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I 

摘要 

刚性折纸可被视为球面机构的装配体，其被广泛应用于工程领域。本文系统

地探讨了基于球面机构构建一维、二维、及三维可动网格的方法，通过分析球面

机构网格的运动协调条件，设计了可切换手性以及具有层级手性的螺旋结构，研

究了基于球面机构的可变形曲面，并且提出了一类新的刚性折纸管状结构以及折

纸管状结构的厚板折叠方案。本文的主要研究内容如下： 

首先，受刚性折纸图案的启发，设计了一种由球面四杆机构构成的一维螺旋

结构。基于 eggbox 折纸图案得到了两种手性折叠单元，通过串联上述折叠单元

可以得到不同的手性结构，并且发现通过调节手性折叠单元的几何参数可以调整

上述手性结构的手性。进一步的研究表明，通过机构分岔原理可以实现该结构的

左-右手的手性转换。此外，通过球面四杆机构连接上述手性折叠单元，得到了

一种手性可以从构成单元层次向整体结构层次传递的层级螺旋结构，该结构在解

螺旋运动过程中具有两个零长度状态。 

其次，研究了基于刚性折纸图案的平面可动网格。提出了一种由球面四杆机

构构成的二维单自由度网格系统，在该网格系统中，通过使用四面体来代替

eggbox折纸图案中的平面单元。并且通过引入球面六杆和八杆机构,该网格结构

可被扩展成一个可变形曲面，通过采用适合的设计参数，其可以在两个不同的目

标曲面之间进行变形。 

再次，提出了一类新的三维刚性折纸管状结构。受 Goldberg 五杆和六杆机

构的启发，发现已有的管状结构可以作为构建模块，组成新的单自由度刚性折纸

管状结构。通过将已有管状结构进行组合以及向已有的管状结构中加入新的平面

单元的方式，得到了两种新的折纸管状结构。该方法可以应用于不同的直管或弯

管的单层以及多层结构中。 

最后，为了实现零厚度折纸管状结构的实际工程应用，提出了一种构造厚板

折纸管状结构的方法。通过将零厚度刚性折纸管状结构中的球面四杆机构替换为

Bennett机构和 Bricard机构，获得了厚板折纸管状结构，其能够实现与零厚度

折纸管状结构等效的运动。 

本文的研究为折纸结构、机器人以及超材料的设计提供了理论基础。 

 

关键词：球面四杆机构，可展结构，刚性折纸，厚板折纸 
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ABSTRACT 

Rigid origami, which can be regarded as assembly of spherical linkages, are widely 

used in space technologies, architecture and metamaterials. In this thesis, the 

possibilities of constructing mobile networks based on spherical linkages are explored, 

1D and 2D mobile networks based on rigid origami are analyzed, the family of origami 

tubes is enlarged and a method to construct thick-panel origami tubes is proposed. 

First, an 1D open-loop helical structure of spherical 4R linkages is obtained, 

inspired by a rigid origami pattern. Eggbox-based chiral units are developed to 

construct homogeneous and heterogeneous chiral structures and demonstrate a 

theoretical approach to tune the chirality of these structures by modulating their 

geometrical parameters to realize the chirality switching through a mechanism 

bifurcation. Furthermore, by introducing a helical tessellation between the chiral units, 

hierarchical helical structures with a chirality transfer from the construction elements 

to the morphological level are designed and a novel helix with two zero-height 

configurations during the unwinding process is presented. 

Next, the 2D planar mobile networks based on rigid origami patterns are explored. 

A one-DOF network system of spherical 4R linkages is developed by replacing the unit 

facets of the planar eggbox pattern with volumetric tetrahedrons. The 4R configuration 

can be expanded to an arbitrary surface profile by inserting 6R and 8R linkages in the 

original network system. The above-mentioned surface is known as a morphing surface, 

and it can transform between two target surfaces through the implementation of suitable 

design parameters. 

Subsequently, an extended family of rigid origami tubes is presented. Using a 

mechanism construction process, I demonstrate that the existing origami tubes can be 

used as building blocks to form new tubes that are rigidly foldable with a single degree-

of-freedom. A combination process is introduced, along with the option of inserting 

new facets in an existing tube. The approach can be applied to both single and multi-

layered tubes with a straight or curved profile. 

Finally, a method of constructing thick-panel origami tubes is proposed. Origami 

patterns are commonly created using a zero-thickness sheet; however, the panel 

thickness cannot be disregarded in real engineering applications. By replacing the 

spherical 4R linkages in the original rigid origami tube with overconstrained linkages 

such as Bennett and Bricard linkages, origami tubes of thick panels are obtained, which 

can be used to reproduce kinematic motions equivalent to those realized using zero-

thickness origami. 

This thesis provides theoretical basis for origami structures, robots and 

metamaterials. 
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Chapter 1 Introduction 

 1 

 Introduction 

 Background and Significance 

Deployable structures are mobile assemblies aimed not at realizing motion but at 

attaining different configurations depending on the service requirements [1]. 

Specifically, such structures have a compact form in modes such as transportation or 

storage but can be expanded for final use. These structures are mainly used either for 

transportation purposes or in applications in which adaptability of the shape or function 

is necessary. In particular, deployable structures are widely used in space technologies, 

such as solar arrays and antennas on spacecraft [2, 3]. Moreover, deployable structures 

are used to develop temporary residences [4, 5], stents and metamaterials to absorb 

energy [6, 7]. Thus, such structures are of interest to architectural engineers, mechanical 

scientists and other researchers in different fields. 

Deployable structures must exhibit a large deploy-fold ratio and complex shapes 

to achievement higher functionalities. Spherical linkages and overconstrained spatial 

linkages can be used to construct deployable structures, although the compatible 

conditions of tilling these linkages to constitute large mobile structures must be 

examined. 

A spherical linkage is a kinematic closed-loop of revolute joints whose axes must 

intersect at a single point [8]. Spherical linkages are widely used in the automobile 

industry, for instance, in developing universal and double universal joints. However, 

the compatible conditions of networks based on spherical linkages are complex because 

they represent overconstrained systems. 

Based on rigid origami techniques, the conceptual design of spherical linkages can 

be reliably realized using folding origami. Origami is the traditional art of paper folding, 

and rigid origami represents a unique form of origami in which the surfaces surrounded 

by the crease lines are not stretched or bent during folding. Each facet of the structure 

is rigid and rotates only around the crease. Considering the characteristics of rigid 

origami, such structures can be analysed using a kinematic approach in which the facets 

and crease lines can be replaced by rigid panels and hinges. Hence, rigid origami 

patterns represent networks of spherical linkages. 

 Literature Review  

 Kinematic theories  

The science of kinematics pertains to the geometric and time properties of motion 

[9]. Chiang analysed spherical mechanisms [10]. Moreover, methods to analyse the 

kinematics of spatial linkages have been presented. Gogu systematically described the 

structural synthesis of various spatial parallel mechanisms based on the theory of linear 
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transformation [11]. Dai comprehensively presented the kinematics of various 

mechanisms based on the screw theory [12], which was proposed by Ball [13] and 

developed by Hunt [14]. 

The mechanisms discussed in this thesis are formed by a set of rigid parts 

assembled end to end to form a single closed chain. This single closed chain is known 

as a linkage, each individual rigid part of this structure is known as a link and the 

connection of two adjacent links is a joint, which can be spherical, planar, cylindrical, 

screw, revolute or prismatic. In this work, I focus on the mechanisms involving only 

revolute joints, which allow only one-DOF rotation about their axes. 

Denavit and Hartenberg developed an approach to normalize the kinematic study 

of mechanisms by using a symbolic language known as D-H notation [15]. Figure 1-1 

shows the coordinate system in a linkage. The zi-axis (i = 1, 2, 3 and 4) lies along the 

joint axis of joint i; the xi-axis is normal to the plane formed by the zi-1 and zi axes, such 

that xi = zi-1 × zi; the yi-axis can be determined using the right-hand rule. ai(i+1) is the 

shortest distance between the zi and zi+1 axes, also referred to as the link length i(i+1). 

Ri is the distance from link (i-1)i to link i(i+1) positively along the zi-axis, referred to 

as the offset of joint i. The kinematic variable angle θi is defined as the joint angle from 

the xi-axis to the xi+1-axis, positively about the zi-axis; and the twist αi(i+1) refers to the 

twist angle from zi to zi+1, positively about axis xi. 

 

 

Fig. 1-1 Coordinate systems, parameters and variables for two adjacent links connected by 

revolute joints. 

 

Based on these definitions and the D-H convention, the transformation matrix 

T(i+1)i that transforms an expression in the (i+1)th coordinate system to the ith coordinate 

system can be expressed as 
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( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

( 1)

( 1) ( 1)

cos sin cos sin sin cos

sin cos cos cos sin sin
.

0 sin cos

0 0 0 1

i i i i i i i i i i

i i i i i i i i i i

i i

i i i i i

a

a

R

     

     

 

+ + +

+ + +

+

+ +

− 
 

−
 =
 
 
 

T      (1-1) 

The necessary condition for a single-loop linkage of n links is that the successive 

product of the transformation matrices must be preserved as a unit matrix, i.e., 

21 32 1 4 ,n =T T T I                       (1-2) 

in which 4I  is a 4 4  unit matrix. 

The inverse transformation ( 1)i i+T  has the following property. 

( 1)

( 1) ( 1) ( 1) ( 1)1

( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

cos sin 0

sin cos cos cos sin sin
.

sin sin cos sin cos cos

0 0 0 1

i i i i

i i i i i i i i i i i

i i i i

i i i i i i i i i i i

a

R

R

 

     

     

+

+ + + +−

+ +

+ + + +

− 
 
− −

 = =
 − −
 
 

T T   

(1-3) 

For spherical linkages, the axes intersect at one point, as shown in Fig. 1-2, owing 

to which, the lengths and offsets of each link are zero, and Eqn. (2-1) reduces to 

  
21 32 1 3,n =Q Q Q I                       (1-4) 

where 

( 1) ( 1)

( 1) ( 1) ( 1)

( 1) ( 1)

cos sin cos sin sin

sin cos cos cos sin ,

0 sin cos

i i i i i i i

i i i i i i i i i

i i i i

    

    

 

+ +

+ + +

+ +

 −
 

= − 
 
 

Q           (1-5) 

and the inverse transformation is 

1

( 1) ( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1)

cos sin 0

sin cos cos cos sin .

sin sin cos sin cos

i i

i i i i i i i i i i i i

i i i i i i i i

 

    

    

−

+ + + + +

+ + +

 
 

= = − 
 − 

Q Q        (1-6) 

 

 

Fig. 1-2 D-H notation of a part of a spherical linkage. 
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Therefore, the kinematics and motion behaviour of spatial and spherical linkages 

can be analysed based on the solutions of Eqn. (1-2) or Eqn. (1-4). 

The Lie algebra of a Lie group plays a key role in modern physics, with the Lie 

group typically representing the symmetry of a physical system [16]. Murray et al. 

used the Lie group theory to analyse the kinematics of robotic manipulators [17]. 

Hervé proposed the Lie group method to derive the motion of a parallel platform and 

provided detailed examples of 3-DOF robotic manipulators [18]. 

The Bond theory was proposed as a mathematical technique to study the mobility 

of linkages by Hegedüs et al. [19-23]. Based on this theory, the authors analysed the 

kinematics of closed 5R [19] and 6R linkages [23]. 

 Spherical linkages  

As in planar kinematics, in which a link is characterized by the length between 

the joints, in spherical kinematics, a link is characterized by the great circle arc 

subtended by two joints at the sphere centre [24]. Spherical linkages are widely used 

in robotic arms [25, 26]. Many researchers have examined spherical linkages. The 

kinematics of spherical 4R linkages were analysed by Chiang through a mathematical 

approach [24]. Ruth and McCarthy proposed a computer-aided design software system 

for spherical 4R linkages [27] based on Burmester’s planar theory [28]. McCarthy and 

Bodduluri extended the generalization of the planar rectification theory to spherical 

4R linkages and presented a method to ensure that the result of a finite position 

synthesis was a linkage that did not exhibit a ‘branching problem’ [29]. Soh and 

McCarthy developed a procedure in which two constraining links were added to a 

three-DOF spherical parallel manipulator to transform the system to a one-DOF 

spherical 8-bar linkage that could guide the end-effector through five task poses [30], 

as illustrated in Fig. 1-3. Wei and Dai presented two integrated planar-spherical 

overconstrained mechanisms based on spherical linkages [31] and recently, Liu and 

Chen designed a double-spherical 6R linkage with spatial crank-rocker characteristics 

and derived the corresponding overconstrained geometric conditions and explicit 

closure equations [32], as shown in Fig. 1-4. 

1.2.2.1 Rigid origami 

Origami is the traditional art of folding paper into sculptures, with a history of 

more than one hundred years [33]. The form of origami in which each surface 

surrounded with the crease lines is not stretched and bent during folding is known as 

rigid origami [34], and it can be regarded as an assembly of spherical linkages. In 

origami, there exist two kinds of creases, i.e., mountain and valley creases. The crease 

pattern refers to a mapping of all the creases in an origami form [35]. 
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Fig. 1-3 Spherical 8-bar linkage presented by Soh and McCarthy [30]. 

 

 

(a) 

  

(b) 

Fig. 1-4 Mechanisms based on spherical linkages: (a) integrated planar-spherical overconstrained 

mechanism [31] and (b) double-spherical 6R linkage [32]. 
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Because of the large deployable ratio and low cost, rigid origami patterns can be 

applied in various applications such as robotic systems [36, 37], deployable arrays for 

space applications [38], and self-deployment structures [39]. 

This section reviews the typical rigid origami patterns, with a focus on patterns 

with degree-4 vertexes. Evans et al. reviewed origami patterns in which the summation 

of the sector angles at a single vertex equaled 2π  [40]. Huffman presented a pattern 

known as the Huffman grid [41], which can be constructed by a single degree-4 vertex 

rotated and repeated continuously through the tessellation, as shown in Fig. 1-5(a) in 

which the solid and dashed lines represent the mountain and valley crease lines, 

respectively. Another pattern, known as the chicken wire tessellation (also known as the 

hexagonal pattern [42]) can be constructed using a single vertex with mirror symmetry 

(see Fig. 1-5(b)). The ‘Mars’ pattern (see Fig. 1-5(c)), which was presented by Paulo 

Barreto [43], includes a single degree-4 vertex and its inversion. The famous Miura-ori 

pattern, presented by Miura [44], is formed entirely of parallelograms, as shown in Fig. 

1-5(d). Quadrilateral mesh origami and the associated conditions for rigid foldability 

were analysed by Tachi [45], and the pattern is shown in Fig. 1-5(e). 

 

  

(a) 

 

(b) 

Fig. 1-5 Origami patterns and folding process of (a) Huffman grid, (b) chicken wire, (c) Mars, (d) 

Miura-ori and (e) quadrilateral mesh [40].  
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(c) 

 

(d) 

 

(e) 

Fig. 1-5 Origami patterns and folding process of (a) Huffman grid, (b) chicken wire, (c) Mars, (d) 

Miura-ori and (e) quadrilateral mesh [40]. (continued) 

 

1.2.2.2 Method to investigate rigid origami patterns 

For a rigid origami pattern, the rigid foldability is a key property that allows the 

pattern to fold along the crease lines without twisting or stretching the component 

panels. To achieve rigid foldability, the motions around each vertex must be compatible 

with those around the adjacent vertex, and this condition can be attained only under 

specific pattern geometries. Extensive research has been performed to identify the 

geometry conditions that render an origami pattern rigid-foldable. 

Rigid origami has been researched from the viewpoint of geometry. Miura [46] 
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presented a proposition of the intrinsic geometry of origami based on an arbitrary point 

on the surface of origami structures. Watanabe and Kawaguchi [33] proposed two 

methods to evaluate the rigid foldability of origami patters from the compatibility 

matrix. Based on the separation of each crease of an origami pattern into two parallel 

creases, Hull and Tachi [47] presented the double line method to obtain new origami 

patterns. He and Guest [48] studied the configuration space of four-crease origami 

patterns and generated two families of rigid-foldable origami patterns with four-crease 

vertexes. Wu and You [49] proposed a new crease pattern that allowed a tall box-shaped 

bag with a rectangular base to be rigidly folded flat. 

Furthermore, rigid origami can be analysed using a kinematic approach, which is 

a focus in this work. Since the research of Cundy [50], it has been widely acknowledged 

that for every rigid origami structure, there exists an equivalent linkage [51, 52]. The 

left part of Fig. 1-6 shows a degree-4 origami vertex containing four panels or sectors 

1 to 4, and four creases AO, BO, CO and DO; the four creases intersect at a common 

point O. The four sector angles between the adjacent creases are 
12 , 

23 , 
34  and 

41 ; and the four dihedral angles between the adjacent sectors are 
1 , 

2 , 
3  and 

4 . From the mechanism viewpoint, by considering the sectors and creases as links and 

revolute joints, respectively, an equivalent spherical 4R linkage can be obtained, as 

shown in the right part of Fig. 1-6. In this case, sectors 1 to 4 become links 1 to 4, 

creases A to D become joints A to D, and sector angels 
12  , 

23  , 
34   and 

41  

become the twist angles of the linkage. 

Substituting Eqn. (1-5) in (1-4) yields the general relationship between two 

adjacent and opposite joint angles 

( 1) ( 1)( 2) ( 3)( 4)

( 1) ( 1)( 2) ( 3)( 4) 1

( 1) ( 1)( 2) ( 3)( 4) 1

( 1)( 2) ( 3)( 4) 1

( 1) ( 1

sin cos sin cos

sin sin cos cos

cos sin sin cos cos

sin sin sin sin

cos cos

i i i i i i i

i i i i i i i

i i i i i i i i

i i i i i i

i i i

   

   

    

   

 

+ + + + +

+ + + + + +

+ + + + + +

+ + + + +

+ +

+

+

−

− )( 2) ( 3)( 4) ( 2)( 3)cos cos 0;i i i i i + + + + ++ =

        (1-7a) 

( 1) ( 3)( 4) ( 1) ( 3)( 4)

( 1)( 2) ( 2)( 3) ( 1)( 2) ( 2)( 3) 2

cos cos sin sin cos

cos cos sin sin cos ;

i i i i i i i i i

i i i i i i i i i

    

    

+ + + + + +

+ + + + + + + + +

− =

−
     (1-7b) 

in which i=1, 2, 3 and 4; if i+j>4, the term is replaced by (i+j-4). 

The typical origami crease patterns and their corresponding equivalent closed-loop 

linkage were investigated by Zhang and Dai [53]. Wei and Dai [54] analysed an origami 

carton by representing it with one planar four-bar loop and two spherical 4R linkage 

loops. Using the tessellation method for the mobile assemblies of spatial linkages [55-

57], Wang and Chen [58] developed a mobile assembly of spherical 4R linkages to 

study the Kokotsakis type of rigid origami patterns. Liu [59] used the assemblies of 
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spherical 4R linkages to analyse the rigid origami patterns and presented several new 

patterns. Recently, Gu and Chen present a new method to design origami cubes with 

rigid foldability, flat foldability and one-DOF [60]. 

 

 

Fig. 1-6 Four-crease origami pattern and its corresponding spherical 4R linkage. 

 

1.2.2.3 Rigid origami tubes 

Origami tubes have been used in various applications ranging from medical 

devices [61] to worm robots [35]. Considerable efforts have been implemented to 

effectively fold these tubular structures without distorting their surfaces. Guest and 

Pellegrino [62] proposed a method wherein the cylindrical surface of a tube was 

dissected into a set of triangular facets to enable packaging. However, the authors 

proved that such tubes could only be folded if the facets were allowed to deform; in 

other words, these tubes were not rigidly foldable. Moreover, many patterns for both 

tubes and cones were devised by Nojima [63, 64], who examined whether the folding 

patterns could be generated from a flat piece of paper, and the tube could be folded flat 

eventually. It was later observed that none of the tubes and cones could be rigidly folded 

longitudinally. It has been proven that a tube with closed ends cannot be folded rigidly 

without distorting its facets [65]. 

Consequently, the effort was redirected to tubes with open ends. Using a 

geometrical method, Tachi [66, 67] devised a set of tubes with parallelogram facets that 

are rigidly foldable and can be extended longitudinally to form multi-layered tubes by 

repeating the same foldable unit (Fig. 1-7(a)). In addition, a set of rigidly foldable tubes 

with parallelogram cross-sections was placed side by side, thereby forming the Tachi-

Miura polyhedron bellows [68, 69] (Fig. 1-7(b)). 

Liu et al. [70] demonstrated this aspect through a kinematic approach. As shown 

in Fig. 1-8, to form the deployable prismatic structures, N spherical 4R linkages are 

assembled as a closed chain. The dihedral angles between the intersections of each layer 

of the tube are independent, as shown in Fig. 1-9(a). The dihedral angle ( 1)m m +  

represents the rotation from the intersection plane m to (m+1), positively in the counter-
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clockwise direction. The two dihedral angles ( 1)m m +  and ( 1)m m −  may be different. 

Depending on the arrangements of the dihedral angles, curvy tubular structures having 

various configurations can be achieved, as illustrated in Fig. 1-9(b). The cross-sections 

of these straight and curvy tubes, defined by a loop of lateral crease lines, are commonly 

even-sided plane- or line-symmetric polygons, such as a kite or parallelogram. 

 

 

(a) 

 

(b) 

Fig. 1-7 Rigid origami tubes: (a) A tube of tubes with parallelogram facets [66] and (b) a Tachi-

Miura polyhedron bellow [69]. 

 

Fig. 1-8 Assembly of spherical 4R linkages in a rigid origami tube [70]. 
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Schenk and Guest [71] investigated the geometry of metamaterial based on a stack 

of Miura-ori patterns, which can be considered as a unique case of polyhedron bellows. 

Filipov et al. [72, 73] developed tubes with reconfigurable parallelogram cross-sections, 

as shown in Fig. 1-10. 

 

  

(a)                                 (b) 

Fig. 1-9 Curvy tubes [70]: (a) a tube with different dihedral angles between the intersections of 

each layer and (b) the model of curvy tubes. 

 

 

Fig. 1-10 Tube with a reconfigurable parallelogram cross-section [73]. 

 

1.2.2.4 Thick-panel origami 

When the thickness of the panels is considered, the intersection problem cannot be 
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avoided. Researchers have presented various thick folding techniques. As shown in Fig. 

1-11(a), tapered surfaces were used to fold a Miura-ori pattern [74]. Offsets were 

introduced at the edge of the panels to fold a square-twist pattern with a thick-panel 

(Fig. 1-11(b)) [75]. A study showed that replacing a fold with two parallel folds can 

help in the folding of an origami pattern with a thick-panel (Fig. 1-11(c)) [76]. 

However, these methods often result in surfaces that are either not entirely flat or 

have openings to accommodate the thickness. In contrast to the above-mentioned 

methods, Hoberman introduced a technique to fold the Miura-ori pattern [77]; moreover, 

De Temmerman proposed a method to fold the diamond origami pattern [78] and Chen 

et al. presented an approach to reproduce the motions identical to those achievable using 

zero-thickness origami [79, 80] (as shown in Fig. 1-12). In this approach, the spherical 

linkage assembly for a zero-thickness sheet is replaced by an assembly of spatial 

linkages. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 1-11 Thickness accommodation methods: (a) tapered panel technique [74], (b) offset panel 

technique [75], (c) offset crease technique [76]. 
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Fig. 1-12 A thick-panel origami model in which the spherical linkage assembly for the origami of 

a zero-thickness sheet is replaced by an assembly of spatial linkages [80]. 

