern. With the more profound analysis of the
kinematics of spherical SR and 6R linkages, it is believed that this method can be
extended to origami structures with four-, five-, and six-crease mixed vertices, which is

next target.
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Second, in this work, a series of novel designs with thick-panel origami, kirigami
and ori-kirigami motion branches are obtained by embedding transferable joints into a
flat-foldable six-crease pattern. The design method is expected to be extended to flat-
foldable four-crease and even non-flat-foldable crease patterns and hybrid origami
vertex patterns to construct novel origami structures. Among these deformation modes,
the thick-panel ori-kirigami modes couple a global out-of-plane deformation with a
local in-plane deformation, which is expected to induce fantastic mechanical properties.
Hence, the hybrid network of planar-spherical-spatial linkages needs to be investigated
in depth to explore the innovative design of such novel thick-panel ori-kirigami mode.

In addition, non-periodic mechanical metamaterials exhibit excellent tunability
and programmability for hybrid networks formed by different bifurcation
configurations. A major challenge is how to accurately identify all possible
configurations of reconfigurable networks of modular origami, and then establish the
parametric analytical relationship between the unit cell’s configurations, network
topologies and metamaterials’ properties, so as to lay the foundation for reverse
designing the unit cell’s configurations and network topologies with the required
properties. In addition, this dissertation presented a series of mechanical metamaterials
with rich geometrical and shape variations, focusing on physical properties such as
Poisson’s ratio, symmetry, stiffness, etc., caused by deformation mechanisms. In the
future, a multidisciplinary cross-disciplinary approach can be carried out to study the
essential correlation between these underlying geometry and shape changes, especially
symmetry changes, and acoustics, electromagnetism, and topology*83-1861,

Further, mechanical metamaterials based on kinematic bifurcation significantly
reduce the complexity of control compared to multi-DOFs systems, but there are still
challenges in cooperative control as well as bifurcation control in the face of mechanical
metamaterials with small cell sizes and large numbers of unit cells. Employing smart
materials to actuate hundreds or even thousands of hinges in metamaterials is clearly a
potential but inefficient approach. The current exploratory study shows that the
controllability of this type of metamaterials can be improved from the perspective of
linkage and structure coupling design by adopting physical interference, instability, and
other “mechanically intelligent” ways of designing the unit cells. At the same time, the
“interference” property of smart materials in bifurcation control is enhanced while the

actuation property is weakened, and the actuation position and actuation mode of
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metamaterials are optimized, which is expected to realize efficient bifurcation control
under simple mechanical load by combining mechanical intelligence and material
intelligence.

Finally, after solving the design and actuation of metamaterials based on kinematic
bifurcation, a major problem is the processing and fabrication of such metamaterials.
At present, 3D or 4D printing technology can effectively process three-dimensional
complex structures, but its accuracy is limited and it cannot accurately process the cell
at the micron and nanometre level. Most of the existing results belong to laboratory
technology, and it is impossible to carry out large-scale and mass production and
promotion in industrial manufacturing. Therefore, it is urgent to investigate the
processing and manufacturing methods that can produce fine cellular metamaterials in

large quantities for engineering applications.

146



Reference

[1]

[10]

[11]

[12]

[13]

[14]

References

Kadic M, Milton G W, Van Hecke M, et al. 3D metamaterials[J]. Nature Reviews
Physics, 2019, 1(3): 198-210.

Service R F, Cho A. Strange new tricks with light[J]. Science, 2010, 330(6011):
1622.

Zadpoor A A. Mechanical meta-materials[J]. Materials Horizons, 2016, 3(5):
371-381.

Bertoldi K, Vitelli V, Christensen J, et al. Flexible mechanical metamaterials[J].
Nature Reviews Materials, 2017, 2(11): 17066.

Ren X, Das R, Tran P, et al. Auxetic metamaterials and structures: A review|[J].
Smart Materials and Structures, 2018, 27(2): 023001.

Yang H, Ma L. 1D to 3D multi-stable architected materials with zero Poisson’s
ratio and controllable thermal expansion[J]. Materials & Design, 2020, 188:
108430.

Schenk M, Guest S D. On zero stiffness[J]. Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014,
228(10): 1701-1714.

Hewage T A M, Alderson K L, Alderson A, et al. Double-negative mechanical
metamaterials displaying simultaneous negative stiffness and negative Poisson’s
ratio properties[J]. Advanced Materials, 2016, 28(46): 10323-10332.

Ai L, Gao X L. Three-dimensional metamaterials with a negative poisson’s ratio
and a non-positive coefficient of thermal expansion[J]. International Journal of
Mechanical Sciences, 2018, 135: 101-113.

Lim T C. An anisotropic negative thermal expansion metamaterial with sign-
toggling and sign-programmable poisson’s ratio[J]. Oxford Open Materials
Science, 2022, 2(1): itac007.

Zheng X, Lee H, Weisgraber T H, et al. Ultralight, ultrastiff mechanical
metamaterials[J]. Science, 2014, 344(6190): 1373-1377.

Zhang H, Paik J. Kirigami design and modeling for strong, lightweight
metamaterials[J]. Advanced Functional Materials, 2022, 32(21): 2107401.

Hu Z, Wei Z, Wang K, et al. Engineering zero modes in transformable mechanical
metamaterials[J]. Nature Communications, 2023, 14(1): 1266.

Lee R H, Mulder E A B, Hopkins J B. Mechanical neural networks: Architected
materials that learn behaviors[J]. Science Robotics, 2022, 7(71): eabq7278.

147



Doctoral Dissertation of Tianjin University

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

El Helou C, Buskohl P R, Tabor C E, et al. Digital logic gates in soft, conductive
mechanical metamaterials[J]. Nature Communications, 2021, 12(1): 1633.

Hyatt L P, Harne R L. Programming metastable transition sequences in digital
mechanical materials[J]. Extreme Mechanics Letters, 2023, 59: 101975.

Mei T, Meng Z, Zhao K, et al. A mechanical metamaterial with reprogrammable
logical functions[J]. Nature Communications, 2021, 12(1): 7234.

