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ABSTRACT 

To overcome the problem that it is very difficult to analysis or design 
complicated 3D overconstrained linkages and their assemblies with conventional 
kinematic tools, this dissertation has proposed a novel truss method by applying 
structural theory to the truss form of 3D linkages to study their kinematic behaviours 
with the consideration of both the topology and geometry conditions. The method has 
also been adopted to analyse 3D overconstrained linkages and to design deployable 
polyhedrons. The major research findings are as follows.  

First, the new truss method was developed, which converts 3D linkages to their 
corresponding truss forms while maintaining the kinematic behaviours. Under this 
method, mobility of complex linkages can be analysed by counting states of 
independent displacements with Maxwell’s rule. Besides that, their motion paths are 
able to be generated by the displacement updated algorithm based on singular value 
decomposition (SVD) of equilibrium matrix, and bifurcation position can hence be 
detected by recording singular values of equilibrium matrix during the motion process. 
The proposed method has been validated with planar 4R linkage, spherical 4R linkage, 
and threefold-symmetric Bricard linkage as examples.  

Next, to eliminate strict overconstrained geometric conditions of linkages so that 
the tolerance of their fabrication error can be improved, the 3D overconstrained 
linkages are transformed into their corresponding truss forms. According to 
Maxwell’s rule and rank of the equilibrium matrix, the redundant bars in the truss 
form of the overconstrained linkage can be detected and removed to obtain a 
non-overconstrained linkage, while its kinematic equivalence is well kept. Adopting 
this method, the non-overconstrained forms of Bennett linkage and Myard 5R linkage 
have been found as RSSR linkage and RRSRR linkages, respectively. Furthermore, 
discussion on fabrication errors has been carried out to demonstrate the tolerance on 
the mobility and input-output curve of the non-overconstrained form.  

And, polyhedral transformation has been realised by a kind of multi-loop 
linkages with complex topology, which enables large volumetric change amongst 
Platonic and Archimedean solids. Here, three sets of transformations have been 
proposed with their corresponding spatial linkages, namely truncated octahedron and 
cube, truncated tetrahedron and tetrahedron, as well as cuboctahedron and octahedron. 
Their constructions process and kinematic analysis were investigated in details by 
using the proposed truss method. Finally, motion analysis indicates that 
transformation paths are unique without singularity, which are further demonstrated 
with physical validation models. We envisage that our method could be extended to 
other paired polyhedrons.  



X 
 

Therefore, the truss method opens up a new way to analyse kinematics of 3D 
linkages. Meanwhile, the resultant non-overconstrained forms of overconstrained 
linkages and polyhedral transformations with one DOF are of great potential in 
engineering applications.  

 

KEY WORDS Truss method, overconstrained linkage, non-overconstrained form, 

Bennett linkage, Bricard linkage, polyhedral transformation 
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Chapter 1 Introduction 

1.1 Background and Significance 
Two typical mechanical systems in engineering are rigid structures and mobile 

mechanisms. Without external forces, structures can be statically determinate or 
indeterminate depending on whether the equilibrium matrix is full ranked or not. As a 
subgroup of structures, truss is based on the geometric rigidity of triangle in plane and 
tetrahedron in space, composed of linear members whose ends are connected at joints 
referred to as nodes. A mechanism is a device that transforms input forces and 
movement into a desired set of output forces and movement. And linkages, as one of 
the most common mechanisms, are assemblies connecting rigid links with lower 
kinematic pairs, which contain planar, spherical and spatial linkages.  

While the concerns of rigid structures are about stability and statics, the study of 
mechanisms focuses on mobility and kinematics. Yet, structures and mechanisms are 
not completely irrelevant. From the viewpoint of rigidity, a structure is obtained once 
the mobility of a mechanism is locked. The structure could be statically determinate 
when the corresponding mechanism is a normal one, or statically indeterminate when 
the corresponding mechanism is overconstrained.  

Modern kinematics, treated as an independent science, began about two centuries 
ago, and a number of theories thereby have been developed, such as matrix method, 
screw theory, Lie group and Lie algebra, to deal with issues on this problem. However, 
there are still some obstacles for studying kinematic behaviours, including mobility, 
motion path, and bifurcation, of complicated linkages, in particular overconstrained 
linkages and multi-loop linkages. Meanwhile, the truss system can be considered as 
multi-loop system, where the bars and nodes are regarded as links and spherical joints 
(S joints) in kinematics. And there are a number of structure theories to deal with truss 
analysis on the structure determinacy, displacement, force equilibrium and so on.  

Therefore, if a 3D linkage could be transformed to its corresponding truss form, 
it will be possible to study the kinematics of the 3D linkage with the theory and 
method in the field of truss or structure.  

1.2 Review of Previous Works 

1.2.1 Kinematic Theory in Mechanism 
In mechanical engineering, kinematics deals with the characteristics of motion 

without regard for the effects of forces or mass, and it contains kinematics of mass 
points, kinematics of rigid bodies, and kinematic constraints.  

Mobility, which is the number of independent coordinates needed to define the 
configuration of a kinematic chain or mechanism [1], is the main structural parameters 
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of a mechanism and also one of the most fundamental concepts in the kinematic and 
dynamic modelling of mechanisms [2]. Research work on mobility has lasted about 
160 years. As early as the 19th century, mathematicians, including Chebychev [3], 
Sylvester [4], and Grubler [5, 6], proposed several formulas to calculate mobility of 
simple linkages. One classical form, proposed by Hunt [7], is 

 
1

1
g

i
i

m n g f  (1-1) 

where m is the number of degrees of freedom,  is the dimension of the tangent 
space which contains all the relative displacements among arbitrary links of the 
linkage, n is the number of links of the linkage including the fixed link, g is the 
number of kinematic pairs of the linkage, if  is the number of degrees of freedom of 
the relative movement allowed by the i-th kinematic pair. Whereas these formulas 
failed in acquiring right results for some complicated mechanisms such as 
overconstrained linkages. Meanwhile, this formula can not calculate correctly the 
mobility of some multi-loop linkages, called mixed linkages, whose geometry has 
nothing in particular. The reason is the existence of loops whose links have relative 
motions associated with different subgroups of the Euclidean group. Hence, it is not 
possible to use a unique value of  in Eq. (1-1).  

Thereby, a number of modified formulas were proposed, as summarised by Gogu 
[2], none of which is the universal solution to the mobility of all sorts of mechanism. 
To present the motion process, several mathematical methods have been adopted for 
descriptions of position and orientation, such as matrix method, screw theory, Lie 
group and Lie algebra, dual quaternions and so on.  

Denavit and Hartenberg have established a procedure to standardlise the 
kinematic study of spatial linkage with four independent parameters which are called 
D-H notation [8]. It is still widely used in mechanism. As shown in Fig. 1-1, a 
coordinate system is attached to each joint in such a way that iz  is along the axis of 

revolute joint (R joint) i, and ix  is along the direction of the normal line between 

1iz  and iz , and iy  is determined by the right-had rule. Thus, the relative position 
between two adjacent joints can be determined by following parameters: 

 Link length ( 1)i ia : the shortest distance between 1iz  and iz ; 

 Twist ( 1)i i : the angle between 1iz  and iz , measured in the plane with 

ix  as the normal; 

 Offset iR : z coordinate component of Oi in system 1i ; 

 Kinematic variable angle i : the angle between 1ix  and ix , measured in 

the plane perpendicular to 1iz . 



Chapter 1 Introduction  

3 
 

 
Fig. 1-1. D-H Parameters. 

 
Then, these four parameters are assembled into a homogeneous transformation matrix for 
kinematic analysis, as shown in Eq. (1-2). 

 ( )

cos sin cos sin sin cos
sin cos cos cos sin sin

0 sin cos
0 0 0 1

i i i i i i i

i i i i i i i
i j

i i i

a
a

R
T  (1-2) 

The necessary condition for closed loop linkages of n links is that the successive 
product of the transformation matrices must be preserved as a unit matrix, i.e., 

 12 23 ( 1) 1 4n n nT T T T I  (1-3) 

According to Chasles' theorem [9], a spatial displacement of a rigid body can be 
defined by a rotation about a line and a translation along the same line, called a screw 
displacement. In mechanism, screw theory, proposed by Ball [10] and developed by 
Hunt [7], is an efficient tool to solve not only kinematic but also dynamic problems. 
Dai extended this method to finite motion analysis [9], which revealed the 
relationship between finite and instantaneous screws through eigenscrew and 
derivative of the finite displacement screw matrix. Meanwhile, based on screw 
triangle linear decomposition [11], analytical solutions of kinematics can be derived 
for closure linkages with screw method [12, 13].  

Screw can be used to represent velocity of joint, shown in Fig. 1-2, which is 
expressed as 

 
h

s
S

s r r
, (1-4) 

where s , the primary part, is the unit vector of the rotation axis, hs r r  is the 
secondary part which can be decomposed into components parallel and perpendicular 
to s , r  is position vector of any point on the rotation axis, and h  is called the 
pitch. For R joints, 0h , i.e., 

 
s

S
s r

, (1-5) 
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and for translating joints, h , i.e.,  

 
0

S
s

, (1-6) 

here s  is the unit direction vector of the translating joint.  
 

 

Fig. 1-2. Position and rotation axis of a screw. 
 

For a serial linkage connected with n links, the velocity of its end-effector can be 
expressed by the combination of velocities of these n joints,  

 
1

n

i i
i

w
v

S
ω

, (1-7) 

where iw  is the velocity of joint i. Therefore, if the linkage forms a close loop, 

 0
n

i
iiw

1
S , (1-8) 

namely, 

 0

n

n

w

w
w

2

1

21 SSS . (1-9) 

As dimension of the non-zero solution of iw  is the independent number of joint 
velocities, the rank of the coefficient matrix is related to the mobility of the linkage. 
Therefore, screw theory can be used to study mobility of linkages.  

And to analyse kinematics of multi-loop linkages, equation like Eq. (1-9) should 
be established for each independent loop of the multi-loop linkage and then be 
assembled to a large matrix form. Thus, topology of the linkage should be considered 
in detail at first, which renders the analysis more complicated.  

Lie group associated Lie algebra play a major role in modern physics, with the 
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Lie group typically playing the role of a symmetry of a physical system [14]. Murray 
et al. adopted Lie group theory as analytic tools to derive kinematics of robotic 
manipulators [15]. Hervé illustrated Lie group method to analyse the motion of 
parallel platform with some examples of 3-DOF robotic manipulators in detail [16]. 

In mathematics and physics, the set of dual quaternions is a Clifford algebra that 
can be used to represent spatial rigid body displacements [17]. Perez and McCarthy 
presented a dual quaternion formulation for the kinematic synthesis of constrained 
serial chains, where kinematics equations of the chain are transformed to successive 
screw displacements, which can be written in dual quaternion form [18]. Meanwhile, 
Leclercq, Lefèvre, and Blohm showed that dual quaternions are able to deal with 3D 
kinematics in neuroscience, including forward and inverse kinematics [19].  

Recently, a new method, called Bond theory, was proposed from mathematics to 
study mobility of linkages by Hegedüs et al. [20, 21, 22, 23, 24], and they analysed 
kinematics of closed 5R linkage [20], Stewart-Gough platforms [23], closed 6R 
linkages [24].  

Selig summarised geometric methods in robotics such as Lie group, Lie algebra, 
Screw theory, Line geometry and Clifford algebra [25]. These methods are normally 
efficient for corresponding linkages, however kinematics of some complicated 
linkages, such as overconstrained linkages and multi-loop linkages, are still 
challenging to be studied.  

In the theory of mechanisms, many linkages are known whose instantaneous 
mobility in certain positions of the linkage is greater than mobility of other positions. 
The reason for this phenomenon is that the kinematic Jacobian matrix has a rank 
deficiency, i.e., it is at a singular configuration. If the extra mobility is finite rather 
than infinitesimal, it will appear another motion path at this configuration, i.e., motion 
bifurcation occurs. Even though bifurcation points may lead mechanisms to an 
unexpected motion branch, it could also be utilised for designing reconfigurable 
mechanisms. Therefore, it is significant to judge bifurcation situations during motion 
processes. Some research works on singularity analysis of single-loop linkages and 
parallel platforms were studied.  

Gosselin and Angeles presented an analysis of different kinds of singularities 
encountered in closed-loop kinematic chains [26]. Based on the properties of Jacobian 
matrices of the chain, a general classification of these singularities in three main 
groups was obtained. Di Gregorio and Parenti-Castelli analysed the singularities of 
the 3-UPU translational platform [27]. They derived the conditions where the 
actuators cannot control the linear velocity of the moving platform, generally known 
as architecture singularities. Zlatanov, Bonev and Gosselin proposed the concept, 
constraint singularity, which is a phenomenon occurring in parallel mechanisms with 
reduced freedoms when the screw system, formed by the constraint wrenches in all 
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legs, loses rank [28]. Joshi and Tsai proposed a method for Jacobian analysis of 
limited DOF parallel manipulators, which is 6 by 6 Jacobian matrix providing 
information about both architecture and constraint singularities [29]. Grassman 
geometry is also a significant tool to analyse singularity. By this tool, Kanaan et al. 
analysed singularity of lower mobility parallel manipulators [30], Merlet found 
singular configuration of parallel manipulators [31], and the general Gough-Stewart 
platform was analysed and represented by St-Onge and Gosselin [32]. Chai and Li 
adopted geometric algebra to derive the analytical expression of the motion space of 
Bennett linkage [33]. Chen and Chai obtained the bifurcation points from motion 
paths of a special Bricard linkage with both line and plane symmetry after closure 
equations derivation of the linkage [34]. These approaches to judge bifurcation 
situations are based on establishing Jacobian matrix of linkages. Thus, as the 
complexity of the linkage increases, bifurcation detection becomes more and more 
complicated due to the complexity is determined by topological and geometric 
information of the linkages.  

1.2.2 Truss Theory 

Since an overconstrained mechanism is statically indeterminate, the Maxwell’s 

rule in truss can be applied in the analysis. Maxwell defined a frame as ‘a system of 

lines connecting a number of points’, and defined a stiff frame as ‘one in which the 

distance between any two points cannot be altered without altering the length of one 
or more of the connecting lines of the frame’ [35]. A frame having j  nodes in three 
dimensional space requires 3 6j  bars to be rendered stiff in general, thus, 
 3 6m j b . (1-10) 

However, similar to the Chebychev-Grübler-Kutzbach criteria [36], without 
detailed topological and geometrical information of the system, Maxwell’s rule cannot 
determine the mobility of overconstrained mechanisms correctly.  

Considering a spatial truss consisting of a total of j  joints connected by b  
bars to each other, each joint can be acted upon by an arbitrary force in 3D space, then 
joints will hold 3 j  components of external forces, assembled in the vector f , while 
the tension in each bar is denoted by a single number, so there are altogether b  
tensions, assembled in the vector t . Similarly, the vector assembled with 3 j  
displacements of joints is d , and the elongation vector along bars, e , is assembled 
with b  components.  

For establishing equations, it is convenient to use a tension coefficient instead of 
tension, defined as tension/length, and the corresponding elongation coefficient is 
defined as elongation*length. Terms tension and elongation to include these 
convenient variants were usually adopted. 
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For joint i connecting joints h and j with bars l and m, shown in Fig. 1-3, three 
equilibrium equations can be established 

 

i h l i j m ix

i h l i j m iy

i h l i j m iz

x x t x x t f

y y t y y t f

z z t z z t f

. (1-11) 

Here, ix , iy , iz  are the Cartesian coordinates of joint i, and ixf , iyf , izf  are 
the components of external force.  

 

 

Fig. 1-3. View along Oz of a joint i which carries external forces and is connected by bars to joints h 

and j. 
 

In this way the 3 j  equations of equilibrium in b  unknowns can be written and 
assembled in a matrix form  

 Ht f , (1-12) 

where  

 
i h i j

i h i j

i h i j

x x x x
y y y y
z z z z

H , (1-13) 

is the equilibrium matrix with dimensions 3 j  by b .  

Meanwhile, the equations of kinematics of small displacements of the assembly 
can be set up.  
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 Cd e , (1-14) 

where C  is the compatibility matrix with dimensions b  by 3 j . By application of 
the principle of virtual work, the following relationship can be proven. 

 TC H . (1-15) 

It should be noted that there is no elongation for all bars in mechanisms as all 
links are considered as rigid, namely 
 0e . (1-16) 

Calladine further developed Maxwell’s rule and used rank of the equilibrium 
matrix of the system to decide its static and kinematic determinacy [37]. As the 
equilibrium matrix contains both geometrical and topological information, this 
method is certainly valid in the analysis of overconstrained mechanisms. Tarnai 
presented a conjecture about how to decide whether kinematical indeterminacy takes 
the form of an infinitesimal or a finite mechanism [38]. Then, Pellegrino and 
Calladine proposed a matrix analysis method to answer Tarnai’s conjecture [39]. Later 
Kuznetsov used kinematical constraint and virtual displacement to respond for 
Tarnai’s conjecture as well [40]. In 2002, Tarnai himself used principle of virtual work 
to close this conjecture and got a unified form of previous two methods [41].  

Besides, bifurcation was also studied in structural engineering. Tarnai presented 
an exact equation describing the finite displacements of assemblies consisting of rigid 
bars and pin joints, and a numerical procedure with linear approximation of this 
equation was presented to determine compatible states and motion of single- or 
multiple-DOF mechanisms consisting of rigid bars and pin joints [42].  

Singular value decomposition (SVD) of a matrix can get a left singular matrix 
which can depict the left nullspace, a right singular matrix which can construct 
nullspace, and a diagonal matrix where the number of non-zero singular values is the 
rank of the original matrix. Meanwhile, the nullspace, left nullspace, and the rank of 
equilibrium matrix determine states of selfstress, states of mechanisms, and mobility, 
respectively. Therefore, SVD is potential to analyse motions of movable assemblies. 
An SVD method on the equilibrium matrix for movable structures was introduced by 
Kumar and Pellegrino to simulate its kinetic trajectory considering bifurcation points 
[43]. Gan and Pellegrino proposed a novel kind of deployable structures, which form 
closed loops. These structures can be folded into a bundle of bars using simple hinges. 
Its folding process was obtained by SVD of the transforming matrix of closure 
equations [44]. And Gan and Pellegrino also successfully used the SVD of 
equilibrium matrix to simulate the motion of closed linkages [45]. Chen and You 
presented an approach to analyse twofold-symmetric 6R foldable frame and its 
bifurcations by using SVD of the Jacobian matrix of closure equations [46].  

There were some works on the intersection of linkage and truss as they both 
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concern kinematic behaviours. Tanaka introduced a truss-type mechanism from a 
statically determinate truss by making its joint bars adjustable [47]. Shai showed that, 
in general, the graph representations of mechanisms and trusses are mathematically 
dual [48, 49]. Furthermore, how to transform linkages into their equivalent truss 
forms to adopt structural methods to analyse kinematics of original linkages is a 
challenging business.  

1.2.3 Overconstrained Linkages 
Overconstrained linkage [50] is one kind of special linkage, which does not 

satisfy the classical Kutzbach mobility criterion [36]. As a 3D overconstrained 
mechanism is able to generate complicated 3D motion with least number of bars, it 
has attracted great interests in kinematic research. Many 3D overconstrained 
mechanisms have been proposed in the last 160 years by Sarrus [51], Bennett [52, 53], 
Delassus [54], Bricard [55, 56], Myard [57], Goldberg [58], Waldron [59, 60, 61], 
Wohlhart [62, 63, 64], Song and Chen [65], and so on. 

Sarrus linkage [51], invented in 1853, is the first overconstrained linkage, which 
can convert a limited circular motion to a linear motion without any reference guide 
rail, with which morphing wings [66, 67] were realised.  

Bennett linkage, as shown in Fig. 1-4, is the only one four-bar linkage to realise 
spatial motion with neither parallel nor intersected R joints [52, 53], which is an 
overconstrained linkage with the least number of bars.  

 

 

Fig. 1-4. The Bennett linkage. 
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The overconstrained geometric conditions of the Bennett linkage [52] are 

 12 34 1 23 41 2, ,a a a a a a  (1-17a) 

 12 34 23 41, ,  (1-17b) 

 
1 2

sin sin ,
a a  (1-17c) 

 0 ( 1, 2, 3, 4).iR i  (1-17d) 

and its closure equations are 

 ,π2,π2 4231  (1-18a) 

 1 2

1sin
2tan tan 12 2 sin
2

. (1-18b) 

All these parameters are defined according to D-H notation [8].  
Baker derived its input-output equation and demonstrated the mobility is one 

[68], and also found that the four R joints in a Bennett linkage are related to the 
J-hyperboloid defined by its joint axes and its four links are also related to another 
hyperboloid called the L-hyperboloid defined by its links [69, 70].  

The Goldberg 5R linkage [58] is obtained by combining a pair of Bennett 
linkages in such a way that a link common to both is removed and a pair of adjacent 
links is rigidly attached to each other. The techniques he developed can be 
summarised as the summation of two loops to produce another linkage, or the 
subtraction of a primary composite loop from another chain to form a new linkage. 
Similar to this method, a 6R linkage was generated by merging two Goldberg 5R 
linkages [63]. Another two double-Goldberg 6R linkages [71] were created by 
summation of Goldberg 5R linkages. Then a complete family of double-Goldberg 6R 
linkages was proposed [65] by combining a subtractive Goldberg 5R linkage and a 
Goldberg 5R linkage through the common link-pair or common Bennett-linkage 
method.  

The Myard 5R linkage [57], proposed in 1931, is combined by two rectangular 

Bennett linkages with one pair of twist angles as 
2
π

 [68], which can be classified as 

a special case of Goldberg 5R linkage. As shown in Fig. 1-5, Bennett linkages ABCD 

and ADCE are disposed as mirror images to each other. Combining them in the 

symmetric plane, the common R joint D and common links AD and CD are removed. 

Its geometric conditions are 
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 (1-19) 

And the closure equations are 

 

.
2

tan

2
π

2
1sin

2
π

2
1sin

2
tan

,

2
π

2
1sin

2
π

2
1sin

2
tan

2
tan

,π2,π2

3

12

12
2

12

12
54

52431

 (1-20) 

 

 

Fig. 1-5. The Myard 5R linkage. 