 

1.2.2.5 Applications of Origami 

Origami can be applied in the fields of space technology and robotics. Space 

missions require ultra-low-mass and large space plate forms or structures, such as 

antennas and solar panel arrays. Miura proposed a novel concept for the packing and 

deployment of large membranes in space by using the origami technique [81]. A solar 

panel array based on the Miura-ori pattern has been launched and tested in orbit [82]. 

Moreover, Miura proposed a foldable solar panel [83], a deployable antenna was 

presented by Morgan et al. [84], and a foldable telescopic lens was introduced by 

Debnath et al. [85]. These structures are illustrated in Fig. 1-13. The deployable 

structures are obtained based on the rigid origami technology, which is introduced in 

the next section. Structures developed using origami have large fold-deploy ratios. 

Furthermore, a deployable solar array for space application was designed in [86]. 

The origami technique can be used to fold planar material into complex 3D shapes, 

thereby facilitating the design of robotic systems. A self-folding robot with embedded 

electronics is illustrated in Fig. 1-14(a) [87], and a similar robot controlled using an 

alternating external magnetic field is shown in Fig. 1-14(b) [88]. The famous 

waterbomb pattern has been used to design parallel robots [89], worm-like robots [90, 

91], floating equipment of aerial vehicles [92], and deformable wheels of a robot [93]. 

Moreover, origami techniques can also be used to design new metamaterials. 

Specifically, metamaterials with tuneable chirality have been designed [94-95] based 

on the deformation kinematics of certain existing origami patterns, such as the Miura-

ori [94] and Kresling patterns [95]. By stacking many layers of the famous Miura-ori 

pattern, a metamaterial was proposed in [94]. This metamaterial helps achieve a 

negative Poisson’s ratio for both in-plane and out-of-plane deformations and can be  
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(a) 

 

         (b)                    (c)                        (d) 

Fig. 1-13  Application of origami in the aerospace domain: (a) Miura-ori solar panel arrays [82]; 

(b) foldable solar panel [83]; (c) deployable antenna [84] and (d) foldable telescopic lens [85]. 
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used as the core for blast-resistant sandwich beams [97] (see Fig. 1-15(a)). By 

introducing defects in the original Miura-ori pattern structure, this mechanical 

metamaterial can be reprogrammed [98]. Pratapa et al. introduced a four-vertex origami 

cell that could morph continuously between a Miura mode and an eggbox mode through 

the variation in the mountain and valley assignments of one of the creases, leading to a 

smooth switch through a wide range of negative and positive Poisson’s ratios [99], as 

shown in Fig. 1-15(b). In addition to the periodic Miura-ori pattern, a non-periodic Ron 

Resch pattern has an unusually large load bearing capability, which can help build 

mechanical metamaterials [100]. Furthermore, the rigid origami tubes can be used as 

the basic units to construct metamaterials [101-103]. In addition to the design of 

metamaterials, the square-twist pattern [104], single vertexes in the Miura-ori pattern 

[105] and the waterbomb pattern [106] can be used to develop multi-stability structures. 

In the civil engineering domain, the origami technique has been used in the design 

of mobile facets [70, 107, 108], reconfigurable and multi-locomotive devices [109, 110, 

111] and other structures. In the biomedical engineering domain, an origami stent graft 

was developed [112], and several encapsulation origami robots [113-115] and origami 

surgical grippers [116, 117] were designed. 

 

 

(a)          (b) 

Fig. 1-14 Origami robot: (a) electric drive robot [87], (b) magnetic drive robot [88]. 

 

1.2.2.6 Origami-inspired linkages 

Inspired by rigid origami, several mechanisms have been developed. For instance, 

a parallel mechanism based on the waterbomb origami pattern was developed [118]. 

Extending this approach, Zhang and Dai proposed a plane-symmetric double-spherical 

6R linkage, which was extracted from a closed-loop origami structure [119]. Feng 

derived a novel 6R linkage through a triangle twist origami pattern [120], as shown in 

Fig. 1-16. 
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(a) 

 

(b) 

Fig. 1-15 Origami metamaterials: (a) core for sandwich beams [97] and (b) material with 

switchable Poisson’s ratios [99]. 
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 Overconstrained spatial linkages and their networks 

The mobility of a spatial linkage, that is, the number of independent coordinates 

needed to define the configuration of a kinematic chain or mechanism [121], can be 

determined using the Grübler–Kutzbach criterion [14]. 

 

 

Fig. 1-16 Equivalent mechanisms of (a) triangle twist origami pattern, and (b) the derived 

overconstrained 6R linkage for the kirigami pattern [120]. 

 

1

6( 1) ,
j

i

i

m k j d
=

= − − +                       (1-8) 

in which m is the number of DOFs of the linkage, k is the number of links in the linkage 

including the fixed link, j is the number of kinematic pairs in the linkage, and id  is 

the number of DOFs for the ith kinematic pair. 

Certain spatial linkages do not satisfy the mobility criterion in Eqn. (1-8) but are 

still mobile, and these linkages are known as overconstrained linkages [122]. 

1.2.3.1 Overconstrained 4R linkages 

The Bennett linkage is a famous 4-bar spatial linkage with zero offsets in which 

alternative links have the same lengths and twists, and the lengths are proportional to 

the sine values of the corresponding twists, as illustrated in Fig. 1-17. According to the 

D-H notation, the following coordinates can be established: 

12 34

23 41

,

,

a a a

a a b

= =

= =
                              (1-9a) 

12 34

23 41

,

,

  

  

= =

= =
                              (1-9b) 
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sin / sin / ，a b =                            (1-9c) 

0,( 1,2,3 and 4)iR i= =                          (1-9d) 

 

Fig. 1-17 Bennett linkage. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 1-18 Deployable structures of Bennett linkages: (a) cylinder; (b) arch and (c) flat deployable 

structure [123]. 
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(a)                                          (b) 

Fig. 1-19 Mobile assemblies of Bennett linkages: (a) assembly approximating a saddle surface 

[125] and (b) tetrahedral linkage [126]. 

 

Chen designed a family of deployable structures based on the kinematics of 

Bennett linkages [123, 124] (shown in Fig. 1-18). In addition, the mobile assembly of 

Bennett linkages can be designed as a saddle surface [125] and polyhedrons [126]. 

These structures are shown in Fig. 1-19. 

1.2.3.2 Overconstrained 5R linkages 

The Goldberg 5R linkage [127] is obtained by combining a pair of Bennett 

linkages such that a common link of two combined linkages is removed and a pair of 

adjacent links is rigidly attached to each other; this process can be explained as the 

summation or subtraction of two Bennett linkages to produce a new linkage. 

The Myard 5R linkage [128], which is composed of two rectangular Bennett 

linkages with one pair of twist angles [129], is shown in Fig. 1-20. It can be observed 

that the two Bennett linkages ABCD and ADCE are arranged as mirror images. By 

combining these linkages in the symmetric plane, the common joint D and common 

links AD and CD (grey parts in Fig. 1-20) can be removed. The geometric conditions 

are as follows: 

34 12 51 34 45

23 45 51 12 34 12

12 23 12

0, ,

π
= = =π , =π 2 ,

2

0 ( 1, 2, 3, 4 and 5) and

sin .

i

a a a a a

R i

a

     

 

= = =

− −

= =

=

，

，
         (1-10) 

A family of mobile assemblies of Myard linkages was designed by Liu and Chen 

[130], and one of the assemblies is shown in Fig. 1-21(a). Two types of large spatial 

assemblies of Myard linkages with different twist angles were developed by Qi and 

Deng [131], and one of the assemblies is shown in Fig. 1-21(b). 
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Fig. 1-20 Myard linkage. 

 

 

(a) 

 

(b) 

Fig. 1-21 Mobile assemblies of Myard linkages: (a) assembly constructed by Liu and Chen [130] 

and (b) by Qi and Deng [131]. 

1.2.3.3 Overconstrained 6R linkages 

The Sarrus linkage was the first 3D overconstrained linkage to be reported [132], 

and this linkage was analysed by Bennett [133]. A schematic is shown in Fig. 1-22. 

The four links A, R, S, and B, as well as the links A, T, U, and B are consecutively 

hinged by three parallel horizontal hinges. The directions of the two sets of hinges are 
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different, and link A can exhibit rectilinear motion, vertically up and down, relative to 

link B. This linkage can be assembled with other mechanisms to construct deployable 

structures [134, 135]. 

Similar to Goldberg 5R linkages, a 6R linkage was generated by merging three 

Bennett linkages [136]. Figure 1-23 illustrates the construction of a Goldberg 6R 

linkage by the summation of three Bennett linkages, where the common parts shown in 

the grey lines are removed. Two other double-Goldberg 6R linkages [137] were created 

by summing Goldberg 5R linkages. Next, a complete family of double-Goldberg 6R 

linkages was proposed [138] by combining a subtractive Goldberg 5R linkage and 

Goldberg 5R linkage. All the Goldberg 5R and 6R linkages are Bennett-based 

overconstrained linkages, and since the Bennett linkage is the construction unit, the 

corresponding geometric condition should be satisfied for all the linkages. 

 

 

Fig. 1-22 Schematic of a Sarrus linkage. 

 

 

Fig. 1-23 Construction of a Goldberg 6R linkage. 

 

Bricard proposed six distinct types of mobile 6R linkages [139], which are shown 

in Figs. 1-24(a) to (f). The geometric conditions of these six cases are as follows. 

In the line-symmetric case, 
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                    (1-11a) 

In the plane-symmetric case, 

       

12 61 23 56 34 45

12 61 23 56 34 45

1 4 2 6 3 5

, , ,

+ π, + π, + π,

=0, , .

a a a a a a

R R R R R R

     

= = =

= = =

= = =

                 (1-11b) 

In the trihedral case, 

2 2 2 2 2 2
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a a a a a a

R R R R R R

     

+ + = + +

= = = = = =

= = = = = =

             (1-11c) 

In the line-symmetric octahedral case, 

12 23 34 45 56 61

1 4 2 5 3 6

0,

0.

a a a a a a

R R R R R R

= = = = = =

+ = + = + =
             (1-11d) 

In the plane-symmetric octahedral case, 

12 23 34 45 56 61

2 1 34 12 34 3 1 12 12 34 4 1

5 1 61 45 61 6 1 45 45 61

0,

sin / sin( ), sin / sin( ), ,

sin / sin( ), sin / sin( ).

a a a a a a

R R R R R R

R R R R

     

     

= = = = = =

= − + = + = −

= + = − +

  (1-11e) 

In the doubly collapsible octahedral case, 

12 23 34 45 56 61

1 3 5 2 4 6

0,

0.

a a a a a a

R R R R R R

= = = = = =

+ =
                 (1-11f) 

Bricard linkages has been extensively studied. Lee presented the closure 

equations for the three octahedral cases according to the matrix transformation [140]. 

Chai and Chen proposed a stationary structural configuration of the line-symmetric 

octahedral case with identical twists and offsets [141]. Baker analysed the planar, 

spherical and skew counterparts of the doubly collapsible octahedral case [142]. 

Wohlhart analysed the orthogonal case and proposed two distinct trihedral cases [143]. 

Baker analysed the line-symmetric case with the reciprocal screw system [144] and 

examined the plane-symmetric case of a Bricard linkage through the reciprocal screw 

system approach [145]. Li and Schicho investigated the movability of a plane-

symmetric Bricard linkage based on the theory of bonds [146]. Deng et al. presented 

a geometric approach to design and synthesize a plane-symmetric Bricard linkage 

[147]. 

In terms of the networks of Bricard linkages, Chen and You [148] presented a 

mobile assembly of threefold-symmetric Bricard linkages, which could be folded to a 

handle and deployed to a flat surface, as illustrated in Fig. 1-25 (a). Moreover, an 
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alternative form of the threefold-symmetric Bricard linkage was discussed [148]. 

Huang, Deng and Li [149] formed a deployable structure based on a Bricard linkage 

with a scissor-like connection, as shown in Fig. 1-25(b). 

 

 

         (a)                           (b) 

 

       (c)                              (d) 

 

(e)                                  (f) 

Fig. 1-24 Bricard 6R linkages: (a) General line-symmetric case, (b) general plane-symmetric case, 

(c) trihedral case, (d) line-symmetric octahedral case, (e) plane-symmetric octahedral case, and (f) 

doubly collapsible octahedral case [120].  

In addition to the Bennett-based and Bricard linkages, other 6R overconstrained 

linkages exist. Baker presented the compatible conditions of a double-Hooke’s-joint 

linkage, which has been widely used as a transmission coupling mechanism [150] with 

the following geometric conditions:  
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23 34 56 61

23 34 56 61

1 2 3 6

0,

π/2
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，

a a a a
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   

= = = =

= = = =

= = = =

                    (1-12) 

 

 

(a) 

 

(b) 

Fig. 1-25 Mobile assemblies of Bricard linkages. (a) assembly of threefold-symmetric Bricard 

linkage constructed by Chen and You [148] and (b) assembly formed using scissor-like connection 

based hexagon Bricard modules by Huang, Deng and Li [149]. 

 

 

In this section, the kinematics theories of the linkages are reviewed, several 

overconstrained linkages are introduced, and the geometrical conditions of the linkages 

are summarized. 

 Aim and Scope 

Focused on the interdisciplinary area of kinematics and structure, this thesis is 

aimed at examining the kinematics of the assembly of spherical linkages, known as 

rigid origami, and extending the family of deployable structures based on spherical 

linkages. 



Chapter 1 Introduction 

 25 

In this process, inspired by rigid origami patterns, a 1D helical structure with 

switchable and hierarchical chirality is presented, which is constructed by assembling 

origami-inspired units in series. Next, an approach to obtain morphing surfaces inspired 

by the eggbox pattern, which is a 2D network of spherical linkages, is proposed. Finally, 

the 3D network of spherical linkages is studied, an extended family of rigid origami 

tubes is proposed and the approach to construct thick-panel origami tubes is presented. 

 Outline of the Dissertation 

This dissertation consists of six chapters. 

Chapter 1 presents a brief review of the existing works pertaining to the 

mechanism theory to analyse the linkages, compatible conditions for closed-loop 

linkages and deployable structures composed of revolute hinges. Moreover, as origami 

is a special technique for designing deployable structures, its definition and applications 

are described in this chapter. 

Chapter 2 describes the helical structures with switchable and hierarchical chirality 

inspired by origami techniques. Eggbox-based chiral units are proposed to construct 

homogeneous and heterogeneous chiral structures and a theoretical approach to tune 

the chirality of these structures by modulating the geometrical parameters is 

demonstrated, whose chirality switching is realized through mechanism reconfiguration. 

Moreover, hierarchical structures with a chirality transfer from the construction 

elements to the morphological level are designed and a novel helix with two zero-height 

configurations during the unwinding process is developed. 

Chapter 3 describes the method to construct morphing surfaces inspired by the 

eggbox origami pattern by developing a one-DOF surface that can transform from a 

parabolic cylinder to a paraboloid. 

Chapter 4 describes the extended family of rigid origami tubes. Using a 

mechanism construction process, existing origami tubes can be used as building blocks 

to form new tubes that are rigidly foldable with a single degree-of-freedom. A 

combination process is adopted, along with the choice of inserting new facets into an 

existing tube. The approach can be applied to both single and multi-layered tubes with 

a straight or curved profile. 

Chapter 5 describes the method to construct thick-panel origami tubes. By 

replacing the spherical 4R linkages in the original zero-thickness tubes with spatial 

overconstrained mechanisms, thick-panel origami tubes with line-symmetric and 

planar-symmetric cross-sections are obtained, and these tubes can reproduce motions 

identical to those of zero-thickness structures. 

Chapter 6 presents the concluding remarks and describes the scope of future 

research. 

 

javascript:;
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 1D mobile networks of spherical linkages: helical 

structures with switchable and hierarchical chirality 

 Introduction 

Chirality has emerged as a new research domain in biological and chemical 

communities. Compared with achiral structures, chiral structures may have special 

physiological properties or pharmacological effects. Moreover, manipulation of 

specific morphological chirality is a promising approach to design metamaterials with 

tailored mechanical, optical, or electromagnetic properties. However, the realization of 

many properties found in nature, such as switchable and hierarchical chirality, which 

can allow electromagnetic control of the polarization of light and enhancement of 

mechanical properties, in human-made structures remains challenging. In this section, 

based on origami techniques, helical structures with switchable and hierarchical 

chirality are described. 

This chapter is organized as follows. In Chapter 2.2, eggbox-based chiral units 

used to construct homogeneous and heterogeneous chiral structures are presented, and 

Chapter 2.3 theoretically demonstrates chirality tuning by modulating the geometrical 

parameters. Next, Chapter 2.4 describes the realization of the chirality switching in a 

single-helix via mechanism bifurcation without any external stimulus. Chapter 2.5 

describes a hierarchically chiral structure with two zero-height configurations. The 

concluding remarks are presented in Chapter 2.6. 

2.2 Construction and geometry of chiral units 

Chirality refers to the asymmetric configurational property of an object or a system 

that cannot be superposed onto its mirror image [151]. Chirality is typically realized 

morphologically at the macroscale through a helix. Origami-inspired metamaterials 

with tuneable chirality have been designed [94-96]. Considering this aspect, I examined 

whether origami techniques can be adopted to create novel helical structures. 

To achieve the torsional or helical morphology of chiral structures, first, a twisted 

origami unit is constructed. The basic origami pattern used is that of an eggbox, which 

is a non-developable four-crease pattern (i.e., the pattern cannot be flattened onto a 

plane without overlap or separation). Two identical eggboxes are placed symmetrically 

to construct a chiral unit (Fig. 2-1(a)). To induce twisting properties, the two eggboxes 

must fold simultaneously. Therefore, a parallelogram OAED is added to rigidly connect 

the pair of coplanar facets OAB and OCD (Fig. 2-1(b), where the dotted line represents 

the crease not in view); thus, no rotation occurs in the connected plate. When all the 

four facet pairs in the two eggboxes are connected in this manner, an interconnected 

unit is obtained. The unit can be twisted anticlockwise and clockwise when compressed 
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and elongated, respectively, and thus, this unit is defined as a right-handed (RH) chiral 

unit. If the connection segment to the parallelogram OBFC is changed, as shown in Fig. 

2-1(c), a left-handed (LH) chiral unit is obtained, which twists clockwise when 

compressed. 

Two design parameters, a and  , are adopted to characterize the chiral unit (Fig. 

2-1(d)), which denote the lateral edge length and sector angle of the eggbox, 

respectively. To quantitatively analyse the chirality of the structures, three more 

parameters are introduced, as shown in Fig. 2-1(d), where    is the dihedral angle 

between the two lower facets connecting the two eggboxes (i.e., the unit configuration 

angle),   is the angle between the two horizontal alternative creases (i.e., the unit twist 

angle) and h  is the distance between the bottom and top faces (i.e., the unit height). 

 

 

Fig. 2-1 Construction of the origami-inspired chiral unit: (a) basic element; (b, c) construction of a 

right-handed (RH) and left-handed (LH) unit and (d) geometrical parameters in the chiral unit. 

 

Figure 2-2(a) shows an RH chiral unit with a 4-crease eggbox pattern containing 

four panels and four creases, AO, BO, CO and DO. As shown in Fig. 2-2(a), the four 

creases intersect at a common point O, the four dihedral angles between each two 

adjacent panels are 
1 , 2 , 3  and 4 , the angle between OA and OC is 

1 , and 

  and   denote the configuration angle and twist angle, respectively. According to 

the cosine formula for a spherical triangle, the following relationships can be derived: 

2 2

1cos cos sin cos ,   = +                     (2-1a) 

1 1 1cos( / 2) cos cos( / 2) sin sin( / 2)cos( / 2),     = +          (2-1b) 

1 2cos( / 2) cos cos( / 2) sin sin( / 2)cos( / 2).     = +           (2-1c) 

Substituting Eqns. (2-1a) and (2-1b) in Eqn. (2-1c) yields the following relationship 
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between 1  and 2 :  

1 2tan( / 2) tan( / 2) 1/ cos  =                      (2-2) 

Moreover, Fig. 2-2 shows that 

  2 =π . −                               (2-3) 

Substituting Eqns. (2-2) and (2-3) in Eqn. (2-1a) gives 

2 2cos cos sin cos(2arctan(1/ cos tan((π ) / 2))).    = + −         (2-4) 

Moreover, the unit geometry yields the following relationship: 

 2 sin cos( / 2).h a  =                     (2-5) 

 

     
 

(a)                                 (b) 

Fig. 2-2 RH chiral units: (a) geometry and (b) connection. 

 

By connecting identical chiral units at the parallel edges on the bottom or top faces, 

homogeneous RH or LH chiral structures can be obtained and an example is illustrated 

in Fig. 2-2(b), where the red lines represent the connected edges. The rotational angle 

and distance between the top and bottom faces of the structure are defined as the 

structural twist angle   and structural height H , respectively. Since the chiral units 

are placed in series, the structural twist angle and structural height can be simply 

calculated as =N  and =H Nh , respectively, where N  is the number of units in 

the structure. Figure 2-3(a) presents paper model photographs of an RH chiral structure 

with a maximum twist angle of 360°, constructed using three RH units with o=60 . 

In the same manner, an LH chiral structure can be derived, as shown in Fig. 2-3(b). The 

chirality of the structure is characterized by a virtual helix, which is formed by 

connecting the same vertex in each chiral unit, as indicated by the red line in Fig. 2-
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3(e). 

 

 

Fig. 2-3 Chiral structures: (a–d) paper model photographs of chiral and achiral structures: (a) RH chiral 

structure; (b) LH chiral structure; (c) and (d) achiral structure; (e) geometrical parameters in the chiral 

structure.  

 

In addition to these homogeneous structures, heterogeneous chiral structures can 

be generated by mixing RH and LH units. The expressed chirality of the structure is 

determined by the number of RH and LH units, whereas the arrangement of these units 

changes only the internal twist angle in the structure. An achiral structure is obtained 

when the number of RH units equals the number of LH units since the chirality of the 

whole structure is counteracted in this case. For example, Fig. 2-3(c) shows an achiral 

structure with a maximum internal twist angle of 360°, obtained by connecting the RH 

and LH chiral structures shown in Figs. 2-1(b) and 2-1(c), respectively. If the 

arrangement of the chiral units is changed, as shown in Fig. 2-3(d), the structure remains 

achiral but with a decreased maximum internal twist angle of 240° 

The same vertex in each chiral unit forms a virtual helix defined by the pitch p  

and helical angle  , as shown in Fig. 2-3(e). According to the definition of p  and 

 , 2π /p h =   and tan 2 /a p = . Winding (by twisting the chiral units) can be 

considered to describe the behaviour of the helix. A coordinate system wherein the z-

axis is along the helical axis (see Fig. 2-3(e)) is established, the x-axis is along the radial 

direction pointing to the origin of the helix, and the y-axis is determined by the right-

hand rule. Therefore, the helix can be expressed as 

cos

sin .

/ 2π

x a

y a

z p







=


=
 =

             (2-6) 
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where a  is the radius of the helix, which is equal to the lateral edge length of the 

eggbox, and   is the winding angle of an arbitrary point M on the helix. When the 

chiral unit folds from the maximum height to zero,   increases from o0  to o180 , 

and   ranges from zero to 2 . 

2.3 Tunability of single chiral structures 

The chirality of single chiral structures can be tuned by adjusting their design 

parameters, specifically, the sector angle   and number of units, N . Since the effect 

of N  on the chirality is linear, I attempted to tune the chirality by modulating  . To 

determine the influence of   on the folding behaviour and the helical properties when 

a  is constant, three cases with o o o40 , 60 and 80 = are considered. Using Eqns. (2-

1), (2-4) and (2-5), the relationship among the non-dimensional unit height /h a , unit 

twist angle  , and unit configuration angle   can be determined, as shown in Fig. 2-

4(a). When folding the chiral unit,   increases to 2 , and h  decreases to zero. For a 

given   , a larger    corresponds to larger /h a   and    values. Hence, a chiral 

structure with a larger   is more twisted when equally folded. Moreover, the folding 

of the chiral units generates the helix winding of the whole structure. 

