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ABSTRACT

Rigid origami, which can be regarded as assembly of spherical linkages, are widely
used in space technologies, architecture and metamaterials. In this thesis, the
possibilities of constructing mobile networks based on spherical linkages are explored,
1D and 2D mobile networks based on rigid origami are analyzed, the family of origami
tubes is enlarged and a method to construct thick-panel origami tubes is proposed.

First, an 1D open-loop helical structure of spherical 4R linkages is obtained,
inspired by a rigid origami pattern. Eggbox-based chiral units are developed to
construct homogeneous and heterogeneous chiral structures and demonstrate a
theoretical approach to tune the chirality of these structures by modulating their
geometrical parameters to realize the chirality switching through a mechanism
bifurcation. Furthermore, by introducing a helical tessellation between the chiral units,
hierarchical helical structures with a chirality transfer from the construction elements
to the morphological level are designed and a novel helix with two zero-height
configurations during the unwinding process is presented.

Next, the 2D planar mobile networks based on rigid origami patterns are explored.
A one-DOF network system of spherical 4R linkages is developed by replacing the unit
facets of the planar eggbox pattern with volumetric tetrahedrons. The 4R configuration
can be expanded to an arbitrary surface profile by inserting 6R and 8R linkages in the
original network system. The above-mentioned surface is known as a morphing surface,
and it can transform between two target surfaces through the implementation of suitable
design parameters.

Subsequently, an extended family of rigid origami tubes is presented. Using a
mechanism construction process, | demonstrate that the existing origami tubes can be
used as building blocks to form new tubes that are rigidly foldable with a single degree-
of-freedom. A combination process is introduced, along with the option of inserting
new facets in an existing tube. The approach can be applied to both single and multi-
layered tubes with a straight or curved profile.

Finally, a method of constructing thick-panel origami tubes is proposed. Origami
patterns are commonly created using a zero-thickness sheet; however, the panel
thickness cannot be disregarded in real engineering applications. By replacing the
spherical 4R linkages in the original rigid origami tube with overconstrained linkages
such as Bennett and Bricard linkages, origami tubes of thick panels are obtained, which
can be used to reproduce kinematic motions equivalent to those realized using zero-
thickness origami.

This thesis provides theoretical basis for origami structures, robots and
metamaterials.
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background and Significance

Deployable structures are mobile assemblies aimed not at realizing motion but at
attaining different configurations depending on the service requirements [1].
Specifically, such structures have a compact form in modes such as transportation or
storage but can be expanded for final use. These structures are mainly used either for
transportation purposes or in applications in which adaptability of the shape or function
is necessary. In particular, deployable structures are widely used in space technologies,
such as solar arrays and antennas on spacecraft [2, 3]. Moreover, deployable structures
are used to develop temporary residences [4, 5], stents and metamaterials to absorb
energy [6, 7]. Thus, such structures are of interest to architectural engineers, mechanical

scientists and other researchers in different fields.

Deployable structures must exhibit a large deploy-fold ratio and complex shapes
to achievement higher functionalities. Spherical linkages and overconstrained spatial
linkages can be used to construct deployable structures, although the compatible
conditions of tilling these linkages to constitute large mobile structures must be

examined.

A spherical linkage is a kinematic closed-loop of revolute joints whose axes must
intersect at a single point [8]. Spherical linkages are widely used in the automobile
industry, for instance, in developing universal and double universal joints. However,
the compatible conditions of networks based on spherical linkages are complex because
they represent overconstrained systems.

Based on rigid origami techniques, the conceptual design of spherical linkages can
be reliably realized using folding origami. Origami is the traditional art of paper folding,
and rigid origami represents a unique form of origami in which the surfaces surrounded
by the crease lines are not stretched or bent during folding. Each facet of the structure
is rigid and rotates only around the crease. Considering the characteristics of rigid
origami, such structures can be analysed using a kinematic approach in which the facets
and crease lines can be replaced by rigid panels and hinges. Hence, rigid origami
patterns represent networks of spherical linkages.

1.2 Literature Review

1.2.1 Kinematic theories

The science of kinematics pertains to the geometric and time properties of motion
[9]. Chiang analysed spherical mechanisms [10]. Moreover, methods to analyse the
kinematics of spatial linkages have been presented. Gogu systematically described the
structural synthesis of various spatial parallel mechanisms based on the theory of linear

1
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transformation [11]. Dai comprehensively presented the kinematics of wvarious
mechanisms based on the screw theory [12], which was proposed by Ball [13] and
developed by Hunt [14].

The mechanisms discussed in this thesis are formed by a set of rigid parts
assembled end to end to form a single closed chain. This single closed chain is known
as a linkage, each individual rigid part of this structure is known as a link and the
connection of two adjacent links is a joint, which can be spherical, planar, cylindrical,
screw, revolute or prismatic. In this work, I focus on the mechanisms involving only
revolute joints, which allow only one-DOF rotation about their axes.

Denavit and Hartenberg developed an approach to normalize the kinematic study
of mechanisms by using a symbolic language known as D-H notation [15]. Figure 1-1
shows the coordinate system in a linkage. The z;-axis (i = 1, 2, 3 and 4) lies along the
joint axis of joint #; the x;-axis is normal to the plane formed by the z;.; and z; axes, such
that x; = zi.1 x z; the yi-axis can be determined using the right-hand rule. ai;+1) is the
shortest distance between the z; and z;+; axes, also referred to as the link length i(i+1).
R; is the distance from link (i-1)i to link i(i+1) positively along the z;-axis, referred to
as the offset of joint i. The kinematic variable angle 6; is defined as the joint angle from
the x;-axis to the x;+1-axis, positively about the z;-axis; and the twist a;i+1) refers to the

twist angle from z; to z;+1, positively about axis x;.

Fig. 1-1 Coordinate systems, parameters and variables for two adjacent links connected by

revolute joints.

Based on these definitions and the D-H convention, the transformation matrix
T(i+1yi that transforms an expression in the (i+1)th coordinate system to the ith coordinate
system can be expressed as
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cosg —sing cose;,,, SinGsing .,  a,,CoSH,
sing,  cos@ cose;,,y —COSE SN,y .y SING
(i) — .
0 SN ;. COS & ;.1 R
0 0 0 1

(1-1)

The necessary condition for a single-loop linkage of » links is that the successive

product of the transformation matrices must be preserved as a unit matrix, i.e.,

Tl T =1, (1-2)
inwhich |, isa 4x4 unit matrix.
The inverse transformation T,;,;) has the following property.

cosd, sin 6, 0 —8i1)
—sing cosa;,;) COSH COSqy,, SN, —SiNa R
sin g, sin Qi) ~ —COS 6 sin Qi COSQ —COS; R
0 0 0 1

T =

(i+D)i

T

iGi+l) —
i

(1-3)
For spherical linkages, the axes intersect at one point, as shown in Fig. 1-2, owing

to which, the lengths and offsets of each link are zero, and Eqn. (2-1) reduces to
QuQs Q= 1, (1-4)
where
cosf, —sing cosa;,, sSingsing,,
Qi =| SiNG,  cosb cose;,,, —COSE sine;.,y, |, (1-5)
0 SIN i, COS &)

and the inverse transformation is

cos 6, sin 6, 0
_1 . .
Qi(i+1) =Q @i = | —SIN 6, cos (i cos &, cos Xy SNy |- (1-6)
sing sing;;,,, —C0ssina,;,;,, COSq;,,,

Fig. 1-2 D-H notation of a part of a spherical linkage.
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Therefore, the kinematics and motion behaviour of spatial and spherical linkages
can be analysed based on the solutions of Eqn. (1-2) or Eqn. (1-4).

The Lie algebra of a Lie group plays a key role in modern physics, with the Lie
group typically representing the symmetry of a physical system [16]. Murray et al.
used the Lie group theory to analyse the kinematics of robotic manipulators [17].
Hervé proposed the Lie group method to derive the motion of a parallel platform and
provided detailed examples of 3-DOF robotic manipulators [18].

The Bond theory was proposed as a mathematical technique to study the mobility
of linkages by Hegediis et al. [19-23]. Based on this theory, the authors analysed the
kinematics of closed SR [19] and 6R linkages [23].

1.2.2 Spherical linkages

As in planar kinematics, in which a link is characterized by the length between
the joints, in spherical kinematics, a link is characterized by the great circle arc
subtended by two joints at the sphere centre [24]. Spherical linkages are widely used
in robotic arms [25, 26]. Many researchers have examined spherical linkages. The
kinematics of spherical 4R linkages were analysed by Chiang through a mathematical
approach [24]. Ruth and McCarthy proposed a computer-aided design software system
for spherical 4R linkages [27] based on Burmester’s planar theory [28]. McCarthy and
Bodduluri extended the generalization of the planar rectification theory to spherical
4R linkages and presented a method to ensure that the result of a finite position
synthesis was a linkage that did not exhibit a ‘branching problem’ [29]. Soh and
McCarthy developed a procedure in which two constraining links were added to a
three-DOF spherical parallel manipulator to transform the system to a one-DOF
spherical 8-bar linkage that could guide the end-effector through five task poses [30],
as illustrated in Fig. 1-3. Wei and Dai presented two integrated planar-spherical
overconstrained mechanisms based on spherical linkages [31] and recently, Liu and
Chen designed a double-spherical 6R linkage with spatial crank-rocker characteristics
and derived the corresponding overconstrained geometric conditions and explicit
closure equations [32], as shown in Fig. 1-4.

1.2.2.1 Rigid origami

Origami is the traditional art of folding paper into sculptures, with a history of
more than one hundred years [33]. The form of origami in which each surface
surrounded with the crease lines is not stretched and bent during folding is known as
rigid origami [34], and it can be regarded as an assembly of spherical linkages. In
origami, there exist two kinds of creases, i.e., mountain and valley creases. The crease

pattern refers to a mapping of all the creases in an origami form [35].
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(b)
Fig. 1-4 Mechanisms based on spherical linkages: (a) integrated planar-spherical overconstrained
mechanism [31] and (b) double-spherical 6R linkage [32].
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Because of the large deployable ratio and low cost, rigid origami patterns can be
applied in various applications such as robotic systems [36, 37], deployable arrays for
space applications [38], and self-deployment structures [39].

This section reviews the typical rigid origami patterns, with a focus on patterns
with degree-4 vertexes. Evans et al. reviewed origami patterns in which the summation
of the sector angles at a single vertex equaled 27 [40]. Huffman presented a pattern
known as the Huffman grid [41], which can be constructed by a single degree-4 vertex
rotated and repeated continuously through the tessellation, as shown in Fig. 1-5(a) in
which the solid and dashed lines represent the mountain and valley crease lines,
respectively. Another pattern, known as the chicken wire tessellation (also known as the
hexagonal pattern [42]) can be constructed using a single vertex with mirror symmetry
(see Fig. 1-5(b)). The ‘Mars’ pattern (see Fig. 1-5(c)), which was presented by Paulo
Barreto [43], includes a single degree-4 vertex and its inversion. The famous Miura-ori
pattern, presented by Miura [44], is formed entirely of parallelograms, as shown in Fig.
1-5(d). Quadrilateral mesh origami and the associated conditions for rigid foldability

were analysed by Tachi [45], and the pattern is shown in Fig. 1-5(e).

(@

(b)
Fig. 1-5 Origami patterns and folding process of (a) Huffman grid, (b) chicken wire, (c) Mars, (d)
Miura-ori and (e) quadrilateral mesh [40].
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(e)
Fig. 1-5 Origami patterns and folding process of (a) Huffman grid, (b) chicken wire, (c) Mars, (d)
Miura-ori and (e) quadrilateral mesh [40]. (continued)

1.2.2.2 Method to investigate rigid origami patterns

For a rigid origami pattern, the rigid foldability is a key property that allows the
pattern to fold along the crease lines without twisting or stretching the component
panels. To achieve rigid foldability, the motions around each vertex must be compatible
with those around the adjacent vertex, and this condition can be attained only under
specific pattern geometries. Extensive research has been performed to identify the
geometry conditions that render an origami pattern rigid-foldable.

Rigid origami has been researched from the viewpoint of geometry. Miura [46]

7
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presented a proposition of the intrinsic geometry of origami based on an arbitrary point
on the surface of origami structures. Watanabe and Kawaguchi [33] proposed two
methods to evaluate the rigid foldability of origami patters from the compatibility
matrix. Based on the separation of each crease of an origami pattern into two parallel
creases, Hull and Tachi [47] presented the double line method to obtain new origami
patterns. He and Guest [48] studied the configuration space of four-crease origami
patterns and generated two families of rigid-foldable origami patterns with four-crease
vertexes. Wu and You [49] proposed a new crease pattern that allowed a tall box-shaped
bag with a rectangular base to be rigidly folded flat.

Furthermore, rigid origami can be analysed using a kinematic approach, which is
a focus in this work. Since the research of Cundy [50], it has been widely acknowledged
that for every rigid origami structure, there exists an equivalent linkage [51, 52]. The
left part of Fig. 1-6 shows a degree-4 origami vertex containing four panels or sectors
1 to 4, and four creases AO, BO, CO and DO; the four creases intersect at a common

point O. The four sector angles between the adjacent creases are «,,, a,, @, and
a,, ; and the four dihedral angles between the adjacent sectors are ,, ®,, @, and
@, . From the mechanism viewpoint, by considering the sectors and creases as links and

revolute joints, respectively, an equivalent spherical 4R linkage can be obtained, as
shown in the right part of Fig. 1-6. In this case, sectors 1 to 4 become links 1 to 4,
creases A to D become joints A to D, and sector angels «,, «,;, a3, and o,
become the twist angles of the linkage.
Substituting Eqn. (1-5) in (1-4) yields the general relationship between two

adjacent and opposite joint angles

sin iis1y COS Qi) ity sin X i,3)(i+4) COS o

+SIN 1,1y SIN Q1y11.2) COS X314 COS B

+COS ¢ 1,4y SIN Q1,1y142) SIN 314 COS 6, COS O (1-7a)

=SIN Q,19.42) SIN A 1.y144) SIN G, SIN G,

—COS i1y COS i)+ 2) COS (i 5iray T COS i1y iva) = 0;

COS 1,1y COS . 3.4y — SN 1,0y SIN 5114y COS G, =

. . (1-7b)
COS @j.1)(112) COS X 25113 ~SIN Xjpyirz) SIN i 2x143) COS G,

427
in which i=1, 2, 3 and 4; if i+j>4, the term is replaced by (i+j-4).

The typical origami crease patterns and their corresponding equivalent closed-loop
linkage were investigated by Zhang and Dai [53]. Wei and Dai [54] analysed an origami
carton by representing it with one planar four-bar loop and two spherical 4R linkage
loops. Using the tessellation method for the mobile assemblies of spatial linkages [55-
57], Wang and Chen [58] developed a mobile assembly of spherical 4R linkages to
study the Kokotsakis type of rigid origami patterns. Liu [59] used the assemblies of

8
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spherical 4R linkages to analyse the rigid origami patterns and presented several new
patterns. Recently, Gu and Chen present a new method to design origami cubes with
rigid foldability, flat foldability and one-DOF [60].

Fig. 1-6 Four-crease origami pattern and its corresponding spherical 4R linkage.

1.2.2.3 Rigid origami tubes

Origami tubes have been used in various applications ranging from medical
devices [61] to worm robots [35]. Considerable efforts have been implemented to
effectively fold these tubular structures without distorting their surfaces. Guest and
Pellegrino [62] proposed a method wherein the cylindrical surface of a tube was
dissected into a set of triangular facets to enable packaging. However, the authors
proved that such tubes could only be folded if the facets were allowed to deform; in
other words, these tubes were not rigidly foldable. Moreover, many patterns for both
tubes and cones were devised by Nojima [63, 64], who examined whether the folding
patterns could be generated from a flat piece of paper, and the tube could be folded flat
eventually. It was later observed that none of the tubes and cones could be rigidly folded
longitudinally. It has been proven that a tube with closed ends cannot be folded rigidly
without distorting its facets [65].

Consequently, the effort was redirected to tubes with open ends. Using a
geometrical method, Tachi [66, 67] devised a set of tubes with parallelogram facets that
are rigidly foldable and can be extended longitudinally to form multi-layered tubes by
repeating the same foldable unit (Fig. 1-7(a)). In addition, a set of rigidly foldable tubes
with parallelogram cross-sections was placed side by side, thereby forming the Tachi-
Miura polyhedron bellows [68, 69] (Fig. 1-7(b)).

Liu et al. [70] demonstrated this aspect through a kinematic approach. As shown
in Fig. 1-8, to form the deployable prismatic structures, N spherical 4R linkages are
assembled as a closed chain. The dihedral angles between the intersections of each layer

of the tube are independent, as shown in Fig. 1-9(a). The dihedral angle &,y

represents the rotation from the intersection plane m to (m+1), positively in the counter-
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clockwise direction. The two dihedral angles &,y and &gy, may be different.

Depending on the arrangements of the dihedral angles, curvy tubular structures having
various configurations can be achieved, as illustrated in Fig. 1-9(b). The cross-sections
of these straight and curvy tubes, defined by a loop of lateral crease lines, are commonly
even-sided plane- or line-symmetric polygons, such as a kite or parallelogram.

