陈焱
陈焱 教授
天津大学机械工程学院教授, 英国牛津大学博士,
英国机械工程师学会会士(FIMechE),CEng,
国家“优青”,国家“杰青”,博士生导师
Email: yan_chen@tju.edu.cn
办公室 37号楼328室
 
教育经历

2000.01- 2004.01  英国牛津大学,工程科学系 博士学位D. Phil.
1997.08- 1999.12  吉林工业大学,理学院工程力学系 工学硕士M. Eng.
1993.08- 1997.07  吉林工业大学,93级尖子班 工学学士B. Eng.
 
学术经历

2025.01- 至今         主任,“机构理论与装备设计” 教育部重点实验室
2014.01- 2024.12   常务副主任,“机构理论与装备设计” 教育部重点实验室
2019.01- 至今         讲席教授 天津大学,机械工程学院
2012.10- 2018.12   教授 天津大学,机械工程学院
2005.06- 2012.06   Assistant Professor (Faculty Member) 新加坡南洋理工大学,机械与宇航工程学院
2004.07- 2005.03   顾问工程师 Kerridge Computer Company Limited, UK
2004.03- 2004.05   博士后研究助手 英国牛津大学,工程科学系
 
 
学会会员

2024.11-2027.11    教育部中小学科学教育专家委员会委员
2024-2028             中国材料研究学会超材料学会常务理事
2024.03-至今         美国机械工程师学会会士(ASME Fellow)
2024-2027             国际机构学和机器科学联合会International Federation for the Promotion of
                               Mechanism and Machine Science (IFToMM) 宪章委员会主席
2021-至今              中国机械工程学会第十二届理事会理事,青年工作委员会委员,国际交流工作
                               委员会委员
2016-2024             国际机构学和机器科学联合会International Federation for the Promotion of
                               Mechanism and Machine Science (IFToMM) 中国委员会副主席
2016-2018             美国物理学会(APS) 会员
2015-至今              英国机械工程师学会会士(Fellow of IMechE, FIMechE),
                               Institution of Mechanical Engineers UK
2012-至今              国际机构学和机器科学联合会 (IFToMM) 机构与控制技术委员会委员
2011-2024             美国机械工程师协会会员 (Member of ASME)
2008-至今              英国皇家宪章特许终身工程师(CEng),Engineering Council UK
2008-2015             英国机械工程师学会会员(MIMechE)
 
 
研究方向

可动结构、机构运动学、可展结构、折纸工程学、机构超材料、机械智能、机器人。
 
 
主要学术成就、奖励及荣誉

2025.06       2025年教育部科学研究优秀成果奖自然科学一等奖
                    陈焱,马家耀,张霄,顾元庆,厚板折纸的机构理论与设计方法
2024.08       全国科普工作先进工作者
2021.03       天津市杰出人才,天津市人才工作领导小组
2020.09       2020年第二届“科学探索奖”(腾讯, XPLORER-2020-1035)
2020.10       第十六届中国青年科技奖 (中国科协)
2020.06       国务院政府特殊津贴专家
2020.01       2019年全国三八红旗手
2018.10       国家自然科学基金委杰出青年基金
2014.10       国家自然科学基金委优秀青年基金
 
 
学术活动

2025-           国际学术期刊International Journal of Mechanical Sciences,Editorial board member
2024-           国际学术期刊Thin-walled Structures (TWST),特刊主编(Special Issues Editor,负责
                     组织期刊的所有特刊)
2023-           国际学术期刊Transactions of ASME, Journal of Mechanical Design,副主编
2023-2024   国际学术期刊International Journal of Mechanical Engineering,特刊 Guest Editor
2024            大会主席 The 24th IFToMM China International Conference on Mechanism and Machine,
                     Science & Engineering (IFToMM CCMMS 2024), August 12 - 14, 2024, Tianjin, China
2023            大会主席 International Symposium on Structures and Materials
                     Inspired by Origami 2023.10.13-15, Shaoxing, China
2018            大会副主席 The 7th International Meeting on Origami in Science, Mathematics and
                     Education (7OSME), 5-7 September 2018, Oxford, UK
2017            大会主席 The Second International Workshop on Origami Engineering, 2017.11.6-8,
                     Tianjin, China
 