Meng Z, Chen W, Mei T, et al. Bistability-based foldable origami mechanical
logic gates[J]. Extreme Mechanics Letters, 2021, 43: 101180.

Xin X, Liu L, Liu Y, et al. 4D printing auxetic metamaterials with tunable,
programmable, and reconfigurable mechanical properties[J]. Advanced
Functional Materials, 2020, 30(43): 2004226.

Yan C. Review on kinematic metamaterials[J]. Journal of Mechanical
Engineering, 2020, 56(19): 2.

Lang R J. Twists, tilings, and tessellations: Mathematical methods for geometric
origami[M]. CRC Press, 2017.

Zirbel SA, Lang R J, Thomson M W, et al. Accommodating thickness in origami-
based deployable arrays[J]. Journal of Mechanical Design, 2013, 135(11):
111005.

Melancon D, Gorissen B, Garcia-Mora C J, et al. Multistable inflatable origami
structures at the metre scale[J]. Nature, 2021, 592(7855): 545-550.

Lee DY, Kim J K, Sohn CY, et al. High—load capacity origami transformable
wheel[J]. Science Robotics, 2021, 6(53): eabe0201.

Deng Y, Liu W, Cheung Y K, et al. Curved display based on programming
origami tessellations[J]. Microsystems & Nanoengineering, 2021, 7(1): 101.

Ma J, Dai H, Chai S, et al. Energy absorption of sandwich structures with a
kirigami-inspired pyramid foldcore under quasi-static compression and shear[J].
Materials & Design, 2021, 206: 109808.

Li S, Stampfli J J, Xu H J, et al. A vacuum-driven origami “magic-ball” soft
gripper[C]. 2019 International Conference on Robotics and Automation (ICRA).
Montreal, QC, Canada: IEEE, 2019: 7401-7408.

Suzuki H, Wood R J. Origami-inspired miniature manipulator for teleoperated
microsurgery[J]. Nature Machine Intelligence, 2020, 2(8): 437-446.

Zhang Z, Xu Z, Emu L, et al. Active mechanical haptics with high-fidelity
perceptions for immersive virtual reality[J]. Nature Machine Intelligence, 2023,
5(6): 643-655.

Li D, Dong L, Lakes R S. A unit cell structure with tunable Poisson’s ratio from
positive to negative[J]. Materials Letters, 2016, 164: 456-459.

148



Reference

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Florijn B, Coulais C, Van Hecke M. Programmable mechanical metamaterials[J].
Physical Review Letters, 2014, 113(17): 175503.

Sinha P, Mukhopadhyay T. Programmable multi-physical mechanics of
mechanical metamaterials[J]. Materials Science and Engineering: R: Reports,

2023, 155: 100745.

Origami-Kunst A B. Origami crane folded from one uncut square of
paper[EB/OL]. https://www.flickr.com/photos/origami-kunst/478379801/.

Miyamoto Y. RES Octagon Star[EB/OL].
https://www.flickr.com/photos/yoshinobu_miyamoto/14299237028/.
Mancini F. Snap Icosahedron[EB/OL].

https://www.flickr.com/photos/mancinerie/3617018985/.

Coulais C, Sounas D, Alu A. Static non-reciprocity in mechanical
metamaterials[J]. Nature, 2017, 542(7642): 461-464.

Tsai L W. The mechanics of serial and parallel manipulators|[M]. John Wiley &
Sons, Inc, 1999.

Dail S, Rees Jones J. Mobility in metamorphic mechanisms of foldable/erectable
kinds[J]. Journal of Mechanical Design, 1999, 121(3): 375-382.

Hull T. Project origami: Activities for exploring mathematics, second edition[M].
0 ed. A K Peters/CRC Press, 2012.

Yang F, Chen Y, Kang R, et al. Truss transformation method to obtain the non-
overconstrained forms of 3D overconstrained linkages[J]. Mechanism and
Machine Theory, 2016, 102: 149-166.

Tachi T. Generalization of rigid foldable quadrilateral mesh origami[C].
Proceedings of the International Association for Shell and Spatial Structures
(IASS) Symposium. Valencia, 2009: 2287-2294.

Chen Y, Lv W, Peng R, et al. Mobile assemblies of four-spherical-4R-integrated
linkages and the associated four-crease-integrated rigid origami patterns[J].
Mechanism and Machine Theory, 2019, 142: 103613.

Zimmermann L, Stankovi¢ T. Rigid and flat foldability of a degree-four vertex in
origami[J]. Journal of Mechanisms and Robotics, 2020, 12(1): 011004.

Zhang X, Chen Y. Vertex-splitting on a diamond origami pattern[J]. Journal of
Mechanisms and Robotics, 2019, 11(3): 031014.

Feng H, Peng R, Zang S, et al. Rigid foldability and mountain-valley crease
assignments of square-twist origami pattern[J]. Mechanism and Machine Theory,
2020, 152: 103947.

149



Doctoral Dissertation of Tianjin University

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Denavit J, Hartenberg R S. A kinematic notation for lower-pair mechanisms
based on matrices[J]. Journal of Applied Mechanics, 1955, 22(2): 215-221.

Chen Y, Peng R, You Z. Origami of thick panels[J]. Science, 2015, 349(6246):
396-400.

Zhang X, Chen Y. The diamond thick-panel origami and the corresponding
mobile assemblies of plane-symmetric Bricard linkages[J]. Mechanism and
Machine Theory, 2018, 130: 585-604.

Zhang X, Chen Y. Mobile assemblies of Bennett linkages from four-crease
origami patterns[J]. Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 2018, 474(2210): 20170621.

Yang J, Zhang X, Chen Y, et al. Folding arrays of uniform-thickness panels to
compact bundles with a single degree of freedom[J]. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 2022, 478(2261):
20220043.

Yang Y, You Z. Geometry of transformable metamaterials inspired by modular
origami[J]. Journal of Mechanisms and Robotics, 2018, 10(2): 021001.