(b)
Fig. 1-7 Rigid origami tubes: (a) A tube of tubes with parallelogram facets [66] and (b) a Tachi-
Miura polyhedron bellow [69].

Z)

Fig. 1-8 Assembly of spherical 4R linkages in a rigid origami tube [70].
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Schenk and Guest [71] investigated the geometry of metamaterial based on a stack
of Miura-ori patterns, which can be considered as a unique case of polyhedron bellows.
Filipov et al. [72, 73] developed tubes with reconfigurable parallelogram cross-sections,

as shown in Fig. 1-10.

(b)
Fig. 1-9 Curvy tubes [70]: (a) a tube with different dihedral angles between the intersections of
each layer and (b) the model of curvy tubes.

/ / 90° —
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Fig. 1-10 Tube with a reconfigurable parallelogram cross-section [73].

1.2.2.4 Thick-panel origami
When the thickness of the panels is considered, the intersection problem cannot be
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avoided. Researchers have presented various thick folding techniques. As shown in Fig.
1-11(a), tapered surfaces were used to fold a Miura-ori pattern [74]. Offsets were
introduced at the edge of the panels to fold a square-twist pattern with a thick-panel
(Fig. 1-11(b)) [75]. A study showed that replacing a fold with two parallel folds can
help in the folding of an origami pattern with a thick-panel (Fig. 1-11(c)) [76].

However, these methods often result in surfaces that are either not entirely flat or
have openings to accommodate the thickness. In contrast to the above-mentioned
methods, Hoberman introduced a technique to fold the Miura-ori pattern [77]; moreover,
De Temmerman proposed a method to fold the diamond origami pattern [78] and Chen
et al. presented an approach to reproduce the motions identical to those achievable using
zero-thickness origami [79, 80] (as shown in Fig. 1-12). In this approach, the spherical
linkage assembly for a zero-thickness sheet is replaced by an assembly of spatial
linkages.

Fig. 1-11 Thickness accommodation methods: (a) tapered panel technique [74], (b) offset panel

technique [75], (c) offset crease technique [76].
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Fig. 1-12 A thick-panel origami model in which the spherical linkage assembly for the origami of

a zero-thickness sheet is replaced by an assembly of spatial linkages [80].

1.2.2.5 Applications of Origami

Origami can be applied in the fields of space technology and robotics. Space
missions require ultra-low-mass and large space plate forms or structures, such as
antennas and solar panel arrays. Miura proposed a novel concept for the packing and
deployment of large membranes in space by using the origami technique [81]. A solar
panel array based on the Miura-ori pattern has been launched and tested in orbit [82].
Moreover, Miura proposed a foldable solar panel [83], a deployable antenna was
presented by Morgan et al. [84], and a foldable telescopic lens was introduced by
Debnath et al. [85]. These structures are illustrated in Fig. 1-13. The deployable
structures are obtained based on the rigid origami technology, which is introduced in
the next section. Structures developed using origami have large fold-deploy ratios.
Furthermore, a deployable solar array for space application was designed in [86].

The origami technique can be used to fold planar material into complex 3D shapes,
thereby facilitating the design of robotic systems. A self-folding robot with embedded
electronics is illustrated in Fig. 1-14(a) [87], and a similar robot controlled using an
alternating external magnetic field is shown in Fig. 1-14(b) [88]. The famous
waterbomb pattern has been used to design parallel robots [89], worm-like robots [90,
91], floating equipment of aerial vehicles [92], and deformable wheels of a robot [93].

Moreover, origami techniques can also be used to design new metamaterials.
Specifically, metamaterials with tuneable chirality have been designed [94-95] based
on the deformation kinematics of certain existing origami patterns, such as the Miura-
ori [94] and Kresling patterns [95]. By stacking many layers of the famous Miura-ori
pattern, a metamaterial was proposed in [94]. This metamaterial helps achieve a
negative Poisson’s ratio for both in-plane and out-of-plane deformations and can be
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Fig. 1-13  Application of origami in the aerospace domain: (a) Miura-ori solar panel arrays [82];
(b) foldable solar panel [83]; (c) deployable antenna [84] and (d) foldable telescopic lens [85].
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used as the core for blast-resistant sandwich beams [97] (see Fig. 1-15(a)). By
introducing defects in the original Miura-ori pattern structure, this mechanical
metamaterial can be reprogrammed [98]. Pratapa et al. introduced a four-vertex origami
cell that could morph continuously between a Miura mode and an eggbox mode through
the variation in the mountain and valley assignments of one of the creases, leading to a
smooth switch through a wide range of negative and positive Poisson’s ratios [99], as
shown in Fig. 1-15(b). In addition to the periodic Miura-ori pattern, a non-periodic Ron
Resch pattern has an unusually large load bearing capability, which can help build
mechanical metamaterials [100]. Furthermore, the rigid origami tubes can be used as
the basic units to construct metamaterials [101-103]. In addition to the design of
metamaterials, the square-twist pattern [104], single vertexes in the Miura-ori pattern
[105] and the waterbomb pattern [106] can be used to develop multi-stability structures.

In the civil engineering domain, the origami technique has been used in the design
of mobile facets [70, 107, 108], reconfigurable and multi-locomotive devices [109, 110,
111] and other structures. In the biomedical engineering domain, an origami stent graft
was developed [112], and several encapsulation origami robots [113-115] and origami
surgical grippers [116, 117] were designed.

Water degradable —Conductive model Acetone degradable

model model

(b)
Fig. 1-14 Origami robot: (a) electric drive robot [87], (b) magnetic drive robot [88].

1.2.2.6 Origami-inspired linkages

Inspired by rigid origami, several mechanisms have been developed. For instance,
a parallel mechanism based on the waterbomb origami pattern was developed [118].
Extending this approach, Zhang and Dai proposed a plane-symmetric double-spherical
6R linkage, which was extracted from a closed-loop origami structure [119]. Feng
derived a novel 6R linkage through a triangle twist origami pattern [120], as shown in
Fig. 1-16.
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(b)

Fig. 1-15 Origami metamaterials: (a) core for sandwich beams [97] and (b) material with

switchable Poisson’s ratios [99].
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1.2.3 Overconstrained spatial linkages and their networks

The mobility of a spatial linkage, that is, the number of independent coordinates
needed to define the configuration of a kinematic chain or mechanism [121], can be
determined using the Griibler—Kutzbach criterion [14].

Fig. 1-16 Equivalent mechanisms of (a) triangle twist origami pattern, and (b) the derived

overconstrained 6R linkage for the kirigami pattern [120].

m=6(k—j—1)+zj:di, (1-8)

i-1
in which m is the number of DOFs of the linkage, & is the number of links in the linkage
including the fixed link, j is the number of kinematic pairs in the linkage, and d; is
the number of DOFs for the ith kinematic pair.

Certain spatial linkages do not satisfy the mobility criterion in Eqn. (1-8) but are
still mobile, and these linkages are known as overconstrained linkages [122].

1.2.3.1 Overconstrained 4R linkages

The Bennett linkage is a famous 4-bar spatial linkage with zero offsets in which
alternative links have the same lengths and twists, and the lengths are proportional to
the sine values of the corresponding twists, as illustrated in Fig. 1-17. According to the
D-H notation, the following coordinates can be established:

= =a,
a, = a, (19
Ay =8y = b,
Qp =04 =Q, (1-9b)

Qpz =y = f,
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sina/a=sin /b, (1-9¢)
R =0,(i=12,3and 4) (1-94d)

Fig. 1-18 Deployable structures of Bennett linkages: (a) cylinder; (b) arch and (c) flat deployable
structure [123].
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(a) (9)]
Fig. 1-19 Mobile assemblies of Bennett linkages: (a) assembly approximating a saddle surface
[125] and (b) tetrahedral linkage [126].

Chen designed a family of deployable structures based on the kinematics of
Bennett linkages [123, 124] (shown in Fig. 1-18). In addition, the mobile assembly of
Bennett linkages can be designed as a saddle surface [125] and polyhedrons [126].
These structures are shown in Fig. 1-19.

1.2.3.2 Overconstrained SR linkages

The Goldberg 5R linkage [127] is obtained by combining a pair of Bennett
linkages such that a common link of two combined linkages is removed and a pair of
adjacent links is rigidly attached to each other; this process can be explained as the

summation or subtraction of two Bennett linkages to produce a new linkage.

The Myard 5R linkage [128], which is composed of two rectangular Bennett
linkages with one pair of twist angles [129], is shown in Fig. 1-20. It can be observed
that the two Bennett linkages ABCD and ADCE are arranged as mirror images. By
combining these linkages in the symmetric plane, the common joint D and common
links AD and CD (grey parts in Fig. 1-20) can be removed. The geometric conditions
are as follows:

Ay =0, A, =85, 83 =y

T
0[2326145:5, U5y =T — Ay, Ay =T = 2015, (1-10)
R =0(=123 4and5)and
&, = aySinay,.

A family of mobile assemblies of Myard linkages was designed by Liu and Chen
[130], and one of the assemblies is shown in Fig. 1-21(a). Two types of large spatial
assemblies of Myard linkages with different twist angles were developed by Qi and
Deng [131], and one of the assemblies is shown in Fig. 1-21(b).
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Fig. 1-20 Myard linkage.

(b)
Fig. 1-21 Mobile assemblies of Myard linkages: (a) assembly constructed by Liu and Chen [130]
and (b) by Qi and Deng [131].

1.2.3.3 Overconstrained 6R linkages

The Sarrus linkage was the first 3D overconstrained linkage to be reported [132],
and this linkage was analysed by Bennett [133]. A schematic is shown in Fig. 1-22.
The four links A, R, S, and B, as well as the links A, T, U, and B are consecutively
hinged by three parallel horizontal hinges. The directions of the two sets of hinges are
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different, and link A can exhibit rectilinear motion, vertically up and down, relative to
link B. This linkage can be assembled with other mechanisms to construct deployable
structures [134, 135].

Similar to Goldberg 5R linkages, a 6R linkage was generated by merging three
Bennett linkages [136]. Figure 1-23 illustrates the construction of a Goldberg 6R
linkage by the summation of three Bennett linkages, where the common parts shown in
the grey lines are removed. Two other double-Goldberg 6R linkages [137] were created
by summing Goldberg SR linkages. Next, a complete family of double-Goldberg 6R
linkages was proposed [138] by combining a subtractive Goldberg 5R linkage and
Goldberg 5R linkage. All the Goldberg SR and 6R linkages are Bennett-based
overconstrained linkages, and since the Bennett linkage is the construction unit, the
corresponding geometric condition should be satisfied for all the linkages.

- A 2

R

i)

S / U
\D B

Fig. 1-22 Schematic of a Sarrus linkage.

Fig. 1-23 Construction of a Goldberg 6R linkage.

Bricard proposed six distinct types of mobile 6R linkages [139], which are shown
in Figs. 1-24(a) to (f). The geometric conditions of these six cases are as follows.

In the line-symmetric case,
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By = 8y5, 83 = 8g5, 8y = 8y,
Uy = Ay Ayg = U Ay = Ay (1-11a)
R =R,,R,=R,,R, =R,.

In the plane-symmetric case,

A, =85y Q3 = Agg, 8y = Ay
Ot 0 =T 0y T g =T, 0y Ty =T, (1-11b)
R1 = R4:O' Rz = Ral Rs = Rs

In the trihedral case,

a122 + 6‘342 + a562 = a232 + a-452 + aGlz'
Oy =0y = Qg = T2, 0, = 0y = g, = 37/2, (1-11c)
R1:R2:R3:R4:R5:R6:O.
In the line-symmetric octahedral case,

a12:a23:a34:a45:a56:a61:0,

1-11d
R+R,=R,+R. =R, +R, =0. ( )

In the plane-symmetric octahedral case,
A, =8y =8y, = 85 = 855 = 8 =0,
R, =—R;sina,, /sin(ey, + a3,), Ry, =R siney, I'sin(ay, + ,,), R, =—R,,  (1-1le)
R, = R sinag, /sin(e,, + o, ), R, =—R; sina,, / sin(a,s + o).
In the doubly collapsible octahedral case,

By, =8y, = 8y = s = 8gg =8 =0, (1-11f)
R.R;R; + R,R,R, =0.

Bricard linkages has been extensively studied. Lee presented the closure
equations for the three octahedral cases according to the matrix transformation [140].
Chai and Chen proposed a stationary structural configuration of the line-symmetric
octahedral case with identical twists and offsets [141]. Baker analysed the planar,
spherical and skew counterparts of the doubly collapsible octahedral case [142].
Wohlhart analysed the orthogonal case and proposed two distinct trihedral cases [143].
Baker analysed the line-symmetric case with the reciprocal screw system [144] and
examined the plane-symmetric case of a Bricard linkage through the reciprocal screw
system approach [145]. Li and Schicho investigated the movability of a plane-
symmetric Bricard linkage based on the theory of bonds [146]. Deng et al. presented
a geometric approach to design and synthesize a plane-symmetric Bricard linkage
[147].

In terms of the networks of Bricard linkages, Chen and You [148] presented a
mobile assembly of threefold-symmetric Bricard linkages, which could be folded to a
handle and deployed to a flat surface, as illustrated in Fig. 1-25 (a). Moreover, an
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alternative form of the threefold-symmetric Bricard linkage was discussed [148].
Huang, Deng and Li [149] formed a deployable structure based on a Bricard linkage

with a scissor-like connection, as shown in Fig. 1-25(b).

1
| | / 6
(a) (b)
l\ 1
\\\\
6
5
4
(d)
4
1
2 5
4
(e) €

Fig. 1-24 Bricard 6R linkages: (a) General line-symmetric case, (b) general plane-symmetric case,
(c) trihedral case, (d) line-symmetric octahedral case, (e) plane-symmetric octahedral case, and (f)
doubly collapsible octahedral case [120].

In addition to the Bennett-based and Bricard linkages, other 6R overconstrained
linkages exist. Baker presented the compatible conditions of a double-Hooke’s-joint
linkage, which has been widely used as a transmission coupling mechanism [150] with

the following geometric conditions:
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By =8y, =85 =8 =0,
Olyy =0y = Olg = U, = T2, (1-12)
R =R,=R, =R, =0.

(®)
Fig. 1-25 Mobile assemblies of Bricard linkages. (a) assembly of threefold-symmetric Bricard

linkage constructed by Chen and You [148] and (b) assembly formed using scissor-like connection
based hexagon Bricard modules by Huang, Deng and Li [149].

In this section, the kinematics theories of the linkages are reviewed, several
overconstrained linkages are introduced, and the geometrical conditions of the linkages

are summarized.

1.3 Aim and Scope

Focused on the interdisciplinary area of kinematics and structure, this thesis is
aimed at examining the kinematics of the assembly of spherical linkages, known as
rigid origami, and extending the family of deployable structures based on spherical
linkages.
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In this process, inspired by rigid origami patterns, a 1D helical structure with
switchable and hierarchical chirality is presented, which is constructed by assembling
origami-inspired units in series. Next, an approach to obtain morphing surfaces inspired
by the eggbox pattern, which is a 2D network of spherical linkages, is proposed. Finally,
the 3D network of spherical linkages is studied, an extended family of rigid origami
tubes is proposed and the approach to construct thick-panel origami tubes is presented.

1.4 Outline of the Dissertation

This dissertation consists of six chapters.

Chapter 1 presents a brief review of the existing works pertaining to the
mechanism theory to analyse the linkages, compatible conditions for closed-loop
linkages and deployable structures composed of revolute hinges. Moreover, as origami
is a special technique for designing deployable structures, its definition and applications

are described in this chapter.

Chapter 2 describes the helical structures with switchable and hierarchical chirality
inspired by origami techniques. Eggbox-based chiral units are proposed to construct
homogeneous and heterogeneous chiral structures and a theoretical approach to tune
the chirality of these structures by modulating the geometrical parameters is
demonstrated, whose chirality switching is realized through mechanism reconfiguration.
Moreover, hierarchical structures with a chirality transfer from the construction
elements to the morphological level are designed and a novel helix with two zero-height
configurations during the unwinding process is developed.

Chapter 3 describes the method to construct morphing surfaces inspired by the
eggbox origami pattern by developing a one-DOF surface that can transform from a
parabolic cylinder to a paraboloid.

Chapter 4 describes the extended family of rigid origami tubes. Using a
mechanism construction process, existing origami tubes can be used as building blocks
to form new tubes that are rigidly foldable with a single degree-of-freedom. A
combination process is adopted, along with the choice of inserting new facets into an
existing tube. The approach can be applied to both single and multi-layered tubes with
a straight or curved profile.

Chapter 5 describes the method to construct thick-panel origami tubes. By
replacing the spherical 4R linkages in the original zero-thickness tubes with spatial
overconstrained mechanisms, thick-panel origami tubes with line-symmetric and
planar-symmetric cross-sections are obtained, and these tubes can reproduce motions
identical to those of zero-thickness structures.

Chapter 6 presents the concluding remarks and describes the scope of future

research.

