1. Chai S, Hu Z, Chen Y, You Z, Ma J*. Programmable multi-stability of curved-crease origami structures with travelling folds. Journal of the Mechanics and Physics of Solids. 2024, 193, 105877.
    ( https://doi.org/10.1016/j.jmps.2024.105877)
  2. Gu Y#, Wei Z#, Wei G, You Z, Ma J*, Chen Y*. Kirigami-inspired three-dimensional metamaterials with programmable isotropic and orthotropic thermal expansion. Advanced Materials. 2024, 2411232.
    ( http://dx.doi.org/10.1002/adma.202411232)
  3. Chen H#, Chai S#, Ma J*. Energy absorption of the kirigami-inspired pyramid foldcore sandwich structures under low-velocity impact. International Journal of Mechanical Sciences. 2024. 284: 109774.
    ( https://doi.org/10.1016/j.ijmecsci.2024.109774)
  4. Li M, Peng R, Ma J*, Chen Y*. Programming the mechanical properties of double-corrugated metamaterials by varying mountain-valley assignments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2024, 382: 20240004.
    ( https://doi.org/10.1098/rsta.2024.0004)
  5. Li M#, Chen H#, Ma J*, Chen Y*. An origami metamaterial with distinct mechanical properties in three orthotropic directions. International Journal of Mechanical Sciences. 2024, 283: 109713.
    ( https://doi.org/10.1016/j.ijmecsci.2024.109713)
  6. Zhang Y#, Zhang X#, Li M, Chen Y*. The rigid and flat-foldable kirigami cubes. International Journal of Mechanical Sciences. 2024, 282: 109605.
    ( https://doi.org/10.1016/j.ijmecsci.2024.109605)
  7. Liang Z#, Chai S#, Ding Q, Xiao K, Liu K, Ma J*, Ju J*. Residual Stress-Driven Non-Euclidean Morphing in Origami Structures. Advanced Intelligent Systems. 2024, 6(12): 2400246.
    ( http://doi.org/10.1002/aisy.202400246)
  8. Wang C, Guo H*, Liu R, Deng Z, Chen Y, You Z*. Reconfigurable Origami-inspired Multistable Metamorphous Structures. Science Advances. 2024, 10(22), eadk8662.
    ( https://doi.org/10.1126/sciadv.adk8662)
  9. Liu W, Song Y, Chen Y*, Zhang X*. Reconfigurable thick-panel structures based on a stacked origami tube. Journal of Mechanisms and Robotics, 2024, 16(12): 121005.
    ( https://doi.org/10.1115/1.4064836)
  10. Liu W, Cao S, Chen Y*. Mountain-valley crease reconfiguration of 4-crease origami vertices and tessellations. International Journal of Mechanical Sciences, 2024, 273, 109224.
    ( https://doi.org/10.1016/j.ijmecsci.2024.109224)
  11. Gu Y, Zhang X, Wei G*, Chen Y*. Sarrus-inspired deployable polyhedral mechanisms. Mechanism and Machine Theory, 2024, 193, 105564.
    ( https://doi.org/10.1016/j.mechmachtheory.2023.105564)
  12. Gu Y, Zhang X, Wei G*, Chen Y*. Hamiltonian-path based constraint reduction for deployable polyhedral mechanisms. Mechanism and Machine Theory, 2024, 193, 105563.
    ( https://doi.org/10.1016/j.mechmachtheory.2023.105563)
  13. Yang Y#, Zhang X#, Maiolino P, Chen Y*, You Z*. Linkage-based three-dimensional kinematic metamaterials with programmable constant Poisson’s ratio. Materials & Design, 2023, 233, 112249.
    ( https://doi.org/10.1016/j.matdes.2023.112249)
  14. Lv W#, Chen Y*, Zhang J. Thick-Panel Origami Tubes With Hexagonal Cross-Sections. Journal of Mechanisms and Robotics, 2023, 15, 051012.
    ( https://doi.org/10.1115/1.4056082)
  15. Wei Z#, Hu Z#, Zhu R*, Chen Y*, Hu G. A transformable anisotropic 3D penta-mode metamaterial. Materials & Design, 2023, 234, 112306.