Beggs J S. Advanced mechanism[M]. Macmillan.

Chen Y, Feng H, Ma J, et al. Symmetric waterbomb origami[J]. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016,
472(2190): 20150846.

Tachi T. Designing freeform origami tessellations by generalizing Resch’s
patterns[J]. Journal of Mechanical Design, 2013, 135(11): 111006.

Wohlhart K. Kinematotropic linkages[M]. Lenar¢i¢ J, Parenti-Castelli V. Recent
Advances in Robot Kinematics. Dordrecht: Springer Netherlands, 1996: 359-368.

Galletti C, Fanghella P. Single-loop kinematotropic mechanisms[J]. Mechanism
and Machine Theory, 2001, 36(6): 743-761.

Zhang L, Wang D, Dai J S. Biological modeling and evolution based synthesis of
metamorphic mechanisms[J]. Journal of Mechanical Design, 2008, 130(7):
072303.

Kong X, Pfurner M. Type synthesis and reconfiguration analysis of a class of
variable-DOF single-loop mechanisms[J]. Mechanism and Machine Theory,
2015, 85: 116-128.

Yan H S, Kuo C H. Topological representations and characteristics of variable

kinematic joints[J]. Journal of Mechanical Design, 2006, 128(2): 384-391.

Yan H S, Liu N T. Finite-State-Machine Representations for Mechanisms and
Chains With Variable Topologies[C]. Volume 7A: 26th Biennial Mechanisms and

150



Reference

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Robotics Conference. American Society of Mechanical Engineers Digital
Collection, 2000: 57-63.

Zhang K, Fang Y, Wei G, et al. Structural representation of reconfigurable
linkages[M]. Dai J S, Zoppi M, Kong X. Advances in Reconfigurable
Mechanisms and Robots I. London: Springer London, 2012: 127-137.

Aimedee F, Gogu G, DaiJ S, et al. Systematization of morphing in reconfigurable
mechanisms[J]. Mechanism and Machine Theory, 2016, 96: 215-224.

Kuo C H, Dai J S, Yan H S. Reconfiguration principles and strategies for
reconfigurable mechanisms[C]. 2009 ASME/IFToMM International Conference
on Reconfigurable Mechanisms and Robots. London, UK: 1-7.

Carroll D W, Magleby S P, Howell L L, et al. Simplified manufacturing through
a metamorphic process for compliant ortho-planar mechanisms[C]. ASME

International Mechanical Engineering Congress and Exposition: Vol. 42150.
2005: 389-399.

Zhang L, Dai J S. An overview of the development on reconfiguration of
metamorphic mechanisms[C]. 2009 ASME/IFToMM International Conference
on Reconfigurable Mechanisms and Robots. London, UK, 2009: 8-12.

Chen Y, You Z. An extended Myard linkage and its derived 6R linkage[J]. Journal
of Mechanical Design, 2008, 130(5): 052301.

Chen Y, You Z. Two-fold symmetrical 6R foldable frame and its bifurcations[J].
International Journal of Solids and Structures, 2009, 46(25-26): 4504-4514.

Song C Y, Chen Y. Multiple linkage forms and bifurcation behaviours of the
double-subtractive-Goldberg 6R linkage[J]. Mechanism and Machine Theory,
2012, 57: 95-110.

Song C Y, Chen Y, Chen I M. A 6R linkage reconfigurable between the line-
symmetric Bricard linkage and the Bennett linkage[J]. Mechanism and Machine
Theory, 2013, 70: 278-292.

Song CY, Feng H, Chen Y, et al. Reconfigurable mechanism generated from the
network of Bennett linkages[J]. Mechanism and Machine Theory, 2015, 88: 49-
62.

Chai X, Kang X, Gan D, et al. Six novel 6R metamorphic mechanisms induced
from three-series-connected Bennett linkages that vary among classical

linkages[J]. Mechanism and Machine Theory, 2021, 156: 104133.

Chen Y, Chai W H. Bifurcation of a special line and plane symmetric Bricard
linkage[J]. Mechanism and Machine Theory, 2011, 46(4): 515-533.

151



Doctoral Dissertation of Tianjin University

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

Feng H, Chen Y, Dai J S, et al. Kinematic study of the general plane-symmetric
Bricard linkage and its bifurcation variations[J]. Mechanism and Machine Theory,
2017, 116: 89-104.

Zhang K, Dai J S. Screw-system-variation enabled reconfiguration of the Bennett
plano-spherical hybrid linkage and its evolved parallel mechanism[J]. Journal of
Mechanical Design, 2015, 137(6): 062303.

Li L, Li T fei, Dai J sheng, et al. A novel line-symmetric Goldberg 6R linkage
with bifurcation property[J]. Journal of Central South University, 2020, 27(12):
3754-3767.

Tang Z, Dai J S. Multi-furcation variations of two novel double-centered
mechanisms based on higher order kinematic analyses and singular value
decomposition[J]. Journal of Mechanisms and Robotics, 2024, 16(5): 051011.

Lu S, Zlatanov D, Ding X, et al. Reconfigurable chains of bifurcating type III
Bricard linkages[M]. Ding X, Kong X, Dai J S. Advances in Reconfigurable
Mechanisms and Robots II: Vol. 36. Cham: Springer International Publishing,
2016: 3-14.

Kong X, Huang C. Type synthesis of single-DOF single-loop mechanisms with
two operation modes[C]. 2009 ASME/IFToMM International Conference on
Reconfigurable Mechanisms and Robots. London, UK, 2009: 136-141.

Zhang K, Miiller A, Dai J S. A novel reconfigurable 7R linkage with
multifurcation[M]. Ding X, Kong X, Dai J S. Advances in Reconfigurable
Mechanisms and Robots II: Vol. 36. Cham: Springer International Publishing,
2016: 15-25.

Cao W ao, Zhang D, Ding H. A novel two-layer and two-loop deployable linkage
with accurate vertical straight-line motion[J]. Journal of Mechanical Design,
2020, 142(10): 103301.