25


javascript:;

Doctoral Dissertation of Tianjin University

26



Chapter 2 1D mobile networks of spherical linkages: helical structures

Chapter 2 1D mobile networks of spherical linkages: helical
structures with switchable and hierarchical chirality

2.1 Introduction

Chirality has emerged as a new research domain in biological and chemical
communities. Compared with achiral structures, chiral structures may have special
physiological properties or pharmacological effects. Moreover, manipulation of
specific morphological chirality is a promising approach to design metamaterials with
tailored mechanical, optical, or electromagnetic properties. However, the realization of
many properties found in nature, such as switchable and hierarchical chirality, which
can allow electromagnetic control of the polarization of light and enhancement of
mechanical properties, in human-made structures remains challenging. In this section,
based on origami techniques, helical structures with switchable and hierarchical

chirality are described.

This chapter is organized as follows. In Chapter 2.2, eggbox-based chiral units
used to construct homogeneous and heterogeneous chiral structures are presented, and
Chapter 2.3 theoretically demonstrates chirality tuning by modulating the geometrical
parameters. Next, Chapter 2.4 describes the realization of the chirality switching in a
single-helix via mechanism bifurcation without any external stimulus. Chapter 2.5
describes a hierarchically chiral structure with two zero-height configurations. The
concluding remarks are presented in Chapter 2.6.

2.2 Construction and geometry of chiral units

Chirality refers to the asymmetric configurational property of an object or a system
that cannot be superposed onto its mirror image [151]. Chirality is typically realized
morphologically at the macroscale through a helix. Origami-inspired metamaterials
with tuneable chirality have been designed [94-96]. Considering this aspect, [ examined
whether origami techniques can be adopted to create novel helical structures.

To achieve the torsional or helical morphology of chiral structures, first, a twisted
origami unit is constructed. The basic origami pattern used is that of an eggbox, which
is a non-developable four-crease pattern (i.e., the pattern cannot be flattened onto a
plane without overlap or separation). Two identical eggboxes are placed symmetrically
to construct a chiral unit (Fig. 2-1(a)). To induce twisting properties, the two eggboxes
must fold simultaneously. Therefore, a parallelogram OAED is added to rigidly connect
the pair of coplanar facets OAB and OCD (Fig. 2-1(b), where the dotted line represents
the crease not in view); thus, no rotation occurs in the connected plate. When all the
four facet pairs in the two eggboxes are connected in this manner, an interconnected
unit is obtained. The unit can be twisted anticlockwise and clockwise when compressed
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and elongated, respectively, and thus, this unit is defined as a right-handed (RH) chiral
unit. I[f the connection segment to the parallelogram OBFC is changed, as shown in Fig.
2-1(c), a left-handed (LH) chiral unit is obtained, which twists clockwise when
compressed.

Two design parameters, a and « , are adopted to characterize the chiral unit (Fig.
2-1(d)), which denote the lateral edge length and sector angle of the eggbox,
respectively. To quantitatively analyse the chirality of the structures, three more
parameters are introduced, as shown in Fig. 2-1(d), where ¢ is the dihedral angle
between the two lower facets connecting the two eggboxes (i.e., the unit configuration
angle), y isthe angle between the two horizontal alternative creases (i.e., the unit twist

angle) and h is the distance between the bottom and top faces (i.e., the unit height).

(b) (c)

Fig. 2-1 Construction of the origami-inspired chiral unit: (a) basic element; (b, ¢) construction of a
right-handed (RH) and left-handed (LH) unit and (d) geometrical parameters in the chiral unit.

Figure 2-2(a) shows an RH chiral unit with a 4-crease eggbox pattern containing
four panels and four creases, AO, BO, CO and DO. As shown in Fig. 2-2(a), the four
creases intersect at a common point O, the four dihedral angles between each two
adjacent panels are ®,, ®,, @, and ®,, the angle between OA and OC is y,, and
¢ and y denote the configuration angle and twist angle, respectively. According to

the cosine formula for a spherical triangle, the following relationships can be derived:

cosy =cos’ a +sin” a cos m, (2-1a)
cos(y / 2) =cosa cos(y, / 2)+sinasin(y, / 2)cos(m, / 2), (2-1b)
cos(y, / 2) =cosacos(y / 2) +sinasin(y / 2) cos(w, / 2). (2-1¢)

Substituting Eqns. (2-1a) and (2-1b) in Eqn. (2-1c¢) yields the following relationship
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between o, and w,:
tan(ew, / 2) tan(w, / 2) =1/ cosa (2-2)
Moreover, Fig. 2-2 shows that
@,=T—¢. (2-3)
Substituting Eqns. (2-2) and (2-3) in Eqn. (2-1a) gives
cos y = cos® ar +sin’ e cos(2arctan(1/ cos o tan((m — ¢) / 2))). (2-4)

Moreover, the unit geometry yields the following relationship:
h=2asinacos(¢/2). (2-5)

() (b)
Fig. 2-2 RH chiral units: (a) geometry and (b) connection.

By connecting identical chiral units at the parallel edges on the bottom or top faces,
homogeneous RH or LH chiral structures can be obtained and an example is illustrated
in Fig. 2-2(b), where the red lines represent the connected edges. The rotational angle
and distance between the top and bottom faces of the structure are defined as the
structural twist angle I and structural height H , respectively. Since the chiral units
are placed in series, the structural twist angle and structural height can be simply
calculated as T=Ny and H=Nh, respectively, where N is the number of units in
the structure. Figure 2-3(a) presents paper model photographs of an RH chiral structure
with a maximum twist angle of 360°, constructed using three RH units with «=60°.
In the same manner, an LH chiral structure can be derived, as shown in Fig. 2-3(b). The
chirality of the structure is characterized by a virtual helix, which is formed by
connecting the same vertex in each chiral unit, as indicated by the red line in Fig. 2-
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3(e).

Fig. 2-3 Chiral structures: (a—d) paper model photographs of chiral and achiral structures: (a) RH chiral

structure; (b) LH chiral structure; (c) and (d) achiral structure; (¢) geometrical parameters in the chiral
structure.

In addition to these homogeneous structures, heterogeneous chiral structures can
be generated by mixing RH and LH units. The expressed chirality of the structure is
determined by the number of RH and LH units, whereas the arrangement of these units
changes only the internal twist angle in the structure. An achiral structure is obtained
when the number of RH units equals the number of LH units since the chirality of the
whole structure is counteracted in this case. For example, Fig. 2-3(c) shows an achiral
structure with a maximum internal twist angle of 360°, obtained by connecting the RH
and LH chiral structures shown in Figs. 2-1(b) and 2-1(c), respectively. If the
arrangement of the chiral units is changed, as shown in Fig. 2-3(d), the structure remains
achiral but with a decreased maximum internal twist angle of 240°

The same vertex in each chiral unit forms a virtual helix defined by the pitch p
and helical angle x, as shown in Fig. 2-3(e). According to the definition of p and
x, p=2nh/y and tanx =2za/ p. Winding (by twisting the chiral units) can be

considered to describe the behaviour of the helix. A coordinate system wherein the z-
axis is along the helical axis (see Fig. 2-3(e)) is established, the x-axis is along the radial
direction pointing to the origin of the helix, and the y-axis is determined by the right-
hand rule. Therefore, the helix can be expressed as

X=acosf
y=asiné. (2-6)
z2=po/2n
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where @ is the radius of the helix, which is equal to the lateral edge length of the
eggbox, and @ is the winding angle of an arbitrary point M on the helix. When the

chiral unit folds from the maximum height to zero, ¢ increases from 0° to 180°,

and y ranges from zero to 2c .

2.3 Tunability of single chiral structures

The chirality of single chiral structures can be tuned by adjusting their design
parameters, specifically, the sector angle « and number of units, N . Since the effect
of N on the chirality is linear, I attempted to tune the chirality by modulating « . To
determine the influence of o on the folding behaviour and the helical properties when

a is constant, three cases with « =40°, 60° and 80° are considered. Using Eqns. (2-
1), (2-4) and (2-5), the relationship among the non-dimensional unit height h/a, unit
twist angle y, and unit configuration angle ¢ can be determined, as shown in Fig. 2-
4(a). When folding the chiral unit, y increasesto2«a,and h decreases to zero. For a
given ¢, a larger a corresponds to larger h/a and y values. Hence, a chiral

structure with a larger « is more twisted when equally folded. Moreover, the folding
of the chiral units generates the helix winding of the whole structure.

The folding of chiral units generates helical winding of the whole structure. In
general, x 1is considered as the characteristic quantity for a helical structure. During

the folding process, the helical pitch p reduces to zero, whereas « increasesto 7mw/2,
according to Fig. 2-3(e). The relationship between x and ¢ is presented in Fig. 2-
4(b). This figure shows that x ispositively relatedto a when ¢ is constant, which
means that a larger value of o can be adopted to design a more highly wound helix.
With the increase in x, p/a and h decrease, whereas y increases (Figs. 2-4(c
and d)). Moreover, the relationship between p/a and x (Fig. 2-4(c)) remains
unchanged for different values of o, which indicates that either p/a or x can

determine the helical properties of the helix. Furthermore, the helix becomes more
wound with the twisting of the chiral unit. The coupling between the twisting of the
chiral unit and winding of the helix can be clarified considering the relationship curve
of y and «,as shown in Fig. 2-4(d). This figure shows that for helices with identical
x ,alarger « always producesalarger y.Thus, in cases with a larger « , fewer units
are needed to complete a helix turn. The slope of the curve shown in Fig. 2-4(d)
indicates that the rate of variation in y first increases and later decreases as «

increases, indicating that the twisting of the chiral unit is more sensitive to the winding
of a less-wound helix.

The manifestation of the phenomena for RH chiral models with different «
values is demonstrated experimentally in Fig. 2-4 (e), which shows the photographs of
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three representative configurations for each paper model with unit twist angles of
y=40°, 60° and 80°. In all three cases, the structural height increases as y reduces,

which is in agreement with the theoretical trend shown in Fig. 2-4(a). However, the
structure is less folded in the case of a larger «r, leading to a larger height for a given
value of y, which is consistent with the predicted behaviour in Fig. 2-4(a). Therefore,

a can be tubed to design chiral structures with the target properties of the helices (e.g.,
height and degree of folding).

The analytical results were validated by conducting a tensile experiment on a
homogeneous RH chiral structure made of ENDURO Ice material with N =4 and
a=60°. Each RH unit in the specimen consists of four identical panels, as illustrated
in Fig. 2-5(a). To strengthen the stiffness of the specimen to avoid panel deformation,
each panel was constructed using two layers of 0.3-mm-thick ENDURO Ice material (a
tear-resistant, transparent paper material), cut using a Trotec Speedy 300 laser cutter
(produced by Trotec in Austria) with a cutting power and speed of 64 W and 70 mm/s,
respectively, during the cutting process and glued together with 502 adhesive. An RH
unit in the specimen was fabricated by connecting four panels with tape (Scotch Tough
Duct Tape, produced by Minnesota Mining and Manufacturing in America), as shown
in Fig. 2-5(b) in which a and « denote the lateral edge length and sector angle of
the eggbox, respectively, with a=40 mm and «=60°. The specimen consisted of
four such units connected by Scotch tape.

To avoid the influence of gravity, the tensile experiment was conducted on a
horizontal testing machine developed in-house, as presented in Fig. 2-5(c). The
experiment was conducted in the displacement-control mode, and the experimental data
of the displacement and force on the specimen were collected using a data acquisition
system. The machine had a 50 N load cell (JLBS-50N, produced by Bengbu Sensor
System of Engineering in China), with a resolution and maximum displacement of 0.25
Nand AH=238 mm respectively.

During the experiment, the displacement rate was set as 5 mm/min to eliminate
the dynamic effects. A dial was used to observe AI", which is the structural twist angle
increment, as illustrated in Fig. 2-5(d). The instrument involved two parts, where one
part is attached to the specimen by using a holder and can rotate with the end of the
specimen, and the other is a nonrotatable part attached to the testing machine. The

experimental displacement data were recorded every 10° of dial rotation.

Photographs of four representative configurations of the structure during the
tension process are presented in Fig. 2-6(a). The theoretical and experimental
relationships between AI' and the structural height increment AH are presented as
blue dots and black lines in Fig. 2-6(b), respectively. In this case, a = 40 mm,

AI'=T'-T';, AH=H-H;,and I'; is the initial structural twist angle when Hy = 25
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mm. The experimental data match with the analytical results, and AI' decreases
exponentially as AH increases. The slight deviation in the experimental data can be
attributed to the small rotational stiffness of the creases of the physical specimen, which
is assumed to be zero in the theoretical model.

a=40° ha ¥
a=60° ----
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(e
Fig. 2-4 Helical characteristics of the RH chiral structure when o issetas 40° (blue line), 60°
(black line) and 80° (red line): (a) relationship among the non-dimensional unit height //a, yand ¢;

(b) relationship between angle x and ¢; (c) relationship between the non-dimensional helical pitch p/a,

and «; (d) relationship between yand x. () photographs of three configurations of the paper models.
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Fig. 2-5 Specimen fabrication and experiment. (a) One panel in an RH chiral unit of the specimen.
(b) One RH unit in the specimen. (c) Data acquisition and test system of the horizontal testing
machine. (d) Attachment of the specimen to the testing machine.
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Fig. 2-6 Result of the tensile experiment: (a) tensile experiment; (b) theoretical (black line)
and experimental (blue dots) AI' versus AH .

Thus, I clarified the twist and helical properties of homogeneous RH structures as
well as the chirality tuneability. In the case of LH structures, only the handedness
changes, and the helical properties remain the same in the geometry design and folding

cases. Therefore, LH structures exhibit the same behaviour.
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2.4 Chirality switching

In general, the chirality of a structure is fixed once the structure is designed. The
chirality switching in chiral structures allows the electromagnetic control of the
polarization of light and enhancement of the mechanical properties. However, this
switching is challenging to realize in human-made chiral structures owing to the
different construction of RH or LH structures. This problem also exists in the developed
paper models: the movement of the RH chiral structure in Fig. 2-7(a) is terminated when
the model reaches the fully elongated state owing to the facet interference. To achieve
chirality switching, the connection between the two eggboxes must be changed. From
a mechanistic perspective, the chiral structure can be regarded as a network of spherical
4R and planar 4R linkages, and a different chirality corresponds to different motion
branches of the whole linkage network. Inspired by the concept of reconfiguration, this
study represents the first attempt to achieve chirality switching through mechanism
bifurcation (i.e., changes to different motion branches through the singularity
configuration). Since the fully elongated configuration is a singularity configuration,
the idea is to redesign the structure to avoid facet interference while maintaining its
bifurcation property at this point. By replacing the paper facets with curved links
without changing their rotational axes, the facet interference can be avoided. The model
with the redesigned links is kinematically equivalent to the paper model. Exploiting the
bifurcation of the spherical 4R and planar 4R linkages, an RH chiral structure can be
transform to an LH structure through the fully elongated configuration. This chirality
switching process is illustrated in Fig. 2-7(b) in which configurations I and II
correspond to RH chirality, IV and V correspond to LH chirality, and III corresponds to
the critical position at which the switching occurs.

To determine the variation in the twisting and helical properties during the chirality
switch, y and h/a are plotted as functions of « , as shown in Figs. 2-7(¢) and (d),
respectively. This analysis indicates that the switch occurs in the configuration with
x=0° and y =0°, which corresponds to the fully elongated configuration with the
maximum unit height. This switching behaviour is different from that of most
previously reported examples wherein chirality switching is induced by external stimuli
[152-155]. Moreover, this behaviour is different from the spontaneous chirality
switching found in bacterial flagella where periodic chirality switching occurs in certain
regions of the flagellum and travels as a pulse along the length of the filament [156].
Since chirality switching in the structure is achieved by mechanism bifurcation, the
structure can be fabricated and controlled more easily compared to the existing
mechanisms with molecular structural changes. Because of the switch, the range of the

helical angle is expanded to [-90°, 90°], which is two times that of the paper structure

presented in Figs 2-1 and 2-3.
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(c) (d)
Fig. 2-7 RH and LH chirality switching: (a) design of the switchable chiral structure; (b)
photographs of 3D-printed and manually assembled linkage models; (c) relationship between the
unit twist angle yand helical angle x; (d) relationship between the non-dimensional unit height

h/a, and x .

2.5 Hierarchically chiral structures

To achieve a hierarchically chiral structure with more helices, the apex of each
eggbox should not be located along the same axis as in the previous single case shown
in Fig. 2-1 in which the connection between the adjacent chiral units must be changed.
The chiral construction unit is altered to a more general unit, as shown in Fig. 2-8(a),
introducing one additional parameter /3, which is the sector angle of the connection

part. The creases of the connection part are presented as dashed lines in Fig. 2-8(b). The
hierarchically chiral structure has two helices, defined as the major and minor helices,
represented by the thick and thin red lines in Fig. 2-8(c), respectively. The major helix
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is formed by the apex of each eggbox, whereas the minor helix is formed by one
identical vertex in the base of each eggbox, which is the same as the single-helix in our
paper model shown in Fig. 2-3(e). Similar to the previously reported synthetic
hierarchically chiral structures [157, 158], our structure transfers chirality at the same
macroscale, owing to which, the dimensions of the two helices have the same order of
magnitude (centimetre scale in this case). Four parameters, K, P, R andL, are
introduced to characterize the major helix, specifically, the helical angle, helical pitch,
radius and length along the helical axis, respectively. A coordinate system where the z-
axis is along the helical axis of the major helix is established, the x-axis is along the
radial direction pointing to the origin of the helix, and the y-axis is determined by the
right-hand rule. The equation of the major helix is

X=Rcosb,
y=Rsing, , (2-7)
z2=P6, /2n

where 6., is the winding angle of each point on the major helix. The equation of the

minor helix is expressed as
X=Rcoséd, —rcosb,cosb, +rPsind,sing, /\4n*R? + P?
y:Rsinem—rcos@ssinem—rPsinHScosem/m. (2-8)
z=P@ _Rsing, / (2r)+2nRrsin 6, / J4n’R® + P*

where r is the radius of the minor helix, which equals a, and 6, is the winding angle
of each point on the minor helix.