 
The extended Myard 5R linkage [72] was obtained by combining two 

complementary Bennett linkages, where the twist is not necessary to be 90°.  
Bricard proposed six types of mobile 6R linkage [55, 56], which are summarised 

as the general line-symmetric, the general plane-symmetric, the trihedral, the 
line-symmetric octahedral, the plane-symmetric octahedral, and the doubly collapsible 
octahedral cases as shown in Fig. 1-6. Their geometric conditions were summarised as 
follows [73]:  
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(a) The general line-symmetric case 

 
12 45 23 56 34 61

12 45 23 56 34 61

1 4 2 5 3 6

, ,
, ,

, ,

a a a a a a

R R R R R R
 (1-21) 

(b) The general plane-symmetric case 

 

536241

453456236112

453456236112

,,0
π,π,π

,,

RRRRRR

aaaaaa
 (1-22) 

(c) The trihedral case 

 

)6,,2,1(0
2
π,

2
π

614523563412

2
61

2
45

2
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2
56

2
34

2
12

iR

aaaaaa

i

 (1-23) 

(d) The line-symmetric octahedral case 

 12 23 34 45 56 61

1 4 2 5 3 6

0
0

a a a a a a
R R R R R R

 (1-24) 

(e) The plane-symmetric octahedral case 

 

12 23 34 45 56 61

34 61
4 1 2 1 5 1

12 34 45 61

4512
3 1 6 1

12 34 45 61

0
sin sin, ,

sin( ) sin( )
sinsin ,

sin( ) sin( )

a a a a a a

R R R R R R

R R R R

 (1-25) 

(f) The doubly collapsible octahedral case 

 12 23 34 45 56 61

1 3 5 2 4 6

0
0

a a a a a a
R R R R R R

 (1-26) 

Baker studied all these linkages, delineating them by appropriate sets of 
independent closure equations [74]. Wohlhart focused on the orthogonal Bricard 
linkage, and found that there are two distinct types [64]. The five input-output 
equations as explicit functions of the input angle were derived for both types of 
linkages. Chen and You studied a particular Bricard linkage with threefold symmetric 
[75], as shown in Fig. 1-7. Its geometric conditions are 

 
12 23 34 45 56 61

12 34 56 23 45 61, 360
0 ( 1, 2, ,6)i

a a a a a a a

R i
 (1-27) 

Features of kinematic bifurcation were analysed in detail after deriving its closure 
equation. 
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Meanwhile, adopting its alternative forms, the linkage has some significant 
configurations with large deployable/packaging ratio, such as a deployed 
configuration as a hexagon and a folded configuration as a bundle.  

 

 

(a)                        (b) 

 

(c)                        (d) 

 

(e)                        (f) 
Fig. 1-6. Bricard 6R linkages. (a) The general line-symmetric case; (b) the general 

plane-symmetric case; (c) the trihedral case;(d) the line-symmetric octahedral case; (e) the 
plane-symmetric octahedral case; (f) the doubly collapsible octahedral case. 
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Fig. 1-7. Threefold-symmetric Bricard 6R linkage. 

 

1.2.4 Engineering Applications of Overconstrained Linkages 
Shang et al. presented a deployable robot based on this threefold-symmetric 

Bricard linkage, and the robot realises a large-scale transformation with a deployable 
area ratio of 39.3 [76]. Moreover, it is capable of moving through limited space easily 
by changing its configuration from folded to deployed, and vice versa. Kinematics of 
some other Bricard linkages were also researched in detail, such as kinematics and 
bifurcation situations of line-symmetric octahedral Bricard linkage [77], a special line 
and plane symmetric Bricard linkage [34], the original and revised general 
line-symmetric Bricard linkage [78]. Feng et al. derived the input-output formula 
analytically for the general plane-symmetric Bricard linkage, and its bifurcation cases 
were studied in detail [79]. 

Being with great rigidity and one DOF, overconstrained single-loop linkages are 
always adopted as elements to construct large deployable structures, which are 
capable of varying their shapes from a compact, folded configuration to an expanded, 
deployed configuration [80].  

Analogising to Kempe's linkages [81], Baker and Yu presented some guidelines 
to construct multi-loop ensembles but only to an exploratory depth, and some 
candidates of possible mobile assemblies were proposed [82]. Then, according to 
these guidelines, Baker and Hu studied one particular assembly in detail and 
attempted to connect two Bennett linkages, but they obtained a rigid one with 
instantaneous mobility [83]. Chen summarised the methods to build network with 
Bennett linkages by three general ways [73], including single-loop network of Bennett 
linkages, multi-loop network of Bennett linkages, and connectivity of Bennett 
linkages [84, 85]. Chen and Baker used a Bennett linkage as a connector between 
other Bennett loops [86]. The alternative form of Bennett linkage to achieve compact 
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folding was studied in [87, 88]. Based on the alternative form of the Bennett linkage 
and square cross-section bars, Yu, Luo and Li developed a deployable membrane 
structure [89]. Guo and You built a deployable mast using the Bennett linkages as the 
basic element [90]. Baker obtained a collapsible network of similar pairs of nested 
Bennett linkages [91]. Yang et al. constructed a saddle-like surface with identical 
Bennett linkages [92], in which the deployment is driven by one DOF. Unlike other 
assemblies, configurations of elements in the obtained framework at general 
instantaneous movement are not the same to each other and grading varying. Lu, 
Zlatanov and Ding constructed a one-DOF network of Bennett linkages which can be 
deployed to approximate a cylindrical surface [93]. 

Besides of constructing deployable structures with Bennett linkages, other 
single-loop overconstrained linkages were also tried to construct large assemblies. Liu 
and Chen created a number of deployable blocks based on the Myard linkage. With 
these blocks, large deployable assemblies can be built [94]. These assemblies can 
transform between a deployed planar configuration and a folded compact bundle. Qi 
et al. built a quadrangular deployable module composed of four plane symmetric 
Bricard linkages [95], where the vertical links of the adjacent units are shared to be 
assembled. Huang et al. proposed some single DOF deployable networks using the 
threefold-symmetric Bricard mechanisms [96]. Song et al. proposed a large-scale 
modular deployable mechanical network constructed by networking Altmann linkages 
[97]. Then, Korkmaz and Kiper constructed alternatives of network with several 
identical single-loop Altmann linkages [98], which have both fully deployed and 
folded configurations. 

Being capable to generate large deployable structures with low DOF and high 
rigidity, overconstrained linkages and their large networks have great potential 
application in various areas, such as civil engineering, aerospace, medicine. However, 
their engineering applications are very limited except ‘Turbula’ from Schatz linkage 
[99] and deployable structures from Bennett linkage [52, 53], Myard linkage [57], and 
Bricard linkage [56]. This is due to the fact that the strict overconstrained geometric 
conditions require very high precision in the manufacture, which is very difficult and 
costly to achieve in mass production. Thus, there is a conflict between the desired 3D 
motion and undesired overconstrained conditions. To overcome this problem, 
Milenkovic and Brown substituted an S joint for one of the R joints to reduce the 
degree of overconstraint in Bennett linkage, and reduced the closure relationship to 
two equations [100]. Lee and Hervé used oblique circular torus to find a RRRS linkage 
kinematically equivalent to the Bennett linkage [101]. However, the resultant linkages 
are still overconstrained. Therefore, it is a challenge to find the non-overconstrained 
forms of overconstrained linkages.  
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1.2.5 Polyhedral Linkages 
On the other hand, polyhedral linkages are the most typically multi-loop. In 

geometry, two important classes of convex polyhedrons consisting of regular 
polygonal faces with highly symmetrical geometry are the Platonic solids and 
Archimedean solids [102]. The Platonic solids have only one type of regular 
polygonal faces, which include five polyhedrons: tetrahedron, cube, octahedron, 
dodecahedron, and icosahedron [103], whereas the Archimedean solids are composed 
of more than one types of regular polygonal faces, which have thirteen polyhedrons 
excluding the prisms and antiprisms [104].  

Meanwhile, some transformations between Platonic and Archimedean solids can 
be achieved in numerous ways. Classical transformations such as truncation, 
cantellation, snub, and omnitruncation, are much studied and well understood 
geometrical operators [105].  

In engineering, transformation of polyhedrons was first proposed by 
Buckminster Fuller [106], which was called Jitterbug as its transformation process is 
like the classical dance. A comprehensive list was provided by Clinton [107]. Such 
transformation involves rotation and translation of rigid facets. This, however, makes 
the transformation of little practical use as the space enclosed by the faces is taken up 
by the physical joints. If the axes of the cylindrical joints were not physically fixed 
together, the system would have six DOFs, as demonstrated by Buckminster Fuller’s 
own model [108], making it impossible to complete the transformation in an orderly 
way.  

The above example demonstrates that it is extremely challenging to accomplish 
the transformation of polyhedrons mechanically. To date two engineering approaches 
have been proposed. A modified Buckminster Fuller’s Jitterbug capable of performing 
a symmetrical transformation between a regular octahedron and a cuboctahedron was 
fabricated at the Heureka Exposition, shown in Fig. 1-8, in Zurich in 1991 [109, 110] 
in which the cylindrical joints at the centres of the triangular faces were eliminated, 
and the S joints at vertices were replaced by universal joints. 

Yet this approach cannot be extended to other paired polyhedrons as the numbers 
of DOFs would remain high (e.g., the truncated octahedron would end up with 18 
DOFs). Verheyen fabricated some Jitterbug-like polyhedrons where each triangular 
faces were made into two layers joined by an R joint (hinge joint), whereas the S 
joints at vertices remained [111, 112]. The resulted double layered structures were far 
too complex and rather unstable during the transformation due to the existence of 
motion bifurcations.  
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Fig. 1-8. The Heureka [110].  
 
Apart from the above attempts, other transformable polyhedron models were also 

produced where no shape transformation between a Platonic solid and an 
Archimedean solid exists. For instance, Agrawal et al. constructed a 1-DOF 
expanding polyhedron by installing telescopic bars on each side of a polyhedron [113]. 
The polyhedron preserved its shape when volumetric change took place. A toy known 
as the Switch Pitch [114] was generated using a centrally geared expanding 
mechanism within the central void. Wohlhart [115], Kiper [116], and Roschel [117, 
118] used gussets and R joints, Li, Yao and Kong [119] used multi-layer extended 
paralledlogram linkages to construct shape-unchanged expandable polyhedrons. 
Wohlhart [120, 121, 122], Gosselin and Gagnon-Lachance [123], Laliberté and 
Gosselin [124], as well as Wei and Dai [125, 126, 127] proposed a number of 
expandable polyhedrons, but expansion ended up with irregular polyhedral shapes. 
Kiper and Söylemez [128, 129] introduced the overconstrained Bennett linkage to 
regular polyhedrons, resulted in structures with a rather small expansion ratio. Shim et 
al., [130] suggested synchronising the transformation by applying a uniformly 
distributed pressure. This approach, however, works only for polyhedrons made from 
relative soft materials, and because of that, their behaviour becomes both material and 
loading dependent.  

Although polyhedral transformation undergone a rather long period of study, 
solutions for practical applications are still lacked. Not only are transformable 
polyhedrons mathematically interesting, but they also have many potential 
applications, e.g., they form perfect habitats for space travel which have growth 
capability [131], and they may be used to package a CubeSat to a small volume for 
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launch which then expand to a considerably large structure once it reaches the orbit. 
The rigid facets are ideal for mounting electronic devices such as solar panels [132]. 
Therefore, a mechanical transformable polyhedron requires, first of all, the number of 
DOF to be low so that the transformation can be easily controlled, and secondly, the 
central void must not be taken up by complex joints or control systems. The 
limitations of existing concepts prompt us to devise an effective method to transform 
polyhedrons amongst paired Platonic and Archimedean solids with one DOF. This 
objective is achieved by the introduction of spatial linkages. 

We can match polyhedrons between two kinds of solids based on the same 
number of identical polygons. For example, tetrahedron and truncated tetrahedron 
both have four triangles. Take the triangle as rigid piece and hexagon as hollow one 
formed by six links connected by moving joints. If we can move the triangles in the 
truncated tetrahedron into the position as tetrahedron and vanish four hexagons in the 
truncated tetrahedron, the transformation between them can be realised. Following 
this rule, all the possible transformations are listed in Table 1-1. Totally, there are 
eight matches between Platonic and Archimedes solids numbered as 1-5 and 9-11, 
among which No. 5 is the transformation between rhombicuboctahedron and 
octahedron via or not via cub-octahedron, and No. 11 is between 
rhombicosidodecahedron and icosidodecahedron, both belonging to Archimedes 
solids. 

We have found that the transformations are actually realised by folding motions 
of those hollowed polygons, which are connected as multi-loops. Therefore, 
multi-loop linkages are potential to realise polyhedral transformations, whose designs 
and kinematic analysis can be performed by employing the truss method. 

1.3 Aim and Scope 
Studying in the interdiscipnary area of kinematics and structure, the aim of this 

dissertation is to develop a truss method by converting 3D linkages to their equivalent 
truss forms, and employing methods in structural engineering to analyse complicated 
3D overconstrained linkages and design new transformable linkages with deployable 
functions.  

In this process, we first expound how to convert 3D linkages to their truss forms 
and compare the relationship between the truss method and the conventional 
kinematic method. Then based on the truss method, overconstrained linkages are 
analysed, and an approach to seek non-overconstrained forms of overconstrained 
linkages is studied. Finally, we look into the design of three pairs of transformable 
polyhedrons. 
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Table 1-1. All possible transformations between Platonic and Archimedean polyhedrons 

No. Archimedean polyhedrons Platonic polyhedrons 

1  
Truncated 

tetrahedron 

4 triangles 

4 hexagons 
   

Tetrahedron 
4 triangles 

2 
  

Cuboctahedron 

8 triangles 
6 squares 

   
Octahedron 

8 triangles 

3 
 

Truncated cube 

8 triangles 
6 octagons 

   
Octahedron 

8 triangles 

4  
Truncated 
octahedron 

6 squares 
8 hexagons 

   
Cube 

6 squares 

5  
Rhombicuboctahedr

on 

8 triangles 
18 squares  

Cuboctahedron 

8 triangles 
6 squares  

Octahedron 

8 triangles 

6  
Truncated 

cuboctahedron 

12 squares 
8 hexagons 
6 octagons 

  --  

7  
Snub cube 

(cuboctahedron) 

32 triangles 
6 squares 

  --  

8 
 

icosidodecahedron 

20 triangles 
12 pentagons 

  --  

9  
Truncated 

dodecahedron 

20 triangles 
12 decagons 

   
Icosahedron 

20 triangles 

10  
Truncated 

icosahedron 

12 pentagons 
20 hexagons 

  
 

Dodecahedron 

12 
pentagons 
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Table 1-1. All possible transformations between Platonic and Archimedean polyhedrons 
(Continued) 

No. Archimedean polyhedrons Platonic polyhedrons 

11  
Rhombicosidodeca

hedron 

20 triangles 

30 squares 

12 pentagons 
 

Icosido-decahed
ron 

20 
triangles 

12 
pentagons 

 

 

-- 

 

12 
 

Truncated 
icosidodecahedron 

30 squares 
20 hexagons 
12 decagons 

  --  

13 

 
Snub dodecahedron 

80 triangles 
12 pentagons 

  --  

 

1.4 Outline of Dissertation 
This dissertation consists of seven chapters, which are outlined as follows.  
Chapter 2 presents a method to transform 3D linkages to their equivalent truss 

forms, and then mobility calculation, motion path generation, and bifurcation 
detection can be performed by studying their equilibrium matrices. Its validity is 
verified by a threefold-symmetric Bricard 6R linkage. The discussion on the 
relationship between kinematic Jacobian matrix of linkages and equilibrium matrix of 
the truss form and conclusions end this chapter.  

Chapter 3 deals with the technique to seek non-overconstrained forms of 
overconstrained linkages. It is achieved by detecting and removing redundant bars 
from truss forms of original linkages, whose generality is proven by taking Bennett 
4R linkage and Myard 5R linkage as examples. Output errors, which are produced by 
fabrication errors on link length and twist, and sensitivities of these factors are 
analysed to show the advantage of non-overconstrained forms. This chapter is ended 
with the conclusions.  

Chapter 4 is to construct a deployable 3D solid with Bennett linkage. A spatial 
multi-loop linkage, constructed with 2 Bennett linkages and 4 RSRS linkages, is 
obtained to realise the transformation between cuboctahedron and octahedron with 
one DOF, where each vertex is set with one R joint or S joint. Joint arrangement and 
directions are determined by geometrical analysis. A metal prototype demonstrates the 



Chapter 1 Introduction  

21 
 

validity of the designed result. Finally, kinematics study and conclusions end this 
chapter.  

Chapter 5 is devoted to construct a polyhedral transformation between truncated 
octahedron and cube with one DOF. The first step is to consider a 
threefold-symmetric Bricard 6R linkage to realise the folding of one hollowed 
hexagonal face as compositions of all hexagonal faces are all threefold-symmetric. 
Introducing more constraints, its one-DOF solution is obtained after setting two 
Bricard linkages with the same parameters, where mobility is calculated by the 
proposed truss method. Then, a 3D printed prototype validates the transformation 
process. The last section is the discussion on parameter study and conclusion. 

Chapter 6 focuses on the pair of polyhedrons, the truncated tetrahedron and 
tetrahedron. One-DOF transformation of them is achieved with two schemes of spatial 
linkages constructed with 1 threefold-symmetric Bricard 6R linkage and 3 RSRRSR 
linkages (or 3 RRSSRR linkages), where the expansion/packing ratio in volume is up 
to 23. The prototype is fabricated by equaling an S joint to three folding creases with 
the origami folding technique. For both constructions, possible ranges to realise the 
transformation without physical interference has been found through the discussion on 
the folding performance under different joint directions. 

The main achievements of the research are summarised in Chapter 7, together 
with suggestions for future works, which concludes this dissertation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Doctoral Dissertation of Tianjin University 

22 
 

 
 

 



Chapter 2 Truss Method by Analogying 3D Linkages to Trusses 

23 
 

Chapter 2 Truss Method by Analogying 3D Linkages to 
Trusses 

2.1 Introduction 

In this chapter, we proposed a method for transforming 3D linkages into their 
truss forms, then kinematics, including mobility calculation, motion path generation 
and bifurcation detection, can be studied based on analysing equilibrium matrix of 
truss forms. 

The layout of this chapter is as follows. Section 2.2 expounds how to transform 
linkages into their truss forms, based on which mobility and degrees of overconstraint 
can be obtained in Section 2.3. Section 2.4 shows a numerical approach to simulate 
motion paths of linkages based on the truss analogy. The relationship between 
Jacobian matrix in mechanism and equilibrium matrix in truss is derived in Section 
2.5. Discussion and conclusions in Section 2.6 end this chapter. 

2.2 Truss analogy 

As truss is formed by straight bars connected by nodes, a rigid body in space can 
be represented by a straight bar or a tetrahedron with six bars connected by four nodes, 
see Fig. 2-1(a). From the kinematic point of view, a straight bar is a link and a node is 
an S joint. Then an R joint can be represented by a straight bar with one node (S joint) 
at each end, see Fig. 2-1(b), so that the links connected to it can generate revolute 
motion about the axis along the straight bar, or the line passing through two S joints, 
as shown in Fig. 2-1(c).  

 

 

            (a)                (b)                       (c) 

Fig. 2-1. Truss equivalence. (a) A tetrahedron as a rigid body; (b) two S joints connected by one 
straight bar as an R joint; (c) two rigid bodies connected by one R joint. 

 

In general, a link connected with two R joints is equivalent to a truss tetrahedron 
taking AA ' , CC'  as R joint axes, see Fig. 2-2(a). Thus, AA ' , CC'  are called 
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joint bars. AC , AC' , A 'C , and A'C'  are called body bars. In kinematics, link is 

usually the shortest distance between two R joints. Here, AC  is the shortest link in 

Fig. 2-2(a), i.e., AC AA'  and AC CC' . AC' , A'C  and A'C'  can be 

considered as alternative links [87] between R joints AA' and CC' . When the two R 

joint axes intersect, a tetrahedron degenerates into a triangle, see Fig. 2-2(b). And for 

the parallel axes, all bars in the tetrahedron are in a plane, see Fig. 2-2(c), which has 

one instantaneous mobility. To avoid it, an arbitrary point out of the plane, P, is 

introduced, see Fig. 2-2(d), to generate the truss form for the link with two parallel 

axes. 
 

 

(a)                          (b) 

 

 

 (c)                          (d) 

Fig. 2-2. One link with two R joints. (a) common situation; (b) two intersecting revolute axes; (c) 
two parallel revolute axes with an instantaneous mobility; (d) two parallel revolute axes. 

 
In such a way, 3D linkages with R joints and S joints can be transformed into 

their truss forms. For example, a threefold-symmetric Bricard linkage [79] in Fig. 
2-3(a) is transformed to its truss form as shown in Fig. 2-3(b), where black thick lines 
and black points are original bars and positions of joints, thick gray lines are along 
corresponding R joints, thin gray lines and gray points are to form bars with R joints. 
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(a)                                    (b) 

Fig. 2-3. Kinematic analysis of a threefold-symmetric Bricard linkage by transforming (a) its 
original form to (b) its truss form. 

 

2.3 Kinematic Analysis with Equilibrium Equation of Truss Form 

After the truss analogy, a 3D linkage could be transformed to its truss form with 
j  nodes and b  bars. According to Maxwell’s rule, when 3 6 0j b , the truss is 

stiff without self-stress, e.g., the tetrahedron in Fig. 2-1(a) with 4j , 6b . When 
3 6 0j b , the truss has mobility, 3 6m j b , e.g., the system in Fig. 2-1(c) 

with 6j , 11b , and 1m . When 3 6 0j b , the truss should be stiff and 

statically indeterminate.  

For the threefold-symmetric Bricard linkage in Fig. 2-3(a), a well-known spatial 
6R linkage with mobility one, its truss form in Fig. 2-3(b) has 12j  nodes, 30b  

bars, and 3 6 0j b . Thus it is statically indeterminate, i.e., overconstrained. In 

this case, the equilibrium equation has to be considered [133, 134]. 
 Ht f , (2-1) 

in which t  is a 1b  vector of bar axial forces per unit length, f  is a 3 1j  

vector of node forces, and H  is a 3 j b  equilibrium matrix which might not be 

full ranked. Here we only consider the truss without external forces, i.e., 0f . Then 

Eq. (2-1) becomes a set of homogenous linear equations 
 0Ht . (2-2) 

Take r  as the rank of equilibrium matrix H . Analysing the homogenous 

equilibrium equation, Eq. (2-2), gives the number of self-stresses, 
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 s b r . (2-3) 

Meanwhile, the following compatibility equations should be satisfied according 
to structure mechanics, 

 Cd e , (2-4) 

where d is the vector of node displacements, e is the vector of bar elongations, C is 

the compatibility matrix. As links in linkages are always assumed to be rigid, there is 
no elongation of any bars, i.e., 0e . Then, Eq. (2-4) becomes a set of homogenous 

linear equations 
 0Cd . (2-5) 

According to the principle of virtual work, the compatibility matrix is the 
transposition of the equilibrium matrix [39], 

 TC H . (2-6) 

Therefore, the number of inextensional mechanisms (mobility) is 

 3 6m j r . (2-7) 

Hereto, m and s, degrees of freedom and overconstraint of the 3D linkage, 
respectively, can be obtained by the truss method at the same time.  