The folding of chiral units generates helical winding of the whole structure. In 

general,   is considered as the characteristic quantity for a helical structure. During 

the folding process, the helical pitch p  reduces to zero, whereas   increases to π/2 , 

according to Fig. 2-3(e). The relationship between    and   is presented in Fig. 2-

4(b). This figure shows that   is positively related to   when   is constant, which 

means that a larger value of   can be adopted to design a more highly wound helix. 

With the increase in  , /p a  and h  decrease, whereas   increases (Figs. 2-4(c 

and d)). Moreover, the relationship between /p a   and    (Fig. 2-4(c)) remains 

unchanged for different values of   , which indicates that either /p a   or    can 

determine the helical properties of the helix. Furthermore, the helix becomes more 

wound with the twisting of the chiral unit. The coupling between the twisting of the 

chiral unit and winding of the helix can be clarified considering the relationship curve 

of   and  , as shown in Fig. 2-4(d). This figure shows that for helices with identical 

 , a larger   always produces a larger  . Thus, in cases with a larger , fewer units 

are needed to complete a helix turn. The slope of the curve shown in Fig. 2-4(d) 

indicates that the rate of variation in    first increases and later decreases as   

increases, indicating that the twisting of the chiral unit is more sensitive to the winding 

of a less-wound helix. 

The manifestation of the phenomena for RH chiral models with different   

values is demonstrated experimentally in Fig. 2-4 (e), which shows the photographs of 
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three representative configurations for each paper model with unit twist angles of
o o o=40 , 60 and 80 . In all three cases, the structural height increases as   reduces, 

which is in agreement with the theoretical trend shown in Fig. 2-4(a). However, the 

structure is less folded in the case of a larger , leading to a larger height for a given 

value of  , which is consistent with the predicted behaviour in Fig. 2-4(a). Therefore, 

  can be tubed to design chiral structures with the target properties of the helices (e.g., 

height and degree of folding). 

The analytical results were validated by conducting a tensile experiment on a 

homogeneous RH chiral structure made of ENDURO Ice material with 4N =  and 
o=60 . Each RH unit in the specimen consists of four identical panels, as illustrated 

in Fig. 2-5(a). To strengthen the stiffness of the specimen to avoid panel deformation, 

each panel was constructed using two layers of 0.3-mm-thick ENDURO Ice material (a 

tear-resistant, transparent paper material), cut using a Trotec Speedy 300 laser cutter 

(produced by Trotec in Austria) with a cutting power and speed of 64 W and 70 mm/s, 

respectively, during the cutting process and glued together with 502 adhesive. An RH 

unit in the specimen was fabricated by connecting four panels with tape (Scotch Tough 

Duct Tape, produced by Minnesota Mining and Manufacturing in America), as shown 

in Fig. 2-5(b) in which a  and   denote the lateral edge length and sector angle of 

the eggbox, respectively, with =40 mma   and o=60  . The specimen consisted of 

four such units connected by Scotch tape. 

To avoid the influence of gravity, the tensile experiment was conducted on a 

horizontal testing machine developed in-house, as presented in Fig. 2-5(c). The 

experiment was conducted in the displacement-control mode, and the experimental data 

of the displacement and force on the specimen were collected using a data acquisition 

system. The machine had a 50 N load cell (JLBS-50N, produced by Bengbu Sensor 

System of Engineering in China), with a resolution and maximum displacement of 0.25 

N and =238 mmH , respectively. 

During the experiment, the displacement rate was set as 5 mm/min to eliminate 

the dynamic effects. A dial was used to observe  , which is the structural twist angle 

increment, as illustrated in Fig. 2-5(d). The instrument involved two parts, where one 

part is attached to the specimen by using a holder and can rotate with the end of the 

specimen, and the other is a nonrotatable part attached to the testing machine. The 

experimental displacement data were recorded every o10  of dial rotation. 

Photographs of four representative configurations of the structure during the 

tension process are presented in Fig. 2-6(a). The theoretical and experimental 

relationships between   and the structural height increment H  are presented as 

blue dots and black lines in Fig. 2-6(b), respectively. In this case, a = 40 mm, 

0 =  −  , 0H H H = − , and 0  is the initial structural twist angle when H0 = 25 
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mm. The experimental data match with the analytical results, and    decreases 

exponentially as H  increases. The slight deviation in the experimental data can be 

attributed to the small rotational stiffness of the creases of the physical specimen, which 

is assumed to be zero in the theoretical model. 

 

 

 

(e) 

Fig. 2-4 Helical characteristics of the RH chiral structure when   is set as o40  (blue line), o60  

(black line) and o80  (red line): (a) relationship among the non-dimensional unit height h/a,  and ; 

(b) relationship between angle  and   (c) relationship between the non-dimensional helical pitch p/a, 

and ; (d) relationship between  and . (e) photographs of three configurations of the paper models. 
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Fig. 2-5 Specimen fabrication and experiment. (a) One panel in an RH chiral unit of the specimen. 

(b) One RH unit in the specimen. (c) Data acquisition and test system of the horizontal testing 

machine. (d) Attachment of the specimen to the testing machine. 

 

 

Fig. 2-6 Result of the tensile experiment: (a) tensile experiment; (b) theoretical (black line) 

and experimental (blue dots)   versus H . 

 

Thus, I clarified the twist and helical properties of homogeneous RH structures as 

well as the chirality tuneability. In the case of LH structures, only the handedness 

changes, and the helical properties remain the same in the geometry design and folding 

cases. Therefore, LH structures exhibit the same behaviour. 
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2.4 Chirality switching 

In general, the chirality of a structure is fixed once the structure is designed. The 

chirality switching in chiral structures allows the electromagnetic control of the 

polarization of light and enhancement of the mechanical properties. However, this 

switching is challenging to realize in human-made chiral structures owing to the 

different construction of RH or LH structures. This problem also exists in the developed 

paper models: the movement of the RH chiral structure in Fig. 2-7(a) is terminated when 

the model reaches the fully elongated state owing to the facet interference. To achieve 

chirality switching, the connection between the two eggboxes must be changed. From 

a mechanistic perspective, the chiral structure can be regarded as a network of spherical 

4R and planar 4R linkages, and a different chirality corresponds to different motion 

branches of the whole linkage network. Inspired by the concept of reconfiguration, this 

study represents the first attempt to achieve chirality switching through mechanism 

bifurcation (i.e., changes to different motion branches through the singularity 

configuration). Since the fully elongated configuration is a singularity configuration, 

the idea is to redesign the structure to avoid facet interference while maintaining its 

bifurcation property at this point. By replacing the paper facets with curved links 

without changing their rotational axes, the facet interference can be avoided. The model 

with the redesigned links is kinematically equivalent to the paper model. Exploiting the 

bifurcation of the spherical 4R and planar 4R linkages, an RH chiral structure can be 

transform to an LH structure through the fully elongated configuration. This chirality 

switching process is illustrated in Fig. 2-7(b) in which configurations I and II 

correspond to RH chirality, IV and V correspond to LH chirality, and III corresponds to 

the critical position at which the switching occurs. 

To determine the variation in the twisting and helical properties during the chirality 

switch,   and /h a  are plotted as functions of  , as shown in Figs. 2-7(c) and (d), 

respectively. This analysis indicates that the switch occurs in the configuration with 

o0 =  and o0 = , which corresponds to the fully elongated configuration with the 

maximum unit height. This switching behaviour is different from that of most 

previously reported examples wherein chirality switching is induced by external stimuli 

[152-155]. Moreover, this behaviour is different from the spontaneous chirality 

switching found in bacterial flagella where periodic chirality switching occurs in certain 

regions of the flagellum and travels as a pulse along the length of the filament [156]. 

Since chirality switching in the structure is achieved by mechanism bifurcation, the 

structure can be fabricated and controlled more easily compared to the existing 

mechanisms with molecular structural changes. Because of the switch, the range of the 

helical angle is expanded to o o[ 90 , 90 ]− , which is two times that of the paper structure 

presented in Figs 2-1 and 2-3. 
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Fig. 2-7 RH and LH chirality switching: (a) design of the switchable chiral structure; (b) 

photographs of 3D-printed and manually assembled linkage models; (c) relationship between the 

unit twist angle  and helical angle ; (d) relationship between the non-dimensional unit height 

h/a, and  . 

 

2.5 Hierarchically chiral structures 

To achieve a hierarchically chiral structure with more helices, the apex of each 

eggbox should not be located along the same axis as in the previous single case shown 

in Fig. 2-1 in which the connection between the adjacent chiral units must be changed. 

The chiral construction unit is altered to a more general unit, as shown in Fig. 2-8(a), 

introducing one additional parameter  , which is the sector angle of the connection 

part. The creases of the connection part are presented as dashed lines in Fig. 2-8(b). The 

hierarchically chiral structure has two helices, defined as the major and minor helices, 

represented by the thick and thin red lines in Fig. 2-8(c), respectively. The major helix 
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is formed by the apex of each eggbox, whereas the minor helix is formed by one 

identical vertex in the base of each eggbox, which is the same as the single-helix in our 

paper model shown in Fig. 2-3(e). Similar to the previously reported synthetic 

hierarchically chiral structures [157, 158], our structure transfers chirality at the same 

macroscale, owing to which, the dimensions of the two helices have the same order of 

magnitude (centimetre scale in this case). Four parameters, K  , P  , R   and L  , are 

introduced to characterize the major helix, specifically, the helical angle, helical pitch, 

radius and length along the helical axis, respectively. A coordinate system where the z-

axis is along the helical axis of the major helix is established, the x-axis is along the 

radial direction pointing to the origin of the helix, and the y-axis is determined by the 

right-hand rule. The equation of the major helix is 

m

m

m

cos

sin ,

/ 2π

x R

y R

z P







=


=
 =

                (2-7) 

where m  is the winding angle of each point on the major helix. The equation of the 

minor helix is expressed as 

2 2 2

m s m s m

2 2 2

m s m s m

2 2 2

m m s

cos cos cos sin sin / 4π

sin cos sin sin cos / 4π .

sin / (2π) 2π sin / 4π

x R r rP R P

y R r rP R P

z P R Rr R P

    

    

  

 = − + +



= − − +


= + +

  (2-8) 

where r is the radius of the minor helix, which equals a, and s  is the winding angle 

of each point on the minor helix. 

Next, the helical properties of the hierarchical chiral structure is analysed. With 

the introduction of the major helix, an unusual property of the hierarchically chiral 

structure can be observed, which does not occur in the existing synthetic and biological 

structures with a monotonically increasing height during the unwinding process; 

specifically, the height of the structure first increases from zero to the maximum value 

and later decreases to zero when the structure is unwound (i.e., as K varies from 90° to 

0°), as shown in Fig. 2-8(d). Photographs of the physical model (made of ENDURO Ice 

material) of five representative configurations made of 12 RH units with α = 60° and β 

= 30° are presented along with their corresponding unit configuration angles. 

Figure 2-9(a) presents a hierarchically chiral structure with 8N =  , where Oi  

(i=1 to 8) forms the major helix. To obtain the equation of the major helix, the 

coordinates of points 1O   to 8O   must be expressed in the same global frame. The 

local coordinate frame 
iF  is established in each unit i, as illustrated in Fig. 2-9(b), 

where the Zi-axis is along the direction of vector i iB D , the Xi-axis is along the direction 
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of vector 
i i i iO B B D  , and the Yi-axis can be determined by the right-hand rule. 

Moreover, 1 , 2 , and   are defined in accordance with Fig. 2-2, and 1  and 2  

represent two dihedral angles in the connection part. The position vector of point Oi
 

in the local frame 
iF  is obtained as 

 

 

Fig. 2-8 Design and helical characteristics of the hierarchically chiral structure: (a) altered 

chiral unit; (b) two connected altered chiral units; (c) geometrical parameters in the hierarchically 

chiral structure; (d) photographs of five configurations of the hierarchically chiral structure.  

 

,

0

= cos( / 2) ,

sin( / 2)

i i a

a





 
 

− 
 
 

p                        (2-9) 

where the first and second i values in subscript (i,i) represent point Oi  and frame
iF , 

respectively. In two adjacent chiral units,  

( +1), ( +1),( 1) ,i i i i+=P PT                      (2-10a) 

,

, = ,
1

i j

i j

 
 
 

p
P                          (2-10b) 
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where T  is the transformation matrix that transforms the expression in frame +1iF  to

iF . T  is identical for different i because all the units in the structure are identical. 

Figure 2-9(c) presents the transformation process from frame iF   to +1iF  

through frames 1if   to 13if   in which axis 1iz  , which is determined based on the 

rotation from axis Zi around axis Xi with a rotation angle of (π ) / 2− , is along the 

direction of vector i iB O ; axis 2ix , which is obtained by the rotation from axis 1ix  

around axis 1iz  with a rotation angle of 2 / 2 − , is along the direction of vector 

i i i iA B B O ; frame 3if  is obtained by the translation from frame 2if  along vector 

i iB O ; axis 4iz , which is obtained by the rotation from axis 3iz  around axis 3ix  with 

the rotation angle of − , is along the direction of vector i iA O ; axis 5ix , which is 

obtained by the rotation from axis 4ix   around axis 4iz   with the rotation angle of 

1 − , is along the direction of vector i i i iA O O D ; axis 6iz , which is obtained by 

the rotation from axis 5iz  around axis 5ix  with the rotation angle of − , is along the 

direction of vector i iD O  ; frame 7if   is obtained by the translation from frame 6if  

along vector i iΟ E ; axis 8iz , which is obtained by the rotation from axis 7iz  around 

axis 7ix  with the rotation angle of − , is along the direction of vector i iE A ; axis 

9ix , which is obtained by the rotation from axis 8ix  around axis 8iz  with the rotation 

angle of 2 − , is along the direction of vector +1i i i iA E E B ; axis 10iz , which is 

obtained by the rotation from axis 9iz  around axis 9ix  with the rotation angle of − , 

is along the direction of vector +1i iE B ; axis 11ix , which is obtained by the rotation 

from axis 10ix   around axis 10iz   with the rotation angle of 1 −  , is along the 

direction of vector +1 +1i i i iB E E C  ; frame 12if   is obtained by the translation from 

frame 11if  along vector 1i i+E B ; axis 13ix  is obtained by the rotation from axis 12ix  

around axis 12iz  with the rotation angle of 2 / 2− ; and axis 1iZ +  is obtained by the 

rotation from axis 13iz  around axis 1iX +  with the rotation angle of (π ) / 2− − (if the 

rotation angle is negative, the rotation is clockwise; otherwise, the rotation is 

anticlockwise). The whole transformation process is summarized in Tab. 2-1. 

Hence,  

2 1

2 1

2

= ((π ) / 2) (π / 2) ( ) ( ) (π ) ( )

( sin / tan cos ) ( ) ( ) ( ) (π )

(( sin cos tan ) / tan ) ( / 2) ( (π ) / 2),

x z z x z x

z x z x z

z z x

a

a a a

a a

    

       

     

− − − − −

− − + − − − −

− − − −

T R R D R R R

D R R R R

D R R

(2-11) 
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where the rotation around axis x with an angle of   is 

1 0 0 0

0 cos sin 0
( ) ;

0 sin cos 0

0 0 0 1

x

 


 

 
 

−
 =
 
 
 

R                   (2-12a) 

the rotation around axis z with an angle of   is 

cos sin 0 0

sin cos 0 0
( ) ;

0 0 1 0

0 0 0 1

z

 

 


− 
 
 =
 
 
 

R                    (2-12b) 

the translation along axis z with a distance of s is 

z

1 0 0 0

0 1 0 0
( ) ;

0 0 1

0 0 0 1

s
s

 
 
 =
 
 
 

D                        (2-12c) 

and 

1 2= ;  −                         (2-12d) 

1 2tan( / 2) tan( / 2)=1/cos .                    (2-12e) 

If frame 1F  is selected as the global frame, the expression of all points Oi  in 

frame 1F  can be derived as 

,1 1( ) ,iR = − p p s             (2-13) 

where 1p  represents the position vector of the intersection point of the major helical 

axis and the Y1-B1-Z1 plane, and s  is the normalized direction vector of the helical 

axis. By substituting Eqns. (2-10), (2-11) and (2-12) in Eqn. (2-13), the solution of R 

and s  can be obtained. 

To derive L and P, the distance between Oi
 and 

+1Oi
 along the major helical 

axis must be determined; thus, the chiral structure is rotated such that its helical axis is 

parallel to axis Z1. In this case, 

2 2 2 2 2

,1

(arccos( (1,1) (3,1) / (1,1) (2,1) (3,1) ))

( arctan( (1,1) / (3,1))) ,

i x

y i

= + + +

−

P s s s s s

s s P

R

R
    (2-14a) 

,
1

i

i

 
=  

 

p
P                             (2-14b) 

where ( ,1)is  represents the element of vector s  in the ith row, ip  is the position 
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vector of point Oi  after the rotation and 

y

cos 0 sin 0

0 1 0 0
( ) ,

sin 0 cos 0

0 0 0 1

 


 

 
 
 =
 −
 
 

R                      (2-15) 

Next, it can be derived that the distance between Oi
 and 

+1Oi
 along the helical 

axis as 

1 2 1(3,1) (3,1) (3,1) (3,1),i il += − = −P P P P                (2-16) 

Projecting the major helix to its cross-section generates a circle whose centre is O 

and radius is R, as illustrated in Fig. 2-9(d) in which points Oi  are located on the circle. 

The angle between OOi  and +1OOi  can be obtained as 

( ) ( )

( ) ( )

2 2

1 1

2 2

2 1 2 1

sin( / 2) (1,1) (1,1) (2,1) (2,1) / (2 )

(1,1) (1,1) (2,1) (2,1) / (2 ).

i i i i R

R

 + += − + −

= − + −

P P P P

P P P P

          (2-17) 

According to the definition of P, K and L,  

2π / ,P l =                           (2-18a) 

tan 2π / ,K R P=                         (2-18b) 

.L Nl=                            (2-18c) 

The major and minor helices have identical chirality, although the chirality of the 

existing hierarchically chiral structures may be different. This aspect indicates that the 

chirality of our structure is dominated by its constituent units. However, the helical 

properties of the major and minor helices differ considerably. With the folding of the 

structure (i.e., as   increases from 0° to 180°), the minor helix winds while the major 

helix unwinds; that is, the helical angle of the major helix decreases, and the helical 

angle of the minor helix (i.e. the angle between the minor helix and its axial line 

pertaining to the major helix, whose value is the same as that in the previous single RH 

chiral structure when   is identical) increases, as indicated by the solid and dashed 

black lines in Fig. 2-10(a), respectively. Since the basic vertexes forming the major and 

minor helices are in the same chiral unit, the corresponding windings are coupled, in 

contrast to the existing hierarchically chiral structures, which exhibit independent 

winding. Moreover, in contrast with the single-helix case, which exhibits a 

monotonically decreasing pitch and unit length during winding, the pitch P  and unit 

length / ( )L Na  of the major helix first increase and later decrease, as shown in Fig. 

2-10(b). The pitch P of the major helix first increases and later decreases, as shown in 

Fig. 2-10(c), Moreover, the radius R of the major helix is positively related to K (see 

Fig. 2-10(d)), whereas it is constant in the single-helix case. Furthermore, the results  
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Fig. 2-9 Geometry of the hierarchically chiral structure: (a) a hierarchically chiral structure with 

8N = , where Oi
(i=1 to 8) forms the major helix; (b) setup of the coordinate frames and 

geometrical parameters in two adjacent chiral units; (c) transition process of the frames between 

two adjacent chiral units; (d) projection of the major helix and points Oi
 and

+1Oi
 

. 

for the helices with three different values of   in Fig. 2-9 indicate that the helical 

properties of the major helix can be tuned through  . A more highly wound helix can 

be obtained if a larger   is selected, and more circles can be formed in a fully wound 
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helix by adopting a larger  . Finally, increasing   leads to a reduction in the helix 

length; however, this effect is substantial only at relatively small helical angles. 

 

Tab. 2-1 Transformation process from frame iF  to +1iF  

Step From 
Transformation 

method 

Rotation 

around/ 

Translation 

along 

Rotation 

angle/Translation 

distance 

To 

Target 

direction 

vector 

1 Zi Rotation Xi 
2

 −
 1iz  

i iB O  

2 1ix
 

Rotation 1iz  2

2


 −  2ix  

i i i iA B B O  

3 2if  
Translation i iB O  a 3if  N/A 

4 3iz  Rotation 3ix  −  4iz  
i iA O  

5 4ix  Rotation 4iz  
1 −  

5ix  
i i i iA O O D  

6 5iz  Rotation 5ix  −  6iz  
i iD O  

7 6if  Translation i iΟ E  

sin
cos

tan

+

a
a

a





−

 7if  N/A 

8 7iz  Rotation 7ix  −  
8iz  

i iE A  

9 8ix  Rotation 8iz  
2 −  

9ix  
+1i i i iA E E B  

10 9iz  Rotation 9ix  −  10iz  +1i iE B  

11 10ix  Rotation 10iz  1 −  11ix  +1 +1i i i iB E E C  

12 11if  Translation 1i i+E B  
sin

cos
tan

a
a





−  

12if  N/A 

13 12ix  Rotation 12iz  2

2


−  13ix  Xi+1 

14 13iz  Rotation Xi+1 
2

 −
−  Zi+1 Zi+1 

 

2.6 Conclusions 

Helical units and structures based on eggbox-shaped origami are proposed, the 

chirality of which can be tuned by adjusting the geometrical parameters. These 

structures can be used as a theoretical model to understand the mechanism of chirality 

in nature. For example, towel gourd tendrils gradually evolve into a helical shape with 

opposite handedness to allow the plant to climb to a sufficient height when attached to 

a supporting object, similar to our proposed achiral structure with internal twist, as 
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shown in Fig. 2-2(d). Studying the movement of the developed model can enhance the 

understanding of the chiral growth mechanism of towel gourd tendrils. Switchable 

chirality was achieved through the bifurcation of kinematically equivalent linkages, 

which can allow the alteration of the on-sight optical or electromagnetic property of the 

metamaterial constructed from such helical units. Nevertheless, it may be challenging 

to manufacture a metamaterial with a large deformation to achieve the chirality switch 

in industrial applications. Moreover, I designed hierarchically chiral structures with 

major and minor helices at the same macroscale in which the winding of the minor helix 

drove the unwinding of the major helix. This unusual behaviour, resulting in two 

compact folding configurations, provides an opportunity to design multi-functional 

morphing structures in aerospace engineering applications. Furthermore, due to its 

single degree-of-freedom, the proposed chiral structures can be applied to bionic robots 

with a simple control system, which is a topic of our subsequent work. 

 

 

Figure 2-10 Effect of the sector angle   on the helical characteristics of the hierarchically 

chiral structure, where   is set as o20 , o30   and o40 : (a) relationship among  ,  , and  ; (b) 

relationship between the non-dimensional length of each chiral unit L/(aN) and  ; (c) relationship 

between the non-dimensional pitch P/a and ; (d) relationship between the non-dimensional 

major helix radius R/a.  
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 2D mobile networks of spherical linkages: 

morphing surfaces  

 Introduction 

In the mechanical engineering domain, rigid origami is generally studied as a 

network system of spherical linkages. For a single vertex of a rigid origami structure, 

rigid links can be rotated around revolute joints during folding, and all the axes of the 

joints may intersect at a point. In this case, the single vertex can be regarded as a 

spherical linkage. I developed a novel form of a one-DOF network system of spherical 

4R linkages by replacing the unit facets of a planar origami pattern with volumetric 

tetrahedrons. The altered form retained its original one-DOF characteristic, and the 

network could be expanded to a morphing surface. Thus, a morphing surface that could 

transform from a parabolic cylinder to a paraboloid through the motion of the spherical 

linkages is obtained.  