Next, the helical properties of the hierarchical chiral structure is analysed. With
the introduction of the major helix, an unusual property of the hierarchically chiral
structure can be observed, which does not occur in the existing synthetic and biological
structures with a monotonically increasing height during the unwinding process;
specifically, the height of the structure first increases from zero to the maximum value
and later decreases to zero when the structure is unwound (i.e., as K varies from 90° to
0°), as shown in Fig. 2-8(d). Photographs of the physical model (made of ENDURO Ice
material) of five representative configurations made of 12 RH units with a = 60° and S
= 30° are presented along with their corresponding unit configuration angles.

Figure 2-9(a) presents a hierarchically chiral structure with N =8, where O,

(=1 to 8) forms the major helix. To obtain the equation of the major helix, the
coordinates of points O, to O, must be expressed in the same global frame. The

local coordinate frame F 1is established in each unit i, as illustrated in Fig. 2-9(b),

where the Z;-axis is along the direction of vector B,D,, the X;-axis is along the direction
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of vector O,B,xB,D,, and the Y;-axis can be determined by the right-hand rule.
Moreover, @,, ®,,and y are defined in accordance with Fig. 2-2, and p;, and p,
represent two dihedral angles in the connection part. The position vector of point O,

in the local frame F, is obtained as

20 mm

$=20° $=40° $#=60° $#=90° $=180°

Fig. 2-8 Design and helical characteristics of the hierarchically chiral structure: (a) altered
chiral unit; (b) two connected altered chiral units; (c) geometrical parameters in the hierarchically
chiral structure; (d) photographs of five configurations of the hierarchically chiral structure.

0
p;;=| —acos(y/2) |, (2-9)
asin(y/2)

where the first and second i values in subscript (7,7) represent point O, and frameF,,

respectively. In two adjacent chiral units,
P(i+1),i = TP(i+1),(i+1)' (2-10a)

Pi,F[pijj, (2-10b)
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where T is the transformation matrix that transforms the expression in frame F,; to

i+1

F.. T isidentical for different i because all the units in the structure are identical.

Figure 2-9(c) presents the transformation process from frame F to F,;

through frames f; to f,; in which axis Z;;, which is determined based on the

rotation from axis Z; around axis X; with a rotation angle of (m—y)/2, is along the
direction of vector B,O;; axis X;,, which is obtained by the rotation from axis X;

around axis Z; with a rotation angle of 7 —w,/2, is along the direction of vector

AB,xB,0O,;; frame f, is obtained by the translation from frame f, along vector
B,O;; axis Z;,, which is obtained by the rotation from axis Z;; around axis Xj; with
the rotation angle of —«, is along the direction of vector A,O;; axis X5, which is
obtained by the rotation from axis X, around axis Z,, with the rotation angle of
7 — @, is along the direction of vector A,O, xO,D,; axis Zj, which is obtained by
the rotation from axis Z;; around axis X;; with the rotation angle of —e, is along the

direction of vector D,O,; frame f;, is obtained by the translation from frame f,g

along vector O,E;; axis Zj, which is obtained by the rotation from axis Z;; around

axis X, with the rotation angle of —/, is along the direction of vector E;A;; axis
Xiq» Which is obtained by the rotation from axis X;g around axis Z;; with the rotation

angle of 7 —p,, is along the direction of vector AE, xE,B,,,; axis Z;;y, which is

obtained by the rotation from axis Z,; around axis X, with the rotation angle of -/,

is along the direction of vector E;B,,;; axis X;,, which is obtained by the rotation

i+1°
from axis Xj;, around axis Z;;, with the rotation angle of 7 — p,, is along the

direction of vector B.

imEi xE,C,,,; frame f,, is obtained by the translation from

i+l

frame f,, along vector E,B, ,; axis X,, is obtained by the rotation from axis X,

i+1°
around axis Z;;, with the rotation angle of —,/2;and axis Z;,; is obtained by the
rotation from axis Z,, around axis X,,, with the rotation angle of —(m—y)/2 (if the

rotation angle is negative, the rotation is clockwise; otherwise, the rotation is
anticlockwise). The whole transformation process is summarized in Tab. 2-1.
Hence,
T=R,((x-7)/2)R,(n-®,/2)D,(@)R,(~)R, (n- @R, ()
D,(-a—asina/tan f+acosa)R, (LR, (7 - p,)R (-F)R, (- p,) (2-11)
D,((asina—acosatan g)/tan f)R,(-w, I 2)R, (—(x—y) ! 2),
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where the rotation around axis x with an angle of o is

1 0 0 0
0 cosdé -sind

0
R, (o) = ; 2-12
() 0 sind cosé O (2-122)
0 O 0 1
the rotation around axis z with an angle of A is
cosA -sini 0 O
sini cosA 0 O
R,(4) = ; (2-12b)
0 0 10
0 0 01
the translation along axis z with a distance of s is
1 000
D, (s) 0 0 (2-12¢)
= ’ - C
’ 0 01 s
0 001
and
PI=TT—,, (2-12d)
tan(p, / 2) tan(p, / 2)=1/cosp. (2-12¢)

If frame F, is selected as the global frame, the expression of all points O, in

frame F can be derived as

R=|(pi,—p,) x5, (2-13)
where p, represents the position vector of the intersection point of the major helical

axis and the Y1-B1-Zi plane, and S 1is the normalized direction vector of the helical
axis. By substituting Eqns. (2-10), (2-11) and (2-12) in Eqn. (2-13), the solution of R
and S can be obtained.

To derive L and P, the distance between O, and O,,; along the major helical

axis must be determined; thus, the chiral structure is rotated such that its helical axis is
parallel to axis Zi. In this case,

P, = R, (arccos(y/s(L,1)? +5(3,1)? //s(L1)? +5(2,)% +5(3,1)?))
R, (—arctan(s(L,1) /s(3,1)))P,,,

P — [pij, (2-14b)

where S(i,1) represents the element of vector S in the ith row, P; is the position

(2-14a)
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vector of point O, after the rotation and

cost 0 sint O

R (7) = 0 100 , (2-15)
y —sint 0 cosz O
0 O 0 1

Next, it can be derived that the distance between O, and O,,, along the helical

axis as
I=P_,B1D)-P(B1=P,31)-P(31), (2-16)
Projecting the major helix to its cross-section generates a circle whose centre is O

and radius is R, as illustrated in Fig. 2-9(d) in which points O, are located on the circle.

The angle between OO, and OO,,; can be obtained as

Sin(7/2) = y/(Pa @D - P.AY)* + (P2 - Pi(21)) / (2R)

2-17
= \/(Pz(l,l) ~P,LD) +(P,(21) - P,(2,2) / (2R). e
According to the definition of P, K and L,
P=2xal/n, (2-18a)
tanK =2nR /P, (2-18b)
L =NI. (2-18¢)

The major and minor helices have identical chirality, although the chirality of the
existing hierarchically chiral structures may be different. This aspect indicates that the
chirality of our structure is dominated by its constituent units. However, the helical
properties of the major and minor helices differ considerably. With the folding of the

structure (i.e., as ¢ increases from 0° to 180°), the minor helix winds while the major

helix unwinds; that is, the helical angle of the major helix decreases, and the helical
angle of the minor helix (i.e. the angle between the minor helix and its axial line
pertaining to the major helix, whose value is the same as that in the previous single RH
chiral structure when ¢ is identical) increases, as indicated by the solid and dashed

black lines in Fig. 2-10(a), respectively. Since the basic vertexes forming the major and
minor helices are in the same chiral unit, the corresponding windings are coupled, in
contrast to the existing hierarchically chiral structures, which exhibit independent
winding. Moreover, in contrast with the single-helix case, which exhibits a
monotonically decreasing pitch and unit length during winding, the pitch P and unit
length L/(Na) of the major helix first increase and later decrease, as shown in Fig.

2-10(b). The pitch P of the major helix first increases and later decreases, as shown in
Fig. 2-10(c), Moreover, the radius R of the major helix is positively related to K (see
Fig. 2-10(d)), whereas it is constant in the single-helix case. Furthermore, the results
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(b) (d)
Fig. 2-9 Geometry of the hierarchically chiral structure: (a) a hierarchically chiral structure with

N =8, where O, (i=1 to 8) forms the major helix; (b) setup of the coordinate frames and

geometrical parameters in two adjacent chiral units; (c) transition process of the frames between
two adjacent chiral units; (d) projection of the major helix and points O, andO,,,

for the helices with three different values of S in Fig. 2-9 indicate that the helical
properties of the major helix can be tuned through S . A more highly wound helix can

be obtained if a larger S 1is selected, and more circles can be formed in a fully wound
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helix by adopting a larger . Finally, increasing £ leads to a reduction in the helix

length; however, this effect is substantial only at relatively small helical angles.

Tab. 2-1 Transformation process from frame F to F .,

Rotation .
. Rotation Target
Transformation around/ . L
Step  From ) angle/Translation To direction
method Translation .
distance vector
along
1 Zi Rotation X; % z, B,O,
. @,
2 Xiy Rotation Z, - Xz AB, xB,0,
3 fi 9 Translation B,O; a fis N/A
4 Z; Rotation Xis - Z, AO,
5 Xiq Rotation z;, T—@ Xis A0, xO,D,
6 Zg Rotation Xis - Z D,0,
acosa — sina
7 fis Translation OE, tan f N/A
+a
8 Z;; Rotation Xi7 -p Z EA,
9 Xig Rotation Zig =P, Xig AE xEB;,
10 Zig Rotation Xig -p Zino EBi.
11 Xi0 Rotation Zyo T—p Xigg Bi..E xECi.y
asina
12 fill Translation Ei Bi+1 tan ﬂ —acosa fi12 N/A
. @,
13 Xito Rotation Zi1n - 7 Xi13 Xit1
14 Zys Rotation Xini - ”T_y Zin Zin

2.6 Conclusions

Helical units and structures based on eggbox-shaped origami are proposed, the
chirality of which can be tuned by adjusting the geometrical parameters. These
structures can be used as a theoretical model to understand the mechanism of chirality
in nature. For example, towel gourd tendrils gradually evolve into a helical shape with
opposite handedness to allow the plant to climb to a sufficient height when attached to
a supporting object, similar to our proposed achiral structure with internal twist, as
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shown in Fig. 2-2(d). Studying the movement of the developed model can enhance the
understanding of the chiral growth mechanism of towel gourd tendrils. Switchable
chirality was achieved through the bifurcation of kinematically equivalent linkages,
which can allow the alteration of the on-sight optical or electromagnetic property of the
metamaterial constructed from such helical units. Nevertheless, it may be challenging
to manufacture a metamaterial with a large deformation to achieve the chirality switch
in industrial applications. Moreover, I designed hierarchically chiral structures with
major and minor helices at the same macroscale in which the winding of the minor helix
drove the unwinding of the major helix. This unusual behaviour, resulting in two
compact folding configurations, provides an opportunity to design multi-functional
morphing structures in aerospace engineering applications. Furthermore, due to its
single degree-of-freedom, the proposed chiral structures can be applied to bionic robots
with a simple control system, which is a topic of our subsequent work.
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Figure 2-10 Effect of the sector angle /B on the helical characteristics of the hierarchically
chiral structure, where S issetas 20°, 30° and 40°: (a) relationship among X , x, and ¢ ; (b)
relationship between the non-dimensional length of each chiral unit L/(aN) and K ; (c) relationship

between the non-dimensional pitch P/a and K; (d) relationship between the non-dimensional

major helix radius R/a.
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Chapter 3 2D mobile networks of spherical linkages:
morphing surfaces

3.1 Introduction

In the mechanical engineering domain, rigid origami is generally studied as a
network system of spherical linkages. For a single vertex of a rigid origami structure,
rigid links can be rotated around revolute joints during folding, and all the axes of the
joints may intersect at a point. In this case, the single vertex can be regarded as a
spherical linkage. I developed a novel form of a one-DOF network system of spherical
4R linkages by replacing the unit facets of a planar origami pattern with volumetric
tetrahedrons. The altered form retained its original one-DOF characteristic, and the
network could be expanded to a morphing surface. Thus, a morphing surface that could
transform from a parabolic cylinder to a paraboloid through the motion of the spherical

linkages is obtained.

The layout of this chapter is as follows. First, in Chapter 3.2, a novel one-DOF
network system of spherical 4R linkages inspired by origami is described. The above-
mentioned network system is extended to a morphing surface. Next, in Chapter 3.3, an
example of the morphing surface that can transform from a parabolic cylinder to a

paraboloid is presented. Finally, the concluding remarks are presented in Chapter 3.4.

3.2 Network system and morphing surface inspired by origami

Inspired by the famous eggbox origami pattern, a novel form of a one-DOF
network system of spherical 4R linkages is established by replacing the unit facets of
the eggbox pattern with volumetric tetrahedrons. An eggbox with four rhombic units is
illustrated in Fig. 3-1(a) in which the dashed lines represent the crease patterns that
cannot be observed from the view point, and the red lines are the two edges AB and AD
of the rhombic unit ABCD connected to its neighbouring units. Folding the unit ABCD
around the crease line BD with the dihedral angle @ yields a spatial quadrilateral. By
adding an identical spatial quadrilateral, a tetrahedral unit is constructed. This process
1s shown in Fig. 3-1(b). It can be noted that

cosw = (cosa —cos’ ((t—a) 1 2)/sin*((n— ) / 2). (3-1)

Figure 3-1(c) shows the oblique, top and bottom views of the assembly of four
tetrahedral units, which can be regarded as a spherical 4R linkage. By connecting the
three above-mentioned assemblies in series and adding planar triangle units, the mobile
network shown in the left part of Fig. 3-1(d) is achieved in which the triangle units are
shown in white. The paper model of the mobile network is shown in Fig. 3-1(d) left in
which the blue and white parts denote the tetrahedrons and planar triangle units,
respectively. This network is a one-DOF assembly of spherical 4R linkages.
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(d)
Fig. 3-1 One-DOF network inspired by rigid origami: (a) vertex of the eggbox pattern; (b)
construction of a tetrahedral unit; (c) assembly of four tetrahedral units and (d) one-DOF mobile
network.

The above-mentioned 4R configuration can be expanded to a one-DOF morphing
surface profile by inserting more triangle units into the original network system. The
simplest network is illustrated in Fig. 3-2, in which the blue and white parts represent

tetrahedrons and triangle units, respectively.

By tuning the design parameters of the tetrahedrons and triangle units, different
surfaces can be obtained. Although the planar units can be arbitrary triangles, for the
sake of simplicity, three kinds of triangle units are used in the morphing surface shown
in Fig. 3-3. As illustrated in Fig. 3-3 (a), panels with the same colour represent the same
kind of triangle unit and the surface is two-fold symmetric. The tetrahedrons (blue part
in the middle of the network) are formed by identical isosceles triangles (Fig. 3-3(b),
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Chapter 3 2D mobile networks of spherical linkages: morphing surfaces

left), with the length of the equal sides being L; the yellow and green triangles are
isosceles triangles, with the length of the equal sides being L (Fig. 3-3(b), triangles in
the middle and right). In this manner, a two-fold symmetric morphing surface can be
obtained. If each triangle and tetrahedral unit is regarded as a link, three types of
vertexes in the mobile network and different types of vertexes (considering vertexes A,
I and C as an example, illustrated in Fig. 3-3(a)) are shown in Fig. 3-3(c) in which
vertex A can be regarded as a spherical 4R linkage, and vertexes [ and C can be regarded
as spherical 6R and 8R linkages, respectively.

AN

Fig. 3-2 Schematic of a morphing surface.