Then, the threefold-symmetric Bricard linkage, shown in Fig. 2-3(a), with 
detailed parameters is taken as the example to verify its mobility by this method, 
whose design parameters are 

 12 23 34 45 56 61 1a a a a a a  (2-8) 

and 

 

3
π
3
π2

61

56

45

34

23

12

. (2-9) 

A configuration of this linkage is placed in a Cartesian coordinate system on the 
centre of triangle BDF, and coordinate of vertices are 

 

T

T

T

T

T

T

0,2471.0,4281.0

1569.0,5686.0,9848.0

0,4943.0,0

1569.0,5686.0,9848.0

0,2471.0,4280.0

1569.0,1372.1,0

F

E

D

C

B

A

. (2-10) 

After the truss analogy, six more nodes are added along corresponding axes in in its 
truss form 
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T

T

T

T

T

T

0428.0,2019.0,3498.0'

2554.0,5599.0,9698.0'

0428.0,4039.0,0'

2554.0,5599.0,9698.0'

0428.0,2019.0,3498.0'

2554.0,1198.1,0'

F

E

D

C

B

A

. (2-11) 

It is easy to verify that Eqs. (2-8) and (2-9) are satisfied by calculating link lengths 
and twist angles, i.e., it is indeed one configuration of threefold-symmetric Bricard 
linkage.  

Then, its equilibrium matrix can be established according to [39]. The mobility 

can be obtained according to Eq. (2-7) after calculating the rank of the above matrix, 
3 6 1m j r . 

2.4 Motion Path and Bifurcation Detection 
Although analytical solution of kinematics is always the best desired result in 

mechanism, there are still a lot of linkages without analytical solutions or their 
solutions are rather difficult to solve, such as kinematics of multi-loop linkages with 
complex topology. To deal with this problem, a numerical approach was proposed by 
Kumar and Pellegrino [43]. It is called predictor-corrector algorithm, and it can detect 
bifurcation points with singular values of equilibrium matrices.  

Being transformed to the truss form, equilibrium equation can be established. 

Then filtering ground joints and bars, for an equilibrium matrix H' with dimensions 
3 j b  and rank r, there exist: a 3 3j j  orthogonal matrix 1 3[ , , ]jU u u ; a b b  

orthogonal matrix 1[ , ]bW w w ; and a b b  matrix V with r positive elements iv  

(i = 1, … , r) on the leading diagonal, such that 
 T'H UVW . (2-12) 

It is the SVD of the equilibrium matrix H'. According to Eq. (2-7), the left singular 

vectors U, the set of right singular vectors W and the set of non-zero singular values 

V are 
 1 1[ , , , , , ]r r r mU u u u u , (2-13) 

 1 1[ , , , , , ]r r r sW w w w w , (2-14) 

 
00
0),,(diag 1 rvv

V . (2-15) 

As each linkage obtained by our method is always with one DOF, the left 
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singular vectors U becomes 

 1 1[ , , , ]r rU u u u , (2-16) 

and it moves along a determined kinematic path generally. According to [39], the left 
nullspace of H', 1ru , is precisely the space spanned by the m independent 

inextensional mechanisms of the assembly. Assume the current configuration is iR , 

then the next configuration of the linkage is predicted as 
 '

1
i i i

rR R u , (2-17) 

 is used to control the motion direction and the transformation speed. As the 
configuration 'iR  is not an exact one in the motion path, bars of the truss form of the 
linkage undergone extensions e . A set of correcting displacements cd  on all vertices 

was adopted to eliminate those extensions to correct the configuration [134],  

 
T

c
1

r
i

i
i iv
w ed u . (2-18) 

Thus, the configuration 1 '
c

i iR R d  is the strain-free configuration nearest to 
iR , and Fig. 2-4 shows operations of one step in the iteration process. This corrector 

step can be repeated a number of times until a desired convergence accuracy is 

achieved. 

 

 

Fig. 2-4. Predictor-corrector algorithm in each iteration step of the numerical method proposed by 
Kumar and Pellegrino [43].  

 

As the rank of equilibrium matrix, H, is related with the number of non-zero 

singular values in V, thus instantaneous mobility equals to the number of zero-valued 

singular values in V. Therefore, bifurcation positions can be detected by singular 

values of V during motion process. Figure 2-5(a) shows kinematic curves between 
kinematic angles  and .  
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(a)  

 

(b) 
Fig. 2-5. Kinematic behaviour of the threefold-symmetric Bricard linkage. (a) Curves among 

folding angles at all joints, and (b) singular values recorded by the numerical algorithm after the 
truss analogy.  
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And singular values were recorded at the same time as shown in Fig. 2-5(b). The 

smallest value keeps equaling zero, and second last singular value, 3j-8, is generally 
far from zero except two configurations, i.e., 180  and 180 . Therefore, 

the linkage is always movable, and there are two bifurcation positions at two folded 

configurations, i.e., six bars being folded as a bundle. Meanwhile, according to 

kinematic curves, we can find that there are two motion paths. The result matches 

well to the conclusion from [73], which shows that this numerical algorithm based on 

the truss method is credible. 

 

2.5 Relationship between Jacobian Matrix of Mechanism and 
Equilibrium Matrix of Truss 

Chen and Chai shown that kinematic behaviours, including motion path and 
bifurcation detection, of 3D linkages can be realised by a numerical algorithm based 
on SVD of kinematic Jacobian matrix [34]. While, those kinematic behaviours can 
also be obtained by the approach, described in section 2.4, based on SVD of 
equilibrium matrix of the truss form of the 3D linkage. Therefore, there must be some 
relationship between the kinematic Jacobian matrix and the equilibrium matrix. 

In the following parts, planar 4R linkage and spherical 4R linkages are taken as 
examples to show the relationship between those two matrices. 

2.5.1 Planar 4R Linkage 
For a planar 4R linkage, see Fig. 2-6, a Cartesian coordinate system is 

established, where A is the origin, x axis directs from D to A, y axis directs upward, 
and z axis is determined by the right-hand rule. Obviously, it can also be viewed as its 
truss form in the plane.  

 

 

Fig. 2-6. Kinematics of planar 4R linkage. 
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Denoting joint kinematic angles at A, B, C, D as 1 , 2 , 3 , 4  respectively. 
Therefore, coordinates of all vertices are 

 T
1 1 1 1cos , sina aB , (2-19) 

 T
1 1 2 1 2 1 1 2 1 2cos cos( ), sin sin( )a a a aC , (2-20) 

 1 1 2 1 2 3 1 2 3

1 1 2 1 2 3 1 2 3

cos cos( ) cos( )
sin sin( ) sin( )

a a a
a a a

D , (2-21) 

1 1 2 1 2 3 1 2 3 4 1 2 3 4

1 1 2 1 2 3 1 2 3 4 1 2 3 4

cos cos( ) cos( ) cos( )
sin sin( ) sin( ) sin( )

a a a a
a a a a

A . 

  (2-22) 
Thus the velocity of vertex A is 

 
0
0
0

4

3

2

1

Az

Ay

Ax

J
w
v
v

, (2-23) 

where 

 
1111
24232221

14131211

JJJJ
JJJJ

J . (2-24) 

And each element is  

 11 A 0J y , 12 A BJ y y , 13 A CJ y y , 14 A DJ y y , (2-25) 

 21 A 0J x , 22 A BJ x x , 23 A CJ x x , 24 A DJ x x . (2-26) 

J is the Jacobian matrix. By some column transformations, 1 2c c , 2 3c c , 3 4c c , 

it becomes 

 
A B B C C D D A

1 B A C B D C A D

0 0 0 1

y y y y y y y y
x x x x x x x xJ , (2-27) 

where i jc c  represents the ith column is subtracted by the jth column.  
This linkage can be viewed as a planar truss with four joints and four bars, its 

equilibrium matrix is  
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A B A D

A B A D

B A B C

B A B C

C B C D

C B C D

D C D A

D C D A

x x x x
y y y y
x x x x
y y y y

x x x x
y y y y

x x x x
y y y y

H . (2-28) 

By some row transformations, r1+r5, r2+r6, r3+r7, r4+r8, H becomes  

 

A B C B C D A D

A B C B C D A D

B A B C D C D A

B A B C D C D A
1

C B C D

C B C D

D C D A

D C D A

x x x x x x x x
y y y y y y y y
x x x x x x x x
y y y y y y y y

x x x x
y y y y

x x x x
y y y y

H , (2-29) 

where ri+rj represents the ith row is added by the jth row. A serial of transformations 
are followed, r1+r3, r2+r4, r5+r7, r6+r8, then the matrix becomes 

 

B A B C D C D A

B A B C D C D A
2

C B C D

C B C D

D C D A

D C D A

0 0 0 0
0 0 0 0

x x x x x x x x
y y y y y y y y

x x x x
y y y y

x x x x
y y y y

H . (2-30) 

Then, after exchanging the 3rd row and the 4th row,  

 

A B B C C D D A

B A C B D C A D
3

B C C D

B C C D

D C A D

D C A D

0 0 0 0
0 0 0 0

y y y y y y y y
x x x x x x x x

x x x x
y y y y

x x x x
y y y y

H . (2-31) 



Chapter 2 Truss Method by Analogying 3D Linkages to Trusses 

33 
 

The matrix is briefly denoted as 

 

2

3

N
M

H
0
0

, (2-32) 

where 

 A B B C C D D A

B A C B D C A D

y y y y y y y y
x x x x x x x x

M , (2-33) 

 

B C C D

B C C D
2

D C A D

D C A D

0 0
0 0
0 0
0 0

x x x x
y y y y

x x x x
y y y y

N . (2-34) 

J1 in Eq. (2-27) can also be denoted as  

 1
1

M
J

N
, (2-35) 

where 

 1 0 0 0 1N . (2-36) 

Obviously,  

 1( ) 1rank N , (2-37) 

 2( ) 3rank N . (2-38) 

Therefore, Jacobian matrix and equilibrium matrix are both related with the variable 
matrix M. Meanwhile, mobility can be calculated from equilibrium, 

 32 3 5 ( ) 2 ( )m j r rank rankH M . (2-39) 

And, mobility calculated from Jacobian matrix is 

 3 ( ) 2 ( )m rank rankJ M . (2-40) 

Therefore, considering Eqs. (2-35), (2-37), mobility, calculated by the 
mechanical method and the truss method, is the same with 2 ( )rank M . 

By linear transformations according to Eqs. (2-29, 30, 31), the matrix M can be 
generated from the equilibrium matrix. Then, the matrix 1J  can be constructed by M 

and constant matrix N, shown in Eq. (2-35). Finally, Jacobian matrix J  can be 
obtained from 1J  by the inverse operation of Eq. (2-27). On the other hand, 

equilibrium matrix H  can also be obtained from Jacobian matrix J  from Eqs. 

(2-29, 30, 31, 33, 34). Therefore, these two matrices are equivalent to each other. 
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2.5.2 Spherical 4R Linkage 

For a spherical 4R linkage, see Fig. 2-7(a), a Cartesian coordinate system is 

established at A. E is the spherical centre of the linkage. Its truss form is obtained by 

the approach described in section 2.2. Denote joint kinematic angles at A, B, C, D as 

1 , 2 , 3 , 4  respectively. Therefore, revolute axes at A, B, C, and D are 

 As AE , Bs BE , Cs CE , Ds DE . (2-41) 

Then, the Jacobian matrix is  

 

A B C D

A B C D

s OA s BA s CA s DA
J

s s s s

AE OA BE BA CE CA DE DA
AE BE CE DE

 (2-42) 

 

 

(a)                                    (b) 
Fig. 2-7. Kinematics of (a) spherical 4R linkage, by transforming it to (b) truss form. 

 
Eq. (2-42) can be expanded as  

 

E A A E A A E B B A E B B A

E A A E A A E B B A E B B A

E A A E A A E B B A E B B A

E A E B

E A E B

E A E B

) ) )( ) )( )
) ) )( ) )( )
) ) )( ) )( )

y y z z z y y y z z z z y y
z z x x x z z z x x x x z z
x x y y y x x x y y y y x x

x x x x
y y y y
z z z z

J   
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E C C A E C C A E D D A E D D A

E C C A E C C A E D D A E D D A

E C C A E C C A E D D A E D D A

E C E D

E C E D

E C

)( ) )( ) )( ) )( )
)( ) )( ) )( ) )( )
)( ) )( ) )( ) )( )

y y z z z z y y y y z z z z y y
z z x x x x z z z z x x x x z z
x x y y y y x x x x y y y y x x

x x x x
y y y y
z z zE Dz

 (2-43) 
It can be briefly denoted as 

 U

D

J
J

J
, (2-44) 

in which UJ  is the upper three rows and DJ  is the bottom three rows. 
Obviously, the linkage can be seen as a truss with five joints and eight bars, its 

equilibrium equation is  

 Ht f , (2-45) 

where H is the equilibrium matrix 

 

A B A D A E

A B A D A E

A B A D A E

B A B C B E

B A B C B E

B A B C B E

C B C D C E

C B C D C E

C B C D C E

D C D A D E

D C D A D E

D C D A D E

E A E B E C E

x x x x x x
y y y y y y
z z z z z z
x x x x x x
y y y y y y
z z z z z z

x x x x x x
y y y y y y
z z z z z z

x x x x x x
y y y y y y
z z z z z z

x x x x x x x

H

D

E A E B E C E D

E A E B E C E D

x
y y y y y y y y
z z z z z z z z

.

 (2-46) 
It is briefly denoted as 

 
D

U

J
H

H
0

, (2-47) 

where UH  is the upper 12 rows, and DJ  is the submatrix with dimensions three by 
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four in the lower right corner of H.  
By some row transformations, r1+r4+r7+r10+r13, r2+r5+r8+r11+r14, r3+r6+r9+ 

r12+r15, H becomes 

 

B A B C B E

B A B C B E

B A B C B E

C B C D C E

C B C D C E

C B C D C E

D C D A D E

D C D A D E

D C D A D E

E A E B E C E D

E A E B E C E

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

'

x x x x x x
y y y y y y
z z z z z z

x x x x x x
y y y y y y
z z z z z z

x x x x x x
y y y y y y
z z z z z z

x x x x x x x x
y y y y y y y

H

D

E A E B E C E D

y
z z z z z z z z

.

 (2-48) 
It is briefly denoted as 

 

D

UD'
J

HH
0

0
. (2-49) 

Then, a new matrix 1H , where its rank equals to that of H, is constructed as 

 

0
0
0
H

H1 . (2-50) 

By some row transformations, r16 + r2(-zA) + r3*yA + r5(zA-zB) + r6(yB-yA) + r8(zA-zC) + 
r9(yC-yA) + r11(zA-zD) + r12(yD-yA), r17 + r3(-xA) + r1*zA + r6(xA-xB) + r4(zB-zA) + 
r9(xA-xC) + r7(zC-zA) + r12(xA-xD) + r10(zD-zA), r18 + r1(-yA) + r2*xA + r4(yA-yB) + 
r5(xB-xA) + r7(yA-yC) + r8(xC-xA) + r10(yA-yD) + r11(xD-xA), 1H  is similar with 

 
U

1 ~
J
H

H
0

. (2-51) 

Considering Eq. (2-47),  
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J

H
J
J

H

J
J

H

J
H

H
0

~~ UD

D

U

U

U

D

U

U
1

0

0
0

0
0

0
. (2-52) 

It is the relationship between these two matrices. Meanwhile, as 

 UD( ) 7rank H . (2-53) 

Then mobility, calculated by the truss method and the mechanical method, is both 
related to the rank of J . 

Obviously, the Jacobian matrix J , as one part of the final matrix in Eq. (2-52), 

can be obtained by a series of operations in Eqs. (2-47, 48, 49, 50, 51, 52) from the 

equilibrium matrix H . Similarly, the equilibrium matrix H  can be constructed 

with the Jacobian matrix J  as shown in Eq. (2-52). Therefore, we can say that these 

two matrices are equivalent to each other. 

2.6 Discussion and Conclusions 

In the work of Chen and Chai [34], the motion path of the Bricard linkage was 

obtained by SVD of the kinematic Jacobian matrix of the linkage and the iteration of 

angular displacements of mechanical joints. While, in the work of Kumar and 

Pellegrino [43], the motion path was generated by SVD of the equilibrium matrix of 

the truss and the iteration of linear displacements of joints. Obviously, there must be 

some relationships between linear and angular displacements of any assembly which 

possesses the determined motion, as they are both the properties of the assembly.  

In the view of mechanism, a joint connecting two bars in a truss is regarded as an 
S joint connecting two links, see joint Pi  connecting bars 1P Pi i  and 1P Pi i  in Fig. 

2-8.  

 

 

Fig. 2-8. The relationship between angular and linear displacements. 
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Generally, this S joints can be dealt with three rotations around three R joints, 
e.g., linear displacements 1id , id , and 1id  on joints 1Pi , Pi , and 1Pi , 
respectively, will generate angular displacements ( 1)i i , ( 1)i i , and i  around 

1i iPP , 1i iPP , and in  which is perpendicular to both 1i iPP  and 1i iPP .  

As i  is angular displacement in plane 1 1P P Pi i i , thus, linear displacements 

beyond this plane have no contribution to this angular displacement. Thus, all linear 
displacements are projected to this plane as 1'i

id , 'id , and 1'i
id . 

For id , 

 'i i i iqd d n , (2-54) 

where iq  is the component along in . Both sides dot product in ,  

 'i i i i i iqd n d n n , (2-55) 

Then,  

 i i iq d n . (2-56) 

Thus, 

 'i i i i id d d n n . (2-57) 

Then, 

 T'i i i i id d n d n , (2-58a) 

 T'i i i i id d n n d . (2-58b) 

Thus, 

 T
4'i i i id I n n d . (2-59) 

Similarly, 

 T
1 4 1'i

i i i id I n n d , (2-60a) 

 T
1 4 1'i

i i i id I n n d . (2-60b) 

It should be noted that 1'i
id  and 1'i

id  are distinguished with 1'id  and 1'id , 

which represent component of 1id  and 1id  in planes 2 1P P Pi i i  and 1 2P P Pi i i , 

respectively. 

Meanwhile, angular displacement of links 1P Pi i  and 1P Pi i  are 

 ( 1) 1 12
( 1)

1 ' 'i
i i i i i i i

i il
n PP d d , (2-61a) 

 ( 1) 1 12
( 1)

1 ' 'i
i i i i i i i

i il
n PP d d , (2-61b) 
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respectively. Then  

( 1) ( 1) 1 1 1 12 2
( 1) ( 1)

1 1' ' ' 'i i
i i i i i i i i i i i i i i i

i i i il l
n PP d d n PP d d ,

 (2-62) 
It can be expressed by the matrix form 

 
T

1 1' ' 'i i i
i i i i iK d d d , (2-63) 

where 

 1 1 1 1
2 2 2 2
( 1) ( 1) ( 1) ( 1)

i i i i i i i i i i i i
i

i i i i i i i il l l l
n PP n PP n PP n PPK . (2-64) 

Considering Eqs. (2-59) and (2-60), 

 T
1 1i i i i i iK M d d d , (2-65) 

where 

 

T
4

T
4

T
4

i i

i i i

i i

I n n
M I n n

I n n
. (2-66) 

For the angular displacements ( 1)i i , 

 1
( 1) 1 1

( 1)

i i
i i i i i i i i i i

i il
PP PP d n n d n n . (2-67) 

Then, 

 1
( 1) 1 1

( 1)

i i
i i i i i i i i i

i il
PP PP d n d n n . (2-68) 

As 

 1 1 ( 1) ( 1)i i i i i i i ilPP PP n , (2-69) 

where ( 1) ( 1)i i il  is the module of 1 1i i i iPP PP . Thus, 

 ( 1) ( 1) T
( 1) 1 1 1

( 1)

i i i
i i i i i i i i i i i i

i i

l
l

d n d n d d n n d d . (2-70) 

Namely, 

 ( 1) T
( 1) 1

( 1) ( 1)

i i
i i i i i

i i i

l
l

n d d . (2-71) 

Similarly, 

 ( 1) T
( 1) 1

( 1) ( 1)

i i
i i i i i

i i i

l
l

n d d . (2-72) 
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Hereto, the relationships between angular and linear displacements are obtained 
as shown in Eqs. (2-65), (2-71) and (2-72).  

As the topology of spatial truss is not fixed and is determined according to 
detailed configurations, it is difficult to establish a unified formula for the relationship 
between vectors of angular and linear displacements. However, the obtained 
relationships can be adopted for detailed linkages.  

In this chapter, we proposed an approach to transform 3D linkages to their 
equivalent truss forms, then truss methods were employed to analyse kinematic 
behaviour of linkages, including mobility, motion path and bifurcation situations. An 
example of a threefold-symmetric Bricard linkage shows the validity of this approach. 
The relationship between truss methods and mechanical methods were studied by 
seeking the relationship between Jacobian matrix of linkages and equilibrium matrix 
of their truss and discussing the relationship between angular and linear 
displacements. 

As Jacobian matrix is effective not only for kinematics but also dynamics, while 
the establishing process is rather complicated especially to complicated linkages. 
Therefore, equilibrium matrix may also be feasible for simplifying the dynamic 
analysis process.  
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Chapter 3 Non-overconstrained Forms of Overconstrained 
Linkages 

3.1 Introduction 
3D overconstrained linkages exhibite excellent kinematic behaviours for spatial 

motion and deployable property. Yet, their strict overconstrained geometric conditions 
request very high fabrication accuracy, which makes them have an expensive cost in 
application. In order to solve this conjugation, we use truss as an intermedium to 
transform overconstrained linkages with R joints into their non-overconstrained forms 
with kinematic equivalence. 