Kong X. A variable-DOF single-loop 7R spatial mechanism with five motion
modes[J]. Mechanism and Machine Theory, 2018, 120: 239-249.

Zhou C, Chen H, Guo W, et al. Novel bundle folding deployable mechanisms to
realize polygons and polyhedrons[J]. Mechanism and Machine Theory, 2023, 181:
105210.

Chai X, Zhang C, Dai J S. A single-loop 8R linkage with plane-symmetry and
bifurcation property[C]. 2018 International Conference on Reconfigurable
Mechanisms and Robots (ReMAR). 2018: 1-8.

Peng R, Ma J, Chen Y. The effect of mountain-valley folds on the rigid foldability
of double corrugated pattern[J]. Mechanism and Machine Theory, 2018, 128:
461-474.

152



Reference

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Zhang K, Dai J S. Reconfiguration of the plane-symmetric double-spherical 6R
linkage with bifurcation and trifurcation[J]. Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016,
230(3): 473-482.

Zhang K, Dai J S. Trifurcation of the evolved Sarrus-motion linkage based on

parametric constraintsfM]. Advances in Robot Kinematics. Cham: Springer
International Publishing, 2014: 345-353.

Zhang K, Dai J S. A kirigami-inspired 8R linkage and its evolved overconstrained

6R linkages with the rotational symmetry of order two[J]. Journal of Mechanisms
and Robotics, 2014, 6(2): 021007.

Ma X, Zhang K, Dai J S. Novel spherical-planar and Bennett-spherical 6R
metamorphic linkages with reconfigurable motion branches[J]. Mechanism and
Machine Theory, 2018, 128: 628-647.

Feng H, Peng R, Ma J, et al. Rigid foldability of generalized triangle twist origami
pattern and its derived 6R linkages[J]. Journal of Mechanisms and Robotics, 2018,
10(5): 051003.

Liu W, Chen Y. A double spherical 6R linkage with spatial crank-rocker
characteristics inspired by kirigami[J]. Mechanism and Machine Theory, 2020,
153: 103995.

Liu W, Chen Y. Origami/kirigami-inspired reconfigurable 6R linkages and
tessellations[C]. International Conference on Mechanism and Machine Science.
Springer, 2022: 1333-1357.

Tang Z, Dai J S. Bifurcated configurations and their variations of an 8-bar linkage
derived from an 8-kaleidocycle[J]. Mechanism and Machine Theory, 2018, 121:
745-754.

Wang R, Song Y, Dai J S. Reconfigurability of the origami-inspired integrated
8R kinematotropic metamorphic mechanism and its evolved 6R and 4R
mechanisms[J]. Mechanism and Machine Theory, 2021, 161: 104245.

Kang X, Zhang X, Dai J S. First- and second-order kinematics-based constraint
system analysis and reconfiguration identification for the queer-square
mechanism[J]. Journal of Mechanisms and Robotics, 2019, 11(1): 011004.

Roschel O. A fulleroid - like mechanism based on the cube[J]. Journal for
geometry and graphics, 2012, 16(1): 19-27.
Li R, Sun X, Chen Y, et al. Design and analysis of reconfigurable deployable

polyhedral mechanisms with straight elements[J]. Journal of Mechanisms and
Robotics, 2019, 11(4): 044502.

153



Doctoral Dissertation of Tianjin University

[97] Li R, Yao Y an, Kong X. A class of reconfigurable deployable platonic
mechanisms[J]. Mechanism and Machine Theory, 2016, 105: 409-427.

[98] LiR,YaoY an, Kong X. Reconfigurable deployable polyhedral mechanism based
on extended parallelogram mechanism[J]. Mechanism and Machine Theory,
2017, 116: 467-480.

[99] HaoY, Li R, Sun X, et al. Design and motion pattern analysis of reconfigurable
cube mechanism([J]. Journal of Mechanical Engineering, 2020, 56(13): 120-127.

[100] Liu J, Zhao X, Ding H. A class of N-sided antiprism deployable polyhedral
mechanisms based on an asymmetric eight-bar linkage[J]. Mechanism and
Machine Theory, 2020, 150: 103882.

[101] Zhang X, Zhou X, Li M, et al. Three-dimensional mobile assemblies based on
threefold-symmetric Bricard linkages[J]. Journal of Mechanisms and Robotics,
2023, 16(044501).

[102] Wei G. Geometric analysis and theoretical development of deployable polyhedral
mechanisms[D]. King’s College London, 2012.

[103] Kiper G. A historical review of polyhedral linkages[M]. Ceccarelli M, Aslan
Seyhan I. Explorations in the History and Heritage of Machines and Mechanisms:
Vol. 47. Cham: Springer Nature Switzerland, 2024: 227-242.

[104] Tarnai T. Kinematic bifurcation[M]. Deployable Structures. Springer, 2001: 143-
169.

[105] Kumar P, Pellegrino S. Computation of kinematic paths and bifurcation points[J].
International Journal of Solids and Structures, 2000, 37(46-47): 7003-7027.

[106] Pellegrino S. Structural computations with the singular value decomposition of
the equilibrium matrix[J]. International Journal of Solids and Structures, 1993,
30(21): 3025-3035.

[107] Gan W W, Pellegrino S. Numerical approach to the kinematic analysis of
deployable structures forming a closed loop[J]. Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006,
220(7): 1045-1056.

[108] Gan D, Dai J S, Liao Q. Constraint analysis on mobility change of a novel
metamorphic parallel mechanism[J]. Mechanism and Machine Theory, 2010,
45(12): 1864-1876.

[109] Koryo M. Method of packaging and deployment of large membranes in space[J].
The Institute of Space and Astronautical Science report, 1985, 618: 1-9.

[110] Ma J, Feng H, Chen Y, et al. Folding of tubular waterbomb[J]. Research, 2020,
2020: 2020/1735081.

154



Reference

[111] Lang R J, Magleby S, Howell L. Single degree-of-freedom rigidly foldable cut
origami flashers[J]. Journal of Mechanisms and Robotics, 2016, 8(3): 031005.