 
代表性论著
 
专著
  • You Z and Chen Y, Motion Structures: Deployable Structural Assemblies of Mechanisms, Taylor and Francis, ISBN: 978-0-415-55489-3, 2011.
  •  
    期刊论文
    1. Weiqi Liu#, Qun Ren#, Yunjie Wang, Zhuang Zhang, Xiuyu Wang, Yongshan Liang, Hao Huang, Jiayao Ma, Hanqing Jiang*, Yan Chen*. Reconfigurable modular origami for tunable 2D symmetry groups. Science Advances, 2025, 11, eady3812.
      (https://www.science.org/doi/10.1126/sciadv.ady3812)
    2. Kaili Xi#, Xiaoyi Jiang#, Dechen Zhao, Guimin Chen, Jiayao Ma*, Yan Chen*. Design and Visualization of a Hierarchical Metamaterial with Tunable Stiffness. Research, 2025, 8:0874.
      ( https://doi.org/10.34133/research.0874)
    3. Yuanqing Gu, Guowu Wei, Chuhan Xu, Yan Chen*. Kirigami Archimedean polyhedrons with one-degree of freedom radial transformation. Small Structures. 2025: e202500343.
      ( https://doi.org/10.1002/sstr.202500343)
    4. Kaili Xi, Jingsong Wei, Xiao Zhang*, Jiayao Ma, Zhong You, Changqing Chen, Yan Chen*. A kinematically Bifurcated Metamaterial for Integrated Logic Operation and Computing. Advanced Science. 2025, e09829.
      ( https://doi.org/10.1002/advs.202509829)
    5. Mengyue Li#, Jiayao Ma#, Xiao-Lei Tang, Yan-Feng Wang*, Yan Chen *. Double-Tubular Origami Metamaterials with Independently Programmable and Tunable Mechanical and Acoustic Properties. Composites Part B: Engineering. 2025, 112804.
      ( https://doi.org/10.1016/j.compositesb.2025.112804)
    6. Chuhan Xu#, Jiayao Ma#, Lei Fu, Xinmeng Liu, Lei Zhang*, Yan Chen *. An Ultra-Fast Rolling Double-Helical Robot Driven by Constant Humidity. Advanced Science. 2025, 2500577.
      ( https://doi.org/10.1002/advs.202500577)
    7. Yang X#, Zhao W#, Ma J#, Fu L, Liu M, Xu C, Hu Z, Lv J, Zhang L*, Chen Y*. Threefold Möbius Machine. Advanced Functional Materials. 2025, 202420815.
      ( https://doi.org/10.1002/adfm.202420815)
    8. Gu Y#, Wei Z#, Wei G, You Z, Ma J*, Chen Y*. Kirigami-inspired three-dimensional metamaterials with programmable isotropic and orthotropic thermal expansion. Advanced Materials. 2024, 2411232.
      ( http://dx.doi.org/10.1002/adma.202411232)
    9. Chai S, Hu Z, Chen Y, You Z, Ma J*. Programmable multi-stability of curved-crease origami structures with travelling folds. Journal of the Mechanics and Physics of Solids. 2024, 193, 105877.
      ( https://doi.org/10.1016/j.jmps.2024.105877)
    10. Wang C, Guo H*, Liu R, Deng Z, Chen Y, You Z*. Reconfigurable Origami-inspired Multistable Metamorphous Structures. Science Advances. 2024, 10(22), eadk8662.
      ( https://doi.org/10.1126/sciadv.adk8662)
    11. Li M#, Chen H#, Ma J*, Chen Y*. An origami metamaterial with distinct mechanical properties in three orthotropic directions. International Journal of Mechanical Sciences. 2024, 283: 109713.
      ( https://doi.org/10.1016/j.ijmecsci.2024.109713)
    12. Zhang Y#, Zhang X#, Li M, Chen Y*. The rigid and flat-foldable kirigami cubes. International Journal of Mechanical Sciences. 2024, 282: 109605.
      ( https://doi.org/10.1016/j.ijmecsci.2024.109605)
    13. Liu W, Cao S, Chen Y*. Mountain-valley crease reconfiguration of 4-crease origami vertices and tessellations. International Journal of Mechanical Sciences, 2024, 273, 109224.
      ( https://doi.org/10.1016/j.ijmecsci.2024.109224)
    14. Xi K#, Chai S#, Ma J*, Chen Y*. Multi-Stability of the Extensible Origami Structures. Advanced Science, 2023, 10(29), 2303454.
      ( https://doi.org/10.1002/advs.202303454)
    15. Hu Z#, Wei Z#, Wang K, Chen Y*, Zhu R*, Huang G, Hu G. Engineering zero modes in transformable mechanical metamaterials. Nature Communications, 2023, 14(1): 1266.
      ( https://doi.org/10.1038/s41467-023-36975-2)