The layout of this chapter is as follows. Section 3.2 expounds the 
transformation method from linkage to truss structure. The non-overconstrained form 
of Bennett linkage is obtained in Section 3.3 with the proof of the kinematic 
equivalence between the non-overconstrained form and its original linkage. Myard 5R 
linkage as another case study is dealt with in Section 3.4 to show the generality of the 
proposed method. Output errors, which are produced by fabrication errors on link 
length and twist, and sensitivities of these factors are analysed in Section 3.5. 
Conclusions in Section 3.6 end the chapter. 

3.2 The Truss Form of Linkage 
According to the truss method illustrated in Chapter 2, Bennett linkage [52, 53] 

in Fig. 1-4, a well-known spatial 4R linkage with mobility one, is transformed to its 
truss form, in Fig. 3-1, which has 8j  nodes, 20b  bars, and 3 6 2j b . 
Thus it is statically indeterminate, i.e., overconstrained. In this case, the equilibrium 
equation has to be considered [133, 134]. Numbers of mobility m and self-stress s can 
be calculated by Eqs. (2-7) and (2-3), respectively. 

 

 

Fig. 3-1. The equivalent truss form of Bennett linkage. 
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A structural assembly without external forces and bar elongations can be 
classified into four types based on the values of m  and s  [135]. 

(1) 0, 0m s : Statically determinate and kinematically determinate, referred 
as to a normal structure; 

(2) 0, 0m s : Statically determinate and kinematically indeterminate, 
referred as to a normal mechanism (non-overconstrained mechanism); 

(3) 0, 0m s : Statically indeterminate and kinematically determinate, referred 
as to a statically indeterminate structure; and 

(4) 0, 0m s : Statically indeterminate and kinematically indeterminate, 
referred as to an overconstrained mechanism. 

Our focus is on the fourth type, 0m , 0s , namely the overconstrained 

linkage. To obtain its non-overconstrained form, the system should become statically 

determinate while keeping the kinematic indeterminacy, i.e., reducing s  to zero 
without changing m . Considering Eqs. (2-7) and (2-3), when the number of nodes j  

and rank of equilibrium matrix r  of a truss are unchanged, the mobility will not be 
changed. And 0s  means that there are b r  bars redundant. To make 0s , we 

have to remove the b r  redundant bars from the truss system. Then the 

non-overconstrained form can be obtained. 
In the following sections, the Bennett linkage and Myard linkage are taken as 

examples to demonstrate how to obtain the non-overconstrained form of an 
overconstrained linkage through truss analogy. 

3.3 Non-overconstrained Form of the Bennett Linkage 

The truss form of the Bennett linkage with mobility one, see Fig. 3-1, is 

composed of four rigid bodies AA'B'B , B'BCC' , CC'D'D  and D'DAA', which are 

connected by joint bars BB' , CC' , DD' , and AA', successively. Here, AB , BC , 

CD , and DA  are the shortest links. For this overconstrained linkage, we cannot 

calculate the mobility simply from Maxwell’s rule.  

In the truss form of a Bennett linkage, see Fig. 3-2, set AC 2v , BD 2w , 

MN u , and the angle between AC  and BD  as . The coordinate system is set 

up as Huang et al. [136] presented, and then the equilibrium matrix of the truss form 

with symbols is 
H24×20= 
[-vsinγ, -u, -u-wsinγ, -u, wsinγ-u, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

-usinγ, v-wcosγ, v-wcosγ, v+wcosγ, v+wcosγ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

-ucosγ, wsinγ, wsinγ-u, -wsinγ, -u-wsinγ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 
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0, u, 0, 0, 0, -wsinγ, u-vsinγ, u, u+vsinγ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, -v+wcosγ, 0, 0, 0, 0, wcosγ-v-usinγ, v+wcosγ, wcosγ+v-usinγ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, -wsinγ, 0, 0, 0, -u, -wsinγ-ucosγ, -wsinγ, -wsinγ-ucosγ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, -u, 0, -u-wsinγ, vsinγ, -u, wsinγ-u, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, -v-wcosγ, 0, -v-wcosγ, -usinγ, -v+wcosγ, -v+wcosγ, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, 0, 0, 0, 0, wsinγ, 0, wsinγ-u, -ucosγ, -wsinγ, -u-wsinγ, 0, 0, 0, 0, 0, 0, 0; 

0, 0, 0, u, 0, 0, 0, 0, 0, 0, 0, u, 0, u+vsinγ, u-vsinγ, wsinγ, 0, 0, 0, 0; 

0, 0, 0, -v-wcosγ, 0, 0, 0, 0, 0, 0, 0, v-wcosγ, 0, -wcosγ+v-usinγ, -wcosγ-v-usinγ, 0, 0, 0, 0, 0; 

0, 0, 0, wsinγ, 0, 0, 0, 0, 0, 0, 0, wsinγ, 0, wsinγ-ucosγ, wsinγ-ucosγ, -u, 0, 0, 0, 0; 

vsinγ, 0, 0, 0, 0, 0, -u+vsinγ, 0, 0, 0, 0, 0, 0, 0, -u+vsinγ, 0, vsinγ-u-wsinγ, vsinγ+wsinγ-u, 0, 0; 

usinγ, 0, 0, 0, 0, 0, v+usinγ-wcosγ, 0, 0, 0, 0, 0, 0, 0, v+usinγ+wcosγ, 0, v+usinγ-wcosγ, v+usinγ+wcosγ, 0, 0; 

ucosγ, 0, 0, 0, 0, 0, wsinγ+ucosγ, 0, 0, 0, 0, 0, 0, 0, -wsinγ+ucosγ, 0, ucosγ+wsinγ-u, ucosγ-u-wsinγ, 0, 0; 

0, 0, u+wsinγ, 0, 0, wsinγ, 0, 0, 0, u+wsinγ, 0, 0, 0, 0, 0, 0, -vsinγ+u+wsinγ, 0, u+wsinγ+vsinγ, 0; 

0, 0, -v+wcosγ, 0, 0, 0, 0, 0, 0, v+wcosγ, 0, 0, 0, 0, 0, 0, wcosγ-v-usinγ, 0, wcosγ+v-usinγ, 0; 

0, 0, -wsinγ+u, 0, 0, u, 0, 0, 0, -wsinγ+u, 0, 0, 0, 0, 0, 0, -wsinγ+u-ucosγ, 0, -wsinγ+u-ucosγ, 0; 

0, 0, 0, 0, 0, 0, 0, 0, -u-vsinγ, 0, -vsinγ, 0, 0, -u-vsinγ, 0, 0, 0, 0, -u-wsinγ-vsinγ, -vsinγ+wsinγ-u; 

0, 0, 0, 0, 0, 0, 0, 0, -wcosγ-v+usinγ, 0, usinγ, 0, 0, -v+usinγ+wcosγ, 0, 0, 0, 0, -wcosγ-v+usinγ, -v+usinγ+wcosγ; 

0, 0, 0, 0, 0, 0, 0, 0, wsinγ+ucosγ, 0, ucosγ, 0, 0, -wsinγ+ucosγ, 0, 0, 0, 0, ucosγ+wsinγ-u, ucosγ-u-wsinγ; 

0, 0, 0, 0, -wsinγ+u, 0, 0, 0, 0, 0, 0, 0, -wsinγ+u, 0, 0, -wsinγ, 0, -vsinγ-wsinγ+u, 0, vsinγ-wsinγ+u; 

0, 0, 0, 0, -v-wcosγ, 0, 0, 0, 0, 0, 0, 0, v-wcosγ, 0, 0, 0, 0, -wcosγ-v-usinγ, 0, -wcosγ+v-usinγ; 
0, 0, 0, 0, u+wsinγ, 0, 0, 0, 0, 0, 0, 0, u+wsinγ, 0, 0, u, 0, -ucosγ+u+wsinγ, 0, -ucosγ+u+wsinγ]. 

              (3-1) 
 

 

Fig. 3-2. Coordinate system for establishing the equilibrium matrix for Bennett linkage in its truss 
form. 

 

The rank of the equilibrium matrix of this truss is 17r , then 
3 6 18 1m j r r , which is correct. Thus, there are 20 17 3b r  bars 

redundant. Rigorously, there are 3
20C 1140 (combination of choosing 3 bars from 20 

bars) possibilities to remove these three redundant bars from the truss form. However, 
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our aim is to find the non-overconstrained form of the linkage, i.e., the truss form 

without redundant bars, which should have the same kinematic characteristics as the 

original overconstrained linkage. Thus, the joint bars AA', BB' , CC' , and DD' , 

working as revolute axes, should not be removed from the truss form. Otherwise, we 

could end up with a multi-loop linkage, see Fig. 3-3(a). So we have to remove three 

redundant bars among the body bars through three schemes, (a) all three bars are from 

three different rigid bodies; (b) two bars are from one rigid body and the 3rd one from 

another rigid body; and (c) all three bars are from the same rigid body. 

If we remove only one body bar AB'  from link AA'BB' , see Fig. 3-3(b), this 

link will become two bodies connected by an R joint A'B . This process increases the 

number of rigid bodies in the mechanism, which will not lead to a kinematically 

equivalent mechanism. Therefore neither removing schemes (a) nor (b) can be applied 

to Bennett linkage.  
 

 

 (a) 

 

(b) 

Fig. 3-3. Two redundant-bar removing schemes. (a) removing bar BB', (b) removing bar AB'. 
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Then we have to remove all three bars from a single rigid body. Due to the 

topological similarity among four bars of the Bennett linkage, we can take any one 

link, say CC'DD' , as an example. Removing three body bars CD' , C'D , and C'D'  

will leave bar CD  as the link connecting to link BB'CC'  at node C  and to link 

DD'AA' at node D , see Fig. 3-4(a). In this case, nodes C and D work as S joints. 

Here, bar CD  is kept because it is the shortest link so that it can be used directly in 

the following kinematic analysis. Now, bar CC'  does not work as an R joint. Hence, 

CC'  together with bars BC'  and B'C'  can be removed without changing the 

kinematics of the resultant linkage. The same applies to link AA'DD'. Hence the 

non-overconstrained truss form of the Bennett linkage is shown in Fig. 3-4(b), which 
composes 11b  bars and 6j  nodes. And the mobility is 3 6 1m j b . 

Then there is (3 6 ) 0b j m  bar redundant. Using kinematic joints to present 

the truss form, the RSSR linkage in Fig 3-4(c) can be obtained as the 

non-overconstrained form of the Bennett linkage. 
 

 

(a) 

 

(b)                          (c) 

Fig. 3-4. The removing scheme of redundant bars. (a) removing three body bars in a rigid body; (b) 
the result after simplification; (c) the resultant mechanism.  
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Next, we are going to verify that the RSSR linkage as the non-overconstrained 
form and the original Bennett linkage have identical kinematic behaviours.  

When joints A and B are chosen as the input and output joints of the RSSR 
linkage, respectively, adopting the same notation as the Bennett linkage, see Fig. 1-4 
and Eq. (1-17), the input-output equation of the general RSSR linkage can be written 
as [137],  

 

1 12 12
12 1 2 1 2

41 41

2 2 2 2 2 2
23 34 41 12 1 2 1 2 12 12 2 12

1 1
23 41 23 23

sincos sin sin cos cos

2 cos sincos sin 0.
2

R a
a a

a a a a R R R R a R
a a a a

  

  (3-2) 
As the equivalent linkage of the Bennett linkage, the analysed RSSR linkage 

should satisfy the geometric equations, Eq. (1-17). Then the input-output equation 
becomes, 

 1 2 1 2 1 2cos cos cos cos 1 cos sin sin 0a b , (3-3) 

which can be derived as  

 2 2sin cos 0A B C . (3-4) 

where 1cos sinA , 1cos aB
b

, 11 cosaC
b

. With trigonometric 

transformation, 2  in Eq. (3-4) can be solved as  

 
2 2 2

2 2arctan A A B C
B C

. (3-5) 

When 1sin cos 0 , taking the ‘+’ sign gives 

 2
1

sin / 2 12arctan
tan / 2sin / 2

, (3-6a) 

and when 1sin cos 0 , taking the ‘-’ sign yields 

 2
1

cos / 2 12arctan
tan / 2cos / 2

. (3-6b) 

It can be found that one of the solutions, Eq. (3-6a), equivalent to the closure 
equation of the Bennett linkage, Eq. (1-18). Whilst, Eq. (3-6b) is another form of the 
closure equation by taking the opposite axial directions on joints A and B. These two 
solutions are physically identical. As the input-output equations of the RSSR linkage 
and the Bennett linkage are identical, each S joint in the RSSR linkage ought to work 
as an R joint, which is demonstrated in details with screw theory as follows. 
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As an S joint is equivalent to three R joints, S joint C can be considered as three 

R joints, the common normal line of BC and CD as one revolute axis, CD as another 

revolute axis, and the third revolute axis is determined by the right-hand rule. And the 

same procedure can be applied to S joint D, see Fig. 3-5. To establish a coordinate 
system, As  and Bs  are axis vectors, where A ABs  and A ADs , B ABs  

and B BCs . As AB AD , Bs BA BC , Czs CB CD , Dzs DC DA . 

The coordinate system is set up as the one in Fig. 3.2. The coordinate vectors of all 

the points in the truss can be determined as 

 T0, , 0 ,vA  T, cos , sin ,u w wB  (3-7a) 

 T0, ,0 ,vC  T, cos , sin .u w wD  (3-7b) 

 

 

Fig. 3-5. Coordinate system for equivalence verification of Bennett linkage and its 
non-overconstrained form, RSSR linkage. 

 
And all the screws of R joints and S joints can be written as 

 
T2

A sin , sin , cos , cos ,0, sin .v u u uv vS  (3-8) 

 
T2 2 2 2

B sin ,0, , cos , sin , cos sin ,w u uw u w wS  (3-9) 

 T
C , cos , sin , sin ,0, ,x u v w w vw uvS  (3-10) 

 
2 2 2 2

C

T2 2 2

cos , cos sin , ( )sin cos sin ,

sin ( cos )sin ,0, cos ,

y uv uw u vw u v vw

vu v v w uv uvw

S
 (3-11) 
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T2

C sin , sin , cos , cos ,0, sin ,z v u u uv vS  (3-12) 

 T
D , cos , sin , sin ,0, ,x u v w w wv uvS  (3-13) 

 
2 2 2

D

T2 2 3 2

( cos ), sin , ( cos )sin ,

sin ( cos ),0, cos ,

y u v w u w w v w

w wv w u uvw u uw

S
 (3-14) 

 
T2 2 2 2

Dz sin ,0, , cos , sin , cos sin .w u uw u w wS  (3-15) 

The motions of bar CD can be expressed by two branches CB and DA if AB is 
taken as the reference link. Taking reciprocal of the motion screws, these two 
constraint screw systems are 

 
T

11 2 2 2

( cos )1, ,0,0,0, ,
sin

r u v w v
u w

S  (3-16a) 

 
T

12 2 2 2

sin ( cos )0, ,1, ,0,0 ,
sin

r w v w v
u w

S  (3-16b) 

And 

 
T

21
cos sin sin1, , , , 0, ,r v w w vw v

u u u
S  (3-17a) 

 

2 2

22 2 2

T2 2 2 2 2 2

2 2 2 2

( cos )sin 10, , ,
( cos sin )

( cos ) ( cos )sin,1, .
( cos sin ) cos sin

r u v vw
u u vw u

w u v v u v vw
u u vw u vw

S

 (3-17b) 

As the dual relationship between constraints and motions, the motions of bar CD 
could be obtained as 

 
T

1 2 2 2 2 2 2 2 2 2

sin ( cos ) ( cos )sin0, , ,0,1, ,
( sin ) ( sin ) sin

uw u v w w v w
v u w v u w u w

S  (3-18a) 

 
T

2
cos sin sin1, , , , 0, .v w w vw v

u u u
S  (3-18b) 

These two independent motions of bar CD should be satisfied by these two branches, 
then for kinetic branch CB, Cx1 , Cy1 , Cz1 , B1  and Cx2 , Cy2 , Cz2 , B2  

must satisfy 

 
1 Cx1 Cx Cy1 Cy Cz1 Cz B1 B

2 Cx2 Cx Cy2 Cy Cz2 Cz B2 B

,

.

S S S S S

S S S S S
 (3-19) 

For kinetic branch DA, Dx1 , Dy1 , Dz1 , A1  and Dx2 , Dy2 , Dz2 , A2  must 
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satisfy 

 
1 Dx1 Dx Dy1 Dy Dz1 Dz A1 A

2 Dx2 Dx Dy2 Dy Dz2 Dz A2 A

,

.

S S S S S

S S S S S
 (3-20) 

The coefficients are solved as follows. 

 

Cx1 Cy1

Cz1 2 2 2

B1 2 2 2

0,

,
( sin )

1 ,
sin

w
v u w

u w

 (3-21) 

 Cx2

Cy2 Cz2 B2

1 ,

0.
u  (3-22) 

And 

 

Dx1 Dy1

Dz1 2 2 2

A1 2 2 2

0,

1 ,
sin

,
( sin )

u w
w

v u w

 (3-23) 

 Dx2

Dy2 Dz2 A2

1 ,

0.
u  (3-24) 

In Eqs. (3-21) and (3-23), Cx1 Cy1 Dx1 Dy1 0,  and therefore there is no 

motion around axes CxS , CyS  on S joint C and axes DxS , DyS  on S joint D. So 

joint C works as an R joint about axis CzS  and joint D as an R joint about axis DzS . 

And the lengths of the four bars in this RSSR linkage are identical to those in the 
original Bennett linkage. Thus, 1S  is just the motion of a Bennett 4R linkage. And 

according to Eqs. (3-22) and (3-24), 2S  only contains motions around axes CxS  

and DxS , and these axes are collinear. Thus, 2S  is in fact the independent 

self-rotation along CD, which forms the passive DOF in all RSSR linkages expressed 

by Hunt [7]. Therefore, the RSSR linkage obtained from the truss method is equivalent 

to the original Bennett linkage with two S joints working as R joints along the 

corresponding axes in the Bennett linkage. This calculation process has been done 

through the symbolic manipulations in Mathematica, and the programming diagram is 

shown in Fig. 3-6. 
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3.4 Non-overconstrained Forms of the Myard 5R Linkage 

The truss form of a Myard 5R linkage, see Fig. 3-7, possesses 22b  bars and 
9j  nodes. As the real mobility of this linkage is one, i.e., 
3 6 21 1m j r r , the rank of the equilibrium matrix of this truss should be 

20. Thus there are 22 20 2b r  bars redundant, which have to be removed in 

order to get the non-overconstrained form.  

 

 

Fig. 3-6. The diagram for the calculation. 

 
Firstly, joint bars AA', BB' , CC' , CC'' , and EE'  should not be removed. At 

the same time, bar C'C'' , which is the only body bar in the rigid body CC'C'' , should 
not be removed. Secondly, to avoid bringing in extra joint, as shown in Fig. 3-3(b), 
two redundant bars must be selected on the same link. Since there are four body bars 
connected by four nodes on one rigid link, two of them can have a common node or 
none.  

In the case of no common node, taking link AA'BB'  as an example, AB'  and 
A'B  are removed, see Fig. 3-8(a). Then a kinetic sub-loop ABB'A'  is formed, which 
is not desired. Hence two redundant bars must be removed from the same node on the 
same link. Because of the symmetry of the Myard 5R linkage, we can only consider 



Chapter 3 Non-overconstrained Forms of Overconstrained linkages 

51 
 

nodes A' , B' , and C'  as the common nodes. Here, nodes A , B , C  are not 
considered as bars AB  and BC  are the shortest distance between the R joints of 
the Myard linkage, which are kept for the convenience of further kinematic analysis. 
When A'  is chosen as the common joint, BA'  and B'A'  are removed, see Fig. 
3-8(b). Then node A'  just belongs to one rigid body AA'EE' , which could be 
removed with bars AA', A'E' , and A'E , as shown in Fig. 3-9(a). And node A  
becomes an S joint. The resultant truss owns 17b  bars and 8j  nodes with 
mobility 3 6 1m j b , which is non-overconstrained. Its linkage form is an 
RRSRR, see Fig. 3-9(b). 

 

 

Fig. 3-7. The truss form of Myard linkage. 
 

 

  (a)                                        (b) 
Fig. 3-8. Removing two redundant body bars from the Myard linkage. (a) bars AB' and A'B are 

removed; (b) bars A'B and A'B' are removed. 
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      (a)                                        (b) 

Fig. 3-9. Non-overconstrained forms (a) the final simplified truss; (b) the final linkage. 
 

Similarly, node B  can be changed into an S joint after removing redundant bars, 

which gives an RSRRR linkage in Fig. 3-10(a). But changing node C  into an S joint 

gives an RRSR linkage in Fig. 3-10(b), which is neither a non-overconstrained one nor 

a five-bar linkage. Yet, if we consider the link bar which is not the shortest link, an 

RRSRR linkage can be formed with node C'  as the S joint, see Fig. 3-10(c). It can be 

verified with screw theory that the three linkages in Figs. 3-9(b), 3-10(a), and 3-10(c) 

are the non-overconstrained forms of the Myard 5R linkage, one of which is shown in 

the following. 
Taking the linkage in Fig. 3-9(a) as an example, S joint A can be regarded as 

three R joints, the common normal line of BA and AE as one revolute axis, y axis as 
another revolute axis, and the third revolute axis is determined by the right-hand rule. 
Adopting the same setup and notions as in the previous analysis, the coordinate 
system of the Myard 5R linkage is setup on the Bennett linkage ABCD which is 
shown in Fig. 3-11, and all the geometry coordinates are 

 
T2

2

cos0, ,0
sin

u
w

A , T, cos , sinu w wB , (3-25a) 

 
T2

2

cos0, ,0
sin

u
w

C , T, cos , sin ,u w wD  (3-25b) 

 
T2 2 2

2 2 2 2 2 2

4 sin 4 sin, cos , sin
sin sin

w u wuu w w
u w u w

E , (3-25c) 

 T' sin , cos , sinu w w w uB , (3-25d) 
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T2 2

2

cos cos' , sin , cos
sin sin

u u u u
w w

C , (3-25e) 

 
T2 2 2 3

2 2 2 2 2 2 2

cos 4 cos sin cos 4 cos'' , sin , cos
sin sin sin sin

u u w u uu u
w u w w u w

C ,  

(3-25f) 

 

2 2 3 3 2

2 2 2

T2 2 2 3

2 2 2

4 sin 2 sin 2 sin' sin , cos ,
sin

4 sin 2 sin 2sin
sin

w u w u wu w w
u w

wu w u uw u
u w

E

. (3-25g) 

 

 

(a)                                  (b) 

 

(c) 

Fig. 3-10. The three possibilities of removing two body bars in a rigid body with a common joint 
from the Myard linkage. (a) B' as the common joint; (b) C' as the common joint; (c) C as the 

common joint. 
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Fig. 3-11. Coordinate system for equivalence verification of Myard 5R linkage and its 
non-overconstrained form RRSRR linkage. 