    ( https://doi.org/10.1016/j.matdes.2023.112306)
  16. Zhao C#, Li M#, Zhou X, Liu T, Xing J, Chen Y, Zhang X*. Deployable structure based on double-layer miura-ori pattern. Mechanics Research Communications, 2023, 131, 104152.
    ( https://doi.org/10.1016/j.mechrescom.2023.104152)
  17. Xi K#, Chai S#, Ma J*, Chen Y*. Multi-Stability of the Extensible Origami Structures. Advanced Science, 2023, 10(29), 2303454.
    ( https://doi.org/10.1002/advs.202303454)
  18. Zhang Y#, Gu Y#, Chen Y, Li M*, Zhang X*. One-DOF Rigid and Flat-Foldable Origami Polyhedrons with Slits. Acta Mechanica Solida Sinica, 2023, 36, 479–490.
    ( https://doi.org/10.1007/s10338-023-00404-0)
  19. Li M, Zhou Z, Hao B, Yu C, Chen Y, Ma J*. Design and deformation analysis of an inflatable metallic cylinder based on the Kresling origami pattern. Thin-Walled Structures, 2023, 188: 110859.
    ( https://doi.org/10.1016/j.tws.2023.110859)
  20. Zhang X, Zhou X, Li M*, Liu T, Xing J, Lv W, Yang F, Chen Y. Three-dimensional mobile assemblies based on threefold-symmetric Bricard linkages. Journal of Mechanisms and Robotics, 2023, 16(4): 044501.
    ( https://doi.org/10.1115/1.4062131)
  21. Zhang Y#, Li M#, Chen Y, Peng R, Zhang X*. Thick-panel origami-based parabolic cylindrical antenna. Mechanism and Machine Theory, 2023, 182: 105233.
    ( https://doi.org/10.1016/j.mechmachtheory.2023.105233)
  22. Hu Z#, Wei Z#, Wang K, Chen Y*, Zhu R*, Huang G, Hu G. Engineering zero modes in transformable mechanical metamaterials. Nature Communications, 2023, 14(1): 1266.
    ( https://doi.org/10.1038/s41467-023-36975-2)
  23. Gu Y, Chen Y*. Deployable origami polyhedrons with one-DOF radial motion. Mechanism and Machine Theory, 2023, 184, 105393.
    ( https://doi.org/10.1016/j.mechmachtheory.2023. 105293)
  24. Ouyang H#, Gu Y#, Gao Z*, Hu L, Zhang Z, Ren J, Li B, Sun J, Chen Y*, Ding X*. Kirigami-inspired thermal regulator. Physical Review Applied, 2023, 19(1): L011001.
    ( https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.19.L011001)
  25. Zang S#, Ma J#, You Z, Chen Y*. Deformation characteristics and mechanical properties tuning of a non-rigid square-twist origami structure with rotational symmetry. Thin-Walled Structures, 2022, 179: 109570.
    ( https://doi.org/10.1016/j.tws.2022.109570)
  26. Ma J#, Zang S#, Chen Y*, You Z*. The tessellation rule and properties programming of origami metasheets built with a mixture of rigid and non-rigid square-twist patterns. Engineering, 2022, 17: 82-92.
    ( https://doi.org/10.1016/j.eng.2022.02.015)
  27. Sadiq A#, Gu Y#, Luo Y, Chen Y*, Ma K*. A gain-enhanced reconfigurable radiation array with mechanically driven system and directive elements. Frontiers of Mechanical Engineering, 2022, 17(4): 60.
    ( https://doi.org/10.1007/s11465-022-0716-0)
  28. Fu L, Zhao W, Ma J, Yang M, Liu X, Zhang L*, Chen Y*. A Humidity-Powered Soft Robot with Fast Rolling Locomotion. Research, 2022, 2022: 9832901.
    ( https://doi.org/10.34133/2022/9832901)
  29. Yang J, Zhang X, Chen Y, You Z, Folding arrays of uniform-thickness panels to compact bundles with a single degree of freedom. Proceedings of the Royal Society A, 2022, 478: 20220043.
    ( http://doi.org/10.1098/rspa.2022.0043)
  30. Ma J, Chai S, Chen Y*. Geometric design, deformation mode, and energy absorption of patterned thin-walled structures. Mechanics of Materials, 2022, 168: 104269.