[112] Schenk M, Guest S D. Geometry of miura-folded metamaterials[J]. Proceedings
of the National Academy of Sciences, 2013, 110(9): 3276-3281.

[113] Wei Z Y, Guo Z V, Dudte L, et al. Geometric mechanics of periodic pleated
origami[J]. Physical Review Letters, 2013, 110(21): 215501.

[114] Liu Z, Fang H, Xu J, et al. A novel origami mechanical metamaterial based on
miura-variant designs: Exceptional multistability and shape reconfigurability[J].
Smart Materials and Structures, 2021, 30(8): 085029.

[115] Nauroze S A, Novelino L S, Tentzeris M M, et al. Continuous-range tunable
multilayer frequency-selective surfaces using origami and inkjet printing[J].
Proceedings of the National Academy of Sciences, 2018, 115(52): 13210-13215.

[116] Ma J, Song J, Chen Y. An origami-inspired structure with graded stiffness[J].
International Journal of Mechanical Sciences, 2018, 136: 134-142.

[117] Yuan L, Dai H, Song J, et al. The behavior of a functionally graded origami
structure subjected to quasi-static compression[J]. Materials & Design, 2020, 189:
108494.

[118] Wang H, Zhao D, Jin'Y, et al. Modulation of multi-directional auxeticity in hybrid
origami metamaterials[J]. Applied Materials Today, 2020, 20: 100715.

[119] Filipov E T, Tachi T, Paulino G H. Origami tubes assembled into stiff, yet
reconfigurable structures and metamaterials[J]. Proceedings of the National
Academy of Sciences, 2015, 112(40): 12321-12326.

[120] Mousanezhad D, Kamrava S, Vaziri A. Origami-based building blocks for
modular construction of foldable structures[J]. Scientific Reports, 2017, 7(1):
14792.

[121] Tachi T, Miura K. Rigid-foldable cylinders and cells[J]. Journal of The
International Association for Shell and Spatial Structures, 2012, 53(4).

[122] Yasuda H, Yang J. Reentrant origami-based metamaterials with negative
Poisson’s ratio and bistability[J]. Physical Review Letters, 2015, 114(18):
185502.

[123] Yasuda H, Gopalarethinam B, Kunimine T, et al. Origami-based cellular
structures with in situ transition between collapsible and load-bearing
configurations[J]. Advanced Engineering Materials, 2019, 21(12): 1900562.

[124] YuY, Chen Y, Paulino G. Programming curvatures by unfolding of the triangular
Resch pattern[J]. International Journal of Mechanical Sciences, 2023, 238:
107861.

155



Doctoral Dissertation of Tianjin University

[125] Zhao Y, Endo Y, Kanamori Y, et al. Approximating 3D surfaces using generalized
waterbomb tessellations[J]. Journal of Computational Design and Engineering,
2018, 5(4): 442-448.

[126] Feng H, Ma J, Chen Y, et al. Twist of tubular mechanical metamaterials based on
waterbomb origami[J]. Scientific Reports, 2018, 8(1): 9522.

[127] Mukhopadhyay T, Ma J, Feng H, et al. Programmable stiffness and shape
modulation in origami materials: Emergence of a distant actuation feature[J].
Applied Materials Today, 2020, 19: 100537.

[128] Lv C, Krishnaraju D, Konjevod G, et al. Origami based mechanical
metamaterials[J]. Scientific Reports, 2014, 4(1): 5979.

[129] Hull T C, Urbanski M T. Rigid foldability of the augmented square twist[A].
arXiv, 2018.

[130] Wang L C, Song W L, Fang H, et al. Reconfigurable force—displacement profiles
of the square-twist origami[J]. International Journal of Solids and Structures,
2022,241: 111471.

[131] Lu L, Leanza S, Zhao R R. Origami with rotational symmetry: A review on their
mechanics and design[J]. Applied Mechanics Reviews, 2023, 75(5): 050801.

[132] LiuB, Liao Y, Yang Y, et al. Design and analysis of reconfigurable and deployable
thin-walled architectural equipment inspired by mirror-miura origami patterns[J].
Engineering Structures, 2023, 286: 116059.

[133] Pratapa P P, Liu K, Paulino G H. Geometric mechanics of origami patterns
exhibiting Poisson’s ratio switch by breaking mountain and valley assignment[J].
Physical Review Letters, 2019, 122(15): 155501.

[134] Yamaguchi K, Yasuda H, Tsujikawa K, et al. Graph-theoretic estimation of
reconfigurability in origami-based metamaterials[J]. Materials & Design, 2022,
213: 110343.

[135] Liu Z, Fang H, Xu J, et al. Discriminative transition sequences of origami
metamaterials for mechanologic[J]. Advanced Intelligent Systems, 2023, 5(1):
2200146.

[136] Kolken H M A, Zadpoor A A. Auxetic mechanical metamaterials[J]. RSC
Advances, 2017, 7(9): 5111-5129.

[137] Cho H, Seo D, Kim D N. Mechanics of auxetic materials[M]. Schmauder S, Chen
C S, Chawla K K, et al. Handbook of Mechanics of Materials. Singapore:
Springer, 2019: 733-757.

[138] Wu G, Cho Y, Choi I, et al. Directing the deformation paths of soft metamaterials
with prescribed asymmetric units[J]. Advanced Materials, 2015, 27(17): 2747-
2752.

156



Reference

[139] Tang Y, Yin J. Design of cut unit geometry in hierarchical kirigami-based auxetic
metamaterials for high stretchability and compressibility[J]. Extreme Mechanics
Letters, 2017, 12: 77-85.

[140] Cho Y, Shin J H, Costa A, et al. Engineering the shape and structure of materials
by fractal cut[J]. Proceedings of the National Academy of Sciences, 2014,
111(49): 17390-17395.

[141] Dudte L H, Choi G P T, Becker K P, et al. An additive framework for kirigami
design[J]. Nature Computational Science, 2023, 3(5): 443-454.