Subsequently, the relationship among the parameters at different vertexes is
analyzed. For linkage A,

Substituting Eqn. (3-2) in Eqn. (1-7a) yields

sin® o, cos , cos @ +sin’ &, Cos cr, COS G

i+1

+C0s e, sin® a, cos 8 cos 07, (3-3)
—sina?;sin@” sin @, —cos® o, +cosa, =0,
which can be expressed as
0l =1(0). (3-4)
For linkage I, which is a spherical 6R linkage, according to Eqns. (1-4) to (1-6),
Q21Q3Q43Q54 Qs Qs6 = 15, (3-5)
which can be expressed as
Q21Q22Qu5 = Q51 Qs6Qss- (3-6)
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In linkage I, the sector angles are
Ay = Qg =0y, Qgy =AY == 20,0y, = Qs = . (3-7)
Substituting Eqn. (3-7) in Eqn. (3-6) yields
(sin , sin 6, sin 6, +sin a, cos 2a, cos 8} €os O — CoS &, Sin 2, Cos 6, ) sin a,
—(sin , sin 2a, c0S 6, +COS ¢, COS 2ax,) COS
= (sin ¢, sin ! sin G} +sin o, cos 2, cos &} cos G —cos &, Sin 2ax, €os 6, ) sin a,
—(sin o, sin 2a, €0s 6, +COS ¢, COS 2z, ) COS
(3-8a)
(cos &, cos @, —cosa, sin 8, sin ;) cos b,
+(cos 2a, €0s ), sin 6, +cos o, cos 2ax, Sin 8, cos &, +sin e sin 2a, sin 6, sin )
= (cos 6, cos 8, +cos 2a, sin G sin G;) cos G,
—(cos a, sin 6 cos ) —cos 2a, CoS ot COs ) sin ) +in 2ax,, sin a, sin 6} ) sin 6,
(3-8b)
(sin &/ cos B} +cos , cos &, sin 8)) sin a, sin 6
—(cos 2a, sin ) sin 8} —cos o, cos 2ax, cos &, cos B —sin ¢, sin 2a, cos &, ) sin a, cos O}
+(sin 2a, sin 4, sin @, —cos a, sin 2a, €os &, cos 6, +sin o, €os 2a, oS &, ) CoS cz,
= (—Ccos ¢, Sin @, sin 6 — cos ¢, €0S 2¢x, €OS H; €OS O, +sin a, Sin 2, cos 6, ) sin a,
+(cos a, sin 2a, cos 6, —sin a, cos 2a, ) COS .
(3-8c)
Equation (3-8) can be simplified as
0, = 1,(6.6.6),
0, =1,(6',6,,6)), (3-9)
0 =1.(6,6,,0)).
In linkage C,
Q,1Q4,Q43Q54 Qe Q76 Qe7 Qs = 1 (3-10)

which can be expressed as
Q21Q3Q43Qs4 = Qg1 Q75Q67 Qs (3-11)
In linkage C, the sector angles are
O = Qg =y, 0y = Qg =T — 205, 0ly, = Oy =M= 20,0 = Uy = Q. (3-12)
Merging Eqns. (3-11) and (3-12) yields
0y = 1°(6°,05,05,07,05),
oF = £°(65,65,65,65,67), (3-13)
0y = t°(6°,05,05,07,05).
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Fig. 3-3 Geometry of the morphing surface: (a) morphing surface with three kinds of triangle
units; (b) three kinds of triangle units; (c) four kinds of vertexes in the morphing surface.

Since the morphing surface is symmetric, only half of the surface is considered.
The relationship among the twist angles of half the mobile network is shown in Fig. 3-

4. The twist angle at the end of an arrow can be obtained from the angle at the beginning
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of the arrow.
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Fig. 3-4 Relationships among the parameters in the morphing surface.

For example, 6?3A - Qf represents Gf =f ((93A) , which can be obtained from Eqn. (3-

4). Vertexes I and O are regarded as spherical 6R linkages, which are three-DOF and
can be determined by three input angles, which are determined according to the adjacent
spherical 4R linkages; vertex C is regarded as a spherical 8R linkage, which requires
five input angles to be determined, which are identified through linkages B, I, J, O and

P. If angle (92D is considered as the output angle of the mobile network, the output

angle (92D can be obtained even if only one input, angle (91A , 1s given. Hence, the

morphing surface has only one-DOF.

3.3 Transformation from a parabolic cylinder to a paraboloid

The morphing surface can transform between two target surfaces, and as described
in this chapter, a morphing surface that can transform from a parabolic cylinder to a
paraboloid is designed. A morphing surface constructed using isosceles triangle units
has two zig-zag lines known as the ‘“shape-lines” in which the H- and V-lines
correspond to the horizontal and vertical shape-lines, respectively, constructed by
connecting the vertexes in the two diagonal lines of the surface.

The two shape-lines of the arbitrary morphing surface match the two curved lines,
as illustrated in Fig. 3-5. These two curved lines determine the shape of the morphing
surface.
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Fig. 3-5 Two curved lines matched by the two shape-lines of a morphing surface.

While designing a morphing surface, I focus only on the vertexes at the shape-
lines. Assuming that the morphing surface is two-fold symmetric with respect to its
shape-lines (see Fig. 3-6(a)), only a quarter of the network needs to be determined. The
parameters of the morphing network and vertexes in the two shape-lines are shown in
Fig. 3-6(b); in contrast to the network shown in Fig. 3-3, six different triangle units are
used to construct the network, and the two shape-lines of the network are shown in Fig.
3-6(c) in which y; and ¢ are angles that determine the two shape-lines of the

morphing surface. Two coordinate frames are established in both the shape-lines. For
each shape-line, the x-axis is horizontal, the y-axis is perpendicular to the x-axis, and
vertex O is the origin of coordinates in both the frames. By obtaining the coordinates
of the vertexes in the two shape-lines, the two shape-lines can be defined.

The shape of the morphing surface can be determined by the two shape-lines, and
to obtain the angles », and ¢, coordinate systems are established at the vertexes in

the shape-lines. The coordinate frame of vertex V, considered as an example is shown

in Fig. 3-7. Linkage V» is plane-symmetric in which aiVZ represents the direction

vector of the ith crease line of the spherical 8R linkage, ni"z represents the direction

V,

iy and a)iv2 represents the dihedral angle between the two triangle

vector of ai"z xa

units pertaining to vector aiV2 (for the sake of simplicity, only nl’ 2, n;’2 , (olv > and

@, are illustrated in Fig. 3-7). The angle between N> and N3 is (1—®.2). The
x-V7-y plane of the coordinate system is determined by a}’ ? and aBVz .The x-axis is
along the downward direction of the bisector of the angle between vectors af > and

ag’z ; the y-axis is perpendicular to the x-axis and along the right direction. For vertex

51



Doctoral Dissertation of Tianjin University

V,, the angle between al/ 2and a;’z should be obtained, and this angle is @, . For all

vertexes in the two shape-lines,
. T
a3 =(cos(<ay,a; > /2),sin(<ag,af >/2),0) ,
R T
ay =(cos(<ay:,ay >/2),sin(<ay,a; >/2),0) ,

ay" =(C°3(< 82,8, > /2),sin(< a,?,a," >/2)’0)T’
v, \VARSRVA ; Vs qVs T
ay = (cos(<af,a% > 2) sin(<a¥,a% >12),0)', G-140)
T
)’ =(cos(<a}" a}" > /2),sin(<a}’,a}' >/2),0) ,
a) =(cos(< al,ah > [2),sin(<a},a; > /2),0)T,
a? = (cos(<al,af > 2),sin(< af,af > /2),0),
as :(cos(< as,as > /2),sin(<a$,a; > /2),O)T,
a®,-n°=0,a"-n" =0,a",-n" =0,a*,-n* =0,a%,-n® =0,a°,-n° =0,a%,-n° =0,
0P =02 0% =0, -" 0,87 =0, 0,85 nf =0,
(3-14b)

o O o O (o} o Vj \4 V; V; \7 V;
cos <a’,,af >=(a?;-a’)/ ([a, | [a” ). cos <a’y,a" >= (@, -a; ')/(Haijluuai ‘H),

cos<al,a >=(al-a")/ (HaiH_ilHHa?" H) cos <afy,a’ >=(a’,-af)/ ([ar,[af ).

cos<afy,af >= (a7, -a7)/ (|ja%, | [a?[). cos < afy.af >=(af,-a’)/ ([af,| a7 ).

(3-14c)

cos<n?,,n® >=—cosw®;,cos <Ny, N’ >=—cosm,},
cos<ni,n'" >=—cosew!,cos <n?,,n? >=—cosw®,, (3-14d)

cos <n?,,n? >=-cosm’,,cos <NS,,N° >=—Cosw",,

cos<a’,,a’ >=cos<a’,,a’, >-cos<a’;,a’ >

H (0] O H o} o} (0]
+sin<a?,,a°, >-sin<a’;,a° > cosw’,,
cos<a’,,a’ >=cos<a ,,a’ >-cos<a’,a’ >

. V. \VA . V. V. Vi
+sin<a’,,a ) >-sin<a’,a’' >cosw ], (3-14e)

cos<a'h,a >=cos<ah,al >-cos<a l,a’ >

. H; H; - H; H; H;
+sin<a; a7 >-sin<a;},a ' >cosm ),

52



Chapter 3 2D mobile networks of spherical linkages: morphing surfaces

cos<al,,a’ >=cos<a’*,,a’, >-cos<a’,,a’ >

+sin<al,,a’, >-sin<al,,a’ > cos

B

cos<a’,,a’ >=cos<a;,,a’, >-cos<a,,a’ >

H B B : B B B (3-14f)
+sin<a?,,a’, >-sin<a’;,a’® > cosw?,,
cos<a’,,a’ >=cos<a-,,a’, >-cos<a’,,a’ >

+sin<a’,,a’, >-sin<a’,,a’ > cosw’,,
where <a,b > represents the angle between vectors a and b. At each vertex, the

relationship between the dihedral angle @ and twist angle 6. is as follows:

@ =m—6 (mountain crease line),

. (3-14g)
o =n+6 (valley crease line).

According to Section 3.2, all the direction vectors a; at each vertex can be derived from
Eqns. (3-14a) to (3-14f) by defining the dihedral angle a)lo , through a similar process
as that shown in Fig. 3-4.

After obtaining the direction vectors at each vertex in the two shape-lines, the
coordinates of these vertexes in the frames shown in Fig. 3-6(c) can be derived.

Specifically, the following equations can be obtained:
oSy, =cos<ay,as >,

COSy, =Cos < ay,a," >,

Ly (3-15a)
COSy, =COS <ay?,a,? >,
oSy, =COS < ay?,ay® >,
cosg, =cos<a,,as >,
\Y \Y
COS¢@ =CoS <a*,a" >,
L (3-15b)

OS¢, =COS < a,2,ay” >,

COS¢, =C0S<a,",a" >,

Po=(0,0)",

Py, =Po +(LCoS(n/2~ 7, 12),~Lsin(n/2 -y, 12))",

Py, =Py, +(LCos(m2—y, +7, 1 2)),~Lsin(/2—y, +7,12)))",
P, =Py, +(LCOS(RI2 =y, + 7, — 7, 1 2),~Lsin(mI2 — y, + 1, — 7,1 2))",

Py, =Py, +(LCOS(MI2 =3+ 7, =y, + 751 2),—LsSIN(W2 =y, + 7, =1, + 7, 1 2))

(3-15¢)

T
1
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Fig. 3-6 Morphing surface: (a) network; (b) parameters of the network; (c) two shape-lines: H-line
(top) and V-line (bottom).
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Fig. 3-7 Coordinate frame at vertex V.

Py, =P, +(Lcos(n/2—g, 1 2),-Lsin(n/2—¢,12))",
Py, =Py, +(2Lcosa, cos(n/2—y, + ¢, 1 2)),-2Lcosa, sin(n/2—y, + ¢, 1 2)))" ,
Py, =Py, +(2Lcosa, cos(n/2 -y, +¢, 1 2)),~2L cos a, sin(m/2 -y, + ¢, 2))) ",
2Lcosa, cos(n/2—y,+y,—y, + @, 1 2),

P, =Py, * (—ZLcos a, SN2 -y, + 7, -y, + | 2)]’
(3-15d)

where p represents the coordinate and its subscript represents the vertex.

Since the coordinates of all the vertexes in the shape-lines have been defined, we
can match the shape of the morphing surface to the target surface by selecting proper
design parameters. This process is described using an example in which a parabolic

cylinder is transformed to a paraboloid.

One of our target surfaces is a paraboloid, which can be obtained from the rotation
around the y-axis of a parabola, as shown in Fig. 3-8(a) in which the parabola is

indicated in red. The function of this parabola is assumed to be Y = leZ, and for a
morphing surface, if the coordinates of vertexes O, V,, V,, H, and H, match the
function of this parabola, the morphing surface matches the paraboloid.

The other target surface is a parabolic cylinder, which can be constructed by the
translation along the z-axis of a parabola, as illustrated in Fig. 3-8(b) in which the

parabola is represented in blue. Assuming that the function of this parabolais Y = sz2 ,
in a morphing surface, if the coordinates of vertexes O, V,, and V, match the
function of this parabola, and the coordinates of vertexes O, H, and H, match the
straight line Yy =0, the morphing surface matches the parabolic cylinder. If the
morphing surface and target surface are matched, the following equation should be

satisfied:
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Hsz B PHz H< &

b P <5 (3-16a)
P =R e (3-16b)
HpW - PVA H< &

where ¢ is the accuracy error, and

P, = (P, @D, m(p, WD),

; (3-17)
Py =(Py @D, m,(py L)) ,

1

bt

1 .

l ™ rotation

LG

\

\

“‘ /
> ‘( ;VL i x
pe Z translation

(@)

(b)
Fig. 3-8 Construction of (a) a paraboloid and (b) a parabolic cylinder.

Next, the conditions under which a morphing surface can transform between the
two target surfaces are discussed. The process can be described as follows:

(1) Step 1: the two target surfaces are defined, with m, less than m,. I assume
that the length £=0.5.

(2) Step 2: different values are assigned to «;, —a and },.

(3) Step 3: a,—a, are substitute with different y; values in Eqns. (3-14) and
(3-15) and obtain the coordinates of the vertexes in the shape-lines of the

morphing surface to the function of the parabola in the paraboloid and parabolic
cylinder.

(4) Step 4: check whether these coordinates satisfy the function of the parabola in

the paraboloid and parabolic cylinder. If no matching occurs, return to Step 2 or
proceed to Step 5.

(5) Step 5: the proper design parameters that allow the morphing surface to

transform between the two target surfaces are identified, and the process is
terminated.
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This process is illustrated in Fig. 3-9 and implemented in MATLAB.

L=0.5 and m, and m,
are given (m, <m,)

Assign different values
to the sector angles and
the dihedral angle
(according to a given
step size)

!

Obtain the coordinates
of the vertexes

The vertexes match
the function of the
parabolas

The solution is found

Fig. 3-9 Process of identifying a morphing surface that can transform between two target surfaces.

An example is shown in Fig. 3-10 with
a, =60°,a, =56.5°, 1, =58.5° ,, =58°, o, =56°, o, =56°,
and the surface can transform from a paraboloid (m, =0.13 and }, =925") to a

parabolic cylinder (m, =0.25 and}, =88.5°). The two surfaces are shown in Figs. 3-

10(a) and (b), respectively, and the morphing process is illustrated in Fig. 3-10(c).

3.4 Conclusions

This chapter describes a one-DOF mobile assembly of spherical 4R linkages
inspired by origami, which is extended to a morphing surface that is one-DOF by adding
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spherical 6R and 8R linkages. The above-mentioned morphing surface is transformed

(c)
Fig. 3-10 Morphing surface: (a) front view (top left), left view (top right) and top view (bottom) of
the paraboloid; (b) front view (top left), left view (top right) and top view (bottom) of the

parabolic cylinder; (¢) process of transformation from a parabolic cylinder to a paraboloid.

through the motion of the spherical linkages. The surface has two shape-lines that
determine the shape of the surface, and the surfaces can be designed by tuning the two
shape-lines. An example of the morphing surface that can transform from a parabolic
cylinder to a paraboloid is provided, which may provide a reference to design flexible

antennas in aerospace applicatio
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Chapter 4 3D mobile networks of spherical linkages: rigid
origami tubes

4.1 Introduction

Rigidly foldable origami tubes with open ends have been reported in the past.
Kinematically, these tubes are assemblies of spherical linkages in which the rigid links
are connected by revolute joints. In this chapter, new methods to obtain origami tubes
that are rigidly foldable with a single degree-of-freedom are described.

The layout of this chapter is as follows. First, as described in Chapter 4.2, several
existing tubes are conjoined by merging common sides or corners, resulting in a family
of tubes with asymmetric polygonal cross-sections. Next, Chapter 4.3 introduces
transition parts in an existing tube, thereby developing the second set of origami tubes
in which the crease lines between neighbouring layers form nonplanar polygons. The
formation of multi-layered and curved tubes based on the above-mentioned tubes is
discussed in Chapter 4.4. Finally, the concluding remarks are presented in Chapter 4.5.

4.2 Two tubes formed by combination

Goldberg 5R and 6R linkages are obtained by merging two or more Bennett
linkages through a summation or subtraction process depending on the relative
positions of the adjoined Bennett linkages. New tubes known as combined tubes are
generated by adopting a similar approach for the sections of the tubes.

4.2.1 Summation of two tubes

Figures 4-1(a) and 4-1(b) show two one-DOF rigidly foldable tubes, Tubes 1 and
2. The facets of both the tubes are parallelograms. Tube 1 with a kite cross-section, as
shown in Fig. 4-1(a), is formed using two pieces with facets having different lengths.

Both the top and bottom pieces are flat developable with o™ +y" =, g +0" =mx,

and OtlT 1y 7/1T '=m, lTl + 51T1 = 1. To realize flat foldability, a™ = ™ and alT = 1T1 .