The layout of this chapter is as follows. First, in Chapter 3.2, a novel one-DOF 

network system of spherical 4R linkages inspired by origami is described. The above-

mentioned network system is extended to a morphing surface. Next, in Chapter 3.3, an 

example of the morphing surface that can transform from a parabolic cylinder to a 

paraboloid is presented. Finally, the concluding remarks are presented in Chapter 3.4. 

3.2 Network system and morphing surface inspired by origami 

Inspired by the famous eggbox origami pattern, a novel form of a one-DOF 

network system of spherical 4R linkages is established by replacing the unit facets of 

the eggbox pattern with volumetric tetrahedrons. An eggbox with four rhombic units is 

illustrated in Fig. 3-1(a) in which the dashed lines represent the crease patterns that 

cannot be observed from the view point, and the red lines are the two edges AB and AD 

of the rhombic unit ABCD connected to its neighbouring units. Folding the unit ABCD 

around the crease line BD with the dihedral angle   yields a spatial quadrilateral. By 

adding an identical spatial quadrilateral, a tetrahedral unit is constructed. This process 

is shown in Fig. 3-1(b). It can be noted that 

2 2cos (cos cos ((π ) / 2) sin ((π ) / 2).   = − − −/            (3-1) 

Figure 3-1(c) shows the oblique, top and bottom views of the assembly of four 

tetrahedral units, which can be regarded as a spherical 4R linkage. By connecting the 

three above-mentioned assemblies in series and adding planar triangle units, the mobile 

network shown in the left part of Fig. 3-1(d) is achieved in which the triangle units are 

shown in white. The paper model of the mobile network is shown in Fig. 3-1(d) left in 

which the blue and white parts denote the tetrahedrons and planar triangle units, 

respectively. This network is a one-DOF assembly of spherical 4R linkages. 
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(a) (b) 

 

(c) 

 

(d) 

Fig. 3-1 One-DOF network inspired by rigid origami: (a) vertex of the eggbox pattern; (b) 

construction of a tetrahedral unit; (c) assembly of four tetrahedral units and (d) one-DOF mobile 

network. 

 

The above-mentioned 4R configuration can be expanded to a one-DOF morphing 

surface profile by inserting more triangle units into the original network system. The 

simplest network is illustrated in Fig. 3-2, in which the blue and white parts represent 

tetrahedrons and triangle units, respectively. 

By tuning the design parameters of the tetrahedrons and triangle units, different 

surfaces can be obtained. Although the planar units can be arbitrary triangles, for the 

sake of simplicity, three kinds of triangle units are used in the morphing surface shown 

in Fig. 3-3. As illustrated in Fig. 3-3 (a), panels with the same colour represent the same 

kind of triangle unit and the surface is two-fold symmetric. The tetrahedrons (blue part 

in the middle of the network) are formed by identical isosceles triangles (Fig. 3-3(b), 
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left), with the length of the equal sides being L; the yellow and green triangles are 

isosceles triangles, with the length of the equal sides being L (Fig. 3-3(b), triangles in 

the middle and right). In this manner, a two-fold symmetric morphing surface can be 

obtained. If each triangle and tetrahedral unit is regarded as a link, three types of 

vertexes in the mobile network and different types of vertexes (considering vertexes A, 

I and C as an example, illustrated in Fig. 3-3(a)) are shown in Fig. 3-3(c) in which 

vertex A can be regarded as a spherical 4R linkage, and vertexes I and C can be regarded 

as spherical 6R and 8R linkages, respectively. 

 

 

Fig. 3-2 Schematic of a morphing surface. 

 

Subsequently, the relationship among the parameters at different vertexes is 

analyzed. For linkage A, 

 A A A A

12 23 34 41 1.    = = = =                      (3-2) 

Substituting Eqn. (3-2) in Eqn. (1-7a) yields 

2 A 2 A

1 1 1 1 1

2 A A

1 1 1

2 A A 3

1 1 1 1

sin cos cos sin cos cos

cos sin cos cos

sin sin sin cos cos 0,

i i

i i

i i

     

   

    

+

+

+

+

+

− − + =

             (3-3) 

which can be expressed as 

A A

1 ( ).i if + =                          (3-4) 

For linkage I, which is a spherical 6R linkage, according to Eqns. (1-4) to (1-6),  

21 32 43 54 65 16 3,=Q Q Q Q Q Q I                     (3-5) 

which can be expressed as 

21 32 43 61 56 45.=Q Q Q Q Q Q                      (3-6) 
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In linkage I, the sector angles are 

I I I I I I

12 61 1 23 56 2 34 45 3, π 2 , .        = = = = − = =            (3-7) 

Substituting Eqn. (3-7) in Eqn. (3-6) yields  

I I I I I

1 2 3 1 2 2 3 1 2 3 3

I

1 2 2 1 2 3

I I I I I

1 5 6 1 2 5 6 1 2 5 3

I

1 2 6 1

(sin sin sin sin cos 2 cos cos cos sin 2 cos )sin

(sin sin 2 cos cos cos 2 )cos

(sin sin sin sin cos 2 cos cos cos sin 2 cos )sin

(sin sin 2 cos cos cos 2

          

     

          

    

+ −

− +

= + −

− + 2 3)cos ,

             

(3-8a) 

I I I I I

1 2 1 1 2 3

I I I I I I

2 1 2 1 2 1 2 1 2 1 3

I I I I I

5 6 2 5 6 4

I I I I

3 5 6 2 3 5 6 2

(cos cos cos sin sin )cos

(cos 2 cos sin cos cos 2 sin cos sin sin 2 sin )sin

(cos cos cos 2 sin sin )cos

(cos sin cos cos 2 cos cos sin sin 2 sin

     

          

     

       

−

+ + +

= +

− − + I I

3 6 4sin )sin ,  

 

(3-8b) 

I I I I I

1 2 1 1 2 3 3

I I I I I I

2 1 2 1 2 1 2 1 2 1 3 3

I I I I I

2 1 2 1 2 1 2 1 2 1 3

I

1 5

(sin cos cos cos sin )sin sin

(cos 2 sin sin cos cos 2 cos cos sin sin 2 cos )sin cos

(sin 2 sin sin cos sin 2 cos cos sin cos 2 cos )cos

( cos sin s

      

           

          

 

+

− − −

+ − +

= − I I I I

6 1 2 5 6 1 2 5 3

I

1 2 6 1 2 3

in cos cos 2 cos cos sin sin 2 cos )sin

(cos sin 2 cos sin cos 2 )cos .

        

     

− +

+ −

  

(3-8c) 

Equation (3-8) can be simplified as 

I I I I I

3 3 1 3 6

I I I I I

4 4 1 2 6

I I I I I

5 5 1 2 6

( , , ),

( , , ),

( , , ).

f

f

f

   

   

   

=

=

=

                       (3-9) 

In linkage C,  

               
21 32 43 54 65 76 87 18 3,=Q Q Q Q Q Q Q Q I                  (3-10) 

which can be expressed as 

21 32 43 54 81 78 67 56.=Q Q Q Q Q Q Q Q                   (3-11) 

In linkage C, the sector angles are 

C C C C C C C C

12 81 2 23 78 3 34 67 2 45 56 3, π 2 , π 2 , .           = = = = − = = − = =     (3-12) 

Merging Eqns. (3-11) and (3-12) yields 

C C C C C C C

4 4 1 2 3 7 8

C C C C C C C

5 5 1 2 3 7 8

C C C C C C C

6 6 1 2 3 7 8

( , , , , ),

( , , , , ),

( , , , , ).

f

f

f

     

     

     

=

=

=

                    (3-13) 
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(a) 

 

(b) 

 

(c) 

Fig. 3-3 Geometry of the morphing surface: (a) morphing surface with three kinds of triangle 

units; (b) three kinds of triangle units; (c) four kinds of vertexes in the morphing surface. 

 

Since the morphing surface is symmetric, only half of the surface is considered. 

The relationship among the twist angles of half the mobile network is shown in Fig. 3-

4. The twist angle at the end of an arrow can be obtained from the angle at the beginning 
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of the arrow. 

 

Fig. 3-4 Relationships among the parameters in the morphing surface. 

 

For example, A A

3 4 → represents A A

4 3( )f = , which can be obtained from Eqn. (3-

4). Vertexes I and O are regarded as spherical 6R linkages, which are three-DOF and 

can be determined by three input angles, which are determined according to the adjacent 

spherical 4R linkages; vertex C is regarded as a spherical 8R linkage, which requires 

five input angles to be determined, which are identified through linkages B, I, J, O and 

P. If angle D

2  is considered as the output angle of the mobile network, the output 

angle D

2   can be obtained even if only one input, angle A

1  , is given. Hence, the 

morphing surface has only one-DOF. 

3.3 Transformation from a parabolic cylinder to a paraboloid 

The morphing surface can transform between two target surfaces, and as described 

in this chapter, a morphing surface that can transform from a parabolic cylinder to a 

paraboloid is designed. A morphing surface constructed using isosceles triangle units 

has two zig-zag lines known as the “shape-lines” in which the H- and V-lines 

correspond to the horizontal and vertical shape-lines, respectively, constructed by 

connecting the vertexes in the two diagonal lines of the surface. 

The two shape-lines of the arbitrary morphing surface match the two curved lines, 

as illustrated in Fig. 3-5. These two curved lines determine the shape of the morphing 

surface. 
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Fig. 3-5 Two curved lines matched by the two shape-lines of a morphing surface. 

 

While designing a morphing surface, I focus only on the vertexes at the shape-

lines. Assuming that the morphing surface is two-fold symmetric with respect to its 

shape-lines (see Fig. 3-6(a)), only a quarter of the network needs to be determined. The 

parameters of the morphing network and vertexes in the two shape-lines are shown in 

Fig. 3-6(b); in contrast to the network shown in Fig. 3-3, six different triangle units are 

used to construct the network, and the two shape-lines of the network are shown in Fig. 

3-6(c) in which i   and i   are angles that determine the two shape-lines of the 

morphing surface. Two coordinate frames are established in both the shape-lines. For 

each shape-line, the x-axis is horizontal, the y-axis is perpendicular to the x-axis, and 

vertex O is the origin of coordinates in both the frames. By obtaining the coordinates 

of the vertexes in the two shape-lines, the two shape-lines can be defined. 

The shape of the morphing surface can be determined by the two shape-lines, and 

to obtain the angles i  and i , coordinate systems are established at the vertexes in 

the shape-lines. The coordinate frame of vertex V2 considered as an example is shown 

in Fig. 3-7. Linkage V2 is plane-symmetric in which 2V

ia   represents the direction 

vector of the ith crease line of the spherical 8R linkage, 2V

in represents the direction 

vector of 2 2V V

1i i+a a   and 2V

i  represents the dihedral angle between the two triangle 

units pertaining to vector 2V

ia (for the sake of simplicity, only 2V

1n , 2V

2n , 2V

1  and 

2V

2  are illustrated in Fig. 3-7). The angle between 2V

in  and 2V

1i+n  is 2V

1(π )i +− . The 

x-V2-y plane of the coordinate system is determined by 2V

1a   and 2V

8a  .The x-axis is 

along the downward direction of the bisector of the angle between vectors 2V

1a  and 

2V

8a ; the y-axis is perpendicular to the x-axis and along the right direction. For vertex 
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V2, the angle between 2V

1a and 2V

5a should be obtained, and this angle is 2 . For all 

vertexes in the two shape-lines,  
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where , a b  represents the angle between vectors a  and b . At each vertex, the 

relationship between the dihedral angle 
i  and twist angle 

i  is as follows: 

π (mountain crease line),

π (valley crease line).

i i

i i

 

 

= −

= +
               (3-14g) 

According to Section 3.2, all the direction vectors ai at each vertex can be derived from 

Eqns. (3-14a) to (3-14f) by defining the dihedral angle O

1 , through a similar process 

as that shown in Fig. 3-4. 

After obtaining the direction vectors at each vertex in the two shape-lines, the 

coordinates of these vertexes in the frames shown in Fig. 3-6(c) can be derived. 

Specifically, the following equations can be obtained: 
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(a) 

 

(b) 

 

(c) 

Fig. 3-6 Morphing surface: (a) network; (b) parameters of the network; (c) two shape-lines: H-line 

(top) and V-line (bottom). 
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Fig. 3-7 Coordinate frame at vertex V2. 
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(3-15d) 

where p  represents the coordinate and its subscript represents the vertex. 

Since the coordinates of all the vertexes in the shape-lines have been defined, we 

can match the shape of the morphing surface to the target surface by selecting proper 

design parameters. This process is described using an example in which a parabolic 

cylinder is transformed to a paraboloid. 

One of our target surfaces is a paraboloid, which can be obtained from the rotation 

around the y-axis of a parabola, as shown in Fig. 3-8(a) in which the parabola is 

indicated in red. The function of this parabola is assumed to be 
2

1y m x= , and for a 

morphing surface, if the coordinates of vertexes O, 
2V , 

4V , 
2H  and 

4H  match the 

function of this parabola, the morphing surface matches the paraboloid. 

The other target surface is a parabolic cylinder, which can be constructed by the 

translation along the z-axis of a parabola, as illustrated in Fig. 3-8(b) in which the 

parabola is represented in blue. Assuming that the function of this parabola is 
2

2y m x= , 

in a morphing surface, if the coordinates of vertexes O, 2V  , and 4V   match the 

function of this parabola, and the coordinates of vertexes O, 
2H  and 

4H  match the 

straight line 0y =  , the morphing surface matches the parabolic cylinder. If the 

morphing surface and target surface are matched, the following equation should be 

satisfied: 



Doctoral Dissertation of Tianjin University 

 56 

2 2

4 4

H H

H H

,

;





− 

− 

p P

p P
                      (3-16a) 

2 2

4 4

V V

V V

,

;





− 

− 

p P

p P
                      (3-16b) 

where   is the accuracy error, and 
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(a)                                 (b) 

Fig. 3-8 Construction of (a) a paraboloid and (b) a parabolic cylinder. 

 

Next, the conditions under which a morphing surface can transform between the 

two target surfaces are discussed. The process can be described as follows: 

(1) Step 1: the two target surfaces are defined, with 
1m  less than 

2m . I assume 

that the length L=0.5. 

(2) Step 2: different values are assigned to 1 – 6  and 0 . 

(3) Step 3: 
1 –

6  are substitute with different 0  values in Eqns. (3-14) and 

(3-15) and obtain the coordinates of the vertexes in the shape-lines of the 

morphing surface to the function of the parabola in the paraboloid and parabolic 

cylinder. 

(4) Step 4: check whether these coordinates satisfy the function of the parabola in 

the paraboloid and parabolic cylinder. If no matching occurs, return to Step 2 or 

proceed to Step 5. 

(5) Step 5: the proper design parameters that allow the morphing surface to 

transform between the two target surfaces are identified, and the process is 

terminated. 
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This process is illustrated in Fig. 3-9 and implemented in MATLAB. 

 

 

Fig. 3-9 Process of identifying a morphing surface that can transform between two target surfaces. 

 

An example is shown in Fig. 3-10 with 

o

1 60 = ,
o

2 56.5 = ,
o

3 58.5 = ,
o

4 58 = , 
o

5 56 = , 
o

6 56 = , 

and the surface can transform from a paraboloid ( 1 0.13m =   and
o

0 5.92=  ) to a 

parabolic cylinder ( 2 0.25m =  and
o

0 5.88= ). The two surfaces are shown in Figs. 3-

10(a) and (b), respectively, and the morphing process is illustrated in Fig. 3-10(c). 

3.4 Conclusions 

This chapter describes a one-DOF mobile assembly of spherical 4R linkages 

inspired by origami, which is extended to a morphing surface that is one-DOF by adding 
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spherical 6R and 8R linkages. The above-mentioned morphing surface is transformed 

 

  

(a)                                     (b) 

 

(c) 

Fig. 3-10 Morphing surface: (a) front view (top left), left view (top right) and top view (bottom) of 

the paraboloid; (b) front view (top left), left view (top right) and top view (bottom) of the 

parabolic cylinder; (c) process of transformation from a parabolic cylinder to a paraboloid. 

 

through the motion of the spherical linkages. The surface has two shape-lines that 

determine the shape of the surface, and the surfaces can be designed by tuning the two 

shape-lines. An example of the morphing surface that can transform from a parabolic 

cylinder to a paraboloid is provided, which may provide a reference to design flexible 

antennas in aerospace applicatio
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 3D mobile networks of spherical linkages: rigid 

origami tubes 

 Introduction 

Rigidly foldable origami tubes with open ends have been reported in the past. 

Kinematically, these tubes are assemblies of spherical linkages in which the rigid links 

are connected by revolute joints. In this chapter, new methods to obtain origami tubes 

that are rigidly foldable with a single degree-of-freedom are described. 

The layout of this chapter is as follows. First, as described in Chapter 4.2, several 

existing tubes are conjoined by merging common sides or corners, resulting in a family 

of tubes with asymmetric polygonal cross-sections. Next, Chapter 4.3 introduces 

transition parts in an existing tube, thereby developing the second set of origami tubes 

in which the crease lines between neighbouring layers form nonplanar polygons. The 

formation of multi-layered and curved tubes based on the above-mentioned tubes is 

discussed in Chapter 4.4. Finally, the concluding remarks are presented in Chapter 4.5. 

4.2 Two tubes formed by combination 

Goldberg 5R and 6R linkages are obtained by merging two or more Bennett 

linkages through a summation or subtraction process depending on the relative 

positions of the adjoined Bennett linkages. New tubes known as combined tubes are 

generated by adopting a similar approach for the sections of the tubes. 

4.2.1 Summation of two tubes 

Figures 4-1(a) and 4-1(b) show two one-DOF rigidly foldable tubes, Tubes 1 and 

2. The facets of both the tubes are parallelograms. Tube 1 with a kite cross-section, as 

shown in Fig. 4-1(a), is formed using two pieces with facets having different lengths. 

Both the top and bottom pieces are flat developable with 
T1 T1 π + = , 

T1 T1 π + = , 

and 
T1 T1

1 1 π + = , 
T1 T1

1 1 π + = . To realize flat foldability, T1 T1 = and
T1 T1

1 1 = . 

To connect the pieces to form a one-DOF tube, 
T1 T1

1cos cosa b = . In the case of 

Tube 2 with a parallelogram cross-section, as shown in Fig. 4-1(b), the left and right 

pieces are flat developable and have an identical geometry in which 
T2 T2 =  and 

T2 T2 = . The cross-sections of Tubes 1 and 2, ABCD, are plane-symmetric and line-

symmetric, respectively. The tubes with the parallelogram and kite cross-sections have 

one and two flat folding states, respectively. If the two tubes are placed side by side 

such that they share a common side, the tubes can be joined via the common side, 

forming the compound tube shown in Fig. 4-1(c), with  
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T1 T2 T1 T2 ;    = = = =                   (4-1) 

where superscripts T1 and T2 represent Tubes 1 and 2, respectively. In addition, the 

widths of the facets of two tubes should match. If these conditions are satisfied, the 

combination does not alter the motion of each tube, and the combined tube has only 

one-DOF, i.e., the compound tube is also rigidly foldable. In this case, the common side 

of the two tubes can be removed, resulting in a new origami tube that is rigidly foldable, 

as shown in Fig. 4-1(d). 

According to Chapter 1.2.3.1, Tubes 1 and 2 can be considered as the assembly of 

spherical 4R linkages at each vertex. In the case of Tube 1, at vertex A, the four twist 

angles are 
T1

12 = , 
T1

23 = , 
T1

34 = , and 
T1

41 = , and they can be substituted 

in Eqn. (1-7) to yield 

2 T1 2 T1 T1 2 T1 2 T1 T1

1 3cos sin cos cos sin cos     − = − .         (4-2a) 

Similarly, in the case of Tube 2, 
T2

12 = , 
T2

23 = , 
T2

34 = , and 
T2

41 = , and  

2 T2 2 T2 T2 2 T2 2 T2 T2

1 3cos sin cos cos sin cos .     − = −          (4-2b) 

Substituting Eqn. (4-1) in Eqn. (4-2) yields 

2 2 T1 2 T1 2 T1 T1

1 3cos sin cos cos sin cos     − = − ，         (4-3a) 

2 2 T2 2 T2 2 T2 T2

1 3cos sin cos cos sin cos .     − = −          (4-3b) 

After the tubes are attached, the obtained combination is one-DOF, and because of the 

assignment of the sector angles and mountain-valley crease lines,  

T1 T2

1 1 . =                             (4-4) 

By merging Eqns. (4-3) and (4-4), Eqn. (4-3b) can be rewritten as 

2 2 T1 2 T2 2 T2 T2

1 3cos sin cos cos sin cos .     − = −          (4-5) 

Moreover, Eqn. (4-3a) is satisfied. In the new tube, after removing the common parts, 

vertex A in Tubes 1 and 2 becomes vertex T1A  and T2A , respectively, as illustrated 

in Fig. 4-1(e). At vertex T1A , 

2 2 2 1 2 1 1

3cos sin cos cos sin cos .T T T     − = −           (4-6a) 

At vertex T2A ,  

2 2 2 T2 2 T2 T2

3cos sin cos( ) cos sin cos .     − − = −         (4-6b) 

Moreover 

T1

1 . = −                             (4-6c) 

Merging Eqns. (4-6a) and (4-6c) yields Eqn. (4-2b), and merging Eqns. (4-6b) and (4-

6c) yields Eqn. (4-5). The same relations can be achieved at vertex T1D   Hence, 
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removing the common part of the two combined tubes does not change the relationships 

among their angles, and the new combined tube is also one-DOF. 

The cross-section of the resultant tube is neither in line nor plane-symmetric. In 

fact, the cross-section is an arbitrary polygon. When vertex A of Tubes 1 and 2 is 

positioned at the same point,  

T1 T2 π. + =                         (4-7) 

In this case, the two adjacent facets from each tube can be welded into one piece to 

form a new tube with a cross-section consisting of an odd number of sides. 

The schematics in Figs. 4-2(a) and 4-2(b) illustrate the summation approach in 

which a kite tube and parallelogram tube are combined, as well as the physical models 

demonstrating the folding of the resultant tubes. It should be noted that when the two 

tubes are joined through one of their longer sides, the folding on the short side of the 

kite tube is not disturbed, and the combined tube still has two folding states, as shown 

in Fig. 4-2(b). 

 

(a) 

 

(b) 

Fig. 4-1 Construction of a tube by summation: (a) Tube 1, (b) Tube 2, (c) Tube 2 is attached 

to Tube 1, and (d) the common portion of the joined tube is removed to form a new rigidly 

foldable tube; (e) sector angles in the new foldable tube. 
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(c)                                  (d) 

 

(e) 

Fig. 4-1 Construction of a tube by summation: (a) Tube 1, (b) Tube 2, (c) Tube 2 is attached 

to Tube 1, and (d) the common portion of the joined tube is removed to form a new rigidly 

foldable tube; (e) sector angles in the new foldable tube. (continued) 

 

4.2.2 Subtraction of two tubes 

Figure 4-3 illustrates the subtraction process in which the tube with the smaller 

cross-section, Tube 2, is nested inside the larger Tube 1. When the geometric conditions 

T1 T2 T1 T2    = = = =                     (4-8) 

are satisfied, and the widths of the facets of the two tubes match each other, the 

subtraction can be performed along one common side, as shown in Fig. 4-3(c). 

Alternatively, if the geometric conditions 

T1 T2 T1 T2 ,    = = = =                  (4-9a) 

T1 T2 T1 T2 ,    = = = =                  (4-9b) 

are met, and the widths of the facets of the two tubes match each other, the subtraction 

can be performed at the common corner of the two tubes, Fig. 4-3(e), leading to two 

common sides. After removing the common parts, new tubes with combined and 
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nonsymmetric cross-sections can be obtained, as shown in Figs. 4-3(d) and 4-3(f), 

respectively. 