[142] Choi G P T, Dudte L H, Mahadevan L. Compact reconfigurable kirigami[J].
Physical Review Research, 2021, 3(4): 043030.

[143] Choi G P T, Dudte L H, Mahadevan L. Programming shape using kirigami
tessellations[J]. Nature Materials, 2019, 18(9): 999-1004.

[144] Jiang C, Rist F, Wang H, et al. Shape-morphing mechanical metamaterials[J].
Computer-Aided Design, 2022, 143: 103146.

[145] Jin L, Forte A E, Deng B, et al. Kirigami-inspired inflatables with programmable
shapes[J]. Advanced Materials, 2020, 32(33): 2001863.

[146] Konakovi¢ M, Crane K, Deng B, et al. Beyond developable: Computational
design and fabrication with auxetic materials[J]. ACM Transactions on Graphics,
2016, 35(4): 1-11.

[147] Castle T, Cho Y, Gong X, et al. Making the cut: Lattice kirigami rules[J]. Physical
Review Letters, 2014, 113(24): 245502.

[148] Castle T, Sussman D M, Tanis M, et al. Additive lattice kirigami[J]. Science
Advances, 2016, 2(9): e1601258.

[149] Sussman D M, Cho Y, Castle T, et al. Algorithmic lattice kirigami: A route to
pluripotent materials[J]. Proceedings of the National Academy of Sciences, 2015,
112(24): 7449-7453.

[150] Xie R, Chen Y, Gattas J] M. Parametrisation and application of cube and eggbox-
type folded geometries[J]. International Journal of Space Structures, 2015, 30(2):
99-110.

[151] Eidini M, Paulino G H. Unraveling metamaterial properties in zigzag-base folded
sheets[J]. Science Advances, 2015, 1(8): €1500224.

[152] Eidini M. Zigzag-base folded sheet cellular mechanical metamaterials[J].
Extreme Mechanics Letters, 2016, 6: 96-102.

[153] Jamalimehr A, Mirzajanzadeh M, Akbarzadeh A, et al. Rigidly flat-foldable class

of lockable origami-inspired metamaterials with topological stiff states[J]. Nature
Communications, 2022, 13(1): 1816.

157



Doctoral Dissertation of Tianjin University

[154] Tang Y, Li Y, Hong Y, et al. Programmable active kirigami metasheets with more
freedom of actuation[J]. Proceedings of the National Academy of Sciences, 2019,
116(52): 26407-26413.

[155] Zhang X, Ma J, Li M, et al. Kirigami-based metastructures with programmable
multistability[J]. Proceedings of the National Academy of Sciences, 2022,
119(11): €2117649119.

[156] Gu Y, Chen Y. Origami cubes with one-DOF rigid and flat foldability[J].
International Journal of Solids and Structures, 2020, 207: 250-261.

[157] Zhang Y, Gu Y, Chen Y, et al. One-DOF rigid and flat-foldable origami
polyhedrons with slits[J]. Acta Mechanica Solida Sinica, 2023, 36(4): 479-490.

[158] Callens S J P, Zadpoor A A. From flat sheets to curved geometries: Origami and
kirigami approaches[J]. Materials Today, 2018, 21(3): 241-264.

[159] Sun'Y, Ye W, Chen Y, et al. Geometric design classification of kirigami-inspired
metastructures and metamaterials[J]. Structures, 2021, 33: 3633-3643.

[160] Tarnai T, Kovacs F, Fowler P W, et al. Wrapping the cube and other polyhedra[J].
Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 2012, 468(2145): 2652-2666.

[161] Simon L, Arnstein B, Gurkewitz R. Modular origami polyhedra: Revised and
enlarged edition[M]. Courier Corporation, 2012.

[162] Sarrus P. Note sur la transformation des mouvements rectilignes alternatifs, en
mouvements circulaires, et reciproquement[J]. Comptes. Rendus, Acad. Sci.,
Paris, 1853, 36: 1036-1038.

[163] Yang Y, You Z. A modular origami-inspired mechanical metamaterial[J].

[164] Yang Y, Zhang X, Maiolino P, et al. Linkage-based three-dimensional kinematic
metamaterials with programmable constant Poisson’s ratio[J]. Materials &
Design, 2023, 233: 112249.

[165] MaJ, Jiang X, Chen Y. A 3D modular meta-structure with continuous mechanism
motion and bistability[J]. Extreme Mechanics Letters, 2022, 51: 101584.

[166] Yang N, Silverberg J L. Decoupling local mechanics from large-scale structure
in modular metamaterials[J]. Proceedings of the National Academy of Sciences,
2017, 114(14): 3590-3595.

[167] Overvelde J T B, De Jong T A, Shevchenko Y, et al. A three-dimensional actuated
origami-inspired transformable metamaterial with multiple degrees of
freedom[J]. Nature Communications, 2016, 7(1): 10929.

[168] Overvelde J T B, Weaver J C, Hoberman C, et al. Rational design of
reconfigurable prismatic architected materials[J]. Nature, 2017, 541(7637): 347-
352.

158



Reference

[169] Xiao K, Liang Z, Zou B, et al. Inverse design of 3D reconfigurable curvilinear
modular origami structures using geometric and topological reconstructions[J].
Nature Communications, 2022, 13(1): 7474.

[170] Li Y, Yin J. Metamorphosis of three-dimensional kirigami-inspired
reconfigurable and reprogrammable architected matter[J]. Materials Today
Physics, 2021, 21: 100511.

[171] Li Y, Zhang Q, Hong Y, et al. 3D transformable modular kirigami based
programmable metamaterials[J]. Advanced Functional Materials, 2021, 31(43):
2105641.

[172] Tarjan R. Depth-first search and linear graph algorithms[J]. SIAM Journal on
Computing, 1972, 1(2): 146-160.

[173] Barreto R L P, Morlin F V, De Souza M B, et al. Multiloop origami inspired
spherical mechanisms[J]. Mechanism and Machine Theory, 2021, 155: 104063.