To connect the pieces to form a one-DOF tube, acosa, ' =bcosa ™. In the case of
Tube 2 with a parallelogram cross-section, as shown in Fig. 4-1(b), the left and right
pieces are flat developable and have an identical geometry in which ' =" and
7> =8 . The cross-sections of Tubes 1 and 2, ABCD, are plane-symmetric and line-

symmetric, respectively. The tubes with the parallelogram and kite cross-sections have
one and two flat folding states, respectively. If the two tubes are placed side by side
such that they share a common side, the tubes can be joined via the common side,
forming the compound tube shown in Fig. 4-1(c), with
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aTl :aTz :IBTl :ﬂTZ =a; (4_1)

where superscripts T1 and T2 represent Tubes 1 and 2, respectively. In addition, the
widths of the facets of two tubes should match. If these conditions are satisfied, the
combination does not alter the motion of each tube, and the combined tube has only
one-DOF, i.e., the compound tube is also rigidly foldable. In this case, the common side
of the two tubes can be removed, resulting in a new origami tube that is rigidly foldable,
as shown in Fig. 4-1(d).

According to Chapter 1.2.3.1, Tubes 1 and 2 can be considered as the assembly of
spherical 4R linkages at each vertex. In the case of Tube 1, at vertex A, the four twist

anglesare a,=a'’, a,=y", a,=0",and a,=p"",and they can be substituted

in Eqn. (1-7) to yield

cos’a™ —sin’ a™ cos @ =cos’ y™ —sin® y " cos G, . (4-2a)
Similarly, in the case of Tube 2, @, =a', ay=7"", a,,=56",and a, =p"",and
cos’ a'? —sin® @ cos 6 = cos® y* —sin® y"* cos ;. (4-2b)

Substituting Eqn. (4-1) in Eqn. (4-2) yields
cos’ a —sin® acos @ = cos’ y ™ —sin® y " cos G, (4-3a)
cos® a —sin acos @° = cos® y* —sin’ y* cos 6;°. (4-3b)

After the tubes are attached, the obtained combination is one-DOF, and because of the
assignment of the sector angles and mountain-valley crease lines,

o™ =6 (4-4)

By merging Eqns. (4-3) and (4-4), Eqn. (4-3b) can be rewritten as
cos® o —sin® e cos @ = cos® y "> —sin® ¥ cos ;. (4-5)
Moreover, Eqn. (4-3a) is satisfied. In the new tube, after removing the common parts,

vertex A in Tubes 1 and 2 becomes vertex A™ and A", respectively, as illustrated
in Fig. 4-1(e). At vertex A™,

cos® o —sin* arcos @ = cos” y™ —sin® ¥ cos ] . (4-6a)
At vertex A™,
cos” a —sin® a cos(=8) = cos® y* —sin® y > cos 4, °. (4-6b)
Moreover
0=-6". (4-6¢)

Merging Eqns. (4-6a) and (4-6¢) yields Eqn. (4-2b), and merging Eqns. (4-6b) and (4-

6¢) yields Eqn. (4-5). The same relations can be achieved at vertex D™ Hence,
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removing the common part of the two combined tubes does not change the relationships
among their angles, and the new combined tube is also one-DOF.

The cross-section of the resultant tube is neither in line nor plane-symmetric. In
fact, the cross-section is an arbitrary polygon. When vertex A of Tubes 1 and 2 is
positioned at the same point,

ey e (4-7)

In this case, the two adjacent facets from each tube can be welded into one piece to
form a new tube with a cross-section consisting of an odd number of sides.

The schematics in Figs. 4-2(a) and 4-2(b) illustrate the summation approach in
which a kite tube and parallelogram tube are combined, as well as the physical models
demonstrating the folding of the resultant tubes. It should be noted that when the two
tubes are joined through one of their longer sides, the folding on the short side of the
kite tube is not disturbed, and the combined tube still has two folding states, as shown
in Fig. 4-2(b).

Tube 1
T1
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Fig. 4-1 Construction of a tube by summation: (a) Tube 1, (b) Tube 2, (¢) Tube 2 is attached
to Tube 1, and (d) the common portion of the joined tube is removed to form a new rigidly
foldable tube; (e) sector angles in the new foldable tube.
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Fig. 4-1 Construction of a tube by summation: (a) Tube 1, (b) Tube 2, (c) Tube 2 is attached
to Tube 1, and (d) the common portion of the joined tube is removed to form a new rigidly
foldable tube; (e) sector angles in the new foldable tube. (continued)

4.2.2 Subtraction of two tubes

Figure 4-3 illustrates the subtraction process in which the tube with the smaller
cross-section, Tube 2, is nested inside the larger Tube 1. When the geometric conditions

7/Tl :yTZ — 5T1 — 5T2 :7/ (4-8)

are satisfied, and the widths of the facets of the two tubes match each other, the
subtraction can be performed along one common side, as shown in Fig. 4-3(c).
Alternatively, if the geometric conditions

aTl — aTZ :ﬂTl — ﬁTZ —a, (4-93)
}/Tl — 7T2 — 5T1 — 5T2 =7, (4-9b)

are met, and the widths of the facets of the two tubes match each other, the subtraction
can be performed at the common corner of the two tubes, Fig. 4-3(e), leading to two
common sides. After removing the common parts, new tubes with combined and
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nonsymmetric cross-sections can be obtained, as shown in Figs. 4-3(d) and 4-3(f),
respectively.

Consider the process shown in Figs. 4-3(e) and (f) as an example. At vertex B in
Tube 2,

cos® a —sin’ a cos 6° = cos®(n - y) —sin’(xn—y)cosd;?,  (4-10a)
which can be simplified as

cos” o —sin® a cos &° = cos y —sin® y cos 4, . (4-10b)

(b)

Fig. 4-2 Summation of two tubes: (a) schematic of the summation method with the shorter sides

joined together, and the expansion sequence of a tube model from its flat folding state I; (b)
schematic of the summation method with longer sides joined together, and the expansion sequence
of a tube model from its flat folding state I to its second flat folding state V.
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&

(2
Fig. 4-3 Construction of a tube by subtraction: (a) Tube 1; (b) Tube 2; (c) Tube 2 is nested inside
Tube 1; (d) the common portion of the joined tube is removed, thereby forming a new rigidly

foldable tube; () Tube 2 is nested inside a corner of Tube 1; (f) the common portion of the joined
tube is removed, thereby forming a new rigidly foldable tube and (g) sector angles in the new tube.

After the combination, vertex B in Tube 2 becomes vertex B', and Eqn. (4-10b) is
satisfied. Removing the common parts (see Fig. 4-3(g)) leads to

cos” a —sin® a cosé, =cosy —sin’ ycosé,, (4-11a)

6 =6"% 6,=-6,°. (4-11b)
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Merging Eqns. (4-11a) and (4-11b) leads to Eqn. (4-10b). The same conclusion can be
achieved at vertex D™ . Hence, the resultant tube exhibits rigid foldability with one-
DOF. Similarly, the tube obtained from the process shown in Figs. 4-3(c) and 4-3(d) is
also one-DOF. Figures 4-4 and 4-5 schematically illustrate the subtraction process
involving a common side and common corner, respectively, accompanied by the folding
sequences of the physical models obtained through this process.

Tube 1 Tube 2

(s

(b)

Fig. 4-4 Subtraction of two tubes: (a) schematic of the subtraction method with Tube 2 nested
inside the shorter side of Tube 1, and the expansion sequence of a tube model from its flat folding
state I and (b) schematic of the subtraction method with Tube 2 nested inside the longer side of
Tube 1, and the expansion sequence of a tube model from its flat folding state I to its second flat
folding state V.

4.2.3 Combination of more tubes

Not only can a pair of rigidly foldable tubes be combined to create new rigidly
foldable tubes, but also more tubes can be united using both the summation and
subtraction approaches. An example is shown in Fig. 4-6, which involves three tubes.
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First, Tubes 1 and 2 are summed, and Tube 3 is subtracted from the combined tube,
which results in a new tube with a seven-side polygonal cross-section (see Fig. 4-6(a)).
Similar to Goldberg’s method, we can subtract the summation of Tubes 1 and 2 from
Tube 3 to produce a clipped tube. The process is shown in Fig. 4-6(b). All the new tubes
exhibit rigid foldability, as demonstrated by the physical models.

Tube |
Tube 2
b a
CAC
- (/Q/ - "\ .
a b
[11 Iy

(®)

Fig. 4-5 Subtraction of two tubes: (a) schematic of the subtraction method in which Tube 2
with a kite cross-section is nested inside a corner of Tube 1 with a parallelogram cross-section, and
the expansion sequence of a tube model from its flat folding state I and (b) schematic of the
subtraction method in which Tube 2 with a parallelogram cross-section is nested inside Tube 1
with a kite cross-section, and the expansion sequence of a tube model from its flat folding state I
to its second flat folding state V.
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Tube 1

(@)

Tube 2 Tube 3
/ >

Tube 1

(b)
Fig. 4-6 Combination of three tubes: (a) schematic showing the combination of three tubes,
and the folding sequence of a model tube and (b) schematic showing a different way of combining
three tubes, and the folding sequence of a model tube.

4.3 Tubes formed by adding transition parts

Transition parts can be added to a rigidly foldable origami tube to produce a new
rigidly foldable tube known as a shifted tube.

In this section, how a pair of transition parts can be added to a rigidly foldable tube
to produce a new tube termed as a shifted tube is demonstrated. Figure 4-7(a) shows a
rigidly foldable origami tube with a kite cross-section. This tube is subsequently
separated into two parts: blue P1 and yellow P2. A pair of identical transition parts
shown in Fig. 4-7(b), T1, is to be added between these parts. All the facets in T1 have
a parallelogram shape. The new tube with the added transition parts is illustrated in Fig.
4-7(c). Next, the conditions under which the rigid foldability of the resultant tube can
be achieved is identified. Since a tube can be considered as an assembly of spherical 4R
linkages at each vertex, prior to adding the transition parts, at the vertex A surrounded
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by twist angles «;,, ¢, @, and ),

QuQ:2Q4Qu = 1, (4-12)
where
cosf, —sind cose;,,, Singsing,,
Qi =| SiNG,  cosb cosa;,,y —COSH SiNe .y |- (4-13)
0 sina ., COS &)
Merging Eqns. (4-12) and (4-13) yields
COS &y, COS @, —SiN ey, SiN ¢x,; COS 6, = COS ,, COS t, —SIN €2, SiN 1, COS 6.
(4-14)
Once a pair of transition parts T1 has been added, vertex A has two parts: A" with
twist angles «,, 7, 7, and «,, and A" with twist angles T—y,, oy, o,
n—y,.According to Eqns. (4-12) and (4-13),
oS a, COS at,,y —SiN ey, SiN @ty COS G, = COS 7, COS ¥, —SiN y, SiN y, COS O, (4-15a)
and

cos(m — y;) cos(m — y,) —sin(m — y,) sin(z — ,) cos &, = (4-15b)
COS &, COS Ly, —SIN @y, SiN 5, COS 6

Merging Eqns. (4-15a) and (4-15b) yields Eqn. (4-14). The same conclusion can be
drawn for the two vertices on the back of Fig. 4-7(b) where the other T1 is added. This
finding demonstrates that adding a pair of identical transition parts formed by
parallelogram facets to an existing tube does not change the relationship among the
angles of the original tube. Hence, it can be concluded that the new shifted tube is still
rigidly foldable with one-DOF.

Fig. 4-7 Formation of a shifted tube: (a) original tube, (b) transition part, and (c) shifted tube
after insertion of the transition pair.

The addition of a transition pair may alter the foldability of the tube. In general, if
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7, # 7, the resultant cross-sections of the shifted tube are no longer planer, and thus,

the shifted tube is not flat-foldable even when the original tube is flat-foldable. Figure
4-8(a) shows an example of this case. However, if the original tube is flat-foldable, and

for the added parts y, = y,, the shifted tube remains flat-foldable with a planar cross-

section. An example of this case is shown in Fig. 4-8(b).

(b)
Fig. 4-8 Two shifted tubes: (a) Folding sequence of a shifted tube, with IV showing the side
view of the tube in configuration II, demonstrating a nonplanar cross-section and (b) folding

sequence of another shifted tube. The tube is flat-foldable and has a planar cross-section, as
demonstrated by IV: side view of the tube in configuration II.

Using this method, more than a pair of transition parts can be added to the original
tube without changing its DOF. Each pair must contain two identical parts with
parallelogram facets. Figure 4-9 shows the rigid folding sequence of a physical model
in which two transition pairs, labelled T1 and T2, are added to a kite tube. Moreover, a
pair of transition parts can be added to different locations of the same original tube.
Two physical models shown in Figs. 4-10(a) and (b) are used to illustrate this aspect. In
the case shown in Fig. 4-10(a), the original tube with a six-sided polygonal cross-
section is divided into a four-sided left part and two-sided right part before inserting a
pair of transition parts, T1, to form a shifted tube. In the case shown in Fig. 4-10(b), the
same six-sided polygonal cross-section of the original tube is partitioned into a three-
sided left part and three-sided right part instead, and the transition pair T1 is added. The
resultant tubes in Figs. 4-10(a) and 4-10(b) are considerably different but rigidly
foldable.
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(®)
Fig. 4-10 Two shifted tubes: (a) Folding sequence of a shifted tube with transition pair T1
added. IV shows the side view of configuration II and (b) folding sequence of the other shifted
tube with transition pair T1 added at a location different from that in (a). IV shows the side view

of configuration II.

4.4 Multi-layered straight and curved tubes

Multi-layered tubes can be obtained by stacking a single-layered tube, as discussed
in Chapters 4.2 and 4.3, with parallel or nonparallel cross-sections to form a straight
tube or curved tube, respectively. In the latter case, certain parallelogram facets are
altered to trapezoid facets.

4.4.1 Multi-layered tubes

Stacking the same single-layered tubes outlined in Chapter 4.3 yields a long multi-
layered tube, which has a straight profile, in general. Several examples of such tubes
are shown in Fig. 4-11. The single-layered tubes can be combined or shifted tubes.
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(b)
Fig. 4-11 Folding sequences of multi-layered straight tubes formed by (a) combination and
(b) shifting.

4.4.2 Curved tubes with combined cross-sections

A straight tube with a planar cross-section can be transformed to a curved one by
plane slicing a portion of the tube. Figure 4-12 shows two single-layered curved tubes
created using this method. In the case of the first tube, shown on the left in Fig 4-12(a),

the top and bottom slicing planes have an inclination angle &' andv'™, respectively.
Consequently, the front and back parallelogram facets become trapezoid facets. If the
same approach is applied to the second tube, Tube 2, with slicing plane angles &™ and
v™?, the two tubes can be combined in the same way as those considered in Chapter 4.2.
However, certain additional conditions must be satisfied:

a™ = aTZ,ﬂTl _ ﬂTZ’ (4-16a)
elh=gl Yy oy (4-16b)

and the side lengths of the facets on the commonly shared side must match. After
removing the shared facets, a combined curved tube with six sides can be obtained (see
the left side of Fig. 4-12(b)). Moreover, if

yteyP=nand ST +57 =m, (4-17)
the common creases of the combined tube can be removed, and the two facets on either
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side can be bonded to a single facet. The resulting tube has five sides (see the right side
of Fig. 4-12(b)).

Fig. 4-12 Curved tube constructed by summation. (a) Two tubes (top) and their side view
(bottom), (b) combination of the tubes before and after the removal of the common side, and (c) a
multi-layered curved tube that deploys from the flat folding state I.

By stacking multiple such curved tubes, a multi-layered curved tube can be
obtained. Figure 4-12(c) shows the folding sequence of a curved combined tube.
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4.4.3 Curved shifted tubes

Transition parts can be added to a curved tube while retaining its rigid foldability.
Figure 4-13(a) shows a portion of a rigidly foldable curved tube prior to the addition of
any transition part. The dihedral angles of the adjacent facets between two neighbouring
layers are denoted as 7, and 7, ; according to the spherical cosine formula,

cosa,, COS,, +Sina,, Sina,, C0S7, =COSO, =

. ) (4-18)
COS 1, COS i, +SiN &y, SiN @z, COS 77,

where O is the angle between the ridgelines on the left side of the tube. Next, a pair
of transition parts made using rectangular facets are added to the tube. Only the front

part of the transition pair is shown in Fig. 4-13(b),and y, =y, = (n/ 2) . Geometrically,
for the left side of the transition part,

Cos ey, COsa,, +Sinay, Sina,, COS1y, =COSJ, =

. (4-19a)
COS %, COS 7, +SINn y, Sin y, COS & = COS J;.
For the right side of the transition part,
COS &7 = COS ,; COS Ly, +SIN Qg SIN 0t COS 7). (4-19b)
(073 (04 ~ aj\
" A, 5, (|t el ')y L R
A a7V Lo X
py Pl
P2

Fig. 4-13 Multi-layered shifted tube: (a) portion of a curved multi-layered tube; (b) addition of a
transition part and (c) folding sequence of a model tube with an added transition pair
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Comparing Eqn. (4-19a) with (4-19b) yields the same equation as Eqn. (4-18). Hence,
the relationship between two dihedral angles 7, and 7, is maintained despite the

insertion of a transition part made of rectangular facets.

This derivation can also be applied to other facets in the transition part.
Consequently, the tube with multiple layers is rigidly foldable when a pair of transition
parts consisting of only rectangular facets are appended. A pair is required because in
the case, P1 and P2 are only translated.

It remains to be proved whether shifted curved tubes can be produced by adding a
transition pair with general parallelogram or trapezoid facets. Figure 4-13(c) shows a
curved tube constructed in this manner. The original tube prior to the addition of the
transition parts is flat-foldable, and it remains flat-foldable after the addition of a pair
of transition parts made of rectangular facets.