Consider the process shown in Figs. 4-3(e) and (f) as an example. At vertex B in 

Tube 2,  

2 2 T2 2 2 T2

1 3cos sin cos cos (π ) sin (π )cos ,     − = − − −    (4-10a) 

which can be simplified as 

2 2 T2 2 T2

1 3cos sin cos cos sin cos .     − = −         (4-10b) 

 

 

(a) 

 

(b) 

Fig. 4-2 Summation of two tubes: (a) schematic of the summation method with the shorter sides 

joined together, and the expansion sequence of a tube model from its flat folding state I; (b) 

schematic of the summation method with longer sides joined together, and the expansion sequence 

of a tube model from its flat folding state I to its second flat folding state V. 
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(a)                                (b) 

 

(c)                 (d)                (e)                  (f) 

 

   (g) 

Fig. 4-3 Construction of a tube by subtraction: (a) Tube 1; (b) Tube 2; (c) Tube 2 is nested inside 

Tube 1; (d) the common portion of the joined tube is removed, thereby forming a new rigidly 

foldable tube; (e) Tube 2 is nested inside a corner of Tube 1; (f) the common portion of the joined 

tube is removed, thereby forming a new rigidly foldable tube and (g) sector angles in the new tube. 

 

After the combination, vertex B in Tube 2 becomes vertex T2B , and Eqn. (4-10b) is 

satisfied. Removing the common parts (see Fig. 4-3(g)) leads to 

2 2 2

1 3cos sin cos cos sin cos ,     − = −           (4-11a) 

T2 T2

1 1 3 3 .   = = −，                    (4-11b) 
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Merging Eqns. (4-11a) and (4-11b) leads to Eqn. (4-10b). The same conclusion can be 

achieved at vertex T2D . Hence, the resultant tube exhibits rigid foldability with one-

DOF. Similarly, the tube obtained from the process shown in Figs. 4-3(c) and 4-3(d) is 

also one-DOF. Figures 4-4 and 4-5 schematically illustrate the subtraction process 

involving a common side and common corner, respectively, accompanied by the folding 

sequences of the physical models obtained through this process. 

 

 

(a) 

 

(b) 

Fig. 4-4 Subtraction of two tubes: (a) schematic of the subtraction method with Tube 2 nested 

inside the shorter side of Tube 1, and the expansion sequence of a tube model from its flat folding 

state I and (b) schematic of the subtraction method with Tube 2 nested inside the longer side of 

Tube 1, and the expansion sequence of a tube model from its flat folding state I to its second flat 

folding state V. 

 

4.2.3 Combination of more tubes 

Not only can a pair of rigidly foldable tubes be combined to create new rigidly 

foldable tubes, but also more tubes can be united using both the summation and 

subtraction approaches. An example is shown in Fig. 4-6, which involves three tubes. 
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First, Tubes 1 and 2 are summed, and Tube 3 is subtracted from the combined tube, 

which results in a new tube with a seven-side polygonal cross-section (see Fig. 4-6(a)). 

Similar to Goldberg’s method, we can subtract the summation of Tubes 1 and 2 from 

Tube 3 to produce a clipped tube. The process is shown in Fig. 4-6(b). All the new tubes 

exhibit rigid foldability, as demonstrated by the physical models. 

 

 

(a) 

 

(b) 

Fig. 4-5 Subtraction of two tubes: (a) schematic of the subtraction method in which Tube 2 

with a kite cross-section is nested inside a corner of Tube 1 with a parallelogram cross-section, and 

the expansion sequence of a tube model from its flat folding state I and (b) schematic of the 

subtraction method in which Tube 2 with a parallelogram cross-section is nested inside Tube 1 

with a kite cross-section, and the expansion sequence of a tube model from its flat folding state I 

to its second flat folding state V. 
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(a) 

 

(b) 

Fig. 4-6 Combination of three tubes: (a) schematic showing the combination of three tubes, 

and the folding sequence of a model tube and (b) schematic showing a different way of combining 

three tubes, and the folding sequence of a model tube. 

 

4.3 Tubes formed by adding transition parts 

Transition parts can be added to a rigidly foldable origami tube to produce a new 

rigidly foldable tube known as a shifted tube. 

In this section, how a pair of transition parts can be added to a rigidly foldable tube 

to produce a new tube termed as a shifted tube is demonstrated. Figure 4-7(a) shows a 

rigidly foldable origami tube with a kite cross-section. This tube is subsequently 

separated into two parts: blue P1 and yellow P2. A pair of identical transition parts 

shown in Fig. 4-7(b), T1, is to be added between these parts. All the facets in T1 have 

a parallelogram shape. The new tube with the added transition parts is illustrated in Fig. 

4-7(c). Next, the conditions under which the rigid foldability of the resultant tube can 

be achieved is identified. Since a tube can be considered as an assembly of spherical 4R 

linkages at each vertex, prior to adding the transition parts, at the vertex A surrounded 
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by twist angles 12 , 23 , 34  and 41 ,  

21 32 43 14 3,=Q Q Q Q I                       (4-12) 

where 

( 1) ( 1)

( 1) ( 1) ( 1)

( 1) ( 1)

cos sin cos sin sin

sin cos cos cos sin .

0 sin cos

i i i i i i i

i i i i i i i i i

i i i i

    

    

 

+ +

+ + +

+ +

 −
 

= − 
 
 

Q           (4-13) 

Merging Eqns. (4-12) and (4-13) yields 

      12 41 12 41 1 23 34 23 34 3cos cos sin sin cos cos cos sin sin cos .         − = −   

(4-14) 

Once a pair of transition parts T1 has been added, vertex A has two parts: A'  with 

twist angles 12  , 1  , 2   and 41  , and A''   with twist angles 1π −  , 23  , 34  , 

2π − . According to Eqns. (4-12) and (4-13),  

12 41 12 41 1 1 2 1 2cos cos sin sin cos cos cos sin sin cos          − = − (4-15a) 

and 

1 2 1 2

23 34 23 34 3

cos(π )cos(π ) sin(π )sin(π )cos

cos cos sin sin cos

    

    

− − − − − =

−
   (4-15b) 

Merging Eqns. (4-15a) and (4-15b) yields Eqn. (4-14). The same conclusion can be 

drawn for the two vertices on the back of Fig. 4-7(b) where the other T1 is added. This 

finding demonstrates that adding a pair of identical transition parts formed by 

parallelogram facets to an existing tube does not change the relationship among the 

angles of the original tube. Hence, it can be concluded that the new shifted tube is still 

rigidly foldable with one-DOF. 

 

 

(a)                    (b)                      (c) 

Fig. 4-7 Formation of a shifted tube: (a) original tube, (b) transition part, and (c) shifted tube 

after insertion of the transition pair. 

 

The addition of a transition pair may alter the foldability of the tube. In general, if 
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1 2  , the resultant cross-sections of the shifted tube are no longer planer, and thus, 

the shifted tube is not flat-foldable even when the original tube is flat-foldable. Figure 

4-8(a) shows an example of this case. However, if the original tube is flat-foldable, and 

for the added parts 1 2 = , the shifted tube remains flat-foldable with a planar cross-

section. An example of this case is shown in Fig. 4-8(b). 

 

 

(a) 

 

(b) 

Fig. 4-8 Two shifted tubes: (a) Folding sequence of a shifted tube, with IV showing the side 

view of the tube in configuration II, demonstrating a nonplanar cross-section and (b) folding 

sequence of another shifted tube. The tube is flat-foldable and has a planar cross-section, as 

demonstrated by IV: side view of the tube in configuration II. 

 

Using this method, more than a pair of transition parts can be added to the original 

tube without changing its DOF. Each pair must contain two identical parts with 

parallelogram facets. Figure 4-9 shows the rigid folding sequence of a physical model 

in which two transition pairs, labelled T1 and T2, are added to a kite tube. Moreover, a 

pair of transition parts can be added to different locations of the same original tube. 

Two physical models shown in Figs. 4-10(a) and (b) are used to illustrate this aspect. In 

the case shown in Fig. 4-10(a), the original tube with a six-sided polygonal cross-

section is divided into a four-sided left part and two-sided right part before inserting a 

pair of transition parts, T1, to form a shifted tube. In the case shown in Fig. 4-10(b), the 

same six-sided polygonal cross-section of the original tube is partitioned into a three-

sided left part and three-sided right part instead, and the transition pair T1 is added. The 

resultant tubes in Figs. 4-10(a) and 4-10(b) are considerably different but rigidly 

foldable. 
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Fig. 4-9 Folding sequence of a shifted tube with two transition pairs T1 and T2 added 

 

 

(a) 

 

(b) 

Fig. 4-10 Two shifted tubes: (a) Folding sequence of a shifted tube with transition pair T1 

added. IV shows the side view of configuration II and (b) folding sequence of the other shifted 

tube with transition pair T1 added at a location different from that in (a). IV shows the side view 

of configuration II. 

4.4 Multi-layered straight and curved tubes 

Multi-layered tubes can be obtained by stacking a single-layered tube, as discussed 

in Chapters 4.2 and 4.3, with parallel or nonparallel cross-sections to form a straight 

tube or curved tube, respectively. In the latter case, certain parallelogram facets are 

altered to trapezoid facets. 

4.4.1 Multi-layered tubes 

Stacking the same single-layered tubes outlined in Chapter 4.3 yields a long multi-

layered tube, which has a straight profile, in general. Several examples of such tubes 

are shown in Fig. 4-11. The single-layered tubes can be combined or shifted tubes. 
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(a) 

 

(b) 

Fig. 4-11 Folding sequences of multi-layered straight tubes formed by (a) combination and 

(b) shifting. 

 

4.4.2 Curved tubes with combined cross-sections 

A straight tube with a planar cross-section can be transformed to a curved one by 

plane slicing a portion of the tube. Figure 4-12 shows two single-layered curved tubes 

created using this method. In the case of the first tube, shown on the left in Fig 4-12(a), 

the top and bottom slicing planes have an inclination angle 
T1  and

T1 , respectively. 

Consequently, the front and back parallelogram facets become trapezoid facets. If the 

same approach is applied to the second tube, Tube 2, with slicing plane angles T2  and
T2 , the two tubes can be combined in the same way as those considered in Chapter 4.2. 

However, certain additional conditions must be satisfied: 

T1 T2 T1 T2, ,   = =                    (4-16a) 

T1 T2 T1 T2, ,   = =                     (4-16b) 

and the side lengths of the facets on the commonly shared side must match. After 

removing the shared facets, a combined curved tube with six sides can be obtained (see 

the left side of Fig. 4-12(b)). Moreover, if 

T1 T2 T1 T2π and π,   + = + =                 (4-17) 

the common creases of the combined tube can be removed, and the two facets on either 
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side can be bonded to a single facet. The resulting tube has five sides (see the right side 

of Fig. 4-12(b)). 

 

 

(a) 

 

(b) 

     

(c) 

Fig. 4-12 Curved tube constructed by summation. (a) Two tubes (top) and their side view 

(bottom), (b) combination of the tubes before and after the removal of the common side, and (c) a 

multi-layered curved tube that deploys from the flat folding state I. 

 

By stacking multiple such curved tubes, a multi-layered curved tube can be 

obtained. Figure 4-12(c) shows the folding sequence of a curved combined tube. 
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4.4.3 Curved shifted tubes 

Transition parts can be added to a curved tube while retaining its rigid foldability. 

Figure 4-13(a) shows a portion of a rigidly foldable curved tube prior to the addition of 

any transition part. The dihedral angles of the adjacent facets between two neighbouring 

layers are denoted as 
L  and 

R ; according to the spherical cosine formula,  

12 41 12 41 L L

23 34 23 34 R

cos cos sin sin cos cos

cos cos sin sin cos ,

     

    

+ = =

+
       (4-18) 

where   is the angle between the ridgelines on the left side of the tube. Next, a pair 

of transition parts made using rectangular facets are added to the tube. Only the front 

part of the transition pair is shown in Fig. 4-13(b), and ( )1 2 π / 2 = = . Geometrically, 

for the left side of the transition part,  

12 41 12 41 L L

1 2 1 2 T T

cos cos sin sin cos cos

cos cos sin sin cos cos .

     

     

+ = =

+ =
         (4-19a) 

For the right side of the transition part,  

 T 23 34 23 34 Rcos cos cos sin sin cos .     = +          (4-19b) 

 

(a) (b) 

 

(c) 

Fig. 4-13 Multi-layered shifted tube: (a) portion of a curved multi-layered tube; (b) addition of a 

transition part and (c) folding sequence of a model tube with an added transition pair 
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Comparing Eqn. (4-19a) with (4-19b) yields the same equation as Eqn. (4-18). Hence, 

the relationship between two dihedral angles 
L  and 

R  is maintained despite the 

insertion of a transition part made of rectangular facets. 

This derivation can also be applied to other facets in the transition part. 

Consequently, the tube with multiple layers is rigidly foldable when a pair of transition 

parts consisting of only rectangular facets are appended. A pair is required because in 

the case, P1 and P2 are only translated. 

It remains to be proved whether shifted curved tubes can be produced by adding a 

transition pair with general parallelogram or trapezoid facets. Figure 4-13(c) shows a 

curved tube constructed in this manner. The original tube prior to the addition of the 

transition parts is flat-foldable, and it remains flat-foldable after the addition of a pair 

of transition parts made of rectangular facets. 

4.5 Conclusions 

In this chapter, inspired by Goldberg 5R and 6R linkages, two methods to construct 

origami tubes using rigid origami tubes are presented. First, several existing tubes are 

conjoined by merging common sides or corners, resulting in a family of tubes with 

asymmetric polygonal cross-sections, namely, the combined tubes, which can be 

constructed by the summation or subtraction of different origami tubes. Next, the 

transition parts are added into an existing tube, thereby forming shifted tubes in which 

the crease lines between the neighbouring layers form nonplanar polygons. The 

combined and shifted tubes are proved to be rigid-foldable and one-DOF according to 

the kinematical theories of spherical 4R linkages. Moreover, these tubes may have an 

asymmetric planar or nonplanar cross-section. Furthermore, the approach is extended 

to build multi-layered straight and curved tubes while maintaining the rigid foldability. 

The proposed approach can be readily utilized to build new structures for engineering 

applications and offers considerable flexibility to designers in fabricating rigidly 

foldable tubes to create metamaterials, origami robots, and other devices that require 

large shape variations. The rigid foldability of these tubes ensures that no facet 

distortion occurs during the shape change. 
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 Thick-panel origami tubes 

5.1 Introduction 

To apply the origami technology to deployable structures where the thickness 

cannot be disregarded, various methods have been suggested. However, the method of 

folding rigid origami tubes with thick panels has not been sufficiently investigated. As 

described in this chapter, a method is developed to fold rigid origami tubes with thick 

panels, which can reproduce motions identical to those achievable using zero-thickness 

origami. Moreover, the thick-panel form and zero-thickness form of an origami tube 

have similar contours. 

The layout of this chapter is as follows: Chapter 5.2 induces thick-panel origami 

tubes with line-symmetric cross-sections, Chapter 5.3 describes planar-symmetric 

origami tubes, Chapter 5.4 presents multi-layered origami tubes with thick panels, and 

Chapter 5.5 presents the concluding remarks. 

5.2 Line-symmetric tubes 

Tubes with parallelogram cross-sections are a type of origami tube with line-

symmetric cross-sections. The thick-panel folding technologies of such tubes have been 

established [80]. However, other line-symmetric rigid origami tubes also exist, such as 

tubes with hexagonal and octagonal cross-sections, whose thick-panel forms have not 

been presented yet. A single unit of a zero-thickness origami tube with a line-symmetric 

hexagonal cross-section is shown in Fig. 5-1, where   and   are considered as the 

geometrical parameters of the tube. The tube is constructed through parallelogram 

facets and has six vertexes, A to F, which are divided into three types. The lengths of 

the sides of the cross-section are 
AB DE BC EF CD FA, ,L L L L L L= = = , based on which, the 

relationships among the lengths of the sides in the thick-panel form can be obtained, 

since the two forms have similar contours. 

The identical vertexes A and D, which contain three mountain crease lines and one 

valley crease lines, are Miura-ori vertexes. The summation of the sector angles at each 

Miura-ori vertex equals 2π  . Vertexes B and C with four mountain crease lines are 

convex eggbox-like vertexes. Vertexes E and F with two mountain crease lines and two 

valley crease lines are concave eggbox-like vertexes. The assignment of the sector 

angles and mountain-valley crease lines is shown in Fig. 5-1 in which the mountain and 

valley crease lines are represented by solid and dashed lines, respectively. For different 

types of vertexes, the thick-panel forms are different. 

A Miura-ori vertex, vertex A, and its thick-panel form are shown in Fig. 5-2(a) and 

(b), respectively, in which the coordinate frames are established according to the D-H 

notation. The method presented in [80] is used to obtain the form shown in Fig. 5-2(b) 

in which a Bennett linkage is used to construct the thick-panel form of vertex A, where 
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o45 =  and o90 = . In the zero-thickness form,  

12 41 23 34π , ,     = = − = =                  (5-1a) 

1 1 2 2 3 3 4 4π , π , π , π .       = + = − = − = −            (5-1b) 

 

 

Fig. 5-1 Origami tube with a line-symmetric hexagonal cross-section, and the assignment of the 

sector angles and mountain-valley crease lines in different types of vertexes. 

 

Here, 
i  represents the dihedral angle between two adjacent panels. Substituting 

Eqns. (5-1a) and (5-1b) in Eqn. (1-7) yields 

1 3 2 4, ,   = =                         (5-2a) 

2 1tan( / 2) / tan( / 2) cos .  =                    (5-2b) 

In the thick-panel form, the following equations are satisfied: 

12 23 34 41, π , , π ,Be Be Be Be       = = − = = −                (5-3a) 

12 23 34 41 ,a a a a a= = = =                        (5-3b) 

1 1 2 2 3 3 4 4, π , 2π , π .Be Be Be Be Be Be Be Be       = = − = − = +           (5-3c) 

Substituting Eqns. (5-3a) to (5-3c) in Eqn. (1-7) yields 

1 3 2 4, ,Be Be Be Be   = =                         (5-4a) 

2 1tan( / 2) / tan( / 2) cos .Be Be  =                     (5-4b) 

Eqns. (5-2) and (5-4) show that the closure equations for the thick-panel form 
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match those for the zero-thickness form at Miura-ori vertexes A and D. 

 

 

(a)                                   (b) 

Fig. 5-2 Miura-ori vertex A: (a) vertex of zero-thickness origami and (b) its corresponding thick-

panel form. 

 

For convex eggbox-like vertexes B and C, I adopt spherical 4R linkages in their 

thick-panel form. Consider vertex B as an example; vertex B and its thick-panel form 

are shown in Fig. 5-3. The following equations can be obtained in both the zero-

thickness form and thick-panel form: 

12 41 23 34, ,     = = = =                  (5-5a) 

1 1 2 2 3 3 4 4π , π , π , π .       = − = − = − = −          (5-5b) 

Merging Eqn. (5-5) with Eqn. (1-7) yields 

2 4 , =                           (5-6a) 

2 2 2 2

1 3cos sin cos cos sin cos ,     + = +           (5-6b) 

2

1 2

1 2

2

1 2

sin cos cos sin sin cos cos

sin sin cos cos cos

sin sin sin sin cos cos cos 0.

      

    

      

+

−

+ + − =

       (5-6c) 

Eqns. (5-6a) to (5-6c) are satisfied in both the zero-thickness form and thick-panel 

form of vertex B. From Eqn. (5-6), it can be infered that the relationships among the 

dihedral angles in the thick-panel form and zero-thickness form at convex eggbox-like 

vertexes B and C are identical. 
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(a)                                  (b) 

Fig. 5-3 Convex eggbox-like vertex B: (a) vertex of zero-thickness origami and (b) its 

corresponding thick-panel form. 

 

For vertexes E and F, since the summation of the sector angles does not equal 2π , 

the spherical 4R linkages cannot be replaced by Bennett linkages [107]. The zero-

thickness form and thick-panel form of vertex F are shown in Fig. 5-4. In the zero-

thickness form of vertex F (see Fig. 5-4(a)), 

12 41 23 34, π ,     = = = = −                  (5-7a) 

1 1 2 2 3 3 4 4π , π , π , π .       = + = − = + = −           (5-7b) 

Substituting Eqn. (5-7) in Eqn. (1-8) yields 

2 4 , =                           (5-8a) 

2 2 2 2

1 3cos sin cos cos sin cos ,     + = +           (5-8b) 

2

2 3

2 3

2

2 3

sin sin cos cos sin cos cos

sin sin cos cos cos

sin sin sin sin cos cos cos 0.

      

    

      

−

−

+ − + =

       (5-8c) 

For the thick-panel form (see Fig. 5-4(b)), I use Bricard linkages to replace the 

spherical 4R linkages in the original zero-thickness form, and two links are added to 

form the plane-symmetric Bricard linkage in which 

12 61 23 34 45 56, 2 ,a a b a   = = = = = =                (5-9a) 

12 61

56 23

34 45

2π 0,

2π ,

2π π ,

Br Br

Br Br

Br Br

 

  

  

= − =

= − =

= − = −

                      (5-9b) 

1 2 4 6

3 5

0,

.

R R R R

R R R

= = = =

= − =
                      (5-9c) 
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The kinematics of the plane-symmetric Bricard linkages have been analysed in 

[120]. In a plane-symmetric Bricard linkage where the z1 and z4-axes are on the 

symmetric plane, the following equations should be satisfied: 

3 5 2 6, ,   = =                        (5-10a) 

12 61 1 23 56 2 34 45 3, , ,a a a a a a a a a= = = = = =             (5-10b) 

   

12 61

56 23

34 45

2π 0,

2π ,

2π π ,

Br Br

Br Br

Br Br

 

  

  

= − =

= − =

= − = −

                  (5-10c) 

2

3 3tan ( / 2) tan( / 2) 0.A B C + + =              (5-10d) 

Moreover, 

2

1 2 3 1 2 3 2

1 3 3 2 3 2 2

1 2 3 1 2 3

( )sin( ) tan ( / 2)

2sin ( sin sin( )) tan( / 2)

( )sin( ),

A a a a

R R

a a a

   

    

  

= − + − +

+ + −

+ + − + −

           (5-10e) 

2

3 2 1 3 1 2 2

1 3 1 3

1 3 1 3 2

3 2 1 3 1 2

2sin ( sin sin( )) tan ( / 2)

2(( )sin( )

( )sin( )) tan( / 2)

2sin ( sin sin( ))

B R R

a a

a a

R R

    

 

  

   

= + −

+ − −

− + +

− + +

        (5-10f) 

 

2

1 2 3 1 2 3 2

1 3 3 2 3 2 2

1 2 3 1 2 3

( )sin( ) tan ( / 2)

2sin ( sin sin( )) tan( / 2)

( )sin( ),

C a a a

R R

a a a

   

    

  

= − − − −

+ + +

+ + + + +

           (5-10g) 

and 

1 3 2 3 2 2 3 3 2 2

1 2 3 3 1 2 3 2 1 2 3

1 2 3 2 3 1 3 2 3

tan( / 2) (sin (cos sin cos sin cos ) cos sin sin )

/(sin sin sin cos cos sin cos cos sin cos cos

cos cos sin cos cos cos sin sin sin ),

         

          

        

= + +

− −

− +

    

 (5-10h) 

4 1 2 3 3 1 2 2 1 2

3 1 2 3 1 2 2 3 1 2 3

3 1 2 2 1 2

tan( / 2) (sin sin cos sin (sin cos cos cos sin ))

/(cos (sin sin sin sin cos cos cos cos sin cos )

sin (sin sin cos cos cos )).