[174] Liu S, Lv W, Chen Y, et al. Deployable prismatic structures with rigid origami
patterns[J]. Journal of Mechanisms and Robotics, 2016, 8(3): 031002.

[175] Zhai J, Zhang D, Li M, et al. An approximately isotropic origami honeycomb
structure and its energy absorption behaviors[J]. Materials, 2023, 16(4): 1571.

[176] Liu W, Jiang H, Chen Y. 3D programmable metamaterials based on
reconfigurable mechanism modules[J]. Advanced Functional Materials, 2022,
32(9): 2109865.

[177] Nelson T G, Lang R J, Magleby S P, et al. Curved-folding-inspired deployable
compliant rolling-contact element (D-CORE)[J]. Mechanism and Machine
Theory, 2016, 96: 225-238.

[178] Grima J N, Evans K E. Auxetic behavior from rotating squares[J]. Journal of
Materials Science, 2000, 19: 1563-1565.

[179] Hunt K H. Kinematic geometry of mechanisms[M]. Oxford: New York:
Clarendon Press ; Oxford University Press, 1978.

[180] Home C E, Hann M A. The geometrical basis of patterns and tilings: A review of
conceptual developments[J]. Journal of the Textile Institute, 1998, 89(1): 27-46.

[181] Liu L, Choi G P T, Mahadevan L. Wallpaper group kirigami[J]. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021,
477(2252): 20210161.

[182] Wohlhart K. Regular polyhedral linkages[C]. Proceedings of the 2nd Workshop
on Computational Kinematics. Seoul, 2001.

[183] Bingham C M, Tao H, Liu X, et al. Planar wallpaper group metamaterials for
novel terahertz applications[J]. Optics Express, 2008, 16(23): 18565.

159



Doctoral Dissertation of Tianjin University

[184] Padilla W J. Group theoretical description of artificial electromagnetic
metamaterials[J]. Optics Express, 2007, 15(4): 1639.

[185] Yu P, Kupriianov A S, Dmitriev V, et al. All-dielectric metasurfaces with trapped
modes: Group-theoretical description[J]. Journal of Applied Physics, 2019,
125(14): 143101.

[186] Mao Y, He Q, Zhao X. Designing complex architectured materials with
generative adversarial networks[J]. Science Advances, 2020, 6(17): eaaz4169.

[187] Gogu G. Mobility of mechanisms: A critical review[J]. Mechanism and Machine
Theory, 2005, 40(9): 1068-1097.

160



Appendix

Appendix
A. The Prototypes Made up of Cardboard of 18 Typical Modules

Modules

a,=30",a,=70°

RN

N

continued on next page
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continued

Modules Prototypes and their graphic representations

0,=30°,a,=60"

3

RN

0,=30",a,=45"°

oy (3

a,=70",0,=100°

51

¢

a,=60"

n-a, /a, -a, /o,

11 -0, \&, T-0 \ &,
a\T-0, G\ -0,
a, /-0, a /T-0,

(continued on next page)
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continued

Modules Prototypes and their graphic representations

o,=45"

0,=45°,a,=70"

Vvoverd = B

NN
[T

(continued on next page)
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continued

Modules Prototypes and their graphic representations

Fig. A1 Prototypes and graphic representations of eighteen typical modules.

B. Runtime of the Algorithm

The runtime of the algorithm is provided in Fig. B1, performed on a Linux Ubuntu
20.04 server with two Intel Xeon Silver 4310 2.10 GHz CPUs, 128GB memory. For the
2D tessellation, the runtime of the algorithm for obtaining valid MV assignments
increases from about 1x10s to 4.17s when the tessellation size is increased from 2x2
to 10x10, and even with the removal of duplicate configurations, it takes only 4.48s.
For a large 3D tessellation, e.g., 5x5x5 tessellations (contains 2x10% valid MV
assignments), it takes about 43.17s to compute all MV assignments that satisfy rigid
foldability and 2222.23s to remove duplicate configurations. These results fully

demonstrate the efficiency of the proposed algorithm.

() o
100 - valid MV assignments ~ 4.48 10 —=— valid MV assignments 2222.23
N unique MV assignments 7 4.17 --o--unique MV assignments !
o 107 '
O ) 43.17
v l0 v
£ E 10
10° | 1o
10° . : : . 10" : . : .
0 2 4 6 8 10 0 1 2 3 4 5
Size(nxn) Size(pxn, p=n)

Fig. Bl Runtime of the algorithm for (a) the nxn double corrugated pattern and (b) the mxnxp

cellular origami structure.
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C. All Unlocking Possibilities of VTJs in a Single Reconfigurable Ori-
Kirigami Unit

(a) v 8 :jointlocated at M crease
)%’ g :jointof VT located at M/V crease
i{ﬁ - 8 :jointof VTJlocated in the thickness direction
8 :two overlapped joints of VTJ located in the thickness direction
(b)
Cut-only kirigami Ori-kirigami Il Ori-kirigami | Ori-kirigami I11
casel case2 case3 case4 cases case6 case?7 case8
Ori-kirigami I11 Origami
case9 casel0 casell casel?2 casel3 casel4 casel5 casel6

Fig. C1 All unlocking possibilities of VTJs in a single reconfigurable ori-kirigami unit. (a)
Linkage form of the thick-panel unit after the crease has been replaced by VTIJs; (b) sixteen

unlocking options, where case 1, case 3, case 6, case 8, case 14, and case 16 have global mobility.

D. All 25 Configurations of the Origami Module with n=4.

&
&

d4 cl cl

&
e

cl cl

&
1o

cl cl

30
R

dl cl cl

Fig. D1  All 25 Configurations of the origami module with #=4.
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E. Analysis of the Degrees of Freedom of the Tessellations

The results of the kinematic analysis in sections 4.2 and 4.3 show that the module
is single DOF. The upper platform of the module is always located in the plane. Two
rectangular panels in the same 7R unit make a relative translational motion along the V
shape of angle « . Hence, each 7R unit can be regarded as a prismatic joint, then the
2x2 tessellation of the modules with n=4 obtained in Fig. E1(a) left can be simplified
as an equivalent mechanism with four prismatic joints donated by P, to P, as indicated
in Fig. E1(a) right. Therefore, referring to the Griibler-Kutzbach criterion®”], DOF of
the equivalent mechanism can be determined by DOF=d(n—g-1) + Zg: f., where dis
given by the dimension of the displacement subgroup associated with the kinematic
chain (d=2 for the mechanism with only prismatic joints), n is the number of rigid links,
g is the number of kinematic pairs, and f; is the number of DOFs for the ith kinematic
pair. Hence, DOF of planar 4P mechanism is DOF=2(4—-4-1)+4=2.