4.5 Conclusions

In this chapter, inspired by Goldberg SR and 6R linkages, two methods to construct
origami tubes using rigid origami tubes are presented. First, several existing tubes are
conjoined by merging common sides or corners, resulting in a family of tubes with
asymmetric polygonal cross-sections, namely, the combined tubes, which can be
constructed by the summation or subtraction of different origami tubes. Next, the
transition parts are added into an existing tube, thereby forming shifted tubes in which
the crease lines between the neighbouring layers form nonplanar polygons. The
combined and shifted tubes are proved to be rigid-foldable and one-DOF according to
the kinematical theories of spherical 4R linkages. Moreover, these tubes may have an
asymmetric planar or nonplanar cross-section. Furthermore, the approach is extended
to build multi-layered straight and curved tubes while maintaining the rigid foldability.
The proposed approach can be readily utilized to build new structures for engineering
applications and offers considerable flexibility to designers in fabricating rigidly
foldable tubes to create metamaterials, origami robots, and other devices that require
large shape variations. The rigid foldability of these tubes ensures that no facet
distortion occurs during the shape change.
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Chapter 5 Thick-panel origami tubes

5.1 Introduction

To apply the origami technology to deployable structures where the thickness
cannot be disregarded, various methods have been suggested. However, the method of
folding rigid origami tubes with thick panels has not been sufficiently investigated. As
described in this chapter, a method is developed to fold rigid origami tubes with thick
panels, which can reproduce motions identical to those achievable using zero-thickness
origami. Moreover, the thick-panel form and zero-thickness form of an origami tube
have similar contours.

The layout of this chapter is as follows: Chapter 5.2 induces thick-panel origami
tubes with line-symmetric cross-sections, Chapter 5.3 describes planar-symmetric
origami tubes, Chapter 5.4 presents multi-layered origami tubes with thick panels, and
Chapter 5.5 presents the concluding remarks.

5.2 Line-symmetric tubes

Tubes with parallelogram cross-sections are a type of origami tube with line-
symmetric cross-sections. The thick-panel folding technologies of such tubes have been
established [80]. However, other line-symmetric rigid origami tubes also exist, such as
tubes with hexagonal and octagonal cross-sections, whose thick-panel forms have not
been presented yet. A single unit of a zero-thickness origami tube with a line-symmetric
hexagonal cross-section is shown in Fig. 5-1, where « and f are considered as the
geometrical parameters of the tube. The tube is constructed through parallelogram
facets and has six vertexes, A to F, which are divided into three types. The lengths of
the sides of the cross-section are L,; =L, Ly = Lgr, Loy = Ly, based on which, the

relationships among the lengths of the sides in the thick-panel form can be obtained,
since the two forms have similar contours.

The identical vertexes A and D, which contain three mountain crease lines and one
valley crease lines, are Miura-ori vertexes. The summation of the sector angles at each
Miura-ori vertex equals 2m. Vertexes B and C with four mountain crease lines are
convex eggbox-like vertexes. Vertexes E and F with two mountain crease lines and two
valley crease lines are concave eggbox-like vertexes. The assignment of the sector
angles and mountain-valley crease lines is shown in Fig. 5-1 in which the mountain and
valley crease lines are represented by solid and dashed lines, respectively. For different
types of vertexes, the thick-panel forms are different.

A Miura-ori vertex, vertex A, and its thick-panel form are shown in Fig. 5-2(a) and
(b), respectively, in which the coordinate frames are established according to the D-H
notation. The method presented in [80] is used to obtain the form shown in Fig. 5-2(b)
in which a Bennett linkage is used to construct the thick-panel form of vertex A, where
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a=45" and B=90°. In the zero-thickness form,
Gy =0y =T~ Q, Q3 =y =&, (5-1a)

w=n+0,0,=1-0, 0,=1—0,,0,=1—0,. (5-1b)

B B
F
. E C
7 =B - T-[r P
ﬁ*a:jz'_a D \a’ga
: C

Fig. 5-1 Origami tube with a line-symmetric hexagonal cross-section, and the assignment of the
sector angles and mountain-valley crease lines in different types of vertexes.

Here, @ represents the dihedral angle between two adjacent panels. Substituting

Eqns. (5-1a) and (5-1b) in Eqn. (1-7) yields

W =0, 0, = 0,, (5-2a)
tan(w, / 2) / tan(ew, / 2) = cos c. (5-2b)
In the thick-panel form, the following equations are satisfied:
Ay =a, 0 =T—Q,0y =a,a, =T—a, (5-3a)
a, =ady, =a, =a, =a, (5-3b)
o =07 0 =n-0°, & =2n- 0, 0,° =n+6;". (5-3¢)

Substituting Eqns. (5-3a) to (5-3¢) in Eqn. (1-7) yields
o =0, 0, =, (5-4a)
tan(w;* / 2) / tan(wy*® 1 2) = cos a. (5-4b)

Eqns. (5-2) and (5-4) show that the closure equations for the thick-panel form
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match those for the zero-thickness form at Miura-ori vertexes A and D.

(a) (b)
Fig. 5-2 Miura-ori vertex A: (a) vertex of zero-thickness origami and (b) its corresponding thick-
panel form.

For convex eggbox-like vertexes B and C, I adopt spherical 4R linkages in their
thick-panel form. Consider vertex B as an example; vertex B and its thick-panel form
are shown in Fig. 5-3. The following equations can be obtained in both the zero-
thickness form and thick-panel form:

Uy =0y =0, 0y =y = 3, (5-5a)
w=n-06,0,=1-0,,0,=n-0,,0,=n—0,. (5-5b)

Merging Eqn. (5-5) with Eqn. (1-7) yields
@, = @, (5-6a)
cos” a +sin® a cos @, = cos® 3 +sin® Bcos w,, (5-6b)

sin® o cos 3cos e, +Ssin a:sin 3€0s a Cos w,
—sinasin £ €os & CoS @, COS @, (5-6¢)
+sinasin Bsin @, sin w, +cos’ a cos B —cos 3 = 0.
Eqns. (5-6a) to (5-6¢) are satisfied in both the zero-thickness form and thick-panel
form of vertex B. From Eqn. (5-6), it can be infered that the relationships among the

dihedral angles in the thick-panel form and zero-thickness form at convex eggbox-like
vertexes B and C are identical.
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(@) (b)
Fig. 5-3 Convex eggbox-like vertex B: (a) vertex of zero-thickness origami and (b) its
corresponding thick-panel form.

For vertexes E and F, since the summation of the sector angles does not equal 2x,
the spherical 4R linkages cannot be replaced by Bennett linkages [107]. The zero-
thickness form and thick-panel form of vertex F are shown in Fig. 5-4. In the zero-
thickness form of vertex F (see Fig. 5-4(a)),

o, =0, =0 a,=0,=1—0q, (5-7a)
w=n+0,0, =10, 0,=n+6,,0, =n—0,. (5-7b)
Substituting Eqn. (5-7) in Eqn. (1-8) yields
W, =,, (5-8a)
cos’ B+sin® Bcos w, = cos® « +sin’ a Cos w,, (5-8b)

sinasin 3cos a cos m, —sin’ a cos B Cos m,
—sina sin S cos a cos @, CoS @, (5-8c)
+sin asin Asin w, sin @, —cos’ a cos B +cos 3 = 0.

For the thick-panel form (see Fig. 5-4(b)), I use Bricard linkages to replace the

spherical 4R linkages in the original zero-thickness form, and two links are added to
form the plane-symmetric Bricard linkage in which

&, =a, =b, oy =y, = a5 = a5 = 23, (5-9a)
a) =2n—ay =0,
afer = 275—0(;3; =p, (5-9b)
ay =2n—a, =n-a,
R =R, =R, =R;=0,

5-9
R,=-R. =R. (5-9¢)
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The kinematics of the plane-symmetric Bricard linkages have been analysed in
[120]. In a plane-symmetric Bricard linkage where the z; and z4-axes are on the
symmetric plane, the following equations should be satisfied:

0, =6,,0, =6, (5-10a)
Ay =85 =&, 8y =855 =y, 8y =85 =, (5-10b)
oy =2n-ay =0,
as =2n—ay =3, (5-10c)
ay =2n-a, =n-a,
Atan®(0, / 2) +Btan(é, / 2)+C =0. (5-10d)
Moreover,
A=(a —a,+a,)sin(B - B, + B)tan’*(6, 1 2)
+2sin B, (R, sin B, + R, sin(B, — B,)) tan(6, / 2) (5-10e)
@, +a, —&,)sin(f4, + B, — ),
B =2sin AB,(R, sin B, + R,sin(B, — ,)) tan’(6, / 2)
+2((a,~,)sin(4,~ 5, (5-10
—(a, +a,)sin(p, + S;)) tan(6, / 2)
—2sin f,(R, sin B, + R, sin(B, + f3,))
C=(a,—a,—a,)sin(B, - B, B,)tan’(6,/2)
+2sin B, (Rysin B, + R, sin(B, + S,)) tan(6, / 2) (5-10g)
+(a, +a,+a,)sin(f, + S, + ;).
and

tan(é, / 2) = (sin S;(cos 6, sin @, +cos S, sin &, cos b, ) +cos S, sin 3, sin 6,)
/(sin B, sin S, sin 3, cos 8, —cos S, sin S, cos S, cos &, —sin S, cos 3, Cos f,
—COS 3, €0s f3, sin 3, os 6, cos @, +cos 3, sin S;,sin g, sinéd, ),
(5-10h)
tan(6, /2) = (sin g, sin 6, cos 8, +sin &, (sin 3, cos S, cos G, +cos S, sin f,))
/(cos B, (sin B, sin 6, sin @, —sin S, cos f3, cos &, cos g, —cos f, sin 3, cos b;)

+sin g,(sin S, sin S, cos &, —cos £, €os 5,)).

(5-101)

Substituting Eqn. (5-9) in (5-10) yields
93Br — 958r , ezBr — QGBF, (5_1 la)
Atan®(6 / 2)+Btan(6f" /2)+C =0. (5-11b)
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In this case,
A=bsin(a - p) tan*(65" 1 2) —bsin(a - B), (5-12a)

B = 2Rsinasin gtan® (6" / 2) —4bsinatan(6," / 2) + 2Rsinasin B, (5-12b)

C = (4a—b)sin(a + B)tan® (65" 1 2) + 4asin(a + ), (5-12¢)
and
tan(6%" / 2) = (-B++/B2 —4AC)/ (2A), (5-13a)

tan(6> /2) = (sina(cos 65" sin & +cos Bsin 6, cos6;") +cosasin Bsin Gy )
I(sinasin @ sin 62" —cosasin B cos &5 —sina cos Bcosy’ cosoy),
(5-13b)
tan(d," /2) =sin Bsin 65" / (cos arsin B cos Gy —sin a cos B). (5-13c)
According to the spherical cosine formula,
cos® B +sin’® Bcos @’ = cos® o +sin’ a cos w; " (5-14)
The relationships among the dihedral angles and twist angles are as follows:
o) =0, o =2n-6 0 =67 (5-15)
Substituting Eqn. (5-15) in Eqns. (5-13) yields
o =a), (5-16a)

sinasin S cosa cos wy —sin’® a cos B cos wt"
—sinasin Bcos a cos @y cos wy" (5-16b)
+sinasin Bsin @y sin " —cos® a cos B +cos B =0.

According to Eqns. (5-14) and (5-16), the closure equations for the thick-panel
form match those for the zero-thickness form at concave eggbox-like vertexes E and F,
as illustrated in Fig. 5-4(c).

It can be concluded that in the thick-panel form, the closure equations at each type
of vertex match those for the zero-thickness form, which indicates that the thick-panel
form of the origami tube with a line-symmetric hexagonal cross-section can reproduce
the motions achievable using the original zero-thickness form. Figure 5-5 shows the
deployment process of a unit of the origami tube with a line-symmetric hexagonal

cross-section in which @ =45 and B=90°.

Moreover, thick-panel origami tubes whose cross-sections are line-symmetric
concave polygons can be obtained. Figure 5-6 shows a single unit of a tube with
concave hexagonal cross-section as well as the assignment of sector angles and
mountain-valley crease lines at each vertex. In contrast to the tube shown in Fig. 5-1,
this tube does not have any convex and concave eggbox-like vertexes.
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(c)
Fig. 5-4 Concave eggbox-like vertex F: (a) vertex of zero-thickness origami; (b) its corresponding
thick-panel form and (c) the relationships among the dihedral angles.

The identical Miura-ori vertexes A and D have one mountain crease lines and three
valley crease lines. Vertexes B, C, E and F have three mountain crease lines and one
valley crease lines and are known as Miura-like vertexes since the summation of the
sector angles does not equal 27.

It has been proved that for the Miura-ori vertexes A and D, the closure equations
match those for the zero-thickness form. The link lengths of the Bennett linkages are a.
For the thick-panel form of vertexes B, C, E and F, Bricard linkages are used instead of
the original spherical 4R linkages.

Two links are added to one valley crease line in the thick-panel form of vertexes
B and C. Considering vertex B as an example, the zero-thickness form and its

corresponding thick-panel form are illustrated in Fig. 5-7, in which a =75 and
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Fig. 5-5 Deployment process of a single unit of the thick-panel form (top) and its corresponding

zero-thickness form (bottom) of an origami tube with a line-symmetric hexagonal cross-section.

In the zero-thickness form (Fig. 5-7(a)),

O, =0y = f,0, =0 =T—Q, (5-17a)
w=n+6,0,=1-0,,0,=1—-6,,0,=n1—-0,. (5-17b)

Substituting Eqn. (5-17) in Eqn. (1-7) yields
W, = ,, (5-18a)
cos® B+sin® Bcosw, = cos® a +sin’ a Cos w, (5-18b)

sin asin 3¢cos a €os w, —sin® a €os 3 cos w,
—sinasin B cos a cos w, CoS w, (5-18c¢)
—sinasin Bsin w, sin w, —cos’ a cos B +cos B =0,
For the thick-panel form (Fig. 5-7(b)), the following equations can be obtained:
a,=a, =ba,=a,=al2,a,=a,=a, (5-19a)
ay =2n-ay =0,
as =2n—ay =3, (5-19b)

Br _ Br _
Oy =2n—0y, =T—0,
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Fig. 5-6 Origami tube with line-symmetric concave cross-sections, and the assignment of the
sector angles in different types of vertexes.

R =R,=R,=R;=0,

R =R, =R, (5-19¢)
o =0 -, =0, 0, =6 —m. (5-19d)
Merging Eqn. (5-19) with Eqn. (5-10) yields
o =a), (5-20a)
sinasin cos o cos wy" —sin’ o cos Bcos wy"
—sinasin Bcosa cos wy" cos wy" (5-20b)
—sinasin Bsin @y sin w?" —cos” a cos +¢o0s B =0,
According to the spherical cosine formula,
cos® B +sin® Bcos @’ = cos’ a +sin’ a cos ;" (5-21)

According to Eqns. (5-20) and (5-21), the closure equations for the thick-panel
form match those for the zero-thickness form at Miura-like vertexes B and C, as
illustrated in Fig. 5-7(c).

For Miura-like vertexes E and F, two links are added to one mountain crease line
in the thick-panel form. The zero-thickness form and thick-panel form of vertex F,
which is considered as an example, are illustrated in Fig. 5-8 wherein the axes in grey
are the two axes that cannot be seen from the point of view.
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Fig. 5-7 Miura-like vertex B: (a) vertex of zero-thickness origami; (b) its corresponding thick-
panel form and (c) the relationships among the dihedral angles.

For the zero-thickness form (Fig. 5-8(a)),

Qp =0y = f,0yp =y =a, (5-22a)
w=n-6,0,=1-0,,0,=n+06,,0,=1—0,. (5-22b)

Merging Eqns. (5-22) and (1-7) yields
W, =,, (5-23a)
cos® B +sin® Bcosw, = cos® a +sin’ a Cos w,, (5-23b)

sinasin 3¢os a Cos w, +Sin® a cos 3 oS w,
—sinasin S cos a cos w, CoS w, (5-23¢)
—sinasin Bsin w, sin m, +cos” a cos f—cos B =0,
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(@) (b)
Fig. 5-8 Miura-like vertex F: (a) vertex of zero-thickness origami and (b) its corresponding thick-
panel form.

In the thick-panel form (Fig. 5-8(b)), the following equations are satisfied:

a,=a, =Ca,=a,=al2,a, =3a,=a, (5-24a)
a) =2n—ay =0,

g =2n—ay = f, (5-24b)
ay =2n—a, =a,

R=R =R;=R,=R;=R; =0, (5-24¢)

o) =607 @ =0, 0 =6;", (5-24d)

According to the spherical cosine formula,
cos® B+sin® Bcosw" = cos” a +sin” a cos wy”, (5-25)
Substituting Eqn. (5-24) in Eqn. (5-10) yields

o) =y (5-262)

sinasin Bcosa coswy' +sin® a cos Bcos ws"
—sinasin S cosa Cos ;" cos w;" (5-26b)
—sinasin Bsinw;" sin w?" +cos® a cos B —cos B =0,
Equations (5-25) and (5-26), which match Eqn. (5-23), indicate that the motion of
the thick-panel form of vertex F matches that of the zero-thickness form. Since the

thick-panel form of vertex E is similar to that of vertex F, at both Miura-like vertexes E
and F, the motion in the thick-panel form matches that of the zero-thickness form.