    ( https://doi.org/10.1016/j.mechmat.2022.104269)
  31. Yu J, Ma J*. Design and shear analysis of an angled morphing wing skin module. Applied Sciences, 2022, 12(6): 3092.
    ( https://doi.org/10.3390/app12063092)
  32. Zhang X, Ma J, Li M, You Z, Wang X, Luo Y, Ma K, Chen Y*. Kirigami-based metastructures with programmable multistability, Proceedings of National Academy of Sciences of the United States of America, 2022, 119(11): e2117649119.
    ( https://doi.org/10.1073/pnas.2117649119)
  33. Ma J#, Jiang X#, Chen Y*. A 3D modular meta-structure with continuous mechanism motion and bistability. Extreme Mechanics Letters, 2022, 51: 101584.
    ( https://doi.org/10.1016/j.eml.2021.101584)
  34. Yang F, Zhang M, Ma J, You Z, Yu Y, Chen Y*, Paulino G*. Design of single degree-of-freedom triangular Resch patterns with thick-panel origami, Mechanism and Machine Theory, 2022, 169: 104650.
    ( https://doi.org/10.1016/j.mechmachtheory.2021.1046505)
  35. Liu W, Jiang H, Chen Y*. 3D programmable metamaterials based on reconfigurable mechanism modules. Advanced Functional Materials, 2022, 32(9): 2109865.
    ( https://doi.org/10.1002/adfm.202109865)
  36. Zhang X#, Nie R#, Chen Y*, He B*. Deployable structures: structural design and static/dynamic analysis, Journal of Elasticity, 2021, 146: 199–235.
    ( https://doi.org/10.1007/s10659-021-09860-6)
  37. Ma J, Dai H, Chai S, Chen Y*. Energy absorption of sandwich structures with a kirigami-inspired pyramid foldcore under quasi-static compression and shear. Materials & Design, 2021, 206: 109808.
    (https://doi.org/10.1016/j.matdes.2021.109808)
  38. Gu Y, Wei G*, Chen Y*. Thick-panel origami cube. Mechanism and Machine Theory, 2021, 164: 104411. 
    (https://doi.org/10.1016/j.mechmachtheory.2021.104411)
  39. Yin X#, Hu X#, Li T*, Ma J*. A new ring stent with graded geometry for treating coarctation of curved aorta arteries. Journal of Mechanics in Medicine and Biology, 2021, 21(02): 2150014.
    (https://doi.org/10.1142/S0219519421500147)
  40. Wang S, Yang X, Chen Y, Ma J*. A theoretical design of a bellow-shaped statically balanced compliant mechanism. Mechanism and Machine Theory, 2021, 161(3): 104295.
    (https://doi.org/10.1016/j.mechmachtheory.2021.104295)
  41. Ma J#, Zang S#, Feng H, Chen Y*, You Z. Theoretical characterization of a non-rigid-foldable square-twist origami for property programmability. International Journal of Mechanical Sciences, 2021, 189: 105981.
    (https://doi.org/10.1016/j.ijmecsci.2020.105981)
  42. Gu Y, Chen Y*. Origami cubes with one-DOF rigid and flat foldability. International Journal of Solids and Structures, 2020, 207, 250-261. 
    (https://doi.org/10.1016/j.ijsolstr.2020.09.008)
  43. Liu W, Chen Y*. A double spherical 6R linkage with spatial crank-rocker characteristics inspired by kirigami. Mechanism and Machine Theory, 2020, 153: 103995.
    (https://doi.org/10.1016/j.mechmachtheory.2020.103995)
  44. Feng H, Peng R, Zang S, Ma J, Chen Y*. Rigid foldability and mountain-valley crease assignments of square-twist origami pattern. Mechanism and Machine Theory, 2020, 152: 103947.
    (https://doi.org/10.1016/j.mechmachtheory.2020.103947)
  45. Feng H#, Lv W#, Ma J, Chang W, Chen Y*, Wang J. Helical structures with switchable and hierarchical chirality. Applied Physics Letters, 2020, 116(19): 194102.