(a)

(d)

DOF=2x(24-44-1)+44=2

Fig. E1 The schematic diagram of equivalent mechanism with prismatic joints for the

tessellation of the modules with n=4.

As the number of modules in the horizontal direction increases, another loop is
formed, again creating a 4P (P; to P;) mechanism. The middle modules connecting the
two planar 4P mechanisms is single degree of freedom. Therefore, prismatic joints (P,
to P,,) can be added to form planar 3P mechanisms (P,, P, Py, or P,, Py, P,;,) with
one DOF to represent this constraint, as shown in Fig. E1(b). Consequently, DOF of

2x3 tessellation of the modules with n=4 is 2. Similarly, as the number of modules in
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the vertical direction increases, the DOFs are maintained at 2, because two adjacent
planar 4P mechanisms on the outer loop share a single DOF planar 3P mechanism.
Overall, the DOFs of the tessellation of the modules with #=4 are constant 2.

Using a similar approach, the DOF of the tessellation of the modules with n=6 is
constant 1, since its equivalent mechanism with prismatic joints is and assembly of

planar 3P mechanisms with one DOF, as indicated in Fig. E2.

(a)

DOF=2x(3-3-1)+3=1 DOF=2x(12-21-1)+21=1

Fig. E2 The schematic diagram of equivalent mechanism with prismatic joints for the

tessellation of the modules with n=6.

F. Kinematic Paths When the Basic Unit Switches Between M1 and M3

p=114" 0=135° 0,=180° 0=135" p=114°

—Qp—-

Pathi

R g
N
AN
e

NI

Path iii

-

Path iv

-

L4 J
RE RO G D

Fig. F1  Top view of kinematic paths of the 2D module with b/a=+/2, @ =90  when the basic

unit switches between M1 and M3.

167



Doctoral Dissertation of Tianjin University

FARY
t%,.,-ﬂr

W/0\Y N =7\

\“ﬂk.q = s\,

l.-w_._‘ (VA el;..,_ Jﬁﬁ&a

A—N\v_ﬁh.. sxs\,.u i & CA-—rv\m..n . WJ va

BN 7 \P&/;'.%&h I._.vw

: .~ NS sy =
: A\ Al = S

A
AEEVY

A

SNV AN IZE NN AN

AFAD 1__u q.w
e .

NBN 7
5 |

AN v% AN 8
o 4 —4 -
VR 22/ Al VR /A VRN /L N/
WY@, BEFL B
- N VN SV A Ve . BN ]
o P \V/ s : <\ g
] ] g U g

L= ® 2 [ =

o o &

G. 27 Cases of 3D Modules with a Rectangular Prism (/N=4) Contour

(continued on next page)
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(continued)

State [V

[ ]
State V

State VI

Fig. G1  3° =27 cases of 3D modules with a rectangular prism (N=4) contour. The marker at the

top left of configurations, C % y,z=-1 0, and1, indicates that rectangular prisms in the x,

(x,y,z
¥, z direction are positioned in “-1”, “0”, and “1” states and that the sign of the infinitesimal strains

&, &, and ¢, strain is either negative, zero or positive.
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H. Utilising Flexible Beam for Achieving Bistability

The introduction of a flexible beam offers the potential for achieving bistability.
As shown in Fig. H1(a), a 2D module with b/a=+2,a=90°,t,=t,=t, =a/2 and
[ =y =45"in a back-to-back assembly is employed to exemplify this concept. In this
case, the fully folded module exhibits bi-directional expansion along path I, even past
the bifurcation point ¢ =7n/2 , ultimately reaching the end configuration where
n/2 < @, <. In this fully unfolded configuration, the rectangular panels form multiple

trapezoids with rigid sheets, granting the module load-bearing capacity (Fig. H1(b)).

(a) bla=N2,a=90°, t,=t,=1,=al2, f=y=45°, I=1.5a

() (d) (©
;)
2
=~ 0
flexible beam
Transparent , 4 0 30 60
fixture - displacementegree(mm)

() __ _ . _
ErliEr IR N

Fig. H1 Bi-stable module using flexible beam. a) Rigid unfolding process of the module; b)
load-bearing state; (¢) origami module containing flexible beams; (d) experimental setup; (e)

experimental results of force-displacement curve; (f) recorded deformation processes.

To implement bistability, the rigid sheets connecting the two platforms in the
origami module are replaced with eight flexible beams (made of PET, ~=0.2mm) A
quasi-static test was conducted using a vertical testing machine (Instron 5982) with a
transparent fixture (60mm displacement and a 0.5 mm s-1 loading rate), as depicted in

(c). The deformation process was recorded by cameras positioned above and in
front of the setup. The recorded force-displacement response during folding and

unfolding is displayed in Fig. Hl(e), while corresponding recorded deformed
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configurations presented in Fig. H1(f). In the initial phase, as the displacement
increased, the beam started to bend, leading to a nearly linear increase in the recorded
force from 0 N. As the displacement continued to increase, the beam began to rotate
around the connecting edge with the panel, and the force started to decrease. When the
two connecting edges of the beam approached a horizontal position, a snap-through was
observed, resulting in a negative force (-2.4 N) and reaching the second stable state of
the structure. Finally, the entire module was compacted, and the force began to increase

dramatically as the distance decreased, with the load reverting its sign to positive.
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e W05 AT B S BLAE fa] S UIR B AT T ) e R XA ik 1 RAR I A R
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