In the concave tube, the motions of each vertex match those of the zero-thickness
form; hence, this tube can reproduce the motions achievable using the original zero-
thickness form. The deployment process of a thick-panel concave line-symmetric tube
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along with its zero-thickness form are illustrated in Fig. 5-9, where a =75 and
£=90°.

Fig. 5-9 Folding process of a thick-panel tube with concave hexagonal cross-sections (top) and its

zero-thickness form (bottom).

5.3 Planer symmetric tubes

Thick-panel origami tubes with planar-symmetric hexagonal cross-sections can be
constructed using a method similar to that described in Chapter 5.2. Figure 5-10 shows
an origami tube with a planar-symmetric convex hexagonal cross-section, along with
the assignment of the sector angles and mountain-valley crease lines at each vertex. The
relationships among the lengths of the sides of the cross-section are

Lag = Lar: Lo = Leer Lep = Lep -
For a line-symmetric origami tube, the tube has a thick-panel form only when the two
Miura-ori vertexes are identical.

To fold a thick-panel origami tube with planar-symmetric hexagonal cross-
sections, the two Miura-ori vertexes of the original tube should be identical, and the
lengths of the tube should satisfy the following equation:

L,g COSax+L.cosf=L ,cosx (5-27)

The tube has three types of vertexes, identical Miura-ori vertexes A and D, convex
eggbox-like vertexes B and C, and concave eggbox-like vertexes E and F. This tube can
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be constructed using the method described in Chapter 5.2, and the motion of the thick-
panel form matches that of the original zero-thickness form. The deployment process
of both the thick-panel form and zero-thickness form of a tube with a planar-symmetric
hexagonal cross-section is illustrated in Fig. 5-11

An origami tube with concave hexagonal cross-sections and the assignment of the
sector angles and mountain-valley crease lines are shown in Fig. 5-12. To obtain the
corresponding thick-panel form, Eqn. (5-27) is satisfied in the tube. In this tube,
vertexes A and D are identical Miura-ori vertexes, vertex F is a concave eggbox-like
vertex, vertexes C and E are Miura-like vertexes, and vertex B is a convex eggbox-like
vertex. The methods of constructing the thick-panel forms of vertexes A, C, D, E and F
are similar to those mentioned previously in this chapter, owing to which, the thick-
panel forms exhibit equivalent motions as those achievable using the zero-thickness
forms. However, the construction method of the thick-panel form at vertex B is different
from the method described in Chapter 5.2.

The zero-thickness form and thick-panel form of vertex B are illustrated in Fig. 5-
13. Though vertex B is a convex eggbox-like vertex, it is connected to vertex E, at
which two links are added to the mountain crease line to construct a Bricard linkage.
Consequently, a spherical 4R linkage cannot be used to establish the thick-panel form
of vertex B. Hence, a Bricard linkage is adopted. The coordinate frames are established
according to the D-H notation shown in Fig. 5-13, where a =75° and S =105°. In

the zero-thickness form (see Fig. 5-13(a)),

Oy =0y =00y =y = 3, (5-28a)
w=n-6,0,=1-0,,0,=n-0,,0,=n—0,. (5-28b)

Merging Eqn. (5-28) with Eqn. (1-7) yields
W, = ,, (5-29a)
cos® B +sin® Bcos w, = cos® a +sin’ a Cos w,, (5-29b)

sin” o cos 3 cos @, +sin asin 3 cos a cos w,
—sinasin S cos o Cos w, COS @, (5-29¢)

+sin asin Asin w, sin m, +cos” a cos B —cos B =0.

In the thick-panel form, which is shown in Fig. 5-13(b), links 12 and 61 are the
two added links, and

&, =8 =C,a,; =3, =2al2,3, =3, =2al2, (5-30a)
ay =2n—ay =0,
g =2n—0g; =, (5-30b)

Br _ Br _
Oy =2T—0yy =0,

87



Doctoral Dissertation of Tianjin University

=R,=R,=R =0,R, =-R (5-30¢)
3 4 5 2 6

a);r — 93Br -7, wfr — €4Br1a)fr — 95Br — I (5-30(1)

B
T — o —d o
6 ]
'F S

Bl B

Fig. 5-10 Origami tube with planar-symmetric hexagonal cross-sections, and the assignment of the
sector angles and mountain-valley crease lines in different types of vertexes.

According to the spherical cosine formula,
cos® B +sin® fcos @’ = cos’ a +sin’ a cos ;" (5-31)
Substituting Eqn. (5-24) in Eqn. (5-10) yields
o =w), (5-32a)
sinasin f#cosa cos wl” +sin® a cos B cos wL”
—sinasin 3 cos o Cos wy" Cos wy" (5-32b)
+sinasin Bsin )" sin " +cos’ a cos S —cos B =0.

It can be noted that Eqns. (5-31) and (5-32) match Eqn. (5-29), which indicates
that the motions of the two forms of vertex B also match, as illustrated in Fig. 5-13(c).
The deployment process of a concave tube with planar-symmetric hexagonal cross-

sections is shown in Fig. 5-14, where a =75° and [ =105°.
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Fig. 5-11 Thick-panel form of an origami tube with planar-symmetric hexagonal cross-sections
(top) and its zero-thickness form (bottom).
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Fig. 5-12 Origami tube with concave planar-symmetric hexagonal cross-sections, and the
assignment of sector angles and mountain-valley crease lines in different types of vertexes.
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Fig. 5-13 Convex eggbos-like vertex B: (a) vertex of zero-thickness origami; (b) its corresponding
thick-panel form and (c) the relationships among the dihedral angles.

5.4 Discussion of thick-panel origami tubes

The method of constructing the thick-panel form of each type of vertex in an
origami tube has been introduced. Next, the thick-panel form of multi-layered and
curved tubes will be examined.

5.4.1 Multi-layered tubes

The tubes described in Chapters 5.2 and 5.3 can be repeated in the axial direction
to construct multi-layered thick-panel origami tubes.

To construct the Bricard linkages in the multi-layered thick-panel origami tube,
extra links must be added. To facilitate the manufacturing of the thick-panel tube, the
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simplification of the thick-panel form is considered. In the connection between two
concave eggbox-like vertexes, the extra links added to the common valley crease lines
can be removed. As illustrated in Fig. 5-15(a), vertexes E and F are two connected
concave eggbox-like vertexes in the tube shown in Fig. 5-10, and Fig. 5-15(b) shows
the process of removing the extra links. After removing the two links, the connected
two Bricard linkages become a single Bricard linkage in which

@y, =8y, 8y = g5 = L COS(m— ), 8y, =3, (5-33a)
ay =2n—a, =n-a,
as =2n—aj =0, (5-33b)
ay =2n—a, =n-a,
R=R,=R,=R,=0,R; =-R.. (5-33¢)

Fig. 5-14 Thick-panel form of an origami tube with concave planar-symmetric hexagonal cross-

sections (top) and its zero-thickness form (bottom).

Since the thick-panel form of the origami tube has no bifurcation, removing the
two extra links does not change the motion of the thick-panel origami tube. The
deployment process of two multi-layered tubes with planar-symmetric hexagonal cross-
sections are shown in Fig. 5-16 in which the extra links between the concave eggbox-
like vertexes are removed.
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T-aNT-a
E:
(a) (b)
Fig. 5-15 Construction of two connected concave eggbox-like vertexes: (a) zero-thickness form

and (b) thick-panel form.

(b)
Fig. 5-16 Deployment process of multi-layered thick-panel origami tubes: (a) tube with convex

cross-sections and (b) tube with concave cross-sections.

5.4.2 Curved tubes

The construction of a curved tube is described in Chapters 1 and 4. Curved tubes
also have thick-panel forms. The construction of a curved tube is described in Chapters
1 and 4. It can be inferred that a curved tube also has Miura-ori vertexes, eggbox-like

92



Chapter 5 Thick-panel origami tubes

vertexes and Miura-like vertexes, and the method described in this chapter can be used
to construct the thick-panel forms of these vertexes. If a curved tube with hexagonal
cross-sections has two identical Miura-ori vertexes, it can be changed to a thick-panel
form.

Figure 5-17 illustrates a curved tube with convex line-symmetric hexagonal cross-
sections and the assignment of its sector angles and mountain-valley crease lines.
Vertexes A and D are identical Miura-ori vertexes, vertexes B and C are convex eggbox-
like vertexes and vertexes E and F are concave eggbox-like vertexes. The methods of
constructing the thick-panel forms of vertexes A, B, C and D have been introduced in
Chapters 5.2 and 5.3.

SN

Fig. 5-17 Curved tube with convex line-symmetric hexagonal cross-sections, and the assignment
of the sector angles and mountain-valley crease lines in different types of vertexes.

The zero-thickness form and thick-panel form of vertexes E and F are illustrated
in Figs. 5-18(a) and (b). According to Chapter 5.4.1, the added links in the Bricard
linkages of the thick-panel form can be removed, and vertexes E and F can be merged
to one Bricard linkage in which the following equations are satisfied:

Q) =85 = Uy, = s = 28, (5-34a)
Oy = Qs = Lge COS(m— f3),
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Br _ Br _ .
oy =2n—a, =n—a,

Br Br
Oy =2n—0ty =0,

Br _ Br _ .
oy, =2n—a, =n—-a,

R =R, =0,Ry=-R;,R, =-R;.

where a is the link length in Bennett linkages A and D. Since the added links are

(5-34b)

(5-34¢)

removed, the angle g has an arbitrary value, and in Fig. 5-18, f=mn—/,. The

deployment process of a multi-layered curved tube with line-symmetric cross-sections

is shown in Fig. 5-19.

Figure 5-20 shows a curved tube with convex planar-symmetric hexagonal cross-

sections and the assignment of its sector angles and mountain-valley crease lines.

Vertexes A and D are identical Miura-ori vertexes, vertexes B and C are convex eggbox-

like vertexes and vertexes E and F are concave eggbox-like vertexes. Similarly, the

thick-panel forms of vertexes A to F can be obtained using the aforementioned method.

Moreover, the deployment process of a multi-layered curved tube with planar-

symmetric cross-sections is illustrated in Fig. 5-21.
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Fig. 5-18 Construction of two merged vertexes in a curved origami tube: (a) zero-thickness form
and (b) thick-panel form.

94



Chapter 5 Thick-panel origami tubes

ﬁ—al:ﬂ'—aﬁ
ﬁz,—ej@(
E*ﬁlﬂ—7 1
2 h ﬁz
F ]

Fig. 5-20 Curved tube with convex planar-symmetric hexagonal cross-sections, and the
assignment of sector angles and mountain-valley crease lines in different types of vertexes.
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Fig. 5-21 Deployment process of a curved tube with planar-symmetric cross-sections.
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5.5 Conclusions

This chapter describes the method of constructing a thick-panel origami tube with
symmetric hexagonal cross-sections. The zero-thickness forms of these tubes are one-
DOF and constructed using parallelogram facets. The thick-panel forms and zero-

thickness forms of these origami tubes have equivalent motions. The vertexes of these
tubes can be divided into four types, specifically, the Miura-ori vertexes, convex
eggbox-vertexes, concave eggbox-like vertexes and Miura-like vertexes. The thick-
panel form of origami tubes with line-symmetric and planar-symmetric cross-sections
were examined. The linkages at each type of vertex were analysed. The tubes were
repeated in the axial direction to form multi-layered tubes. The extra links between two
concave eggbox-like vertexes could be removed to simplify the thick-panel tubes.
Moreover, multi-layered curved thick-panel tubes were developed. These findings can
help apply origami technology to deployable structures in which the thickness cannot
be disregarded.
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Chapter 6 Conclusions and future work

6.1 Conclusions

In this thesis, I examine networks of spherical linkages based on rigid origami and
their applications. First, I assemble origami-inspired units in series and present a helical
structure with switchable and hierarchical chirality. Next, the planar network of
spherical linkages, known as a morphing surface, is introduced. Finally, an extended
family of rigid origami tubes, pertaining to the spatial networks of spherical 4R linkages,
is presented. Moreover, the method of constructing thick-panel origami tubes is
examined. Kinematic theory is used to analyse the aforementioned networks. This
chapter concludes the whole thesis:

(1) Helical structure with switchable and hierarchical chirality

First, a twisted chiral origami unit inspired by the famous eggbox pattern is
constructed. Owing to different geometries, the origami unit can exhibit a different
chirality. By connecting identical chiral units, I obtain homogeneous chiral structures;
an achiral structure is obtained when the number of two different units is identical. In
addition, I analyse the relationship between different design parameters according to
the geometry of the chiral units. Next, I demonstrate that the chirality of single chiral
structures can be tuned by adjusting the design parameters. Three different chiral
structures with different design parameters are established, and their chirality is studied.
To realize chirality switching, the chiral structure is regarded as a network of spherical
4R and planar 4R linkages, and the different chirality corresponds to different motion
branches of the whole linkage network. This study represents the first attempt to realize
chirality switching through mechanism bifurcation. Furthermore, 1 design
hierarchically chiral structures with major and minor helices at the same macroscale in
which the winding of the minor helix drives the unwinding of the major helix, resulting
in two compact folding configurations. The proposed theory provides an opportunity to
design multi-functional morphing structures in aerospace engineering applications.
Moreover, due to their single degree-of-freedom characteristic, the proposed chiral
structures can be applied to bionic robots with a simple control system.

(2) Morphing surfaces

First a one-DOF mobile assembly of spherical 4R linkages inspired by origami is
presented and extended to a morphing surface, which is also one-DOF, by adding
spherical 6R and 8R linkages. The morphing surface can transform through the motion
of the spherical linkages. The shape of the above-mentioned morphing surface is
determined by two shape-lines, and the shape of the morphing surface can be changed
by tuning the two shape-lines. An example of the morphing surface that can transform
from a parabolic cylinder to a paraboloid is presented, which may provide reference to
develop flexible antennas in aerospace applications.
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(3) Extended family of rigid origami tubes.

Inspired by Goldberg 5R and 6R linkages, I demonstrate that the existing origami
tubes can be regarded as building blocks to construct new tubes. First, I conjoin several
existing tubes by merging common sides or corners, thereby obtaining a family of tube
with asymmetric polygonal cross-sections, namely, combined tubes. Next, I add
transition parts to an existing tube, obtaining shifted tubes in which the crease lines
between the neighbouring layers form nonplanar polygons. Using the kinematics
theories of spherical 4R linkages, the combined tubes and shifted tubes are proved to
be one-DOF. Finally, the formation of multi-layered and curved tubes based on the
above-mentioned tubes is discussed.

(4) Thick-panel origami tubes

By replacing the spherical 4R linkages in the original zero-thickness origami tubes
with spatial linkages such as Bennett and Bricard linkages, I establish a method to
construct thick-panel origami tubes. The vertexes in zero-thickness origami tubes are
divided into four types, namely, Miura-ori vertexes, convex eggbox-like vertexes,
concave eggbox-like vertexes and Miura-like vertexes. For different types of vertexes,
the thick-panel forms are different. In the thick-panel form of the vertexes, different
kinds of spatial overconstrained linkages are used to replace the original spherical 4R
linkages in the zero-thickness form. I present thick-panel origami tubes with line-
symmetric and planar-symmetric hexagonal cross-sections, which can reproduce
motions identical to those achievable using zero-thickness origami. Moreover, the
characteristics of multi-layered tubes and curved tubes are discussed.

6.2 Future work

This dissertation systemically presents the theories of using the network of
spherical linkages to construct deployable structures. To enhance the performance of
the deployable structure, several potential research directions can be considered:

(1) First, origami techniques can be effectively applied to design chiral or
hierarchical structures and metamaterials. In addition to the eggbox pattern, many other
typical patterns exist, several of which demonstrate chiral behaviour during folding.
Moreover, tessellation plays a key role in the construction of hierarchical structures. In
general, a rigid pattern is preferred to reliably implement deformation, and a non-rigid
pattern is used to achieve bistability. The present approach can likely be applied to
origami units for different objectives, not limited to chirality.

(2) Second, the proposed approach of constructing combined and shifted tubes
offers considerable flexibility to designers when fabricating rigidly foldable tubes to
create metamaterials, origami robots, and other devices that require large shape
variations. The rigid foldability of these tubes ensures that no facet distortion occurs
during the shape change. I intend to identify more novel origami tubes in future research.
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(3) Third, although the approaches of constructing thick-panel straight and curved
tubes have been reported, methods to form thick-panel combined and shifted tubes have
not been examined yet, and I intend to establish such methods in future work. The
combined and shifted tubes are promising alternative options for designers when
developing deployable structures; thus, it is necessary to obtain the thick-panel form of
these two types of rigid origami tubes.

(4) Finally, I intend to establish a method of constructing thick-panel origami tubes
with more complicated cross-sections, for example, octagonal cross-sections. In this
thesis, the method of constructing origami tubes with hexagonal cross-sections was
considered. Nevertheless, other rigid origami tubes with more complicated cross-
sections exist, which can also be used in deployable structures. Consequently, it is
desirable to derive the thick-panel forms of these tubes.
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