    16. Ma J#, Zang S#, Chen Y*, You Z*. The tessellation rule and properties programming of origami metasheets built with a mixture of rigid and non-rigid square-twist patterns. Engineering, 2022, 17: 82-92. ( https://doi.org/10.1016/j.eng.2022.02.015)
    17. Fu L, Zhao W, Ma J, Yang M, Liu X, Zhang L*, Chen Y*. A Humidity-Powered Soft Robot with Fast Rolling Locomotion. Research, 2022, 2022: 9832901.
      ( https://doi.org/10.34133/2022/9832901)
    18. Ma J, Chai S, Chen Y*. Geometric design, deformation mode, and energy absorption of patterned thin-walled structures. Mechanics of Materials, 2022, 168: 104269.
      ( https://doi.org/10.1016/j.mechmat.2022.104269)
    19. Zhang X, Ma J, Li M, You Z, Wang X, Luo Y, Ma K, Chen Y*. Kirigami-based metastructures with programmable multistability, Proceedings of National Academy of Sciences of the United States of America, 2022, 119(11): e2117649119.
      ( https://doi.org/10.1073/pnas.2117649119)
    20. Liu W, Jiang H, Chen Y*. 3D programmable metamaterials based on reconfigurable mechanism modules. Advanced Functional Materials, 2022, 32(9): 2109865.
      ( https://doi.org/10.1002/adfm.202109865)
    21. Zhang X#, Nie R#, Chen Y*, He B*. Deployable structures: structural design and static/dynamic analysis, Journal of Elasticity, 2021, 146: 199–235.
      ( https://doi.org/10.1007/s10659-021-09860-6)
    22. Ma J, Dai H, Chai S, Chen Y*. Energy absorption of sandwich structures with a kirigami-inspired pyramid foldcore under quasi-static compression and shear. Materials & Design, 2021, 206: 109808.
      (https://doi.org/10.1016/j.matdes.2021.109808)
    23. Gu Y, Wei G*, Chen Y*. Thick-panel origami cube. Mechanism and Machine Theory, 2021, 164: 104411. 
      (https://doi.org/10.1016/j.mechmachtheory.2021.104411)
    24. Ma J#, Zang S#, Feng H, Chen Y*, You Z. Theoretical characterization of a non-rigid-foldable square-twist origami for property programmability. International Journal of Mechanical Sciences, 2021, 189: 105981.
      (https://doi.org/10.1016/j.ijmecsci.2020.105981)
    25. Feng H, Peng R, Zang S, Ma J, Chen Y*. Rigid foldability and mountain-valley crease assignments of square-twist origami pattern. Mechanism and Machine Theory, 2020, 152: 103947.
      (https://doi.org/10.1016/j.mechmachtheory.2020.103947)
    26. Ma J, Feng H, Chen Y*, Hou D, You Z*. Folding of Tubular Waterbomb. Research, 2020, 2020, 1735081.
      (https://doi.org/10.34133/2020/1735081)
    27. Mukhopadhyay T, Ma J, Feng H, Hou D, Gattas J, Chen Y*, You Z*. Programmable stiffness and shape modulation in origami materials: Emergence of a distant actuation feature. Applied Materials Today, 2020, 19, 100537.
      (https://doi.org/10.1016/j.apmt.2019.100537)
    28. Chen Y, Lv W, Peng R, Wei G*. Mobile assemblies of four-spherical-4R-integrated linkages and the associated four-crease-integrated rigid origami patterns. Mechanism and Machine Theory, 2019, 142, 103613.
      (https://doi.org/10.1016/j.mechmachtheory.2019.103613)
    29. Zhang X, Chen Y*. The diamond thick-panel origami and the corresponding mobile assemblies of plane-symmetric Bricard linkages. Mechanism and Machine Theory, 2018, 130, 585-604.
      (https://doi.org/10.1016/j.mechmachtheory.2018.09.005)
    30. Feng H, Peng R, Ma J, Chen Y*. Rigid foldability of generalized triangle twist origami pattern and its derived 6R linkages. Journal of Mechanisms and Robotics, 2018, 10(5), 051003-051003-13.
      (https://doi.org/10.1115/1.4040439)
    31. Feng H, Ma J, Chen Y*, You Z. Twist of tubular mechanical metamaterials based on waterbomb origami. Scientific Reports, 2018, 8(1), 9522.
      (https://doi.org/10.1038/s41598-018-27877-1)
    32. Ma J, Song J, Chen Y*. An Origami-inspired Structure with Graded Stiffness. International Journal of Mechanical Sciences, 2018, 136, 134–142.