 
And all the kinetic screws can be written as 

 
T3 2

A 2

cos cossin ,0, , ,0, ,
sin sinx

u uw u
w

S  (3-26) 

 
T2

A 2

cos0, ,0,0,0,0 ,
siny

u
w

S  (3-27) 

 
T2 3 2 4 2

A 2 2 3

cos cos cos, sin , cos , ,0, ,
sin sin sinz

u u uu u
w w w

S  (3-28) 

 
T2 2 2 2

B sin ,0, , cos , sin , sin cos ,w u uw u w wS  (3-29) 

 
T2 3 2 4 2

C' 2 2 3

cos cos cos, sin , cos , ,0, ,
sin sin sin

u u uu u
w w w

S  (3-30) 

 

2 2 3

C'' 2 2 2 2 2 2

T2 2 2 2 2 2 2 2

2 2 2 22 2 2 2

cos 4 sin cos 4 cos, sin , cos ,
sin sin sin

sin 3 cos cos 4 sin cos cos,0, ( ) ,
sin sin sinsin sin

u u w uu u
w u w u w

w u u u u w u
w u w wu w w

S

  

  (3-31) 
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2 2 2 2 2 2

E 2 2 2 2 2 2

T2 2 2 2 2 2 2
2 2 2

2 2 2 2 2 2

sin sinsin 2 sin ,0, 2 ,
sin sin

sin sin 2 (3 sin )( 2 ) cos , sin , .
sin 2( sin )

w u w uw w u u
u w u w

w u w u wu u w w u
u w u w

S

 (3-32) 

The motion of bar AE can be expressed by two branches C'BA  and C''E  
when C'C''  is taken as the reference link. Taking reciprocal of the motion screws, 
these two constraint screw systems are 

 
T2 2 2 2 2 3

11 2 3 3

sin sin sin sin, , , ,0,1 ,
cos cos

r w u w w w
u u u u

S  (3-33) 

and 
T4 2 2 2 5 2 4 2 2 2

21 2 2 2 3 2 2 2 2 2 2 3 2

3 sin sin sin sin
0, , ,0,1,0 ,

3 sin cos sin 3 sin cos
r

w u w w u w

u w u u w u w u
S

 (3-34a) 
T2 3 2 2 26 4 2 2 2 4 4 6 6

22 2 2 2 3 2 2 2 2 2 2 3

sin 3 sin7 sin 7 sin sin0, , ,0,0,1 ,
3 sin sin 3 sin cos

r
w u wu u w u w w

u w u u w u w u
S

 (3-34b) 

 
T2 2 2 2

23 22 2 2 2

3 sin sin sin0, , ,1,0,0 ,
cossin

r
w u w w

uu u w
S  (3-34c) 

 
T2 2 2 2 2 2

24 2 2 2 2 2 2

sin cos 3 sin sin
1, , ,0,0,0 .

3 sin 3 sin
r

u w w u w w

u u w u u w
S  (3-34d) 

As the dual relationship between constraints and motions, the motion of bar AE could 
be obtained as 

 

T

42

222
2

32

222

3

22

32

222

2

sin
sincos,

sin
sincos

,
sin
cos2,

sin
sincos,1,

sin
cos2

w
wuu

w
wuu

w
u

w
wu

w
u

S . (3-35) 

And this motion could be expressed by each branch. Considering branch C'BA , 
coefficients Ax , Ay , Az , B , and C'  must satisfy 

 Ax Ax Ay Ay Az Az B B C' C 'S S S S S S , (3-36) 

which are solved as 

 Ax Ay 0,  (3-37a) 
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 Az
2 ,

sinu  (3-37b) 

 B 2 3

cos ,
sin

u
w  (3-37c) 

 C'
1 .

sinu  (3-37d) 

There is no motion around axes AxS  and AyS , and therefore the constraint on S 

joint A has been degenerated to an R joint, with axis along AzS  which is the same as 

the Myard 5R linkage. Hence, this RRSRR mechanism and its original Myard 5R 

linkage have the same motion properties. 

The extended Myard 5R linkage was obtained by combining two complementary 

Bennett linkages [72], where the twist 23  is not necessary to be 
2
π

. From the above 

analysis, it can be assured that the RRSRR linkage with the corresponding geometric 

conditions is also the non-overconstrained form of the extended Myard 5R linkage. 

3.5 Discussion on the Fabrication Errors 
The non-overconstrained forms of overconstrained spatial linkages will expand 

their practical application as the manufacturing accuracy and subsequent cost can be 
greatly reduced. For most of 3D overconstrained linkages, the overconstrained 
geometric conditions are rigorous. In theory, fabrication errors could easily make the 
linkage lose its mobility if the clearance on joints is not considered. Yet for the 
non-overconstrained form, fabrication errors on the overconstrained geometric 
condition will only slightly affect the input-out relationship of the linkage without 
changing its mobility, which will be demonstrated through the following 
fabrication-error sensitivity analysis. 

Considering the non-overconstrained form of the Bennett linkage, the RSSR 
linkage, the geometric parameters 1a , 2a ,  and the kinematic variable 2  in Eq. 

(3-3) are denoted as 1Ra , 2Ra , R  and 2R , respectively. The parameters of the 
Bennett linkage are the corresponding nominal variables, i.e., 

 1

2

sin
sin

nom

R

R

a
a

, 1 1
nom
Ra a , 2 2

nom
Ra a , nom

R . (3-38) 

Meanwhile the general output can be written as, 

 2 1 2,R f x x , (3-39) 

in which 1 Rx  and 1
2

2

R

R

ax
a . Expanding this function in Taylor-series around the 
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nominal values 1
nomx  and 1

2
2

nom ax
a  gives 

 
2 22 2

2
2 2 1 22

1 1 1 2

1
2!

nom
R R i i

i ii i nomnom nom

f f fx x x x
x x x x , (3-40) 

where nom
i i ix x x . For small, independent variations about the nominal 

configuration, a linear approximation can be made. Thereby the above equation 
renders the output error of the RSSR linkage from the nominal configuration as 

 
2

2 2 2
1

nom
R R R i

i nomi nom

f fx
x

X
X , (3-41) 

where T
1 2,x xX . 

nom

f
X

 is known as the sensitivity Jacobian of the 

mechanism [138], evaluated at the nominal configuration. Deriving from Eqs. (3-5) 
and (3-39), 
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' ' '' ' '

i

AA BB CCA B C A A B C B C
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x A B BC A A B C

, (3-42) 

where '
i

AA
x , '

i

BB
x , and '

i

CC
x , while 1

1

sin sinR
A
x , 

1

0B
x , 

1

0C
x , 

2

0A
x , 

2

1B
x , and 1

2

cosC
x . Obviously, the sign ‘ ’ in Eq. (3-42) 

should be chosen as the one in the condition of Eq. (3-6a). The output error is related 

to the components variability linearly.  

Take a Bennett linkage and its equivalent RSSR linkage with twists 45nom
R  

and link lengths 1 100mmnom
Ra  and 2 70.72mmnom

Ra  as an example. Denote the 

deviations of the angular and linear dimensions as  and l , respectively. Based 

on the ISO standard about tolerances [139], for the very coarse class, 
 1  and 1.5l mm. (3-43) 

A scale factor [ 1,1]k  is introduced, i.e., 

 1 Rx k , 1 1
2

2 2

a k l ax
a k l a . (3-44) 

Then, the sensitivity Jacobian 
nom

f
X

 can be estimated from Eq. (3-43). And the 

output error  
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T

1 1
2

1 2 2 2
R

nom

a k l af f k
x x a k l a

. (3-45) 

Figure 3-12(a) shows the effect of each fabrication error on the output error. The 

magnitude of the output error due to link length errors is always greater than that from 
twist angle errors. The maximum is reached when the input angle 1  is around 180°. 

For the ‘coarse’ tolerance with twist error 1°, the maximum deviation of the output is 

0.58°.  

 

 

(a) 

 

 

(b) 

Fig. 3-12. Output deviations generated by twist angle error and link length error. 
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And with link length error 1.5mm, the maximum 2  is 5.06°, which is much 
larger than the former one, see Fig. 3-12(b). Therefore, more attention needs to be 
paid to the link length accuracy to keep the output deviation small. In practice, link 
length accuracy is easier to be improved than angular accuracy. Figure 3-13 also 
shows the output deviation caused by the ‘fine’ link length accuracy with a link length 
error of 0.15mm, in which the maximum 2  is 0.53°. For other design parameters 
of RSSR linkage, the tolerances can also be taken from [139] and the output errors can 
be calculated with Eqs. (3-41), (3-43) and (3-44). 

Once there are fabrication errors on the link length and joint twist, the RSSR 
linkage will not work as the Bennett linkage, i.e., the two S joints do no work as R 
joints, but also rotate on the other two orthogonal directions. To calculate the waggle 
angles about other rotation axes, the coordinate systems on A, B are established by 
D-H notation, and the coordinate system on D is fixed with bar AD whose z axis is 
along the axis of this joint in its original Bennett linkage, x axis is along the direction 
of DA, and y axis is set by the right-hand rule, as shown in Fig. 3-13. Therefore, the 
motion of point C in the coordinate system on joint D reflects the motion which is 
provided by joint D. As C is expressed in system B as 

 T
B 2 2 2 2[ cos , sin , 0,1]R R R Ra aC , (3-46) 

and transformations matrices are 

 

1 1 1 1 1

1 1 1 1 1
B(A)

cos sin cos sin sin cos
sin cos cos cos sin sin

0 sin cos 0
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R R R

R R

a
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T , (3-47a) 

 

2
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1 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1
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T , (3-47b) 

then,  
 

D A(D) B(A) B
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1 1 2 2 1 2 2 1
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[ cos cos cos cos sin sin ;
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a a a a
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 (3-48) 
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Fig. 3-13. Coordinate systems for the calculation of deviations on the RSSR linkage. 
 

If there are no fabrication errors, S joint D works as an R joint, namely, bar CD is 
always perpendicular to Dz . With fabrication errors, the angle between CD and Dz  

is 

 Darccos
CDZD

CD k
, (3-49) 

where T[0, 0,1]k , and 2CD Ra , and then 

 
2 1

1
2 1 1

2

arccos sin (sin cos cos sin cos )

sin cos sin sin sin .

zD R R R

R
R

R

a
a

 (3-50) 

Figure 3-14 shows the deviation angles from the right angle. With the errors 
given in Eq. (3-42), the largest deviation generated by angular errors 1  is 
0.58°, and the largest deviation generated by linear errors is 1.22° when 

1 1.5a mm  and 2 1.5a mm . It demonstrates that the S joint actually provides a 
main revolution at the R joint direction of its original Bennett linkage and a small 
waggle at the other two orthogonal directions.  

Therefore, reasonable fabrication errors on the RSSR linkage will keep the 
mobility and offer good accuracy in replacing the Bennett linkage for engineering 
applications. And a particular S joint is designed to provide the main revolution and 
allow small waggle to compensate fabrication errors, see Fig. 3-15, C and D are set 
with these particular S joints, and the allowing deviation, e , in Fig. 3-15(c). 

 



Chapter 3 Non-overconstrained Forms of Overconstrained linkages 

61 
 

 

Fig. 3-14. Deviations on the main rotation direction due to fabrication errors. 

 

 

(a) 

 

(b) 

 

 (c) 

Fig. 3-15. The particular S joints on C and D in the RSSR linkage. (a) the whole linkage; (b) a 
particular S joint; (c) the waggling angle of the revolute axis. 
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3.6 Conclusions 
In this chapter, we proposed a procedure to obtain the non-overconstrained forms 

of overconstrained linkages by the truss method. First, the truss forms of the 
overconstrained linkages are obtained. Second, the redundant bars in the truss forms 
are determined by Maxwell’s rule and equilibrium matrices. Finally, 
non-overconstrained forms are obtained after removing those redundant bars from the 
truss forms. The Bennett linkage and Myard 5R linkage have been taken as two case 
studies. Their non-overconstrained forms are RSSR linkage and RRSRR linkages, 
respectively. Furthermore their kinematic equivalences have also been illustrated with 
the input-output equation by screw theory. The discussion of output deviations caused 
by fabrication errors has shown that the non-overconstrained forms can keep the 
kinematic characteristics of the original overconstrained linkages with great 
fault-tolerance capability.  
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Chapter 4 Transformation between Cuboctahedron and 
Octahedron 

4.1 Introduction 
Cuboctahedron is a semi-regular polyhedron with six square faces and eight 

triangular faces, which owns 12 identical vertices, with two triangles and two squares 
meeting at each, and 24 identical edges, each separating a triangle from a square [102]. 
Meanwhile, a regular octahedron is a Platonic solid composed of eight equilateral 
triangles, four of which meet at each vertex [102]. Intuitively, both containing eight 
equilateral regular triangle faces, a cuboctahedron and a regular octahedron may be 
transformed to each other by deploying and folding the six square faces. 

In this chapter, we propose a polyhedral transformation between them with one 
DOF kinematic motion. The layout of the chapter is as follows. Section 4.2 expounds 
the construction of the deployable polyhedron. Section 4.3 presents kinematics of this 
transformation done by geometric analysis and a numerical method based on the truss 
method. And, conclusions are given in Section 4.4. 

4.2 Construction of Transformable Polyhedron between 
Cuboctahedron and Octahedron 

Figure 4-1 shows the object of this chapter, a cuboctahedron and an octahedron 
with unit-length edges. All square faces are hollow, while triangle faces are rigid. By 
setting one movable joint at each vertex, the cuboctahedron can be folded into the 
octahedron along a determined motion trend, such as pairs of vertices A and I, B and 
D, C and K, E and F, G and H, J and L trend to meet respectively, see Fig. 4-1(b). As a 
result, all of the six square hollows will vanish after the transformation. If only S 
joints are used at all of the vertices, the cuboctahedron would have 18 DOFs 
according to the truss method. Hence, extra constraints must be imposed to reduce the 
number of DOFs. One way was first proposed by Buckminster Fuller [106]. Each 
triangular face is allowed to rotate and translate about its normal at the centre, and its 
connections with the neighbouring triangles are always maintained. This is 
kinematically equivalent to a system where each of eight triangles in cuboctahedron 
has its own cylindrical joint whose axis passes through both the centres of the 
triangles and that of the polyhedrons, and the triangles are connected by S joints (ball 
joints) at the polyhedral vertices. The system has one degree of freedom (DOF) 
provided that the axes of all cylindrical joints are fastened together at the centre of the 
polyhedron. This, however, makes the transformation of little practical use as the 
space enclosed by the faces is taken up by the physical joints. If the axes of the 
cylindrical joints were not physically fixed together, the system would have six DOFs, 
as demonstrated by Buckminster Fuller’s own model [108], making it impossible to 
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complete the transformation in an orderly way. The other way is to replace the 3-DOF 
S joint with 1-DOF R joint. Each such replacement will reduce two DOFs in general 
according to the Kutzbach criterion [36]. In fact, to vanish square faces, four-bar 
linkages should be employed. Meanwhile, Bennett linkage is the only four-bar linkage 
to realise non-spherical and non-planar motion. When all the vertices are R joints, the 
cuboctahedron becomes an assembly of six Bennett linkages in space to form a 
multi-loop linkage. Yet, previous research on Bennett mobile assemblies [85] shows 
no readily solution with such topology. Meanwhile, this cuboctahedron can also be 
considered as the connection of Bennett linkage ABCD on the bottom and linkage 
IJKL on the top by four R joints in the middle vertices E, F, G, and H. And Baker 
already proved that the connection of two Bennett linkages with R joints could not 
obtain a mobile network [83]. But two Bennett linkages can be inter-connected by S 
joints to form a mobile assembly, whose mobility is one calculated by the truss 
method [140]. Therefore, we can make vertices on the top and bottom into R joints 
and keep the middle ones as S joints.  

A coordinate system is set up on the body centre of the cuboctahedron by the 
right-hand rule where z axis directs upward passing through the centre of square IJLK, 
and axes x, y direct to centres of two adjacent squares in the side, respectively, as 
shown in Fig. 4-1(a). Then vertices of the cuboctahedron are 

 co T2 2( , 0, )
2 2

A , co T2 2(0, , )
2 2

B , (4-1a) 

 co T2 2( , 0, )
2 2

C , co T2 2(0, , )
2 2

D , (4-1b) 

 co T2 2( , , 0)
2 2

E , co T2 2( , , 0
2 2

F , (4-1c) 

 co T2 2( , , 0)
2 2

G , co T2 2( , , 0)
2 2

H , (4-1d) 

 co T2 2( , , 0)
2 2

G , co T2 2(0, , )
2 2

J , (4-1e) 

 co T2 2( , 0, )
2 2

K , co T2 2(0, , )
2 2

L , (4-1f) 

where superscript "co" represents cuboctahedron.  
For the octahedron, the coordinate system is set where z axis directs upward, x 

axis directs to A and y axis directs to G, as shown in Fig. 4-1(b). Then vertices are 

 o o T2( , 0, 0)
2

A I , o o T2(0, 0, )
2

B D , (4-2a) 
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 o o T2( , 0, 0)
2

C K , o o T2(0, , 0)
2

E F , (4-2b) 

 o o T2(0, , 0)
2

G H , o o T2(0, 0, )
2

J L , (4-2c) 

where superscript "o" represents Octahedron.  
To vanish the square face, a Bennett linkage ABCD will be folded into the edge 

ABC on octahedron in Fig. 4-1(b). So, the next work is to determin joint directions of 
R joints A, B, C, D to make the linkage move between desired initial and final 
configurations. 
 

 

  (a)                                       (b) 

Fig. 4-1. Transformation between (a) cuboctahedron and (b) octahedron illustrated in the 
coordinate system fixed on their body centres. 

 

Triangle BCF is assumed to be fixed in the coordinate system, triangle CDG 
could rotate around the R joint Cs  a certain angle to its final position CBGf, as 

shown in Fig. 4-2. As dihedral angle of each pair of adjacent triangles in octhedron is 
1arccos( )
3

, Gf can be obtained by roation of F around BC by the angle, the 

transformation matrix is 

 

1 2 2
3 3 3
2 1 2
3 3 3
2 2 1
3 3 3

T , (4-3) 

and then 
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 f co T2 2 2( , , )
6 6 3

G TF . (4-4) 

Meanwhile axis of R joint on C, Cs , must be in both bisecting planes of angle DCB 
and angle GCGf, thus  

 co co
Cs D B  and co f

Cs G G , (4-5) 

then 

 co co co f T
C

2 4( ,0, )
3 3

s D B G G . (4-6) 

1  and 2  are pairs of two axis angles on C, which are angles between the revolute 
axis and its connected edges, 

 
co co

C
1

C

BCC' DCC' arcsin( ) 71.57
| |

s C B
s

, (4-7a) 

 
co co

C
2

C

FCC' GCC' arcsin( ) 50.77
| |

s C F
s

. (4-7b) 

Other revolute axes in this Bennett linkage can be determined similarly,  

 T
A

2 4( ,0, )
3 3

s , T
B

4 2(0, , )
3 3

s , T
D

4 2(0, , )
3 3

s . (4-8) 

 

 

Fig. 4-2. One pair of adjacent triangles BCF and CDG is chosen to show the determination of the 
revolute axis. 

 
Similarly, other four triangular faces, surrounding a hollowed square IJKL, could 

be set with the same Bennett linkage shown in Fig. 4-3(a). Rotation axes on the 
second Bennett linkage can be calculated by symmetric rotations of Euler-Rodrigues 
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formula [141], 

 T
CI )

3
40,,

3
2()π,(yRotss , (4-9a) 

 T
BJ )

3
2,

3
4(0,)π,( yRotss , (4-9b) 

 T
AK )

3
40,,

3
2()π,( yRotss , (4-9c) 

 T
DL )

3
2,

3
4(0,)π,( yRotss , (4-9d) 

where )π,(yRot  is the matrix for rotating around y axis by π .  

 

 

(a) 

 

(b) 
Fig. 4-3. Transforming (a) the polyhedral linkage constructed with two Bennett linkages to (b) its 

truss form.  
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Hereto, the polyhedral linkage is constructed with two Bennett linkages, whose 

links are all triangle, and these two linkages are connected with four S joints. The 
truss analogy of this polyhedral linkage, shown in Fig. 4-3(b), yields 20j  joints, 

64b  bars, and the rank of its equilibrium matrix 53r , thus, an overall DOF is 
3 6 1m j r  according to the Maxwell’s rule. No further replacement of S joints 

is needed. 

4.3 Kinematics of the Transformable Polyhedron 

Let us consider the kinematic behavior of Bennett linkage ABCD. Its deployed 

configuration is the square in cuboctahedron and the folded one is along two edges of 

octahedron while joint axes A, C and B, D intersect in two pairs. As revolute axes are 

not perpendicular to their connecting links, linkage ABCD is in fact an alternative 

form of Bennett linkage [87, 88]. Its corresponding original form can be found by 

extending the joint axes and connecting the shortest distance between the adjacent 

joints, see Fig. 4-4 for the geometric relationship between the alternative form and its 
original Bennett linkage of quadrilateral ABCD, in which b bA B , b bB C , b bC D , and 

b bD A  are bars of its original Bennett linkage as A b bs D A , A b bs A B , 

B b bs A B , B b bs B C , C b bs B C , C b bs C D , D b bs C D , and D b bs D A . 