         

          

     

= + +

− −

+ −

   

               (5-10i) 

Substituting Eqn. (5-9) in (5-10) yields 

3 5 2 6, ,Br Br Br Br   = =                        (5-11a) 

2

3 3tan ( / 2) tan( / 2) 0.Br BrA B C + + =                  (5-11b) 
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In this case, 

2

2sin( ) tan ( / 2) sin( ),BrA b b    = − − −            (5-12a) 

2

2 22 sin sin tan ( / 2) 4 sin tan( / 2) 2 sin sin ,Br BrB R b R      = − +  (5-12b) 

2

2(4 )sin( ) tan ( / 2) 4 sin( ),BrC a b a    = − + + +          (5-12c) 

and 

2

3tan( / 2) ( 4 ) / (2 ),Br B B AC A = −  −               (5-13a) 

1 2 3 2 3 2

2 3 2 2 3

tan( / 2) (sin (cos sin cos sin cos ) cos sin sin )

/(sin sin sin cos sin cos sin cos cos cos ),

Br Br Br Br Br Br

Br Br Br Br Br

         

         

= + +

− −
   

(5-13b) 

4 3 3tan( / 2) sin sin / (cos sin cos sin cos ).Br Br Br       = −     (5-13c) 

According to the spherical cosine formula,  

2 2 2 2

1 3cos sin cos cos sin cos .Br Br     + = +           (5-14) 

The relationships among the dihedral angles and twist angles are as follows: 

  2 3 3 4 4 5, 2π , .Br Br Br Br Br Br     = = − =                   (5-15) 

Substituting Eqn. (5-15) in Eqns. (5-13) yields 

2 4 ,Br Br =                         (5-16a) 

2

2 3

2 3

2

2 3

sin sin cos cos sin cos cos

sin sin cos cos cos

sin sin sin sin cos cos cos 0.

Br Br

Br Br

Br Br

      

    

      

−

−

+ − + =

    (5-16b) 

According to Eqns. (5-14) and (5-16), the closure equations for the thick-panel 

form match those for the zero-thickness form at concave eggbox-like vertexes E and F, 

as illustrated in Fig. 5-4(c). 

It can be concluded that in the thick-panel form, the closure equations at each type 

of vertex match those for the zero-thickness form, which indicates that the thick-panel 

form of the origami tube with a line-symmetric hexagonal cross-section can reproduce 

the motions achievable using the original zero-thickness form. Figure 5-5 shows the 

deployment process of a unit of the origami tube with a line-symmetric hexagonal 

cross-section in which 
o45 =  and o90 = . 

Moreover, thick-panel origami tubes whose cross-sections are line-symmetric 

concave polygons can be obtained. Figure 5-6 shows a single unit of a tube with 

concave hexagonal cross-section as well as the assignment of sector angles and 

mountain-valley crease lines at each vertex. In contrast to the tube shown in Fig. 5-1, 

this tube does not have any convex and concave eggbox-like vertexes. 

javascript:;
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(a)                                 (b) 

 

(c) 

Fig. 5-4 Concave eggbox-like vertex F: (a) vertex of zero-thickness origami; (b) its corresponding 

thick-panel form and (c) the relationships among the dihedral angles. 

 

The identical Miura-ori vertexes A and D have one mountain crease lines and three 

valley crease lines. Vertexes B, C, E and F have three mountain crease lines and one 

valley crease lines and are known as Miura-like vertexes since the summation of the 

sector angles does not equal 2π . 

It has been proved that for the Miura-ori vertexes A and D, the closure equations 

match those for the zero-thickness form. The link lengths of the Bennett linkages are a. 

For the thick-panel form of vertexes B, C, E and F, Bricard linkages are used instead of 

the original spherical 4R linkages. 

Two links are added to one valley crease line in the thick-panel form of vertexes 

B and C. Considering vertex B as an example, the zero-thickness form and its 

corresponding thick-panel form are illustrated in Fig. 5-7, in which 
o75 =   and 
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o90 = . 

 

 

Fig. 5-5  Deployment process of a single unit of the thick-panel form (top) and its corresponding 

zero-thickness form (bottom) of an origami tube with a line-symmetric hexagonal cross-section. 

 

In the zero-thickness form (Fig. 5-7(a)),  

12 41 23 34, π ,     = = = = −                  (5-17a) 

1 1 2 2 3 3 4 4π , π , π , π .       = + = − = − = −           (5-17b) 

Substituting Eqn. (5-17) in Eqn. (1-7) yields  

2 4 , =                           (5-18a) 

2 2 2 2

1 3cos sin cos cos sin cos ,     + = +           (5-18b) 

2

2 3

2 3

2

2 3

sin sin cos cos sin cos cos

sin sin cos cos cos

sin sin sin sin cos cos cos 0,

      

    

      

−

−

− − + =

       (5-18c) 

For the thick-panel form (Fig. 5-7(b)), the following equations can be obtained: 

12 61 23 56 34 45, / 2, ,a a b a a a a a a= = = = = =                (5-19a) 

12 61

56 23

45 34

2π 0,

2π ,

2π π ,

Br Br

Br Br

Br Br

 

  

  

= − =

= − =

= − = −

                      (5-19b) 
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Fig. 5-6 Origami tube with line-symmetric concave cross-sections, and the assignment of the 

sector angles in different types of vertexes. 

 

1 2 4 6

3 5

0,

,

R R R R

R R R

= = = =

= − =
                     (5-19c) 

2 3 3 4 4 5π, , π.Br Br Br Br Br Br     = − = = −               (5-19d) 

Merging Eqn. (5-19) with Eqn. (5-10) yields 

2 4 ,Br Br =                         (5-20a) 

2

2 3

2 3

2

2 3

sin sin cos cos sin cos cos

sin sin cos cos cos

sin sin sin sin cos cos cos 0,

Br Br

Br Br

Br Br

      

    

      

−

−

− − + =

    (5-20b) 

According to the spherical cosine formula,  

2 2 2 2

1 3cos sin cos cos sin cos ,Br Br     + = +           (5-21) 

According to Eqns. (5-20) and (5-21), the closure equations for the thick-panel 

form match those for the zero-thickness form at Miura-like vertexes B and C, as 

illustrated in Fig. 5-7(c). 

For Miura-like vertexes E and F, two links are added to one mountain crease line 

in the thick-panel form. The zero-thickness form and thick-panel form of vertex F, 

which is considered as an example, are illustrated in Fig. 5-8 wherein the axes in grey 

are the two axes that cannot be seen from the point of view. 
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(a)                                     (b) 

 

   (c) 

Fig. 5-7 Miura-like vertex B: (a) vertex of zero-thickness origami; (b) its corresponding thick-

panel form and (c) the relationships among the dihedral angles. 

 

For the zero-thickness form (Fig. 5-8(a)),  

12 41 23 34, ,     = = = =                  (5-22a) 

1 1 2 2 3 3 4 4π , π , π , π .       = − = − = + = −           (5-22b) 

Merging Eqns. (5-22) and (1-7) yields 

2 4 , =                           (5-23a) 

2 2 2 2

1 3cos sin cos cos sin cos ,     + = +           (5-23b) 

2

2 3

2 3

2

2 3

sin sin cos cos sin cos cos

sin sin cos cos cos

sin sin sin sin cos cos cos 0,

      

    

      

+

−

− + − =

       (5-23c) 
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(a)                                  (b) 

Fig. 5-8 Miura-like vertex F: (a) vertex of zero-thickness origami and (b) its corresponding thick-

panel form. 

 

In the thick-panel form (Fig. 5-8(b)), the following equations are satisfied: 

12 61 23 56 34 45, / 2, ,a a c a a a a a a= = = = = =                (5-24a) 

12 61

56 23

34 45

2π 0,

2π ,

2π ,

Br Br

Br Br

Br Br

 

  

  

= − =

= − =

= − =

                       (5-24b) 

1 2 3 4 5 6 0,R R R R R R= = = = = =                    (5-24c) 

2 3 3 4 4 5, , .Br Br Br Br Br Br     = = =                    (5-24d) 

According to the spherical cosine formula,  

2 2 2 2

1 3cos sin cos cos sin cos ,Br Br     + = +           (5-25) 

Substituting Eqn. (5-24) in Eqn. (5-10) yields 

2 4 ,Br Br =                           (5-26a) 

2

2 3

2 3

2

2 3

sin sin cos cos sin cos cos

sin sin cos cos cos

sin sin sin sin cos cos cos 0,

Br Br

Br Br

Br Br

      

    

      

+

−

− + − =

        (5-26b) 

Equations (5-25) and (5-26), which match Eqn. (5-23), indicate that the motion of 

the thick-panel form of vertex F matches that of the zero-thickness form. Since the 

thick-panel form of vertex E is similar to that of vertex F, at both Miura-like vertexes E 

and F, the motion in the thick-panel form matches that of the zero-thickness form. 

In the concave tube, the motions of each vertex match those of the zero-thickness 

form; hence, this tube can reproduce the motions achievable using the original zero-

thickness form. The deployment process of a thick-panel concave line-symmetric tube 
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along with its zero-thickness form are illustrated in Fig. 5-9, where 
o75 =   and 

o90 = . 

 

 

Fig. 5-9 Folding process of a thick-panel tube with concave hexagonal cross-sections (top) and its 

zero-thickness form (bottom). 

 

5.3 Planer symmetric tubes 

Thick-panel origami tubes with planar-symmetric hexagonal cross-sections can be 

constructed using a method similar to that described in Chapter 5.2. Figure 5-10 shows 

an origami tube with a planar-symmetric convex hexagonal cross-section, along with 

the assignment of the sector angles and mountain-valley crease lines at each vertex. The 

relationships among the lengths of the sides of the cross-section are

AB AF BC FE CD ED, ,L L L L L L= = = . 

For a line-symmetric origami tube, the tube has a thick-panel form only when the two 

Miura-ori vertexes are identical. 

To fold a thick-panel origami tube with planar-symmetric hexagonal cross-

sections, the two Miura-ori vertexes of the original tube should be identical, and the 

lengths of the tube should satisfy the following equation: 

AB BC CDcos + cos = cosL L L                      (5-27) 

The tube has three types of vertexes, identical Miura-ori vertexes A and D, convex 

eggbox-like vertexes B and C, and concave eggbox-like vertexes E and F. This tube can 
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be constructed using the method described in Chapter 5.2, and the motion of the thick-

panel form matches that of the original zero-thickness form. The deployment process 

of both the thick-panel form and zero-thickness form of a tube with a planar-symmetric 

hexagonal cross-section is illustrated in Fig. 5-11 

An origami tube with concave hexagonal cross-sections and the assignment of the 

sector angles and mountain-valley crease lines are shown in Fig. 5-12. To obtain the 

corresponding thick-panel form, Eqn. (5-27) is satisfied in the tube. In this tube, 

vertexes A and D are identical Miura-ori vertexes, vertex F is a concave eggbox-like 

vertex, vertexes C and E are Miura-like vertexes, and vertex B is a convex eggbox-like 

vertex. The methods of constructing the thick-panel forms of vertexes A, C, D, E and F  

are similar to those mentioned previously in this chapter, owing to which, the thick-

panel forms exhibit equivalent motions as those achievable using the zero-thickness 

forms. However, the construction method of the thick-panel form at vertex B is different 

from the method described in Chapter 5.2. 

The zero-thickness form and thick-panel form of vertex B are illustrated in Fig. 5-

13. Though vertex B is a convex eggbox-like vertex, it is connected to vertex E, at 

which two links are added to the mountain crease line to construct a Bricard linkage. 

Consequently, a spherical 4R linkage cannot be used to establish the thick-panel form 

of vertex B. Hence, a Bricard linkage is adopted. The coordinate frames are established 

according to the D-H notation shown in Fig. 5-13, where 
o75 =  and o105 = . In 

the zero-thickness form (see Fig. 5-13(a)),  

12 41 23 34, ,     = = = =                  (5-28a) 

1 1 2 2 3 3 4 4π , π , π , π .       = − = − = − = −          (5-28b) 

Merging Eqn. (5-28) with Eqn. (1-7) yields 

2 4 , =                           (5-29a) 

2 2 2 2

1 3cos sin cos cos sin cos ,     + = +           (5-29b) 

     

2

3 2

3 2

2

3 2

sin cos cos sin sin cos cos

sin sin cos cos cos

sin sin sin sin cos cos cos 0.

      

    

      

+

−

+ + − =

     (5-29c) 

 

In the thick-panel form, which is shown in Fig. 5-13(b), links 12 and 61 are the 

two added links, and  

12 61 23 56 34 45, / 2, / 2,a a c a a a a a a= = = = = =            (5-30a) 

12 61

56 23

45 34

2π 0,

2π ,

2π ,

Br Br

Br Br

Br Br

 

  

  

= − =

= − =

= − =

                       (5-30b) 
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1 3 4 5 2 60,R R R R R R= = = = = −                   (5-30c) 

2 3 3 4 4 5π, , π.Br Br Br Br Br Br     = − = = −                 (5-30d) 

 

 

Fig. 5-10 Origami tube with planar-symmetric hexagonal cross-sections, and the assignment of the 

sector angles and mountain-valley crease lines in different types of vertexes. 

 

According to the spherical cosine formula,  

2 2 2 2

1 3cos sin cos cos sin cos ,Br Br     + = +           (5-31) 

Substituting Eqn. (5-24) in Eqn. (5-10) yields 

2 4 ,Br Br =                         (5-32a) 

2

3 2

3 2

2

2 3

sin sin cos cos sin cos cos

sin sin cos cos cos

sin sin sin sin cos cos cos 0.

Br Br

Br Br

Br Br

      

    

      

+

−

+ + − =

        (5-32b) 

It can be noted that Eqns. (5-31) and (5-32) match Eqn. (5-29), which indicates 

that the motions of the two forms of vertex B also match, as illustrated in Fig. 5-13(c). 

The deployment process of a concave tube with planar-symmetric hexagonal cross-

sections is shown in Fig. 5-14, where o75 =  and 
o105 = . 

 



Chapter 5 Thick-panel origami tubes 

 

 89 

 

Fig. 5-11 Thick-panel form of an origami tube with planar-symmetric hexagonal cross-sections 

(top) and its zero-thickness form (bottom). 

 

 

Fig. 5-12 Origami tube with concave planar-symmetric hexagonal cross-sections, and the 

assignment of sector angles and mountain-valley crease lines in different types of vertexes. 
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(a)                                      (b) 

 

 

    (c) 

Fig. 5-13 Convex eggbos-like vertex B: (a) vertex of zero-thickness origami; (b) its corresponding 

thick-panel form and (c) the relationships among the dihedral angles. 

 

5.4 Discussion of thick-panel origami tubes 

The method of constructing the thick-panel form of each type of vertex in an 

origami tube has been introduced. Next, the thick-panel form of multi-layered and 

curved tubes will be examined. 

5.4.1 Multi-layered tubes 

The tubes described in Chapters 5.2 and 5.3 can be repeated in the axial direction 

to construct multi-layered thick-panel origami tubes. 

To construct the Bricard linkages in the multi-layered thick-panel origami tube, 

extra links must be added. To facilitate the manufacturing of the thick-panel tube, the 
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simplification of the thick-panel form is considered. In the connection between two 

concave eggbox-like vertexes, the extra links added to the common valley crease lines 

can be removed. As illustrated in Fig. 5-15(a), vertexes E and F are two connected 

concave eggbox-like vertexes in the tube shown in Fig. 5-10, and Fig. 5-15(b) shows 

the process of removing the extra links. After removing the two links, the connected 

two Bricard linkages become a single Bricard linkage in which 

12 61 23 56 EF 34 45, cos(π ), ,a a a a L a a= = = − =           (5-33a) 

61 12

56 23

34 45

2π π ,

2π 0,

2π π ,

Br Br

Br Br

Br Br

  

 

  

= − = −

= − =

= − = −

                    (5-33b) 

1 2 4 6 3 50, .R R R R R R= = = = = −                 (5-33c) 

 

 

Fig. 5-14 Thick-panel form of an origami tube with concave planar-symmetric hexagonal cross-

sections (top) and its zero-thickness form (bottom). 

 

Since the thick-panel form of the origami tube has no bifurcation, removing the 

two extra links does not change the motion of the thick-panel origami tube. The 

deployment process of two multi-layered tubes with planar-symmetric hexagonal cross-

sections are shown in Fig. 5-16 in which the extra links between the concave eggbox-

like vertexes are removed. 
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(a)                                         (b) 

Fig. 5-15 Construction of two connected concave eggbox-like vertexes: (a) zero-thickness form 

and (b) thick-panel form. 

 

 

(a) 

 

(b) 

Fig. 5-16 Deployment process of multi-layered thick-panel origami tubes: (a) tube with convex 

cross-sections and (b) tube with concave cross-sections. 

5.4.2 Curved tubes 

The construction of a curved tube is described in Chapters 1 and 4. Curved tubes 

also have thick-panel forms. The construction of a curved tube is described in Chapters 

1 and 4. It can be inferred that a curved tube also has Miura-ori vertexes, eggbox-like 
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vertexes and Miura-like vertexes, and the method described in this chapter can be used 

to construct the thick-panel forms of these vertexes. If a curved tube with hexagonal 

cross-sections has two identical Miura-ori vertexes, it can be changed to a thick-panel 

form. 

Figure 5-17 illustrates a curved tube with convex line-symmetric hexagonal cross-

sections and the assignment of its sector angles and mountain-valley crease lines. 

Vertexes A and D are identical Miura-ori vertexes, vertexes B and C are convex eggbox-

like vertexes and vertexes E and F are concave eggbox-like vertexes. The methods of 

constructing the thick-panel forms of vertexes A, B, C and D have been introduced in 

Chapters 5.2 and 5.3. 

 

 

Fig. 5-17 Curved tube with convex line-symmetric hexagonal cross-sections, and the assignment 

of the sector angles and mountain-valley crease lines in different types of vertexes. 

 

The zero-thickness form and thick-panel form of vertexes E and F are illustrated 

in Figs. 5-18(a) and (b). According to Chapter 5.4.1, the added links in the Bricard 

linkages of the thick-panel form can be removed, and vertexes E and F can be merged 

to one Bricard linkage in which the following equations are satisfied: 

12 61 34 45

23 56 EF

2 ,

cos(π ),

a a a

L

 

  

= = = =

= = −
                  (5-34a) 
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61 12

56 23

34 45

2π π ,

2π 0,

2π π ,

Br Br

Br Br

Br Br

  

 

  

= − = −

= − =

= − = −

                    (5-34b) 

1 4 3 5 2 60, , .R R R R R R= = = − = −                 (5-34c) 

where a is the link length in Bennett linkages A and D. Since the added links are 

removed, the angle    has an arbitrary value, and in Fig. 5-18, 2π = −  . The 

deployment process of a multi-layered curved tube with line-symmetric cross-sections 

is shown in Fig. 5-19. 

Figure 5-20 shows a curved tube with convex planar-symmetric hexagonal cross-

sections and the assignment of its sector angles and mountain-valley crease lines. 

Vertexes A and D are identical Miura-ori vertexes, vertexes B and C are convex eggbox-

like vertexes and vertexes E and F are concave eggbox-like vertexes. Similarly, the 

thick-panel forms of vertexes A to F can be obtained using the aforementioned method. 

Moreover, the deployment process of a multi-layered curved tube with planar-

symmetric cross-sections is illustrated in Fig. 5-21. 

 

 

(a)                                      (b) 

Fig. 5-18 Construction of two merged vertexes in a curved origami tube: (a) zero-thickness form 

and (b) thick-panel form. 
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Fig. 5-19 Deployment process of a curved tube with line-symmetric cross-sections. 

 

 

Fig. 5-20 Curved tube with convex planar-symmetric hexagonal cross-sections, and the 

assignment of sector angles and mountain-valley crease lines in different types of vertexes. 

 

 

Fig. 5-21 Deployment process of a curved tube with planar-symmetric cross-sections. 
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5.5 Conclusions 

This chapter describes the method of constructing a thick-panel origami tube with 

symmetric hexagonal cross-sections. The zero-thickness forms of these tubes are one-

DOF and constructed using parallelogram facets. The thick-panel forms and zero- 

thickness forms of these origami tubes have equivalent motions. The vertexes of these 

tubes can be divided into four types, specifically, the Miura-ori vertexes, convex 

eggbox-vertexes, concave eggbox-like vertexes and Miura-like vertexes. The thick-

panel form of origami tubes with line-symmetric and planar-symmetric cross-sections 

were examined. The linkages at each type of vertex were analysed. The tubes were 

repeated in the axial direction to form multi-layered tubes. The extra links between two 

concave eggbox-like vertexes could be removed to simplify the thick-panel tubes. 

Moreover, multi-layered curved thick-panel tubes were developed. These findings can 

help apply origami technology to deployable structures in which the thickness cannot 

be disregarded. 
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Chapter 6 Conclusions and future work 

6.1 Conclusions 

In this thesis, I examine networks of spherical linkages based on rigid origami and 

their applications. First, I assemble origami-inspired units in series and present a helical 

structure with switchable and hierarchical chirality. Next, the planar network of 

spherical linkages, known as a morphing surface, is introduced. Finally, an extended 

family of rigid origami tubes, pertaining to the spatial networks of spherical 4R linkages, 

is presented. Moreover, the method of constructing thick-panel origami tubes is 

examined. Kinematic theory is used to analyse the aforementioned networks. This 

chapter concludes the whole thesis: 

(1) Helical structure with switchable and hierarchical chirality 

First, a twisted chiral origami unit inspired by the famous eggbox pattern is 

constructed. Owing to different geometries, the origami unit can exhibit a different 

chirality. By connecting identical chiral units, I obtain homogeneous chiral structures; 

an achiral structure is obtained when the number of two different units is identical. In 

addition, I analyse the relationship between different design parameters according to 

the geometry of the chiral units. Next, I demonstrate that the chirality of single chiral 

structures can be tuned by adjusting the design parameters. Three different chiral 

structures with different design parameters are established, and their chirality is studied. 

To realize chirality switching, the chiral structure is regarded as a network of spherical 

4R and planar 4R linkages, and the different chirality corresponds to different motion 

branches of the whole linkage network. This study represents the first attempt to realize 

chirality switching through mechanism bifurcation. Furthermore, I design 

hierarchically chiral structures with major and minor helices at the same macroscale in 

which the winding of the minor helix drives the unwinding of the major helix, resulting 

in two compact folding configurations. The proposed theory provides an opportunity to 

design multi-functional morphing structures in aerospace engineering applications. 

Moreover, due to their single degree-of-freedom characteristic, the proposed chiral 

structures can be applied to bionic robots with a simple control system. 

(2) Morphing surfaces 

First a one-DOF mobile assembly of spherical 4R linkages inspired by origami is 

presented and extended to a morphing surface, which is also one-DOF, by adding 

spherical 6R and 8R linkages. The morphing surface can transform through the motion 

of the spherical linkages. The shape of the above-mentioned morphing surface is 

determined by two shape-lines, and the shape of the morphing surface can be changed 

by tuning the two shape-lines. An example of the morphing surface that can transform 

from a parabolic cylinder to a paraboloid is presented, which may provide reference to 

develop flexible antennas in aerospace applications. 
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(3) Extended family of rigid origami tubes. 

Inspired by Goldberg 5R and 6R linkages, I demonstrate that the existing origami 

tubes can be regarded as building blocks to construct new tubes. First, I conjoin several 

existing tubes by merging common sides or corners, thereby obtaining a family of tube 

with asymmetric polygonal cross-sections, namely, combined tubes. Next, I add 

transition parts to an existing tube, obtaining shifted tubes in which the crease lines 

between the neighbouring layers form nonplanar polygons. Using the kinematics 

theories of spherical 4R linkages, the combined tubes and shifted tubes are proved to 

be one-DOF. Finally, the formation of multi-layered and curved tubes based on the 

above-mentioned tubes is discussed. 