    (https://doi.org/10.1063/5.0005336)
  46. Ma J, Feng H, Chen Y*, Hou D, You Z*. Folding of Tubular Waterbomb. Research, 2020, 2020, 1735081.
    (https://doi.org/10.34133/2020/1735081)
  47. Yuan L, Dai H, Song J, Ma J*, Chen Y. The behavior of a functionally graded origami structure subjected to quasi-static compression. Materials & Design, 2020, 189, 108494.
    (https://doi.org/10.1016/j.matdes.2020.108494)
  48. Mukhopadhyay T, Ma J, Feng H, Hou D, Gattas J, Chen Y*, You Z*. Programmable stiffness and shape modulation in origami materials: Emergence of a distant actuation feature. Applied Materials Today, 2020, 19, 100537.
    (https://doi.org/10.1016/j.apmt.2019.100537)
  49. Yang F, You Z, Chen Y*. Mobile assembly of two Bennett linkages and its application to transformation between cuboctahedron and octahedron. Mechanism and Machine Theory, 2020, 145: 103698.
    (https://doi.org/10.1016/j.mechmachtheory.2019.103698)
  50. Shang Z, Ma J*, You Z, Wang S*. Lateral indentation of a reinforced braided tube with tunable stiffness. Thin-Walled Structures, 2020, 149, 106608.
    (https://doi.org/10.1016/j.tws.2020.106608)
  51. Yang F, You Z, Chen Y*. Foldable Hexagonal Structures based on Threefold-Symmetric Bricard Linkage. Journal of Mechanisms and Robotics, 2020, 12(1), 011012.
    (https://doi.org/10.1115/1.4045039)
  52. Shang Z, Ma J*, You Z, Wang S*. A foldable manipulator with tunable stiffness based on braided structure. JJ Biomed Mater Res Part B, 2020, 108(2), 316-325.
    (https://doi.org/10.1002/jbm.b.34390)
  53. Chen Y, Lv W, Peng R, Wei G*. Mobile assemblies of four-spherical-4R-integrated linkages and the associated four-crease-integrated rigid origami patterns. Mechanism and Machine Theory, 2019, 142, 103613.
    (https://doi.org/10.1016/j.mechmachtheory.2019.103613)
  54. Chen X, Feng H, Ma J, Chen Y*. A plane linkage and its tessellation for deployable structure. Mechanism and Machine Theory, 2019, 142, 103605.
    (https://doi.org/10.1016/j.mechmachtheory.2019.103605)
  55. Yuan L, Ma J*, You Z. Energy absorption capability of origami automobile bumper system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(18), 6577–6587.
    (https://doi.org/10.1177/0954406219862307)
  56. Yuan L, Shi H, Ma J*, You Z. Quasi-Static Impact of Origami Crash Boxes with Various Profiles. Thin-Walled Structures, 2019, 141, 435-446.
    (https://doi.org/10.1016/j.tws.2019.04.028)
  57. Shang Z, Ma J*, Li J, Zhang Z, Zhang G, Wang S*. Self-forcing Mechanism of the Braided Tube as a Robotic Gripper. Journal of Mechanisms and Robotics, 2019, 11(5), 051002.
    (https://doi.org/10.1115/1.4043686)
  58. Ma J, Dai H, Shi M, Yuan L*, Chen Y, You Z. Quasi-static axial crushing of hexagonal origami crash boxes as energy absorption devices. Mechanical Sciences, 2019, 10, 133-143.
    (https://www.mech-sci.net/10/133/2019/)
  59. Zhang X, Chen Y*. Vertex-Splitting on a Diamond Origami Pattern. Journal of Mechanisms and Robotics, 2019,11(3), 031014.
    (https://doi.org/10.1115/1.4043214)
  60. Lee, T.U, Yang X, Ma J*, Chen Y, Gattas, J. Elastic buckling shape control of thin-walled cylinder using pre-embedded curved-crease origami patterns, International Journal of Mechanical Sciences, 2019, 151, 322-330.
    (https://doi.org/10.1016/j.ijmecsci.2018.11.005)
  61. Shang Z, Wang S, You Z, Ma J*. A Hybrid Tubular Braid with Improved Longitudinal Stiffness for Medical Catheter. Journal of Mechanics in Medicine and Biology, 2019, 19(3), 1950003.