Meanwhile, As  and Cs  meet at M, Bs  and Ds  meet at N, both on z  axis, which 

is the rotation axis of the linkage as it crosses the midpoint of b bA C , Q , and the 

midpoint of b bB D , P. Axis orientation angles 1  and 2 , Eq. (4-7), are depicted at 

vertices A and B, respectively. Denote the length of original linkage, which is shortest 
distance between adjacent revolute axes, as a , the extensions bAA  and bBB  on 

bA  and bB  in its alternative form as c  and d , respectively, and the twist angle of 

link b bA B  as . Then we have 

 2 2 2AB BC CD DA 2 cos 1a c d cd . (4-10) 

Denote kinematic angles at joints bA  and bB  as  and , respectively, and the 

closure equation, Eq. (1-18), must be satisfied. Then,  

 2 2
b bA C 2 (1 cos )a , (4-11a) 

 2 2
b bB D 2 (1 cos )a , (4-11b) 

In b bA B P ,  

 
2 2 2 2

b b b b
1A P A B B P (1 cos )
2

a . (4-12) 
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Fig. 4-4. The geometric relationship between original form of Bennett linkage, AbBbCbDb, and its 
alternative form, ABCD which is a square in the cuboctahedron. 

 
Then,  

 
2 2

b b b
b b 2

b

2A P -A C 1 coscos A PC 1 2
1 cos2A P

. (4-13) 

From quadrilateral b bA MC P , 

 b b b b
1 coscos A MC cos A PC 2 1
1 cos

. (4-14) 

In b bA MC , 

 
2 2 2

b b b b b b
cos cosA C 2A M (1 cos A MC ) 4A M
1 cos

, (4-15) 

Comparing Eqs. (4-11) and (4-15), 

 
22

b
(1 cos )(1 cos )A M

2(cos cos )
a

. (4-16) 

Similarly, 

 b b
1 coscos B ND 2 1
1 cos . (4-17) 
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22

b
(1 cos )(1 cos )B N

2(cos cos )
a

. (4-18) 

In AMC , 

 
22 2

b b b b bAC 2AM (1 cos A MC ) 2 A M 1 cos A MCc . (4-19) 

Similarly, 

 
22 2

b b b b bBD 2BN (1 cos B ND ) 2 B N 1 cos B NDd . (4-20) 

In the deployed configuration, O is the centre of square ABCD, W is the midpoint of 
AB, then  

 1MW AMsin , (4-21a) 

 1OW AW AMcos , (4-21b) 

 b b
1OM AM cos A MC
2

, (4-21c) 

In OMW , 

 
2 2 2 2 2 22 2 2

1 b b 1
1OW OM AM cos AM cos A MC MW AM sin
2

,  

(4-22) 
then considering Eq. (4-14),  

 1
cos 1cos 2
cos 1

d

d
, (4-23) 

similarly,  

 2
cos 1cos 2
cos 1

d

d
. (4-24) 

Combining Eqs. (4-10), (4-23, 4-24),  

 1 2arccos cos 2 cos 2 arccos 0.4 . (4-25) 

With trigonometric transformations, Eqs. (4-23) and (4-24) become 

 

2 d

1
2 2d d

1 tan
2cos 2

tan 1 tan
2 2

, (4-26) 

 

2 d

2
2 2d d

1 tan
2cos 2

tan 1 tan
2 2

, (4-27) 
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and considering Eq. (1-18)  

 
2

1d

1

cos cos2
tan 2 5

2 2 cos cos
,  

 d 1
2

1

2 cos 5tan
2 4cos cos2

, (4-28) 

then 

 d 2arctan( 2 5) 154.79  and d
52arctan( ) 58.41

4
φ . (4-29) 

Denoting 

 3
(1 cos )(1 cos )

2(cos cos )
d d

d d

φt
φ

 and 4
(1 cos )(1 cos )

2(cos cos )
d d

d d

φt
φ

, (4-30) 

and as 2
AC 2  and 2

BD 2  at the deployed configuration, Eq. (4-30) is 

substituted into Eqs. (4-19) and (4-20), 

 3
1

1
2cos

c t a , (4-31a) 

 4
2

1
2cos

d t a , (4-31b) 

then consider Eq. (4-10) 

 
2 4 0.46

2
TermB TermB TermATermCa

TermA
, (4-32) 

where 

 2 2
3 4 3 41 2 cosTermA t t t t , (4-33a) 

 3 34 4

1 2 2 1

cos cos
cos cos cos cos

t tt tTermB α α , (4-33b) 

 2 2
1 2 1 2

1 1 cos 1
4cos 4cos 2cos cos

αTermC . (4-33c) 

Therefore c and d can be determined from Eq. (4-31) 

 0 68c .  and 0 90d . . (4-34) 

As the meet of B and D, quadrilateral ABCD becomes two perpendicular lines in 

the folded configuration as shown in Fig. 4-5 with a half part of the octahedron. 
Revolute axes on A and C, As  and Cs , must be in plane ABC, while revolute axes 

on B and D, Bs  and Ds , must be in plane EDG due to the symmetric property of 

Bennett linkage. Meanwhile, these two planes are perpendicular to each other 
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according the property of octahedron. Then, 

 
2

1 AG 12cos
AM 2AM

 (4-35) 

 
b b

1 AC1 22sin A MC
2 AM 2AM

 (4-36) 

 

 

Fig. 4-5. Half of the octahedron for illustrating kinematic variables at the folded configuration. 

 

Thus, the relationship between axis angle, 2 , and b bA MC  are 

 2 b b
2 1cos sin A MC

2 2
. (4-37) 

According to Eq. (4-14), 

 f f
2

f

cos cos2cos
2 1 cos

, (4-38) 

namely, 
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2 2f f

2 2f f

2
2 f

2 f

1 tan 1 tan
2 2

1 tan 1 tan2 2 2cos
2 1 tan

21
1 tan

2

. (4-39) 

Considering Eq. (1-18), 

 
2 2 f

2
2 f

1 cos tan2 2cos
2 1 tan

2

. (4-40) 

Then, considering Eq. (4-7), kinematic angle at folded configuration can be solved, 

 ftan 2 5
2

. (4-41) 

Compared with Eq. (4-29) 

 f d58.41 , (4-42a) 

 f d154.79 . (4-42b) 

Hereto, kinematical analysis can be done with the relationship between variables 
of the mechanism and geometric parameters.  

Here, we start to evaluate the performance of the obtained polyhedral linkage. 
Considering the symmetric property, there are three sets of quadrilateral linkages in 
the polyhedral linkage, ABCD and IJKL, AEIH and CGKF, DHLG and BFJE. Its 
motion path is generated with the numerical method after the truss analogy of the 
obtained linkage, illustrated in Section 2.4. Two diagonal lengths in each set of these 
linkages are depicted in Fig. 4-6(a) as the increase of the input angle . The result 
shows that at the folded configuration pairs of vertices B and D, A and I, E and F meet, 
respectively, and distances of A and C, E and H, B and J become 2 . All of these are 
properties of the octahedron. Therefore, the obtained linkage can realise the 
transformation from cuboctahedron to octahedron.  

Meanwhile, singular values of equilibrium matrix of the truss form were 
recorded in Fig. 4-6(b) during the transformation process. The smallest value keeps 
zero all the time and other values never reach to zero, which demonstrate that the 
obtained linkage is always with one DOF and without any bifurcation situation. Thus, 
the expected linkage is obtained. 
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   (a)                                      (b) 

Fig. 4-6. Folding behaviours depicted by (a) diagonal lengths between B and D, A and I, E and F, 
as well as A and C, E and H, B and J in three quadrilaterals; and (b) bifurcation analysis with the 

relationship between singular values and the input angle. 
 

The basic frame of the obtained linkage, the cuboctahedron and the octahedron, 
are both octahedral linkage, Oh, which is a full symmetric one. While, the linkage 
with the particular joint arrangement is just C2h composed of one rotational and one 
reflect symmetries. Therefore, it is interesting to study motions supplied by different 
kind of joints which are on symmetric positions in those polyhedrons, such as motions 
supplied by S joints on E, F, G, H and those supplied by R joints on other vertices.  

According to Euler’s rotation theorem [141], any S joint works as an equivalent 
R joint instantaneously whose axis is unfixed in its connected links. Here, S joint at 
vertex E is taken as an example, as shown in Fig. 4-7(a), where E's  represents the 
instantaneous revolute axis. Figure 4-7(b) depicts angles between the axis of its 
instantaneous rotation of the S joint and its connecting links, EA , EB , EI , and 

EJ . All these angles are not constant, therefore, it demonstrates that E can not be set 
with R joint. Similarly, other S joints can not be set with R joints too. 

Meanwhile, the motion of the Bennett linkage ABCD can be described by the 
relationship between two folding angles  and , which are marked in Fig. 4-3(a). 
In Fig. 4-4, 

 
2 2 2

2AB BC AC 1cos 1 AC
22AB BC

, (4-43a) 

 2
222

BD
2
11

ADAB2
BDADABcos . (4-43b) 
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Considering Eqs. (4-19) and (4-20), the relationship between folding angles and 
kinematic angles can be obtained. The nature of mirror symmetry connotes that both 
Bennett linkages ABCD and IJKL always take the same configuration during the 
transformation, whose motion paths in terms of the folding angles are shown in Fig. 
4-8(a). Figure 4-8(b) depicts motion paths of the triangular face centres and their 
normal directions with face ABE chosen as the driven element. It indicates that the 
octahedral symmetry is also broken during the transformation but the three orthogonal 
plane symmetries are maintained, see Fig. 4-9(a). A prototype has been made with 
rigid metal faces and hinge joints, whose transformation sequence is shown in Fig. 
4-9(b).  

 

 

   (a)                                      (b) 
Fig. 4-7. Motion of the S joint on E (a) equaling to the instantaneous R joint s'E, and (b) angles 
between the revolute axis and its connecting bars EA, EB, EI, EJ show the S joint can not be 

replaced with R joint.  

 

4.4 Conclusions 
In this chapter, we proposed a solution to realise the transformation between 

cuboctahedron and octahedron by a spatial multi-loop linkage with one DOF. Two 
opposite square faces are set with Bennett linkages, and other four square faces are 
connected with RSRS linkages, thus deploying processes of those six square faces are 
not the same, i.e., the transformation broke some symmetric properties of original 
polyhedrons. An analysis of the singular values of the equilibrium matrix of each 
polyhedron in its truss form has shown that the minimum always remains zero 
whereas the rest never deduce to zero, which indicates that motion can take place 
without any bifurcation.  
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(a) 

 

(b) 

Fig. 4-8. Folding process of the linkage illustrated by (a) the relationships amongst folding angles; 
and (b) motion paths of the triangular face centres and their normals. 
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(a) 

 

(b) 

Fig. 4-9. Folding sequences of the polyhedral transformation of (a) a CAD model from symmetric 
view; (b) a prototype where the rigid triangular faces are made of metal sheet and the R joints are 

made of common door hinges. 
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Chapter 5 Transformation between Truncated Octahedron 
and Cube 

5.1 Introduction 
In truncated octahedron, each hexagonal face is surrounded with three square 

faces and three connecting bars, which present threefold-symmetric. Folding all these 
hexagonal faces, the remained six square faces will form a cube. Therefore, in this 
chapter, we are going to construct the transformation between these two polyhedrons 
with a multi-loop linkage from a threefold-symmetric Bircard linkage. 

The layout of the chapter is as follows. Section 5.2 expounds the construction of 
the deployable polyhedron with two DOFs, and it is reduced to one in Section 5.3. 
Section 5.4 presents kinematics of this transformation. Parameter study to determine 
the feasible range of one design parameter is performed in Section 5.5. Finally, a 
conclusion is given in Section 5.6.  

5.2 Construction of a 2-DOF System 
Figures 5-1(a) and 5-1(b) show the object of this chapter, a truncated octahedron 

and a cube with unit-length edges. Such a vertex-motion arrangement is unique if no 
interference occurs during the transformation. As a result, all of the eight hexagonal 
hollows will vanish after the transformation. If only S joints are used at all of the 
vertices, the truncated octahedron would have 18 DOFs, thus some of these S joints 
are expected to be replaced with 1-DOF R joints to reduce the number of DOFs. 

The transformation between truncated octahedron and cube is better illustrated 
by the positions of the vertices using the Cartesian coordinate system shown in Fig. 
5-1(a) and 5-1(b). When each side of the polyhedrons has unit length, the positions of 
the vertices of the truncated octahedron are  

 to T
1

2( 2, ,0)
2

A , to T
2

2( 2,0, )
2

A , (5-1a) 

 to T
3

2( 2, , 0)
2

A , to T
4

2( 2,0, )
2

A , (5-1b) 

 to T
1

2(0, 2, )
2

B , to T
2

2( , 2,0)
2

B , (5-1c) 

 to T
3

2(0, 2, )
2

B , to T
4

2( , 2,0)
2

B , (5-1d) 

 to T
1

2( ,0, 2)
2

C , to T
2

2(0, , 2)
2

C , (5-1e) 
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 to T
3

2( ,0, 2)
2

C , Tto
4 )2,

2
2,0(C , (5-1f) 

 Tto
1 )

2
2,0,2(D , Tto

2 )0,
2
2,2(D , (5-1g) 

 Tto
3 )

2
2,0,2(D , Tto

4 )0,
2
2,2(D , (5-1h) 

 Tto
1 )0,2,

2
2(E , Tto

2 )
2
2,2,0(E , (5-1i) 

 Tto
3 )0,2,

2
2(E , Tto

4 )
2
2,2,0(E , (5-1j) 

 Tto
1 )2,

2
2,0(F , Tto

2 )2,0,
2
2(F , (5-1k) 

 Tto
3 )2,

2
2,0(F , Tto

4 )2,0,
2
2(F . (5-1l) 

where superscript “to” is for the truncated octahedron. For the cube, the vertices 
positions are  

 c c c T
1 1 1

1 1 1( , , )
2 2 2

A B C , Tc
3

c
2

c
4 )

2
1,

2
1,

2
1(DCB , (5-2a) 

 Tc
4

c
2

c
3 )

2
1,

2
1,

2
1(EDC , Tc

3
c
4

c
2 )

2
1,

2
1,

2
1(ECA , (5-2b) 

 Tc
3

c
2

c
4 )

2
1,

2
1,

2
1(FBA , Tc

2
c
4

c
3 )

2
1,

2
1,

2
1(FD=B , (5-2c) 

 Tc
1

c
1

c
1 )

2
1,

2
1,

2
1(FED , Tc

4
c
2

c
3 )

2
1,

2
1,

2
1(FEA , (5-2d) 

in which superscript “c” represents the cube.  
First of all, let us examine a single hollow, A1A2C1C2B1B2, Fig. 5-1(a), whose 

initial configuration is a regular hexagon. After transformation, vertices A1, C1 and B1 
converge to a single vertex on the cube, whilst A2, C2 and B2 end up at the adjacent 
vertices of the cube, Fig. 5-1(b), and so do the vertices on the neighbouring hollows. 

Hence, the motion of hollow A1A2C1C2B1B2 will have threefold-symmetry. We 
decide to use 1-DOF R joint at those vertices, and to enable the motion, the hollow 
must be a threefold-symmetric Bricard 6R linkage, which is made of six links 
connected by six R joints (hence 6R) forming a loop [75]. 

The Bricard linkage is an overconstrained linkage which has mobility only under 
strict geometrical conditions [75]. These conditions are met by adjusting the 
orientation of each 1-DOF R joint. 
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(a)                                      (b) 

 

(c) 
Fig. 5-1. Joint replacement and joint positions in the truncated octahedron and cube. (a) The 

truncated octahedron and the Cartesian coordinate system; (b) positions of the vertices when the 
truncated octahedron shrinks to a cube; (c) a threefold-symmetric Bricard 6R linkage is introduced 

to realise the transformation of three squares A, B, C. 

 
The rotational axes of the R joints of the threefold-symmetric Bricard linkage 

A1A2C1C2B1B2 can be determined based on the initial and final configurations on the 
paired polyhedrons, which is illustrated in Fig. 5-1(c). After transforming into cube, 
sides B1C2 and B1B4 must be collinear, which demands the R joint axis at B1 be on the 
plane bisecting angle 2 1 4C B B . Meanwhile, because of the threefold-symmetry of 
the linkage, the same axis must be on the plane containing B1, O and A2. Thus, the 
direction of the R joint axis at B1 is  

 to T
B1 1

2( , 2, 0)
2

s OB . (5-3) 
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Then, axis angles on B1 which are angles between the revolute axis B1s  and its 
connected edges B1B2, B1B4, B1C2 can be calculated. These angles are the same as the 
axis directs to the body centre. 

 
to to

B1 2 1

B1

10arccos( ) arccos( ) 71.57
| | 10

s C B
s

. (5-4) 

Similarly, the revolute axes at A1 and C1 can be set as  

 T
A1

2( 2, , 0)
2

s , (5-5) 

 T
C1

2( , 0, 2)
2

s . (5-6) 

These axes all point towards the centres of both polyhedrons.  
Figure 5-2 shows squares B and C of the truncated octahedron and their final 

positions with dashed edges when bar B1C2 is fixed in the coordinate system, where 
superscript f represents final positions. As square B rotates around the R joint on B1, 
vertex B4 goes to C2, f to

4 2B C . Similarly, f to
1 1B B . Then the transformation matrix 

is obtained, 

 

2 1 2
3 3 3

1 2 2
3 3 3
2 2 1
3 3 3

T . (5-7) 

Thus, final positions of B2 and B3 are 

 f to T
2 2

2 2 5 2 2( , , )
3 6 3

B TB , (5-8) 

 f to T
3 3

2 2 2 5 2( , , )
3 3 6

B TB . (5-9) 

As squares B and C in the final position form two perpendicular faces of the cube,  

 f f f f
1 4 1 2C C C C , f f f f

1 4 1 2C C B B , (5-10) 

where f to
1 1C B , f to

2 2C C , then, 

 to f to to to f
1 4 1 2 1 2B C B C B B , (5-11) 

thus 

 f T
4

1 2 2 2( , , 2 )
3 2 3 3

C . (5-12) 
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Fig. 5-2. Directions of the rotational axes of the R joints at B1 and C2.  

 
So, the direction of the axis on C2 is 

 to to to f T
C2 1 1 4 1

1 2 2 2 1 3( , , )
2 2 2

s C B C C . (5-13) 

Axis angles on C2 between the revolute axis and its connected edges C2B1, C2C1 and 
C2C3, in which the first two angles are equal due to the meet of C1 and B1 after 
folding, are 

 
to to
2 1 C2

1
C2

arccos( ) 84.42
| |

C C s
s

, (5-14) 

and  

 
to to
2 3 C2

2
C2

arccos( ) 45.27
| |

C C s
s

, (5-15) 

respectively, as shown in Fig. 5-2. Other axes can be determined by symmetric 
rotations. 

 T
A2

3 2 1 1 2 2( , , )
2 2 2

s , (5-16) 

 T
B2

1 2 2 3 2 1( , , )
2 2 2

s . (5-17) 

As hexagon D1D2E1E2F1F2 is not connected with A1A2C1C2B1B2 directly, and 
structures of these two hexagons are the same, then hexagonal linkage D1D2E1E2F1F2 
is set with the same Bricard linkage, then axes of its joints are 

 T
D1

2( 2, 0, )
2

s , T
E1

2( , 2, 0)
2

s , (5-18) 
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 T
F1

2(0, , 2)
2

s , T
D2

3 1 2 2 2 1( , , )
2 2 2

s , (5-19) 

 T
E2

2 1 3 1 2 2( , , )
2 2 2

s , T
F2

1 2 2 2 1 3( , , )
2 2 2

s , (5-20) 

So far, the polyhedral linkage is constructed with two of the same 
threefold-symmetric Bricard linkages, as shown in Fig. 5-3. A total of 12 vertices are 
converted to 1-DOF R joints. 

Adopting the truss analogy, the R joint on A1 in Fig. 5-4(a) equals to S joints A1 
and a1 on A1s  and transforming each rigid part to a line, triangle or tetrahedron, such 
as bar B1C2 equals to tetrahedron B1b1C2c2. According to this idea, a 
threefold-symmetric Bricard linkage [75] formed by three rigid squares and three rigid 
bars, in Fig. 5-4(a), could be transformed to its truss form, in Fig. 5-4(b).  

If the truncated octahedron is treated as a truss with the truss analogy [140], the 
total number of DOF, m, is 2 according to the Maxwell’s rule as the Kutzbach 
criterion cannot give the correct DOF for the overconstrained linkage [2]. 

The polyhedron will have threefold-symmetry during the transformation, instead 
of octahedral symmetry, due to the introduction of the Bricard linkages. In addition, 
the mirror symmetry can be retained, then both Bricard linkages can be driven 
simultaneously, Fig. 5-5(a). 

 

 

Fig. 5-3. A 2-DOF system obtained after introducing two threefold-symmetric Bricard 6R linkages 
A1A2C1C2B1B2 and D1D2E1E2F1F2. 
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(a)                                    (b) 

Fig. 5-4. Truss method illustrated by (a) a threefold-symmetric Bricard linkage equaling to (b) its 
truss form kinematically, where points on each revolute axis differing to original vertices. 

 

 

(a) 

 

(b) 
Fig. 5-5. Deployment sequences of a computer model showing the polyhedral transformation with 

(a) 2 DOFs and (b) 1 DOF. 
 

5.3 One-DOF Transformable Polyhedron between Truncated 
Octahedron and Cube 

To reduce the overall number of the DOF further, one more S joint at a vertex 
needs to be changed to a joint of other form. We choose to replace one S joint with 
one R joint. However, doing so generally cuts the mobility of mechanism to zero 
because an R joint has only one DOF. Since we have already used the overconstrained 
Bricard linkages, we speculate that the mobility could be retained by placing the R 
joint along a particular direction.  
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We pick vertex A3, marked in red in Fig. 5-6(a), as the location for the R joint 

replacement. Since vertex E3 will move towards A2 during transformation, the 
rotational axis of the R joint at A3 must be in the plane bisecting angle A2A3E3. Now 

the assembly has 13 R joints and 11 S joints. Using the truss analogy, it has 130 bars 

and 43 joints. The rank of the equilibrium matrix is 122, which gives a total DOF 

1m  according to Eq. (2-7). 

 

 

(a) 

 

(b) 

Fig. 5-6. One-DOF polyhedral transformation. (a) S joint at vertex A3 is replaced with an R joint 
(shown in red) to obtain a 1-DOF system; (b) the same replacement takes place at vertices B3 and 

C3 whilst the system remains one DOF. 
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Note that making the rotational axis of the R joint at A3 in the plane bisecting 
angle 2 3 3A A E  does not completely define the direction of the axis. Angle , 
which is the deviation angle of the rotational axis from the line linking A3 to the 
centre of the polyhedron as shown in Fig. 5-6(a), is used to determine the precise 
direction of the rotation axis of the R joint. The angle’s positive direction is defined by 
the right-hand rule with the thumb pointing along a line parallel to E3A2, which is 
actually the normal of the plane bisecting angle 2 3 3A A E . It can be shown that  
can take any value without changing the overall m. For convenience, we choose 

0 , i.e., the R joint axis at A3 pointing towards the body centre of the polyhedron. 