(4) Thick-panel origami tubes 

By replacing the spherical 4R linkages in the original zero-thickness origami tubes 

with spatial linkages such as Bennett and Bricard linkages, I establish a method to 

construct thick-panel origami tubes. The vertexes in zero-thickness origami tubes are 

divided into four types, namely, Miura-ori vertexes, convex eggbox-like vertexes, 

concave eggbox-like vertexes and Miura-like vertexes. For different types of vertexes, 

the thick-panel forms are different. In the thick-panel form of the vertexes, different 

kinds of spatial overconstrained linkages are used to replace the original spherical 4R 

linkages in the zero-thickness form. I present thick-panel origami tubes with line-

symmetric and planar-symmetric hexagonal cross-sections, which can reproduce 

motions identical to those achievable using zero-thickness origami. Moreover, the 

characteristics of multi-layered tubes and curved tubes are discussed. 

6.2 Future work 

This dissertation systemically presents the theories of using the network of 

spherical linkages to construct deployable structures. To enhance the performance of 

the deployable structure, several potential research directions can be considered: 

(1) First, origami techniques can be effectively applied to design chiral or 

hierarchical structures and metamaterials. In addition to the eggbox pattern, many other 

typical patterns exist, several of which demonstrate chiral behaviour during folding. 

Moreover, tessellation plays a key role in the construction of hierarchical structures. In 

general, a rigid pattern is preferred to reliably implement deformation, and a non-rigid 

pattern is used to achieve bistability. The present approach can likely be applied to 

origami units for different objectives, not limited to chirality. 

(2) Second, the proposed approach of constructing combined and shifted tubes 

offers considerable flexibility to designers when fabricating rigidly foldable tubes to 

create metamaterials, origami robots, and other devices that require large shape 

variations. The rigid foldability of these tubes ensures that no facet distortion occurs 

during the shape change. I intend to identify more novel origami tubes in future research. 
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(3) Third, although the approaches of constructing thick-panel straight and curved 

tubes have been reported, methods to form thick-panel combined and shifted tubes have 

not been examined yet, and I intend to establish such methods in future work. The 

combined and shifted tubes are promising alternative options for designers when 

developing deployable structures; thus, it is necessary to obtain the thick-panel form of 

these two types of rigid origami tubes. 

(4) Finally, I intend to establish a method of constructing thick-panel origami tubes 

with more complicated cross-sections, for example, octagonal cross-sections. In this 

thesis, the method of constructing origami tubes with hexagonal cross-sections was 

considered. Nevertheless, other rigid origami tubes with more complicated cross-

sections exist, which can also be used in deployable structures. Consequently, it is 

desirable to derive the thick-panel forms of these tubes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Doctoral Dissertation of Tianjin University 

 100 

 

 

 

 

 

 

 

 

 

 

 



References 

 101 

References 

[1] 邓宗全. 空间折展机构设计 [M]. 哈尔滨：哈尔滨工业大学出版社, 2013. 

[2] Gruber P, Häuplik S, et al. Deployable structures for a human lunar base [J]. 

Acta Astronautica, 2007, 61(1–6): 484-495 

[3] Kiper G, Soylemez E. Deployable space structures [C]. International 

Conference on Recent Advances in Space Technologies. IEEE, 2009. 

[4] Thrall A P, Quaglia C P. Accordion shelters: A historical review of origami-like 

deployable shelters developed by the US military [J]. Engineering structures, 

2014, 59: 686-692 

[5] Cai J, Deng X, Xu Y, et al. Geometry and motion analysis of origami-based 

deployable shelter structures [J]. Journal of Structural Engineering, 2015, 

141(10):06015001 

[6] Ma J, You Z. Energy absorption of thin-walled square tubes with a prefolded 

origami pattern—part I: geometry and numerical simulation [J]. Journal of 

Applied Mechanics, 2014, 81(1):1003. 

[7] Zhang X, Cheng G, You Z, et al. Energy absorption of axially compressed thin-

walled square tubes with patterns [J]. Steel Construction, 2007, 45(9):737-746. 

[8] Chiang C H. On the classification of spherical four-bar linkages [J]. Mechanism 

& Machine Theory, 1984, 19(3):283-287. 

[9] Tsai L W. Robot analysis: the mechanics of serial and parallel manipulators [M]. 

John Wiley & Sons, 1999. 

[10] Chiang C H. Kinematics of spherical mechanisms [M]. Cambridge: Cambridge 

University Press, 1988. 

[11] Gogu G. Structural synthesis of parallel robots [M]. Dordrecht: Springer, 2008. 

[12] Dai J S. Geometrical foundations and screw algebra for mechanisms and 

robotics [M]. Beijing: Higher Education Press, ISBN: 9787040334838, 2014. 

[13] Ball R S. A treatise on the theory of screws [M]. Cambridge: Cambridge 

University Press, 1900. 

[14] Hunt K H. Kinematic geometry of mechanisms [M]. Clarendon Press, 1978. 

[15] Hartenberg R S, Denavit J. Kinematic synthesis of linkages [M]. McGraw-Hill, 

1964. 

[16] Hawkins T. Emergence of the Theory of Lie Groups [M]. Berlin, New York: 

Springer-Verlag, 2000.  



Doctoral Dissertation of Tianjin University 

 102 

[17] Murray R M, Li Z X, Sastry S S. A Mathematical Introduction to Robotic 

Manipulation [M]. Boca Raton: CRC Press, 1994. Doctoral Dissertation of 

Tianjin University 120  

[18] Hervé J M. The Lie group of rigid body displacements, a fundamental tool for 

mechanism design [J]. Mechanism and Machine Theory, 1999, 34(5): 719-730. 

[19] Hegedüs G, Schicho J, Schröcker H-P. Bond Theory and Closed 5R Linkages 

[M]//Jadran Lenarcic M H. Latest Advances in Robot Kinematics. Springer. 

2012: 221-228.  

[20] Hegedüs G, Schicho J, Schröcker H-P. Construction of Overconstrained 

Linkages by Factorization of Rational Motions [M]//Lenarcic J, Husty M. Latest 

Advances in Robot Kinematics. Springer. 2012: 213-220.  

[21] Hegedüs G, Schicho J, Schröcker H-P. The theory of bonds: A new method for 

the analysis of linkages [J]. Mechanism and Machine Theory, 2013, 70: 407-

424.  

[22] Nawratil G. Introducing the theory of bonds for Stewart Gough platforms with 

self-motions [J]. Journal of Mechanisms and Robotics, 2013, 6(1): 011004.  

[23] Hegedüs G, Li Z, Schicho J, et al. The theory of bonds II: Closed 6R linkages 

with maximal genus [J]. Journal of Symbolic Computation, 2015, 68: 167-180. 

[24] Chiang C H. Spherical kinematics in contrast to planar kinematics [J]. 

Mechanism and Machine Theory, 1992, 27(3):243-250. 

[25] Schena B M. Center robotic arm with five-bar spherical linkage for endoscopic 

camera: JP20130253809. 

[26] Schena B M. Robotic arm with five-bar spherical linkage: US20070623292. 

[27] Mccarthy M. The design of spherical 4R linkages for four specified orientations 

[J]. Mechanism and Machine Theory, 1999. 

[28] Burmester L, Lehrbuch der Kinematik. Verlag Von Arthur Felix, Leipzig, 

Germany, 1886. 

[29] Michael J, McCarthy M, et al. Avoiding singular configurations in finite position 

synthesis of spherical 4R linkages [J]. Mechanism & Machine Theory, 2000, 

35(3):451-462. 

[30] Soh G S, Mccarthy M. Parametric design of a spherical eight-bar linkage based 

on a spherical parallel manipulator [J]. Journal of Mechanisms & Robotics, 2009, 

1(1):212-240. 

[31] Wei G, Dai J S. Origami-inspired integrated planar-spherical overconstrained 

mechanisms [J]. Journal of Mechanical Design, 2014, 136(5): 051003. 

[32] Liu W, Chen Y. A double spherical 6R linkage with spatial crank-rocker 

characteristics inspired by kirigami [J]. Mechanism and Machine Theory, 2020, 

153:103995. 



References 

 103 

[33] Bern M, Hayes B. The complexity of flat origami [C]. Proceedings of the 

seventh annual ACM-SIAM symposium on Discrete algorithms. Atlanta, 

Georgia, United States, Society for Industrial and Applied Mathematics, 1996, 

175-183. 

[34] Watanabe N, Kawaguchi K. The method for judging rigid foldability [C]. 

Origami 4, A K Peters/CRC Press, 2009, 165-174. 

[35] Lang R J. Twists, tilings, and tessellations: mathematical methods for geometric 

origami [M]. Boca Raton: CRC Press, 2017. 

[36] Onal C D, Wood R J, Rus D. Towards printable robotics: origami-inspired planar 

fabrication of three-dimensional mechanisms [C]. In Robotics and Automation          

(ICRA),  2011 IEEE International Conference on, pp. 4608-4613. May 9-13, 

2011, Shanghai, China.  

[37] Onal C D, Wood R J, Rus D. An origami-inspired approach to worm robots [J]. 

IEEE/ASME Transactions on Mechatronics, 2013, 18(2):430-438. 

[38] Zirbel S A, Lang R J, Thomson M W. Accommodating thickness in origami-

based deployable arrays [C]. In ASME 2013 international Design Engineering 

Technical Conferences and Computers and Information in Engineering 

Conference. 4-7 August 2013, Portland, Oregon, USA. 

[39] Miyashita S, Onal C D, Rus D. Self-pop-up cylindrical structure by global 

heating [C]. In 2013 IEEE/RSJ International Conference on Intelligent Robots 

and Systems (IROS), pp. 4065-4071. 3-7 Nov 2013, Tokyo, Japan. 

[40] Evans T A, Lang R J, Magleby S P, et al. Rigidly foldable origami gadgets and 

tessellations [J]. Royal Society Open Science, 2015, 2(9):150067. 

[41] Huffman D A. Curvature and creases: a primer on paper [J]. IEEE Transactions 

on Computers, 1976, C-25(10):1010-1019. 

[42] Miura K. Proposition of pseudo-cylindrical concave polyhedral shells [J]. Isas 

Report, 1969, 34:141-163. 

[43] Barreto P T. Lines meeting on a surface: the ‘Mars’ paperfolding [C]. In Origami 

Science and Art: Proc. of the Second Int. Meeting of Origami Science and 

Scientific Origami, 29 November–2 December 1994, Otsu, Japan. 

[44] Miura K. Method of packaging and deployment of large membranes in space 

[C]. Congress of International Astronautical Federation. 1980. 

[45] Tachi T. Generalization of rigid foldable quadrilateral mesh origami [J]. Journal 

of the International Association for Shell & Spatial Structures, 2009, 50(3):173-

179. 

[46] Miura K. A Note on the Intrinsic Geometry of Origami [M]. I Research of 

Pattern Formation, KTK Scientific Publishers, 1989 Tokyo, Japan: 91-102 



Doctoral Dissertation of Tianjin University 

 104 

[47] Hull T C, Tachi T. Double-line rigid origami. arXiv, 2017 preprint 

arXiv:1709.03210. 

[48] He Z, Guest S D. On Rigid Origami II: Quadrilateral Creased Papers. arXiv, 

2018 preprint arXiv:1804.06483 

[49] Wu W, You Z. A solution for folding rigid tall shopping bags [J]. Proceedings of 

the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 

467(2133):2561-2574. 

[50] Cundy H M, Rollett A P. Mathematical Models [M]. Oxford University Press, 

New York, 2013. 

[51] Dai J S, Jones J R. Mobility in metamorphic mechanisms of foldable/erectable 

kinds [J]. Journal of Mechanical Design, 1999, 121(3):375-382. 

[52] Wei G, Dai J S. Geometry and kinematic analysis of an origami-evolved 

mechanism based on artmimetics [C] ASME/IFToMM International Conference 

on Reconfigurable Mechanisms and Robots ReMAR 2009. pp. 450-455. 

[53] Zhang K, Dai J S. Classification of origami-enabled foldable linkages and 

emerging applications [C]. ASME 2013 International Design Engineering 

Technical Conferences and Computers and Information in Engineering 

Conference. 2013. 

[54] Wei G, Dai J S. Origami-inspired integrated planar-spherical overconstrained 

mechanisms [J]. Journal of Mechanical Design, 2014, 136(5):258-265. 

[55] Chen Y, You Z. Mobile assemblies based on the Bennett Linkage [J]. In 

Proceedings of the Royal Society of London A: Mathematical, Physical and 

Engineering Sciences, 2005, 461(2056), pp. 1229-1245. The Royal Society.  

[56] Chen Y, You Z. On mobile assemblies of Bennett linkages [J]. In Proceedings 

of the Royal Society of London A: Mathematical, Physical and Engineering 

Sciences, 2008, 464(2093), pp. 1275-1293, The Royal Society. 

[57] Liu S Y, Chen Y. Myard linkage and its mobile assemblies [J]. Mechanism and 

Machine Theory, 2009, 44(10):1950-1963. 

[58] Wang K F, Chen Y. Rigid origami to fold a flat paper into a patterned cylinder 

[C]. Origami 5: Fifth International Meeting of Origami Science, Mathematics, 

and Education, Singapore, 2008. 

[59] Liu S. Deployable structure associated with rigid origami and its mechanics [D]. 

School of Mechanical and Aerospace Engineering, Nanyang Technological 

University, Singapore, 2014. 

[60] Gu Y, Chen Y. Origami cubes with one-DOF rigid and flat foldability [J]. 

International Journal of Solids and Structures, 2020 (207): 250-261. 



References 

 105 

[61] Kuribayashi K, Tsuchiya K, You Z, et al. Self-deployable origami stent grafts as 

a biomedical application of Ni-rich TiNi shape memory alloy foil [J]. Materials 

Science and Engineering: A, 2006. 

[62] Guest S D, Pellegrino S. The folding of triangulated cylinders, part I: geometric 

considerations [J]. Journal of Applied Mechanics, 1994, 61(4):773.  

[63] Nojima T. Modelling of folding patterns in flat membranes and cylinders by 

using origami [J]. 日本機械学会論文集. C 編, 2000, 66(643):p.354-360. 

[64] Nojima T. Origami modeling of functional structures based on organic patterns 

[D]. Graduate School of Kyoto University, 336 Kyoto, Japan. 337, 2002. 

[65] Connelly R, Sabitov I, Walz A. The bellows conjuncture [J]. Beitr. Algebra 

Geom., 1997, 38(1), pp. 1–10. 

[66] Tachi T. One-DOF cylindrical deployable structures with rigid quadrilateral 

panels [C]. International Association for Shell and Spatial Structures (IASS) 

Symposium, Universidad Politecnica de Valencia, Spain, Sept. 28–Oct. 341 2, 

2009, pp. 2295–2305. 

[67] Tachi T. Freeform rigid-foldable structure using bidirectionally flat-foldable 

planar quadrilateral mesh [M]. Advances in Architectural Geometry 2010. 

Springer Vienna, 2010. 

[68] Miura K, Tachi T. "Synthesis of rigid-foldable cylindrical polyhedra 

[M]. Symmetry: Art and Science, 2010, 204-213. 

[69] Yasuda H, Yein T, Tachi T, et al. Folding behaviour of Tachi-Miura polyhedron 

bellows [J]. Proc Math Phys Eng, 2013, 469(2159):20130351. 

[70] Liu S, Lv W, Chen Y, et al. Deployable prismatic structures with rigid origami 

patterns [J]. Journal of Mechanisms and Robotics, 2016. 

[71] Schenk M, Guest S D. Geometry of miura-folded metamaterials [J]. Proceedings 

of the National Academy of Sciences, 2013, 110(9):3276-3281. 

[72] Filipov E T, Tomohiro T, Paulino G H. Origami tubes assembled into stiff, yet 

reconfigurable structures and metamaterials [J]. Proceedings of the National 

Academy of Sciences of the United States of America, 2015, 112(40): pp. 

12321–12326. 

[73] Filipov E T, Paulino G H, Tachi T. Origami tubes with reconfigurable polygonal 

cross-sections [J]. Proc Math Phys Eng, 2016, 472(2185):20150607. 

[74] Tachi T. Rigid-foldable thick origami [J]. Origami, 2011, 5: 253-264 

[75] Edmondson B J, Lang R J, Magleby S P, Howell L L. An offset panel technique 

for thick rigidily foldable origami [C]. Proceedings of the ASME 2014 

International Design Engineering Technical Conferences and Computers and 

Information in Engineering Conference, American Society of Mechanical 

Engineers, 2014: V05BT08A054 



Doctoral Dissertation of Tianjin University 

 106 

[76] Ku J S, Demaine E D. Folding flat crease patterns with thick materials [J]. 

Journal of Mechanisms and Robotics, 2016, 8(3): 031003. 

[77] Hoberman C S. Reversibly expandable three-dimensional structure: US, 

US4780344 [P]. 1988. 

[78] De Temmerman I, Mollaert M, Van Mele T, et al. Design and analysis of a 

foldable mobile shelter system [J]. International Journal of Space Structures, 

2009, 22(3):161-168. 

[79] Chen Y, Peng R, You Z. Origami of thick panels [J]. Science, 2015, 349(6246): 

396-400. 

[80] Peng R, Analysis of Mobile Network of Spherical 4R Linkages and Kinematics 

of Rigid Origami [D]. Tianjin University, 2016. 

[81] Miura K. Method of packaging and deployment of large membranes in space 

[J]. Institute of Space & Astronautical Science Report, 1985, 618:1-9. 

[82] Natori M C, Katsumata N, Yamakawa H, et al. Conceptual model study using 

origami for membrane space structures [C]. ASME 2013 International Design 

Engineering Technical Conferences and Computers and Information in 

Engineering Conference. 2013: V06BT07A047. 

[83] Miura K. Triangles and quadrangles in space [C]. Proceedings of the 50th 

Symposium of the International Association for Shell and Spatial Structures, 

Valencia, 2009. 

[84] Morgan J, Magleby S P, Howell L L. An approach to designing origami-adapted 

aerospace mechanisms [J]. Journal of Mechanical Design, 2016, 138(5): 052301. 

[85] Debnath S, Fei L J. Origami theory and its applications: a literature review [J]. 

World Academy of Science, Engineering and Technology, 2013: 1131-1135. 

[86] Zirbel S A, Lang R J, Thomson M W, et al. Accommodating thickness in 

origami-based deployable arrays [J]. Journal of Mechanical Design, 2013, 

135(11): 111005. 

[87] Felton S, Tolley M, Demaine E, et al. A method for building self-folding 

machines [J]. Science, 2014, 345(6197): 644-646. 

[88] Miyashita S, Guitron S, Ludersdorfer M, et al. An untethered miniature origami 

robot that self-folds, walks, swims, and degrades [C]. International Conference 

on Robotics and Automation, 2015: 1490-1496. 

[89] Zhang K, Fang Y, Fang H, et al. Geometry and constraint analysis of the three 

spherical kinematic chain based parallel mechanism [J]. Journal of Mechanisms 

and Robotics, 2010, 2(3): 031014. 

[90] Onal C D, Wood R J, Rus D. An origami-inspired approach to worm robots [J]. 

IEEE/ASME Transactions on Mechatronics, 2013, 18(2): 430-438. 



References 

 107 

[91] Li S, Vogt D M, Rus D, et al. Fluid-driven origami-inspired artificial muscles 

[J]. Proceedings of the National Academy of Sciences of the United States of 

America, 2017, 114(50): 13132. 

[92] Le P, Molina J, Hirai S. Application of Japanese origami ball for floating 

multirotor aerial robot [J]. World Academy of Science, Engineering and 

Technology, International Journal of Mechanical, Aerospace, Industrial, 

Mechatronic and Manufacturing Engineering, 2014, 8(10): 1747-1750. 

[93] Lee D Y, Kim J S, Kim S R, et al. The deformable wheel robot using magic-ball 

origami structure [C]. ASME 2013 International Design Engineering Technical 

Conferences and Computers and Information in Engineering Conference. 2013: 

V06BT07A040. 

[94] Wang Z, Jing L, Yao K, et al. Origami‐based reconfigurable metamaterials for 

tunable chirality. Advanced Materials, 2017, 29(27), 1700412. 

[95] Yasuda H, Tachi T, Lee M, et al. Origami-based tunable truss structures for non-

volatile mechanical memory operation. Nature Communications, 2017, 8(1), 

962.  

[96] Frenzel T, Kadic M, Wegener M. Three-dimensional mechanical metamaterials 

with a twist. Science, 2017, 358(6366), 1072-1074. 

[97] Schenk M, Guest S, Mcshane G. Novel stacked folded cores for blast-resistant 

sandwich beams [J]. International Journal of Solids and Structures, 2014, 51(25): 

4196-4214. 

[98] Silverberg J L, Evans A A, Mcleod L, et al. Using origami design principles to 

fold reprogrammable mechanical metamaterials [J]. Science, 2014, 345(6197): 

647-650. 

[99] Pratapa P P, Liu K, Paulino G H. Geometric mechanics of origami patterns 

exhibiting Poisson's ratio switch by breaking mountain and valley assignment 

[J]. Physical Review Letters, 2019, 122(15). 

[100] Lv C, Krishnaraju D, Konjevod G, et al. Origami based mechanical 

metamaterials [J]. Scientific Reports, 2014, 4:5979. 

[101] Cheung K C, Tachi T, Calisch S, et al. Origami interleaved tube cellular 

materials [J]. Smart Materials and Structures, 2014, 23(9): 094012. 

[102] Filipov E T, Tachi T, Paulino G H. Origami tubes assembled into stiff, yet 

reconfigurable structures and metamaterials [J]. Proceedings of the National 

Academy of Sciences, 2015, 112(40): 12321-12326. 

[103] Yasuda H, Yang J. Reentrant origami-based metamaterials with negative 

Poisson’s ratio and bistability [J]. Physical Review Letters, 2015, 114(18): 

185502. 



Doctoral Dissertation of Tianjin University 

 108 

[104] Silverberg J L, Na J, Evans A A, et al. Origami structures with a critical 

transition to bistability arising from hidden degrees of freedom [J]. Nature 

Materials, 2015, 14(4): 389-393. 

[105] Waitukaitis S, Menaut R, Chen B. G, et al. Origami multistability: From single 

vertices to metasheets [J]. Physical Review Letters, 2015, 114(5): 055503. 

[106] Hanna B H, Lund J M, Lang R J, et al. Waterbomb base: a symmetric 

singlevertex bistable origami mechanism [J]. Smart Materials and Structures, 

2014, 23(9): 094009. 

[107] Reis P M, Jiménez F L, Marthelot J. Transforming architectures inspired by 

origami [J]. Proceedings of the National Academy of Sciences, 2015, 112(40): 

12234-12235. 

[108] Reis P M, Jiménez F L, Marthelot J. Transforming architectures inspired by 

origami [J]. Proceedings of the National Academy of Sciences, 2015, 112(40): 

12234-12235. 

[109] Felton S, Tolley M, Demaine E, Rus D, Wood R. A method for building 

selffolding machines [J]. Science, 2014, 345(6197): 644-646. 

[110] Belke C H, Paik J. Mori: a modular origami robot [J]. IEEE/ASME Transactions 

on Mechatronics, 2017, 22(5): 2153-2164. 

[111] Zhakypov Z, Belke C, Paik J. Tribot: A deployable, self-righting and multi-

locomotive origami robot [C]. IEEE International Conference on Intelligent 

Robots and Systems (IROS), 2017. 