      (http://dx.doi.org/10.1016/j.ijmecsci.2017.12.026)
    33. Chen Y, Lv W, Li J, You Z*. An extended family of rigidly foldable origami tubes. Journal of Mechanisms and Robotics, 2017, 9(2), 021002.
      (http://dx.doi.org/10.1115/1.4035559)
    34. Feng H, Chen Y*, Dai Jian S, Gogu G. Kinematic study of the general plane-symmetric Bricard linkage and its bifurcation variations. Mechanism and Machine Theory, 2017, 116, 89–104.
      (http://dx.doi.org/10.1016/j.mechmachtheory.2017.05.019)
    35. Liu X, Gattas J M, Chen Y*. One-DOF Superimposed Rigid Origami with Multiple States. Scientific Reports, 2016, 6, 36883.
      (http://dx.doi.org/10.1038/srep36883)
    36. Ma J, Hou D, Chen Y*, You Z. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: numerical simulation. Thin-Walled Structures, 2016, 100, 38-47.
      (http://dx.doi.org/10.1016/j.tws.2015.11.023)
    37. Liu S, Lv W, Chen Y*, Lu G X. Deployable prismatic structures with rigid origami patterns. Trans. ASME. Journal of Mechanisms and Robotics, 2015, 8(3), 031002.
      (http://dx.doi.org/10.1115/1.4031953)
    38. Chen Y, Feng H, Ma J, Peng R, You Z*. Symmetric waterbomb origami. Proc. R. Soc. A , 2016, 472, 20150846.
      (http://dx.doi.org/10.1098/rspa.2015.0846) (Journal cover paper)
    39. Chen Y, Peng R, You Z, Origami of thick panels, Science, 349 (2015) 396-400.
      (http://dx.doi.org/10.1126/science.aab2870)
    40. Song C Y, Feng H, Chen Y*, Chen I-M, Kang R. Reconfigurable mechanism generated from the network of Bennett linkages. Mechanism and Machine Theory, 2015, 88, 49-62.
      (http://dx.doi.org/10.1016/j.mechmachtheory.2015.02.003)
    41. Song C Y, Chen Y*,Chen I-M. A 6R Linkage Reconfigurable between the Line-symmetric Bricard Linkage and the Bennett Linkage. Mechanism and Machine Theory, 2013, 70, 278-292.
      ( http://dx.doi.org/10.1016/j.mechmachtheory.2013.07.013 )
    42. Chen Y*, Chai W H. Bifurcation of a special line and plane symmetric Bricard linkage. Mechanism and Machine Theory, 2011, 46(4), 515-533.
      ( http://dx.doi.org/10.1016/j.mechmachtheory.2010.11.015 )
    43. Chen Y, You Z*. Two-fold Symmetrical 6R Foldable Frame and its Bifurcations. International Journal of Solids and Structures, 2009, 46(25-26), 4504-4514.
      (http://dx.doi.org/10.1016/j.ijsolstr.2009.09.012 )
    44. Liu S Y, Chen Y*. Myard linkage and its mobile assemblies. Mechanism and Machine Theory, 2009, 44(10), 1950-1963.
      (http://dx.doi.org/10.1016/j.mechmachtheory.2009.05.001 )
    45. Chen Y, You Z*. An extended Myard linkage and its derived 6R linkage. Trans. ASME. Journal of Mechanical Design, 2008, 130(5).
      (http://dx.doi.org/10.1115/1.2885506 )
    46. Chen Y, You Z*. On mobile assemblies of Bennett linkages. Proceedings of the Royal Society A (Mathematical, Physical and Engineering Sciences), 2008, 464(2093) 1275-1293.
      (http://dx.doi.org/10.1098/rspa.2007.0188 )
    47. Chen Y, You Z*. Spatial 6R linkages based on the combination of two Goldberg 5R linkages. Mechanism and Machine Theory 2007, 42(11), 1484-1498.
      (http://dx.doi.org/10.1016/j.mechmachtheory.2006.12.008 )
    48. Chen Y, You Z*. Square deployable frame for space application: Part I: Theory. Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, 2006, 220(4), 347–354.
      (http://dx.doi.org/10.1243/09544100JAERO68)
    49. Chen Y, You Z*. Mobile assemblies based on the Bennett linkage. Proceedings of the Royal Society A (Mathematical, Physical and Engineering Sciences), 2005, 461, 1229 – 1245.
      (http://dx.doi.org/10.1098/rspa.2004.1383)
    50. Chen Y, You Z, Tarnai T*. Threefold-symmetric Bricard linkages for Deployable Structures. International Journal of Solids and Structures, 2005, 42 (8) 2287-2301.
      (http://dx.doi.org/10.1016/j.ijsolstr.2004.09.014 )