Considering symmetric nature of the polyhedron, both S joints at B3 and C3 can 
also be replaced with R joints as well without altering the value of m, Fig. 5-6(b). The 
computer simulation on the deployment of the resulted assembly, given in Fig. 5-3(b), 
reveals that the transformation has only 1 DOF. 

Similarly, the S joints at D3, E3 and F3 can also be replaced with R joints to get a 
1-DOF system, but it should be noted that the replacement can only take place at 
either vertices A3, B3 and C3, or D3, E3 and F3, not concurrently. This can be proven in 
two ways. The first is to calculate m, which turns out to be 0 if a total of six R joints 
are placed. Second, we can also use the relationships amongst the angle variables of 
the polyhedron to illustrate why only three R joints can be used, which is explained in 
detail next. 

5.4 Kinematics of the Transformable Polyhedron 
Now, we start to investigate the kinematics of the obtained linkage to observe its 

folding performance. 

5.4.1 Relationship between Geometric Parameters and Kinematic Variables 
In the kinematic analysis, the geometry of a Bricard 6R linkage is commonly 

described by its link lengths and twist angles [142]. The link lengths defined as the 
shortest distances between the axes of two adjacent R joints. Its motion is described 
by the kinematic variables  and . 

Consider the threefold-symmetric Bricard 6R linkage shown in Fig. 5-7(a), 
which loops three rigid faces together. These link lengths and kinematic variables are 
displayed in Fig. 5-7(b). The positions of the points giving the link lengths are 
denoted by b1A , b1B , ..., etc.. OP is the symmetric axis of the linkage. At each point, 
a coordinate system (denoted by x1 and z1, x2 and z2, ..., etc., respectively) is 
established based on the D-H notation [8]. The link lengths are 

 b b b b b b b b b b b b
1 2 2 1 1 2 2 1 1 2 2 1C C C B B B B A A A A C a , (5-21) 

and the other distances are  
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 b b b
1 1 1 1 1 1A A B B C C c , (5-22) 

 b b b
2 2 2 2 2 2A A B B C C d , (5-23) 

because of threefold-symmetry.  
 

 

    (a)                                     (b) 

Fig. 5-7. Kinematics of a threefold-symmetric Bricard linkage. (a) The hexagonal hollow 
A1A2C1C2B1B2; (b) the kinematic model of the linkage illustrated with thick gray lines. 

 

On the other hand, denote by  and 360  the twist angles between 6z  

and 1z  (also between 2z  and 3z , 4z  and 5z ) and between 1z  and 2z  (also 

between 3z  and 4z , 5z  and 6z ), respectively. For the revolute axes given in Eqs. 

(5-5), (5-17), 

 B2 A1

B2 A1

5 5 2 102 arccos 2 arccos 214.79
| || | 5 21 2 2

s s
s s

.  

(5-24) 
Similar to the calculation in the alternative form of Bennett linkage, 

 2 21 2 cosa c d cd . (5-25) 

In triangle b b
1 2 2C C C , 

 2 2 2 1 2 cosa d c c , (5-26) 

and in triangle b b
1 2 1C C C , 

 2 2 2
11 2 cosa c d d . (5-27) 

Eqs. (5-26), (5-27) are simplified as 
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 cos cosc d , (5-28) 

 1cos cosd c . (5-29) 

Then, offsets can be calculated, 

 1
2

cos cos cos 1.22
sin

c , (5-30) 

 1
2

cos cos cos 1.10
sin

d . (5-31) 

Substitute Eqs. (5-30) and (5-31) into Eq. (5-24), 

 
2 2 2

1 1
2

sin cos cos 2cos cos cos 0.71
sin

a . (5-32) 

In coordinate system 2, 

 T
2b (0, 0, 0)C , T

2 (0, 0, )dC , (5-33) 

 T
1b ( cos , sin , 0)a aB , (5-34) 

 T
1 ( cos sin sin , sin sin cos , cos )a c a c cB , (5-35) 

 T
1b ( , 0, 0)aC , (5-36) 

 T
1 ( , sin , cos )a c cC . (5-37) 

Then, 

 T
1 1 ( cos sin sin , sin sin sin cos , 0)a c a c a cBC , (5-38) 

and its norm can be calculated in triangle B1C1C2, 

 1 1 2B C 2sin / 2 . (5-39) 

Combine Eqs. (5-38) and (5-39), the relationship between joint kinematic angle  

and folding angle 2  is 

 2 2 2
2cos 1 [ (1 cos ) sin (1 cos ) 2 sin sin ]a c ac . (5-40) 

Similarly, the relationship between joint kinematic angle  and folding angle 1  is 

 2 2 2
1cos 1 [ (1 cos ) sin (1 cos ) 2 sin sin ]a d ad . (5-41) 

Then, relationships between folding angles and joint kinematic angles are depicted in 
Fig. 5-8. Since the closure equation for the of the Bricard 6R linkage is given by 

 2 2 2cos sin (cos cos ) (1 cos ) cos cos 2cos sin sin 0   

  (5-42) 
in terms of the kinematic variables of the linkage. Using Eqs. (5-40) and (5-41), Eq. 
(5-42) can be converted to a relationship between  and . During the folding 
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process, 2  decreases from 
2
3

 to 0 while 1  increases from 
2
3

 at first, and 

then decreases to 
2

. At the deployed configuration, 

 1 2
2
3

, (5-43) 

according to Eqs. (5-40) and (5-41), joint kinematic angles are 

 d 34.8 , d 147.49 . (5-44) 

And at the folded configuration, 

 1 2
, 2 0 , (5-45) 

according to Eqs. (5-40) and (5-41), joint kinematic angles are 

 f 166.12 , f 268.0 . (5-46) 

 

 

Fig. 5-8. The relationship between folding angles and joint kinematic angles.  

 

5.4.2 Kinematics of the Polyhedral Transformation 
After the truss analogy, motion path is generated by the numerical algorithm, 

described in section 2.4. Considering the symmetric property, there are four following 
sets of hexagons, {A1A2C1C2B1B2}, {A1B2B3F3F4A4, B1C2C3D3D4B4, 
C1A2A3E3E4C4}, {D1F2F3B3B4D4, E1D2D3C3C4E4, F1E2E3A3A4F4}, and 
{D1D2E1E2F1F2}. And configurations in each set keep the same as they can be 
obtained from others by symmetric rotations. Thus, one pair of vertices, which trends 
to meet, is chosen from each set of these hexagons, A1B1, A2E3, C3D2 and D1E1, to 
inspect the transformation process, and they are shown in Fig. 5-9(a). All of them 
equal 3  at the deployed configuration and become to zero at the folded 
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configuration, which shows that the obtained polyhedral linkage completes the 
transformation from the truncated octahedron to the cube.  

 

 

(a)                                      (b) 

Fig. 5-9. Kinematics of the transformation between truncated octahedron and cube illustrated by (a) 
distances between four pairs of vertices and (b) singular values during the transformation process. 

 
Meanwhile, singular values of the equilibrium matrix are recorded in Fig. 5-9(b) 

which show the linkage is always movable as the minimum value keeps equaling to 
zero, and there is no bifurcation situation during the process as other values never 
deduce to zero. 

Furthermore, in the obtained linkage, joints arrangement broke the symmetric 
property from octahedral symmetry Oh to threefold-symmetry C3. It is interesting to 
study motions supplied by these S joints to see why they can not be set with R joints. 
It easy to find that there are three sets of S joints, {D4, E4, F4}, {D3, E3, F3} and {A4, 
B4, C4}, and joints in each set can be obtained from others by symmetric rotations. 
Here, one joint in each set, i.e., S joints at E4, E3 and A4, is analysed.  

According to Euler's rotation theorem [141], any S joint works as an equivalent R 
joint whose axis is unfixed in its connected links. Figure 5-10 shows angles between 
axes of their equivalent R joints and their connecting links. As all of these angles are 
varying during the transformation, all of S joints do not work as R joints. 

We can also use the relationships amongst the angle variables of the polyhedron 

to illustrate why only three R joints can be used. Consider the case shown in Fig. 

5-6(a) with the rotational axes of R joints at A3, B3, C3 pointing to centre of the 

polyhedron. Figure 5-5(b) shows that in the 1-DOF polyhedron, the two linkages do 

not move simultaneously as in the 2-DOF case in Fig. 5-5(a). Furthermore, Fig. 
5-11(a) depicts A  vs. A , D  and D  curves during the transformation, where 

A and A , D  and D  are folding angles of two adjacent joints in the Bricard 
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linkages A1A2C1C2B1B2 and D1D2E1E2F1F2, respectively. It is clear that generally 
A D  and A D  except at three configurations marked by red dots. Hence, 

the motion of these two Bricard linkages differs from each other in general during the 

transformation, which explains why the joint replacement cannot be done at A3, B3, C3 

and D3, E3, F3 concurrently.  
 

 

(a)                                       (b) 

 

(c) 

Fig. 5-10. Equivalent rotation axes of three S joints on (a) E3, (b) E4, (c) A4 during the 
transformation depicted by angles between them and their connected links, respectively, where 

each letter pair in each legend represents the angle between the axis of the equivalent R joint and 
the corresponding edge. 
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(a)                                 (b) 

Fig. 5-11. The folding process illustrated by (a) curves amongst folding angles of two 
threefold-symmetric Bricard 6R linkages A1A2C1C2B1B2 and D1D2E1E2F1F2; and (b) motion paths 

of the centres of the rigid square faces and their normals. 
 

The introduction of additional R joints enables a 1-DOF transformation between 
a truncated octahedron and its paired octahedron at the cost that the octahedral 
symmetry is no longer preserved. In other words, the motion of each square is not the 
same as that in the face rotation-translation transformation. The motion paths of the 
eight square centres and their normal directions are plotted in Fig. 5-11(b) with square 
A being chosen as the driven one which moves along the path in the 
rotation-translation transformation. It is clear that the motion paths of other squares 
deviate from that of square A. However, once the transformation is completed, the 
truncated octahedron ends up being a cube, and the transformation is 
threefold-symmetric about the collinear symmetric axis of both Bricard linkages 
A1A2C1C2B1B2 and D1D2E1E2F1F2.  

A 3D printed prototype, where A3 0 , vertices A3, B3, C3 are all replaced with 

R joints directing to the body centre and other vertices A4, B4, C4, D3, E3, F3, D4, E4, 

F4 are still set with S joints, has been made which has successfully verified the 

concept. The transformation sequence of this model is shown in Fig. 5-12.  

5.5 Parameter Study 

Note that the polyhedral linkage acquired in section 5-3 is not unique. There is 
one design parameter, angle  shown in Fig. 5-6(a), which has been set to zero 

previously in section 5-3.  
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Fig. 5-12. The transformation sequence of a prototype between a truncated octahedron (left) and a 
cube (right). 

 

Here we investigate the folding performance with respect to this design 
parameter. Figure 5-13 shows curves of folding angles 2  and 2  vs. input angle 

1  for a set of given , which indicate configurations taken by two Bricard linkages 

A1A2C1C2B1B2 and D1D2E1E2F1F2, respectively. Though theoretically  can take 

any value without changing the mobility of the polyhedron, a close inspection of the 

curves reveals some choices can curtail the motions of both linkages. When 
70 , 1 0  (blue curves shown in both Figs. 5-13(a) and 5-13(b)), which 

points to an interference of the linkages during the folding as all folding angles must 
be greater than and equal to zero. Moreover, 2  cannot reach fully folded angle 90 . 

The negative 1  appears when 60.9 . On the other hand, when 30 , 

1 0  again (orange curves shown in both Figs. 5-13(a) and 5-13(b)). In particular 

when 40 , the both Bricard linkages cannot reach the folded configuration in 
which 1 2 0  and 2 90  (purple curves in Figs. 5-13(a) and 5-13(b)). The 

precise upper limit for  is 19.5 .  

Hence, the feasible range of  is between 60.9  and 19.5 . For a given 
this range, it can be noticed from Fig. 5-13(a) that 2  is not equal to 1  in 

general from 1 120  (the truncated octahedron state) to 1 0  (the cube state). 

This explains that the motions of both Bricard linkages are not the same, which 

further confirms our findings earlier that their motions are not in synchronization. 
However, if we choose 20 , the 2  vs. 1  curve shown in green in Fig. 

5-13(a) is closer to the red straight line where 2 1 , and thus the motions of both 

Bricard linkages are more similar than those when other  values are selected.  
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Fig. 5-13. Curves of (a) 2  vs. 1 ; and (b) 2  vs. 1  for a set of given ζ. 
 

5.6 Conclusions 
In this chapter, we have proposed the kinematic method to accomplish 1-DOF 

shape transformation between paired Platonic solid and Archimedean solid using 6R 
spatial linkages. The method has successfully resulted in the truncated 
octahedron-cube transformation. The transformation always ends with the targeted 
polyhedral shapes though some symmetries of the original polyhedrons are broken 
during transformation. An analysis of the singular values of the equilibrium matrix of 
each polyhedron in its truss form has shown that the minimum always remains zero 
whereas the rest never deduce to zero, which indicates that motion can take place 
without any bifurcation. Parameter study on one design parameter  shows the 
feasible range of the parameter to get non-interrupted folding.  
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Chapter 6 Transformation between Truncated Tetrahedron 
and Tetrahedron 

6.1 Introduction 
Like the previous polyhedral transformation, a pair of polyhedrons, truncated 

tetrahedron and tetrahedron, may be transformed to each other by a multi-loop linkage 
constructed with four six-bar linkages as besides of four hexagonal faces in the 
truncated tetrahedron they both contain four triangular faces.  

In the chapter, we create a transformation between these two polyhedrons with 
one degree of freedom by properly setting a movable joint at each vertex. Two 
schemes of joint arrangement are proposed, and their kinematic behaviors are 
respectively studied analytically and numerically, where mobility calculations are 
both based on the truss analogy. Finally, the transformation process adopting the first 
scheme is demonstrated to be valid through a cardboard prototype fabricated with the 
origami technique. 

The layout of the chapter is as follows. Section 6.2 expounds the construction of 
the deployable polyhedron. Sections 6.3 and 6.4 present kinematics of two 
constructions, respectively. Discussion on the relationship between the folding 
performance and joint variables is described in Section 6.5. Conclusion in Section 6.6 
ends the chapter. 

6.2 Construction of Transformable Polyhedron between Truncated 
Tetrahedron and Tetrahedron 

6.2.1 Geometry of Truncated Tetrahedron and Tetrahedron 
Figure 6-1 shows a truncated tetrahedron and a tetrahedron with unit-length 

edges. All hexagonal faces are hollow, while the triangular faces and polyhedral edges 
are rigid. Setting one S joint at each vertex, the truncated tetrahedron can be folded 
into the tetrahedron with groups of vertices A, C, E and B, H, K and D, J, L as well as 
F, G, M trending to meet respectively, see Fig. 6-1 (c), via a middle configuration, see 
Fig. 6-1(b). 

A Cartesian coordinate system is established in the truncated tetrahedron, the 
centre of face ABCDEF is chosen as the origin, the normal of the face at the centre is 
chosen as z axis, x axis directs from the centre to vertex F and y axis is determined by 
the right-hand rule. Then, coordinates of all vertices are 

 
T

tt 1 3, ,0
2 2

A , 
T

tt 1 3, ,0
2 2

B , Ttt 1, 0,0C , (6-1a) 



Doctoral Dissertation of Tianjin University 

98 
 

 
T

tt 1 3, ,0
2 2

D , 
T

tt 1 3, ,0
2 2

E , Ttt 1, 0,0F , (6-1b) 

 
T

tt 2 3 60, ,
3 3

G , 
T

tt 3 61, ,
3 3

H , 
T

tt 3 61, ,
3 3

J , (6-1c) 

 
T

tt 3 2 60, ,
3 3

K , 
T

tt 1 3 2 6, ,
2 6 3

L , 
T

tt 1 3 2 6, ,
2 6 3

M .  

(6-1d) 
in which the superscript “tt” represents the truncated tetrahedron. Thus, the body 
centre of the truncated tetrahedron is 

 
T

60, 0,
4

Q . (6-2) 

To realise the transformation, the truncated tetrahedron becomes the tetrahedron 
shown in Fig. 6-1(c) with vertices A, C, E meet at point O through a middle 
configuration shown in Fig. 6-1(b). The positions of the vertices of tetrahedron are  

 Tt t t 0, 0,0A C E , 
T

t t t 3 1 6, ,
6 2 3

B H K , (6-3a) 

 
T

t t t 3 1 6, ,
6 2 3

D J L , 
T

t t t 3 6,0,
3 3

F G M . (6-3b) 

where the superscript “t” represents the tetrahedron. 

6.2.2 A Threefold-symmetric Bricard Linkage 
Obviously, both polyhedrons are threefold rotational symmetric around the 

normal line of one triangle, such as z axis. Hence, a threefold-symmetric Bricard 
linkage is considered to realise the transformation of hollow hexagon ABCDEF with 
rigid links as triangles ABG, CDH, EFJ and bars BC, DE, FA. The next step is to 
determine joint directions in vertices A, B, C, D, E, F. In the coordinate system O-xyz 
in Fig. 6-2, bar AF is assumed to be fixed, triangle ABG will move to AB'F while 
triangle EFJ moves to AFJ' to form two adjacent faces of a tetrahedron. According to 
the property of threefold-symmetric Bricard linkage, each group of three alternate 
revolute axes intersects at one point. And two intersecting points must be both on the 
symmetric line, z axis. Meanwhile, according to the motion trend of vertices, see Fig. 
6-1(b), G moves to F. So, the revolute axis at A has to also be in the plane bisecting 
angle FAG. Thus, it must pass the body centre Q with 

 
T

A
22 66 33, ,

11 11 11
A Qs
A Q

. (6-4) 
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(a) 

 

(b) 

 

(c) 

Fig. 6-1. Polyhedron transformed from (a) deployed configuration, truncated tetrahedron, via (b) a 
middle configuration, to (c) the tetrahedron.  
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Thus, the matrix for the transformation from ABG to AB'F is 

 A

1 3 0 0
2 2
3 1 2 2 3

6 6 3 3
6 2 1 6

3 3 3 3
0 0 0 1

T . (6-5) 

Then  

 
T

A
3 6' 1, ,

3 3
B T B . (6-6) 

As triangles ABG and EFJ at their folded positions form two adjacent faces, their 

dihedral angle is arccos 1 3 , then 

 
T

1 1 3 2 6' ,arccos( ) ' , ,
3 6 18 9

RotJ AF B , (6-7) 

where ,arccos(1 3)Rot AF  is the matrix of transformation around AF  by 

arccos(1 3) . The matrix can be expressed by Rodrigues formula [141]. Assuming the 
matrix for the transformation from EFJ to AFJ' is TF, then 

 FA T E , (6-8a) 

 FF T F , (6-8b) 

 F'J T J . (6-8c) 
Meanwhile, if an auxiliary point  

 U E EF EJ , (6-9) 
is fixed on triangle EFJ, its position on triangle AFJ' after the rigid motion must be 

 ' 'U A AF AJ . (6-10) 
Then, 

 F'U T U . (6-11) 

Therefore, the transformation matrix can be solved as 

 
1

F

7 25 3 5 6 25
18 54 27 18

25 3 29 5 2 25 3
' ' 54 54 27 54

5 6 5 2 23 5 6
27 27 27 27
0 0 0 1

T A F J U E F J U . 

 (6-12) 
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Fig. 6-2. Determination of revolute axes at A and F. 
 
Then, the revolute axis at F can be determined 

 
T

F
2 166 5 249,0,

83 83
s . (6-13) 

By symmetric operations, directions of other four revolute axes are 

 
T

B
166 498 5 249, ,
83 83 83

s , 
T

C
2 22 33,0,

11 11
s , (6-14a) 

 
T

D
166 498 5 249, ,
83 83 83

s , 
T

E
22 66 33, ,

11 11 11
s . (6-14b) 

Hence, the threefold-symmetric Bricard linkage ABCDEF is formed.  

According to D-H notation [8], its link length of original linkage, which is the 
shortest distance between two adjacent revolute axes As  and Fs , is 

 2 69
23

a , (6-15) 

and its twist angle, which is the angle between these two adjacent revolute axes, is 

 
19 913arccos

913
. (6-16) 

6.2.3 Constructions of the Linkage 
Hereto, those three bottom triangles in the truncated tetrahedron can be folded 

into three adjacent faces in the tetrahedron, while types of joints at G, H, J, K, L, and 
M are not determined yet. If these undetermined joints are still kept as with S joints, 
the mobility of the truncated tetrahedron is 4 calculated with the truss analogy method 
[140]. Thus, more constraints are required to obtain one DOF. One convenient way is 
replacing S joint into R joint. To maintain the threefold-symmetry, G, H, J and K, L, 
M are divided into two groups, which renders two construction schemes, I and II.  
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In scheme I, G, H, J are set with R joints and K, L, M are kept as S joints as 
shown in Fig. 6-3. According to the motion trend of vertices, B will meet K, see Fig. 
6-1(b), revolute axis of joint G must be in the plane which bisects angle BGK. Here 
we can set it along the direction of QG as a special case and the other possible 
solutions are discussed in section 6.5. Joint axes at H and J can be obtained by 
symmetric operation. So 

 
T

G
6 30, ,

3 3
s , 

T

H
2 6 3, ,

2 6 3
s , 

T

J
2 6 3, ,

2 6 3
s , (6-17) 

Similarly, in scheme II, K, L, M are set with R joints and G, H, J are still S joints 
as shown in Fig. 6-5(a). According to the motion trend of vertices, G will meet M, see 
Fig. 6-1(b), revolute axis of joint K must be in the plane which bisects angle GKM, 
and joint axes at L and M can also be obtained by symmetric operation. One special 
case is 

T

K
2 66 5 330, ,

33 33
s ,

T

L
22 66 5 33, ,

11 33 33
s ,

T

M
210 2 35 35, ,
35 35 7

s ,

 (6-18) 
when all three joints intersect at polyhedron's body centre Q. Calculating with the 
truss method, 1m  for both schemes. Their kinematics will be analysed in the 
following two parts, respectively.  