[112] Kuribayashi K, Tsuchiya K, You Z, Tomus D, Umemoto M, Ito T, Sasaki M. 

Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi 

shape memory alloy foil [J]. Materials Science and Engineering: A, 2006, 

419(1-2): 131-137. 

[113] Miyashita S, Guitron S, Ludersdorfer M, Sung C R, Rus D. An untethered 

miniature origami robot that self-folds, walks, swims, and degrades [C]. 

Proceedings of the 2015 IEEE International Conference on Robotics and 

Automation (ICRA), 2015: 1490-1496. 

[114] Miyashita S, Guitron S, Yoshida K, Li S, Damian D D, Rus D. Ingestible, 

controllable, and degradable origami robot for patching stomach wounds [C]. 

Proceedings of the 2016 IEEE International Conference on Robotics and 

Automation (ICRA), 2016: 909-916. 

[115] Guitron S, Guha A, Li S, Rus D. Autonomous locomotion of a miniature, 

untethered origami robot using hall effect sensor-based magnetic localization 

[C]. Proceedings of the 2017 IEEE International Conference on Robotics and 

Automation (ICRA), 2017: 4807-4813. 



References 

 109 

[116] Salerno M, Zhang K, Menciassi A, Dai J S. A novel 4-DOF origami grasper with 

an SMA-actuation system for minimally invasive surgery [J]. IEEE 

Transactions on Robotics, 2016, 32(3): 484-498. 

[117] Johnson M, Chen Y, Hovet S, Xu S, Wood B, Ren H, Tokuda J, Tse Z T H. 

Fabricating biomedical origami: a state-of-the-art review [J]. International 

Journal of Computer Assisted Radiology and Surgery, 2017, 12(11): 2023-2032. 

[118] Zhang K, Fang Y, Fang H, Dai J S. Geometry and constraint analysis of the 

three-spherical kinematic chain based parallel mechanism [J]. Journal of 

Mechanisms and Robotics, 2010, 2(3): 031014. 

[119] Zhang K, Dai J S. Reconfiguration of the plane-symmetric double-spherical 6R 

linkage with bifurcation and trifurcation [J]. Proceedings of the Institution of 

Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 

2016, 230(3): 473-482. 

[120] Feng H. Kinematics of spatial linkages and its applications to rigid origami [D]. 

Clermont Auvergne, 2018. 

[121] Ionescu T G. Terminology for mechanisms and machine science [J]. Mechanism 

and Machine Theory, 2003, 38(7-10): 597-1112. 

[122] Dai J S, Huang Z, Lipkin H. Mobility of overconstrained parallel mechanisms 

[J]. Journal of Mechanical Design, 2006, 128(1): 220-229. 

[123] Chen Y, Baker J. Using a Bennett linkage as a connector between other Bennett 

loops [J]. Proceedings of the Institution of Mechanical Engineers, Part K: 

Journal of Multi-body Dynamics, 2005, 219(2): 177-185. 

[124] Chen Y. Design of structural mechanisms [D]. Oxford University, UK, 2003. 

[125] Yang F F, Li J M, Chen Y, et al. A deployable Bennett network in saddle surface 

[C]. Proceedings of the 14th IFToMM World Congress, Taiwan: IFToMM, 2015: 

428-434. 

[126] Kiper G, Söylemez E. Regular polygonal and regular spherical polyhedral 

linkages comprising Bennett loops [M]//Kecskem T A, M L A. Computational 

Kinematics. Berlin: Springer, 2009: 249-256. 

[127] Goldberg M. New five-bar and six-bar linkages in three dimensions [J]. 

Transactions of the ASME, 1943, 65: 649-663. 

[128] Myard F E. Contribution à la géométrie des systèmes articulés [J]. Bulletin de 

la Société Mathématique de France, 1931, 59: 183-210. 

[129] Baker J E. The Bennett, Goldberg and Myard linkages—in perspective [J]. 

Mechanism and Machine Theory, 1979, 14(4): 239-253. 

[130] Liu S Y, Chen Y. Myard linkage and its mobile assemblies [J]. Mechanism and 

Machine Theory, 2009, 44(10): 1950-1963. 



Doctoral Dissertation of Tianjin University 

 110 

[131] Qi X Z, Deng Z Q, Ma B Y, et al. Design of large deployable networks 

constructed by Myard linkages [J]. Key Engineering Materials, 2011, 486: 291- 

296. 

[132] Sarrus P T. Note sur la transformation des mouvements rectilignes alternatifs, 

en mouvements circulaires, et reciproquement [J]. Académie des Sciences, 1853, 

36, 1036-1038 

[133] Bennett G T. The parallel motion of sarrut and some allied mechanisms [J]. 

Science, 1905, 9: 803-810. 

[134] Dai J S, Li D, Zhang Q, et al. Mobility analysis of a complex structured ball 

based on mechanism decomposition and equivalent screw system analysis[J]. 

Mechanism & Machine Theory, 2004, 39(4):445-458. 

[135] Lu S, Zlatanov D, Ding X, et al. Novel deployable mechanisms with decoupled 

degrees-of-freedom [J]. Journal of Mechanisms & Robotics, 2016, 8(2):021008. 

[136] Caro S, Moroz G, Gayral T, Chablat D, Chen C. Singularity analysis of a six 

DOF parallel manipulator using Grassmann-Cayley algebra and Gröebner bases 

[C]. Brain, Body and Machine, Springer, Berlin, Heidelberg, 2010: 341-352. 

[137] Song C Y, Chen Y, Chen I M. A 6R linkage reconfigurable between the 

linesymmetric Bricard linkage and the Bennett linkage [J]. Mechanism and 

Machine Theory, 2013, 70: 278-292. 

[138] Wang Y X, Wang Y M. Configuration bifurcations analysis of six DOF 

symmetrical Stewart parallel mechanisms [J]. Journal of Mechanical Design, 

2005, 127(1): 70-77. 

[139] Bricard R. Leçons de cinématique [M]. Gauthier-Villars, 1926. 

[140] Lee C C. On the generation synthesis of movable octahedral 6R mechanisms 

[C]. ASME Design Engineering Technical Conferences and Computers in 

Engineering Conference, Irvine, CA, 1996: 18-22. 

[141] Chai W H, Chen Y. The line-symmetric octahedral Bricard linkage and its 

structural closure [J]. Mechanism and Machine Theory, 2010, 45(5): 772-779. 

[142] Baker J E. On Bricard's doubly collapsible octahedron and its planar, spherical 

and skew counterparts [J]. Journal of the Franklin Institute, 1995, 332(6): 657- 

679. 

[143] Wohlhart K. The two types of the orthogonal Bricard linkage [J]. Mechanism 

and Machine Theory, 1993, 28(6): 809-817. 

[144] Baker J E, Wohlhart K. On the single screw reciprocal to the general 

linesymmetric six-screw linkage [J]. Mechanism and Machine Theory, 1994, 

29(1): 169-175. 

[145] Baker J E. The single screw reciprocal to the general plane-symmetric six-screw 

linkage [J]. Journal for Geometry Graphics, 1997, 1(1): 5-12. 



References 

 111 

[146] Li Z, Schicho J. A technique for deriving equational conditions on the 

DenavitHartenberg parameters of 6R linkages that are necessary for movability 

[J]. Mechanism and Machine Theory, 2015, 94: 1-8. 

[147] Deng Z, Huang H, Li B, Liu R. Synthesis of deployable/foldable single loop 

mechanisms with revolute joints [J]. Journal of Mechanisms and Robotics, 2011, 

3(3): 031006. 

[148] You Z, Chen Y. Motion structures: deployable structural assemblies of 

mechanisms [M]. New York: Spon Press, 2014. 

[149] Huang H, Deng Z, Li B. Mobile assemblies of large deployable mechanisms [J]. 

Journal of Space Engineering, 2012, 5(1): 1-14.. 

[150] Baker J E. Displacement-closure equations of the unspecialised doubleHooke's-

joint linkage [J]. Mechanism and Machine Theory, 2002, 37(10): 1127- 1144. 

[151] Lough W J, Wainer I W. Chirality in Natural and Applied Science [M]. 

Blackwell Science, Oxford, 2002. 

[152] Lan X, Liu T, Wang Z, et al. DNA-guided plasmonic helix with switchable 

chirality [J]. Journal of the American Chemical Society, 2018, 140(37), 11763-

11770. 

[153] Murata K, Aoki M, Suzuki T, et al. Novel helical aggregation modes as detected 

by circular dichroism and electron microscopic observation [J]. Journal of the 

American Chemical Society, 1994, 116(15), 6664-6676. 

[154] Jong J, Lucas N, Kellogg M, et al. Reversible optical transcription of 

supramolecular chirality into molecular chirality [J]. Science, 2004, 304(5668), 

278-281. 

[155] Suda M, Thathong Y, Promarak V, et al. Light-driven molecular switch for 

reconfigurable spin filters [J]. Nature communications, 2019, 10(1), 2455. 

[156] Coombs D, Huber G, Kessler O, et al. Periodic chirality transformations 

propagating on bacterial flagella [J]. Physical Review Letters, 2002, 89(11), 

118102. 

[157] Zhao Z, Zhao H, Wang J, et al. Mechanical properties of carbon nanotube ropes 

with hierarchical helical structures [J]. Journal of the Mechanics and Physics of 

Solids, 2014, 71, 64-83. 

[158] Pokroy B, Kang S, Mahadevan L, et al [J]. Self-organization of a mesoscale 

bristle into ordered, hierarchical helical assemblies. Science, 2009, 323(5911), 

237-240. 

 

 

 



Doctoral Dissertation of Tianjin University 

 112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



中文大摘要 

 113 

中文大摘要 

可展结构可以从小尺寸收拢状态展开为大尺寸工作状态。其小尺寸收拢状态

为运输和存储提供了便利，大尺寸的工作状态又能保证该结构实现其所需的功能，

因此被广泛应用于航空航天（天线、太阳能板等）、建筑（简易临时居所）、医疗

（血管支架）以及材料科学（吸能结构）等领域，是近年来的热门研究课题。 

球面机构由若干个转动副以及相同数目的杆件组成，其转动副轴线相交于一

点。球面机构构成的网格由于具有折展比较大，自由度较少等特点，具有构建可

展结构的潜在条件，但是由于球面机构网格一般为过约束系统，在对其参数进行

设计时需要进行复杂的计算，因此如何得到基于球面机构的可动网格的设计方法

一直是一项挑战。 

折纸作为一种传统艺术，融合了数学、建筑、计算机科学、机构学等不同学

科的相关理论，刚性折纸作为一种特殊的折纸类型，其变形只产生在折痕处，可

视为球面机构的装配体，其中的折痕可以等同于机构的铰链，面板等同于机构的

连杆，而多条折痕相交于一点的折纸图案可以看作是一个球面机构，相应地，具

有多个顶点的图案可以看做是球面机构的网格。因此，刚性折纸理论为球面机构

网格的设计提供了相关理论基础。 

刚性折纸可被应用于许多领域。手性对生物的生理特性和药理作用有重要影

响，对于手性结构的研究是生物和化学领域研究的新趋势。此外，研究表明不同

手性对材料的机械、光学以及电磁特性有着十分重要的影响，因此手性结构对于

电磁、光学等超材料的设计和制作有十分重要的参考价值。然而，在人造结构中

实现同种材料的可切换和分层手性仍然是一个挑战，折纸技术为手性超材料的设

计提供了启发；刚性折纸图案可视为球面机构的装配体，如果将刚性折纸中的平

面单元变为其他形式，可以得到新的二维球面机构网格；可折叠管状结构具有大

的折展比，展开以及折叠过程简单，对于可展结构的研究具有重要的意义，基于

刚性折纸的管状结构具有自由度较少，折展过程容易控制的特点，且在折叠展开

过程中其平面单元不会发生塑性变形，可以重复使用，因此在工程领域有广泛的

应用；在实际工程应用中，折纸结构材料的厚度在很多情况下无法被忽略，而在

材料具有厚度时，采用球面四杆机构构建厚板折纸结构会产生严重的运动干涉，

这促使了人们进行厚板折纸技术的研究。 

本文基于现代折纸理论，系统地探讨了构建基于球面机构的一维、二维、及

三维可动网格的方法，通过分析球面机构网格的运动协调条件，设计了可切换手

性的层级螺旋结构、可变形曲面、以及提出了一类新的刚性折纸管状结构以及折

纸管状结构的厚板折叠方案。本文的主要内容如下： 
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本文第一章总结了国内外研究人员的相关科研成果。主要包括机构学基础理

论、刚性折纸及其相关理论以及空间过约束机构和其组成的可展结构等内容。 

本文第二章基于刚性折纸图案，得到了一维球面机构可动网格：一种可变手

性以及具有层级手性的新型螺旋结构。首先，受折纸图案 eggbox 的启发，得到

了两种手性折纸单元，根据手性的不同，可以分为左手性单元和右手性单元，并

且通过几何计算，得到了该折叠单元各几何参数之间的关系。将上述手性折叠单

元通过平面四杆机构进行串联，可以得到不同的结构：通过连接具有相同手性的

折叠单元，可以得到左手手性或者右手手性螺旋结构；通过连接不同手性的折纸

单元，将会得到非手性螺旋结构，通过连接上述螺旋结构中手性折叠单元的对应

点，可以得到一条螺旋线。 

其次，进一步研究了手性折叠单元的边长 a、eggbox折痕间夹角 、折纸单

元扭角 、折纸单元高度 h 以及折纸单元二面角 等几何参数对整个螺旋结构手

性的影响。通过几何计算发现，当结构的螺旋角相同时，夹角 的值越大，拼接

成一个螺旋周期所需的折纸单元数越少；当扭角 一定时，夹角 的值越大，得

到的螺旋结构整体高度越高，因此，可以通过改变手性折叠单元的几何参数来对

螺旋结构的手性进行调节，并且通过实验对上述计算结果进行了验证。 

然后，通过机构的运动分叉，实现了上述螺旋结构手性的改变。对于折纸手

性折叠单元来说，其运动过程中，某一时刻不同的表面之间会发生物理干涉，从

而使得该单元无法继续运动。根据机构学相关理论，在构成螺旋结构的折叠单元

中，可以用杆件结构替换折纸结构，从而得到由杆件构成的折叠单元，通过合理

设计不同杆件的几何形状，可以避免其在运动过程中的物理干涉，当杆件构成的

手性折叠单元运动到原折纸单元发生物理干涉的位置时，可以继续运动，通过机

构运动分叉，实现螺旋结构手性的改变。 

最后，通过改变手性折叠单元之间的连接方式，得到了具有层级手性的螺旋

结构。将连接手性折纸单元的平面四杆机构变为球面四杆机构，可以得到层级手

性结构。通过连接该结构中折叠单元的对应点，可以得到主次两条螺旋线，通过

计算这两条螺旋线螺旋角、螺距、长度、螺旋半径等几何参数，发现主次两条螺

旋线的手性相同，螺旋趋势相反，当次螺旋线螺旋程度最大时，主螺旋线处于解

螺旋——即直线状态，这一特性使得层级手性结构具有两个零长度状态。本章的

研究为航空航天工程中可变形功能性结构的设计提供了新思路;且由于得到的手

性结构具有单自由度，因此可以应用于系统简单的仿生机器人的控制。 

本文第三章介绍了球面机构的二维可动网格：一种基于 eggbox 折纸图案的

变形曲面。首先，受 eggbox 折纸图案启发，得到了一种新的基于球面四杆机构

的可动网格。将上述折纸图案中的平行四边形平面单元沿着一条对角线折叠，可
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以得到一个空间四边形，将两个相同的空间四边形进行拼接，得到了一种四面体

单元，根据原先的 eggbox 折纸图案中平面单元之间的连接方式，对上述四面体

单元进行装配，得到了一种新的可动网格，该网格由球面四杆机构组成，因此只

具有一个自由度。 

然后，通过向上述球面四杆机构网格中添加平面三角形单元，可以得到一种

可变形曲面。添加上述平面三角形单元后，原本球面四杆机构构成的网格变为由

球面四杆机构、球面六杆机构以及球面八杆机构共同构成的网格。通过对变形曲

面中不同类型的顶点进行机构运动学分析，得到了这些顶点对应的球面机构中相

关参数的运动学关系。根据上述关系，通过建立变形曲面的运动传递路径，得到

了其运动学输入输出关系，计算表明尽管球面六杆和八杆机构具有多个自由度，

变形曲面中不同球面机构间的特殊连接方式使得整个网格只具有一个自由度。 

最后，实现了上述变形曲面在给定的抛物面和抛物柱面之间的变形。对于由

三角形平面单元构成的变形曲面具有两条形状线，分别为竖直形状线和水平形状

线，这两条形状线可以拟合两条曲线，变形曲面的形状可以由这两条曲线决定。

因此对变形曲面形状的分析可以简化为对两条形状曲线的分析。由于目标曲面具

有二重对称的特性，因此使用六种不同的等腰三角形单元构造变形曲面，从而使

其也具有二重对称的特性。根据变形曲面的二重对称性，只需对该曲面的四分之

一进行分析。通过在四分之一个变形曲面的两条形状线上建立坐标系，得到了形

状线上顶点的坐标。抛物面可以由一条抛物线旋转而成，这条抛物线可以决定抛

物面的形状，而抛物柱面可以由一条抛物线沿着一条直线平移而成，该抛物线和

直线可以决定一个抛物柱面的形状。在变形曲面的运动过程中，如果某时刻两条

形状线与抛物面中的抛物线吻合，而另一时刻分别与抛物柱面中的抛物线和直线

相吻合，该变形曲面就可以由抛物面变形为抛物柱面。通过 Matlab 软件对上述

过程进行了计算并给出了具体算例。本章研究为设计可变形结构，如可变形天线

等提供了理论基础。 

本文第四章探究了球面机构的三维可动网格，提出了两种新的刚性折纸管状

结构。本章中，提出了两种横截面为非对称规则多边形的刚性折纸管状结构。首

先，受 Goldberg 五杆以及六杆机构的启发，通过将已有的刚性折纸管状结构进

行拼接，可以得到结合型管状结构。根据上述方法，结合型管状结构具有两种不

同的拼接方式：第一种是管状结构之间的“加法”，该方法通过拼接两个管状结

构的一条边，然后再去除公共部分，得到的结合型管状结构的横截面为原先两个

管状结构横截面之“和”；另一种方法是管状结构之间的“减法”，通过拼接两个

管状结构的两条边和一个内角，或者仅拼接两个管状结构的一条边，然后去除二

者之间的公共部分，得到的结合型管状结构的横截面为原先两个管状结构横截面

的“差”。当满足特定几何条件时，可以得到横截面为奇数边多边形的结合型管
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状结构。上述管状结构的“加减运算”可以在三个或三个以上管状结构中进行。

通过机构运动学分析，发现结合型管状结构依然具有一个自由度。 

然后，通过向已有的管状结构中加入新平面单元，也可以得到错位型管状结

构。机构运动学计算表明，向已有的管状结构中加入全等的平行四边形单元，即

可得到具有单自由度的错位型折纸管状结构。上述平行四边形单元可以添加在同

一管状结构的不同位置，从而得到不同的错位型管状结构。错位型管状结构的横

截面可以为空间多边形或者平面多边形。 

最后，对两种管状结构进行了更进一步的讨论：通过将相同的单层管状结构

沿轴向重复排列，可以得到多层管状结构；通过将弯曲管状结构进行拼接并去除

公共部分，可以得到弯曲结合型管状结构。本章内容丰富了刚性折纸管状结构的

研究，为其应用进一步提供了理论基础。 

本文的第五章提出了构造截面为对称六边形的厚板折纸管状结构的方法。本

章研究的管状结构由四折痕顶点构成，根据已有的研究成果，发现可以通过使用

Bennett 机构替换球面四杆机构的方式构造四折痕顶点构成的厚板折纸结构。但

是，上述方法不适用于四折痕顶点中四个扇形角不相等且四角之和不等于 360 度

的情况，且目前研究人员只得到了构建截面为平行四边形的厚板折纸管状结构的

方法。本章研究旨在探究构造厚板折纸管状结构的普适性方法。 

首先，提出了构造截面为线对称六边形的厚板折纸管状结构的方法。对于截

面为凸六边形的单层折纸管状结构，根据扇形角的不同，其顶点可以分为三类：

分别为 Miura-ori 顶点、凸 eggbox-like 顶点以及凹 eggbox-like 顶点。在 Miura-ori

顶点处，将原先零厚度折纸中的球面四杆机构替换为 Bennett 机构；在凸 eggbox-

like 顶点处，依然使用球面四杆机构构建其厚板折纸形式；在凹 eggbox-like 顶点

处，由于使用球面四杆机构会导致运动干涉，且其扇形角之和不是 360 度，因此

通过在其一条谷线折痕处添加两个额外杆件的方法构造其厚板折纸形式。通过对

上述顶点的厚板折纸形式进行机构运动分析，发现其与对应的零厚度折纸形式的

运动是等价的，因此，通过上述方法构建的截面为线对称凸六边形的厚板折纸管

状结构的运动与其零厚度折纸形式等价。 

在截面为线对称凹六边形的管状结构中，除了上述三种顶点，还存在另一种

Miura-like 顶点。在该顶点处，通过添加两个额外杆件，以 Bricard 机构构建其厚

板形式。Miura-like 顶点的厚板形式的运动与对应的零厚度折纸的运动等价。根

据上述方法，可以将零厚度折纸形式中不同类型顶点处的球面四杆机构转换成厚

板折纸形式中相应的机构，从而得到截面为线对称六边形的厚板折纸管状结构。 

然后，探究了构造截面为面对称六边形的厚板折纸管状结构的方法。在这种

管状结构中，顶点依然可以分为上文中提到的四类，根据对称原理，在一个面对

称管状结构中，当且仅当其两个 Miura-ori 顶点相同时，该管状结构才能被转换
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成厚板形式。通过与前文类似的方法，可以将截面为面对称六边形的管状结构转

化成厚板形式。值得注意的是，由于 Miura-like 顶点一条折痕处添加了两个额外

杆件，因此当凸 eggbox-like 顶点与之连接时，不能用球面四杆机构构造其厚板

折纸形式，对于这种情况，采用 Bricard 机构构造其厚板折纸形式。 

最后，对厚板折纸管状结构进行了进一步讨论。单层厚板折纸管状结构沿着

轴向重复排列，可以得到多层厚板折纸结构。由于需要添加过多的杆件,为了便于

加工，对厚板折纸管状结构进行了简化：当两个凹 eggbox-like 顶点进行连接时，

其公共的两根额外杆件可以去除，由原来的两个 Bricard 机构变为一个 Bricard 机

构，且运动形式不发生改变。另外通过与构造直管结构相同的方法，还可以得到

弯管厚板折纸结构。 

本章内容为刚性折纸管状结构的工程应用提供了理论基础。 

本文的第六章对全文的内容进行了梳理和归纳并提出了未来的工作。 

本文的研究在未来工作方面有以下内容： 

（1） 本文提出了一种受 eggbox 折纸图案启发手性结构，这种将折纸图案

与新结构结合的方法的应用不仅局限于手性结构中，未来会继续进行

基于折纸图案的诸如双稳态结构、超材料等新型结构或者材料的研究。 

（2） 本文中提出的构造复合型和转换型折纸管状结构的方法使得在设计

折纸机器人、折纸超材料、以及其他可展结构时有更多的备选方案，

未来将会继续进行折纸管状结构相关方面的研究。 

（3） 本文中提到的厚板折纸管状结构并不包括结合型管状结构和转换型

管状结构，构造这些管状结构的厚板结构依然有待发现 

（4） 本文提出了构造截面为六边形的折纸管状结构的厚板形式的方法，对

于如何得到截面为更加复杂多边形的管状结构，依然有待研究。 

 

关键词：球面四杆机构，可展结构，刚性折纸，厚板折纸 
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