6.3 Kinematics of Scheme I 

6.3.1 Coordinates of Vertices during the Transformation Process 
Figure 6-3 shows the construction of scheme I. As joint axis at each vertex is not 

perpendicular to its connected bars, hexagonal linkage ABCDEF is in fact an 
alternative form of Bricard linkage. The corresponding original linkage can be found 
by the shortest lines between the adjacent joints as links, illustrated by gray thick lines 
in Fig. 6-3. Thus, the geometric parameters of this 6R linkage are 

 2 69A'B' B'C' C'D' D'E' E'F' F'A'
23

a , (6-19) 

and 

 AB CD EF
19 9132 arccos

913
, (6-20a) 

 BC DE FA
19 913arccos

913
, (6-20b) 

extensions at A, C, E and B, D, F are 
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 17 22AA' CC' EE'
92

c , (6-21) 

 5 166BB' DD' FF'
92

d , (6-22) 

respectively. 
 

 

Fig. 6-3. Construction of Scheme I. 
 

In order to analyse the motion of whole truncated tetrahedron, the global 
coordinate system is fixed as O-xyz in Fig. 6-3. Vertices B, D, F are kept on the plane 
xOy while F is fixed on the x axis and moves towards origin O during the 
transformation to tetrahedron while triangle KLM moves downwards along z axis. As 
the result, the Bricard linkage ABCDEF has no fixed link. In order to take the input of 
this linkage as the input of the whole polyhedron, the local coordinate systems 1-6 are 
set up on the original Bricard linkage. First, take the link 61 as reference, the motion 
of Bricard linkage can be described in the system 1. Second, transfer the joints G, H, J 
into global system to derive the motion of triangle KLM, then to obtain the motion of 
whole polyhedron. According to D-H notation, the local coordinate at each joint can 
be set up and the corresponding vertex coordinates are 

 T1 3 5 0,0,cA C E , (6-23) 

 T2 4 6 0,0, dB D F , (6-24) 

where superscript represents the corresponding local coordinate system. According to 
the property of threefold-symmetry, kinematic angles at R joints A, C, E are the same, 
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denoted by , and those at R joints B, D, F are the same, denoted by . 
Transformation matrices among coordinate systems are  

 2(1) 4(3) 6(5)

19 2 2cos 913 sin 125994 sin 69 cos
913 913 23
19 2 2sin 913 cos 125994 cos 69 sin
913 913 23

2 190 125994 913 0
913 913

0 0 0 1

T T T ,

 (6-25) 

 3(2) 5(4) 1(6)

19 2 2cos 913 sin 125994 sin 69 cos
913 913 23
19 2 2sin 913 cos 125994 cos 69 sin
913 913 23
2 190 125994 913 0

913 913
0 0 0 1

T T T

 (6-26) 
Then vertices B, C, D, E, F can be expressed in coordinate system 1 as,  

 1 2
2(1)B T B , (6-27a) 

 1 3
2(1) 3(2)C T T C , (6-27b) 

 1 4
2(1) 3(2) 4(3)D T T T D , (6-27c) 

 1 5
2(1) 3(2) 4(3) 5(4)E T T T T E , (6-27d) 

 1 6
2(1) 3(2) 4(3) 5(4) 6(5)F T T T T T F . (6-27e) 

Meanwhile, as G, H, J are fixed in bars 12, 34, 56, respectively. Thus,  

 2 4 6 69 95 5727 45 166, ,
138 11454 7636

G H J . (6-28) 

G, H, J can be expressed in coordinate system 1 as, 

 1 2
2(1)G T G , 1 4

2(1) 3(2) 4(3)H T T T H , 1 6
2(1) 3(2) 4(3) 5(4) 6(5)J T T T T T J .  

(6-29) 
Then, during the transformation process, this linkage is set in the global frame O-xyz. 
The coordinate of the centre of B, D, F in system 1 is 

 1 1 1 11
3

O B D F . (6-30) 

Thus, the transformation between system 1 and the global system, denoted by 0, is 
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1 1 1 1 1 1 1 1

1 1 1 1 1
1(0) 1 1 1 1 1 1 1 1

, , , ; 0, 0, 0,1B D B F B D B FT F O F O O
B D B F B D B F

.  

(6-31) 
Then, 

 0 1
1(0)A T A , 0 1

1(0)B T B , 0 1
1(0)C T C , (6-32a) 

 0 1
1(0)D T D , 0 1

1(0)E T E , 0 1
1(0)F T F , (6-32b) 

 0 1
1(0)G T G , 0 1

1(0)H T H , 0 1
1(0)J T J . (6-32c) 

As axis of R joint at G, Gs , passes to the body centre and is fixed in system 2, then 

 2
G

1518 217 125994 27 913, ,
207 188991 913

s . (6-33) 

Thus,  

 0 2
G 1(0) 2(1) Gs T T s . (6-34) 

Denoting the kinematic angle at G by G , see Fig. 6-3, then coordinate of K is 

 0 0 0
G G( , )RotK s B , (6-35) 

where 0
G G( , )Rot s  is the matrix of transformation around revolute axis 0

Gs  by 

G . The matrix can be expressed by Rodrigues formula [141]. Meanwhile, the centre 
of triangle KLM is always on z axis, thus the distance between K and z axis keeps 
constant. Then,  

 2 2
K K

1
3

x y , (6-36) 

where Kx  and Ky  are x and y components of K, respectively. Combining Eqs. (6-35) 

and (6-36), G  can be solved, see the following part for details.  

A rigid body rotates around axis T[ , , ]x y zf f ff , which crosses point N , by 

angle , then the transformation matrix can be expressed as  

 ( , , )
0 1
R N RN

T Q f , (6-37) 

where  

 

2

2

2

vers cos vers sin vers sin
vers sin vers cos vers sin
vers sin vers sin vers cos

x x y z x z y

x y z y y z x

x z y y z x z

f f f f f f f
f f f f f f f
f f f f f f f

R .  

(6-38) 
According to the definition of joint kinematic angle at G, K can be viewed as B 
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being rotated around Gs  by G . Therefore 

 G G( , , )K T G s B , (6-39) 

whose x and y components are  

 K 1 1 G 1 Gcos sinx TermA TermB TermC , (6-40) 

 K 2 2 G 2 Gcos siny TermA TermB TermC , (6-41) 

where 

 2
1 B B Bx x y x zTermA f x f f y f f z , (6-42a) 

 2
1 B B B(1 )x x y x zTermB f x f f y f f z , (6-42b) 

 1 B Bz zTermC f y f z , (6-42c) 

 2
2 B B Bx y y x zTermA f f x f y f f z , (6-42d) 

 2
2 B B B(1 )x y y x zTermB f f x f x f f z , (6-42e) 

 2 B Bz xTermC f x f z . (6-42f) 

Denoting  

 Gtan
2

t , (6-43) 

then 

 G 2

2sin
1

t
t

 and 
2

G 2

1cos
1

t
t

. (6-44) 

Considering Eq. (6-36), then  

 4 3 2
4 3 2 1 0 0Term t Term t Term t Term t Term , (6-45) 

where 
2 2 2 2

4 1 2 1 2 1 1 2 23( ) 6( ) 1Term TermA TermA TermB TermB TermATermB TermA TermB , 

(6-46a) 

3 1 1 2 2 1 1 2 212( )Term TermATermC TermA TermC TermB TermC TermB TermC , 

(6-46b) 
2 2 2 2 2 2

2 1 2 1 2 1 26( 2 2 ) 2Term TermA TermA TermB TermB TermC TermC , 

(6-46c) 

1 1 1 2 2 1 1 2 212( )Term TermATermC TermA TermC TermB TermC TermB TermC , 

(6-46d) 
2 2 2 2

0 1 2 1 2 1 1 2 23( ) 6( ) 1Term TermA TermA TermB TermB TermATermB TermA TermB . 

  (6-46e) 
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The quartic equation, Eq. (6-45), can be solved by the standard method or algorithm 
tools. Finally, 

 G 2arctan t . (6-47) 

Then, all vertices are determined by one input variable  or  in the Bricard 
linkage ABCDEF.  

6.3.2 Analysis of the Folding Process 
According to [75], the input-output formula of threefold-symmetric Bricard 

linkage is 

 2 2 2cos sin (cos cos ) (1 cos ) cos cos 2cos sin sin 0 .  
 . (6-48) 

Denoting 

 1 tan
2

t , 2 tan
2

t , (6-49) 

then 

 2 2 2 2 2
1 2 1 2 1 2(4cos 1) 8 cos 3 0t t t t t t . (6-50) 

The solution is 

 
2 2 2 2

1 1 1 1
2 2 2 2

1 1

4cos (1 )(4cos 3)
4cos 1

t t t t
t

t t
. (6-51) 

Thus, 

 

2 2 2 2

2 2 2

4cos tan (1 tan )(4cos tan tan 3)
2 2 2 22arctan

4cos tan tan 1
2 2

. (6-52) 

Considering the deployed configuration, ' ' of '±' in the above equation is adopted. 

Figure 6-4(a) shows kinematic curves among kinematic angles ,  and G .  

increases from d 143.55  to f 266.03  while  increases from d 40.46  

to f 186.90 . G  decreases from 146.44° to 0° during this movement, thus, 
distances between B and K, D and L, F and M decrease.  

To describe the folding process more intuitively, folding angles, which are angles 
between adjacent edges, are employed. Folding angles AFE, BAF, BGK are denoted 
by ρ , δ , 1λ , respectively, see Fig. 6-3. Figure 6-4(b) shows the relationship among 

these folding angles. During the folding process,  decreases from d 120  to 

f 0 , δ  increases at first and then also decreases to 60°, while 1  decreases 
strictly from 120° to 0°. This means that the polyhedron completes the transformation 
from the deployed truncated tetrahedron to the folded tetrahedron. 
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 (a)                                      (b) 

Fig. 6-4. Kinematic curves in the scheme I transformation by the relationships among (a) joint 
kinematic angles, (b) link folding angles. 

 

6.4 Kinematics of Scheme II 

6.4.1 Coordinates of Vertices during the Transformation Process 

In scheme II, as R joints at K, L, M are not connected to the Bricard linkage 

directly, see Fig. 6-5(a), the analytical calculation of its kinematics is more 

complicated. Here, a numerical method combing the truss method [140] and the SVD 

method [43] is adopted. First, based on the truss method, the truss form of polyhedron 

in Fig. 6-5(a) is shown in Fig. 6-5(b), in which each R joint is replaced by two pins 

connected by a rigid bar. To maintain the kinematic equivalence between the 

polyhedral linkage and its truss form, the bar AF with two R joints are replaced by the 

tetrahedron AaFf, the bar MJ with one S joint and one R joint becomes triangular 

piece JMm, the rigid triangular link KLM with three R joints is now a combination of 

three tetrahedrons mKLM, kKLM, lKLM. Following the similar rule, all the rest links 
are replaced by the truss form as shown in Fig. 6-5(b). Totally, there are 21j  joints 

and 57b  bars.  
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(a) 

 

(b) 

Fig. 6-5. Construction of Scheme II, (a) the joint arrangement and (b) its equivalent truss form. 
Its compatibility equations can be established  

 Cd e , (6-53) 
where C is the compatibility matrix with dimensions b by 3j, d is the vector of nodal 
displacements with dimensions 3j by 1, and e is the vector of bar extensions with 
dimensions b by 1 [39]. For the polyhedral linkage, all bars are all rigid, then e=0, the 
rank of the compatibility matrix C, 56r . According to the Maxwell’s rule, the 
mobility is 
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 3 6 3 21 56 6 1m j r . (6-54) 
And the number of self-stress is 

 1s b r . (6-55) 

Obviously, the null space of the compatibility matrix C', which has filtered joints 
and bars on the fixed frame, is the solution of the nodal displacements vector d when 
e 0 . As 1m , the motion path is always determined in the null space. 

The SVD, which can be performed with mathematical tools, of its compatibility 
matrix C' consists of a set of left singular vectors U, a set of right singular vectors W 
and a set of non-zero singular values V. 

 T'C UVW , (6-56) 

where 1 1[ , , , , , ]r r r sU u u u u , 1diag( , , ) 0
0 0

rv v
V , and  

1 1[ , , , ]r rW w w w . 1rw  contains the mode of mechanism [134]. Therefore, the 
motion process can be predicted by the iteration of Eq. (2-17) numerically. 

6.4.2 Analysis of the Folding Process 
Figures 6-6(a) and 6-6(b) show both relationships among kinematic angles and 

among folding angles to observe the folding performance. The result indicates that the 
curves are of the similar trends with those corresponding to scheme I. Meanwhile, 
singular values are recorded during the transformation process in Fig. 6-6(c). The 
smallest value is always equal to zero and the second smallest one never approaches 
zero. This means that the linkage is always with one DOF and no bifurcation.  

6.5 Discussion 

As mentioned in Section 6-2, for the construction of scheme I, the revolute axis 
of joint G could be in any direction on the bisection plane of BGK . The kinematic 

analysis in Section 6-3 was focused on the special case, the axis SG is along QG at the 

deployed truncated tetrahedron. Here we extend our discussion to the general 
directions of axis Gs , which is represented by angle 1  as shown in Fig. 6-7(a). The 

angle is between QG and axis Gs , whose positive direction is defined by the 

right-hand rule with the thumb directing along the normal Gn  of the bisecting plane.  

With the same method proposed in Section 6-3, the relationships between linear 

displacements, angular displacements of triangle KLM about z axis and the folding 
angle ρ  under different 1δ  are plotted in Figs. 6-8(a) and 6-8(b), respectively.   

For δ1 0, the polyhedral linkage can realise the transformation without any 
interference as linear displacement is varying from 2 6 3  to 0 and its angular 
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displacement is varying from 0° to 30° during the folding process. 
For 1 0δ , linear and angular displacements of the top triangle, KLM, do not 

approach zero and 30°, respectively, when 0 . Thus, the completed physical 
folding can not be realised. At the last folding stage for 0 , linear displacement 
of triangle KLM generates large variation for little input angle, i.e., large sway occurs 
due to the large output/input ratio. 

 

 

    (a)                                 (b) 

 

 (c) 

Fig. 6-6. Kinematic behaviours. (a) Input-output curves; (b) the relationship among folding angles; 
and (c) singular values where 3j-6 represents the smallest value. 
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(a) 

 

 (b) 

Fig. 6-7. Variable directions of the revolute axes (a) at G, H, J for scheme I and (b) at K, L, M for 
scheme II. 

 
In the construction of scheme II, to generalise the directions of revolute axes at K, 

L, M, 2δ  is introduced in Fig. 6-7(b). Based on the numerical method in Section 6-4, 
the kinematics of this transformation can be analysed. Plotted in Figs. 6-8(c) and 
6-8(d) are the displacements of rigid triangle KLM about z axis via folding angle .  
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    (a)                                    (b) 

 

    (c)                                    (d) 

Fig. 6-8. Relationship between (a and c) linear displacements, (b and d) angular displacements of 
triangle KLM and the input angle ρ in scheme I and scheme II, respectively. 

 

At the beginning movement in scheme II ( 120 ), negative 2δ  renders the 
Bricard linkage to move along the contrary direction at first. Hence the driver can not 
be setup at any joint of the Bricard linkage in the future applications. Meanwhile it is 
interesting to find that the folding processes at the last folding part of scheme II are 
always similar, which is not effected by the 2δ  significantly, see Figs. 6-8(c) and 

6-8(d). So 2 0δ  are favorite for the physical implement of the transformation. 
One prototype of scheme I was fabricated with the origami technique, where S 

joints at K, L, M were represented by three intersected R joints as shown in Fig. 6-9 
with joint M as an example. And all R joints are realised by the polypropylene panels 
which possesses good folding endurance property. Motion process of the prototype in 
Fig. 6-10 validates the kinematic design. 

6.6 Conclusions 
In this chapter, we proposed a one-DOF transformation between tetrahedron and 

truncated tetrahedron, which have been realised by two schemes of joint arrangement. 
Mobility calculation and kinematic analysis of two constructions show that they are 
both able to realise the transformation with single DOF and no bifurcation.  
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Through the discussion on the folding performance under different joint 
directions for both constructions, possible ranges to realise the transformation without 
physical interference has been found. The final prototype, fabricated with the origami 
technique, validates the designed results. The transformation possesses great potential 
of application in engineering as the expansion/packing ratio in volume is up to 23. 

 

 

Fig. 6-9. Design and fabricate the prototype by replacing S joint with three folding creases. 
 

 

Fig. 6-10. Four folding sequences of the prototype fabricated with the origami technique. 
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Chapter 7 Final Remarks 

The aim of this dissertation was set to develop a method to transform 3D 
linkages to their equivalent truss forms, and to apply this method to analyse 
overconstrained linkages as well as design transformable polyhedrons. In this chapter, 
we summarise the main achievements and highlight future works needed. 

7.1 Main Achievements 

 Truss method 
First, we have established a method to transform 3D linkages to their equivalent 

truss forms. 3D linkages’ kinematics including mobility calculation, motion path 
generation, and bifurcation detection are capable being performed by transforming 
into their truss forms, which has been certified by analysing a threefold-symmetric 
Bricard linkage.  

The equivalence between Jacobian matrix of linkage and equilibrium matrix of 
its truss form has been verified by taking a planar 4R and a spherical 4R linkages as 
examples. And the relationship between angular and linear displacements has been 
derived for other spatial linkages. 

 Non-overconstrained forms of 3D overconstrained linkages  
Second, a novel approach to seek non-overconstrained forms of overconstrained 

linkages has been presented. It was achieved by detecting and removing redundant 
bars based on the truss method.  

We have found that non-overconstrained forms of Bennett 4R linkages and 
Myard 5R linkages are RSSR and RSRRR, respectively. Meanwhile, 
non-overconstrained forms possessing the same kinematic properties as the original 
overconstrained linkages have been demonstrated in Chapter 3 with screw theory, and 
the non-overconstrained forms are also with great fault-tolerance capability.  

This work will widen the engineering application of 3D overconstrained linkages 
as their strict overconstrained geometric conditions have been eliminated.  

 Transformation between cuboctahedron and octahedron 
Third, we have found that two Bennett linkages, connected with four S joints, are 

capable to construct a deployable solid. Determining directions of their R joints, the 
deployable structure can realise the transformation between cuboctahedron and 
octahedron. Kinematics has been studied with the truss method, which shows that the 
linkage can realise the polyhedral transformation with no bifurcation. 

A metal prototype has been fabricated and assembled to validate the proposed 
transformation sequences presented in Chapter 4. 
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 Transformation between truncated octahedron and cube 
Forth, we have proposed a method to realise the transformation between 

truncated octahedron and cube by setting each vertex with one movable joint, R joint 
or S joint.  

We have found that a threefold-symmetric Bricard 6R linkage with certain 
parameters can fold one hexagonal face into three edges, which are perpendicular to 
each other, intersecting at one common vertex. And the parameters have been 
obtained by geometric and kinematic analysis.  

The one-DOF polyhedral transformation has been realised by a multi-loop 
linkage constructed with two of these Bricard linkages and three RSSSRR as well as 
three RSRSSR linkages, where mobility and kinematics have been studied by 
employing the truss method. The folding process has been verified by a 3D printed 
prototype, shown in Chapter 5.  

 Transformation between truncated tetrahedron and tetrahedron 
Finally, the transformation between truncated tetrahedron and tetrahedron has 

also been realised by employing a threefold-symmetric Bricard linkage, and two 
schemes of joint arrangements, with one variable parameter in each scheme, have 
been obtained in Chapter 6.  

By analytical and numerical analysis, kinematics of these two constructions has 
been investigated, which shows that both schemes are with one DOF and with no 
bifurcation. Possible range of the variable parameter to realise the transformation 
without physical interference has been found by parameter study for each scheme. 
The final prototype with the volume expansion/packing ratio up to 23 has been 
fabricated, which has revealed the validation of the method. 

7.2 Future Works 
The research reported in this dissertation is likely to have further developments 

in theoretical study or with the aim to be utilised in practical applications.  
First, the fundamental relationship between the Jacobian matrix of linkage and 

equilibrium matrix of truss has yet to be found. The compatibility matrix, which is the 
transpose of equilibrium matrix, can be considered of Jacobian matrix of displacement 
equations. How to obtain the Jacobian matrix of linkage directly from the equilibrium 
matrix is the remaining challenge, with which the dynamic property of the linkage in 
truss form can be solved directly. Meanwhile, equilibrium matrix of truss can be 
derived as the Jacobian matrix of constrained functions for bars, with which a 
quadratic form can be established to judge the type of mobility, finite or infinitesimal, 
in structural engineering. Therefore, the issue on the difference between singularity 
configuration and motion bifurcation can be studied through the relationship between 
those two matrices. 
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Second, in the research of obtaining non-overconstrained forms from 
overconstrained linkage, it should be pointed out that for the overconstrained 6R 
linkage, there is only one redundant bar in its equivalent truss. Simply removing one 
bar from the truss form with the method in dealing with the Bennett linkage or Myard 
linkage will result in a 7R linkage. How to address this problem is our future research 
focus. Furthermore, we only explore the non-overconstrained forms of the 
overconstrained linkages with kinematic equivalence in this dissertation. Future effort 
should be broadened to the non-overconstrained new linkages by relaxing the bar 
removing rules to other possibilities.  

Third, in the work on polyhedral transformations, we adopted one-DOF 
elemental linkages, Bennett 4R linkage or Bricard 6R linkage in square or hexagonal 
faces in order to realise transformable polyhedrons. We envisage that our method 
could be applied to other paired polyhedrons. For instance, a 1-DOF transformation 
may be realised for transformation between truncated cube and octahedron by folding 
those hollows in the octagon with 8R spatial linkages. 8R linkage in general would 
have more than one DOF. Whether a number of such interlinked linkages could lead 
to a single DOF spatial tiling is a challenge remains to be tackled. On the other hand, 
if other types of joints, such as 2-DOF universal joint, are considered, other solutions 
for one-DOF polyhedral transformation may exist, which requires further 
investigations. Meanwhile, some polyhedrons are able to be tessellated in 3D space 
without any gaps. It is certainly an interesting future work to obtain 3D tessellation of 
deployable polyhedrons with low DOF. 

Last, in this dissertation, truss method was borrowed from structure to solve the 
difficult kinematic problem in mechanism. It is essential to study how to drive these 
linkages to get the optimised performance for the engineering application in the future. 
Meanwhile, whether other structure tools can be applied to mechanism is still a 
question. Moreover, the possibility to apply the mechanism theory for the challenge 
structural problem is an untouched area waiting us to explore. 
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