    (https://doi.org/10.1142/S0219519419500039)
  62. Zhang X, Chen Y*. The diamond thick-panel origami and the corresponding mobile assemblies of plane-symmetric Bricard linkages. Mechanism and Machine Theory, 2018, 130, 585-604.
    (https://doi.org/10.1016/j.mechmachtheory.2018.09.005)
  63. Feng H, Peng R, Ma J, Chen Y*. Rigid foldability of generalized triangle twist origami pattern and its derived 6R linkages. Journal of Mechanisms and Robotics, 2018, 10(5), 051003-051003-13.
    (https://doi.org/10.1115/1.4040439)
  64. Feng H, Ma J, Chen Y*, You Z. Twist of tubular mechanical metamaterials based on waterbomb origami. Scientific Reports, 2018, 8(1), 9522.
    (https://doi.org/10.1038/s41598-018-27877-1)
  65. Peng R, Ma J, Chen Y*. The Effect of Mountain-Valley Folds on the Rigid Foldability of Double Corrugated Pattern. Mechanism and Machine Theory, 2018, 128, 461-474.
    (https://doi.org/10.1016/j.mechmachtheory.2018.06.012)
  66. Chen Y*, Yang F, You Z. Transformation of polyhedrons. International Journal of Solids and Structures, 2018, 138, 193-204.
    (https://doi.org/10.1016/j.ijsolstr.2018.01.012)
  67. Zhang X, Chen Y*. Mobile assemblies of Bennett linkages from four-crease origami patterns. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2018, 474(2210), 20170621.
    (http://dx.doi.org/10.1098/rspa.2017.0621)
  68. Ma J, Song J, Chen Y*. An Origami-inspired Structure with Graded Stiffness. International Journal of Mechanical Sciences, 2018, 136, 134–142.
    (http://dx.doi.org/10.1016/j.ijmecsci.2017.12.026)
  69. Ma J, Hou D, Chen Y*, You Z. Peak stress relief of cross folding origami. Thin-Walled Structures, 2018, 123, 155-161.
    (http://dx.doi.org/10.1016/j.tws.2017.11.025)
  70. Yang F, Chen Y*. One-DOF Transformation between Tetrahedron and Truncated Tetrahedron. Mechanism and Machine Theory, 2018, 121, 169-183.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2017.10.018)
  71. Shang H, Wei D, Kang R*, Chen Y*. Gait Analysis and Control of a Deployable Robot. Mechanism and Machine Theory, 2018, 120, 107-119.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2017.09.020)
  72. Chen Y, Lv W, Li J, You Z*. An extended family of rigidly foldable origami tubes. Journal of Mechanisms and Robotics, 2017, 9(2), 021002.
    (http://dx.doi.org/10.1115/1.4035559)
  73. Feng H, Chen Y*, Dai Jian S, Gogu G. Kinematic study of the general plane-symmetric Bricard linkage and its bifurcation variations. Mechanism and Machine Theory, 2017, 116, 89–104.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2017.05.019)
  74. Gattas J M, Lv W, Chen Y*. Rigid-foldable tubular arches. Engineering Structures, 2017, 145, 246–253.
    (http://dx.doi.org/10.1016/j.engstruct.2017.04.037)
  75. Liu X, Gattas J M, Chen Y*. One-DOF Superimposed Rigid Origami with Multiple States. Scientific Reports, 2016, 6, 36883.
    (http://dx.doi.org/10.1038/srep36883)
  76. Chen Y, Feng H, Ma J, Peng R, You Z*. Symmetric waterbomb origami. Proc. R. Soc. A , 2016, 472, 20150846.
    (http://dx.doi.org/10.1098/rspa.2015.0846) (Journal cover paper)
  77. Yang F, Chen Y*, Kang R, Ma J. Truss transformation method to obtain the non-overconstrained forms of 3D overconstrained linkages. Mechanism and Machine Theory, 2016, 102, 149–166.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2016.04.005)
  78. Ma J, Hou D, Chen Y*, You Z. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: numerical simulation. Thin-Walled Structures, 2016, 100, 38-47.
    (http://dx.doi.org/10.1016/j.tws.2015.11.023)
  79. Liu S, Lv W, Chen Y*, Lu G X. Deployable prismatic structures with rigid origami patterns. Trans. ASME. Journal of Mechanisms and Robotics, 2015, 8(3), 031002.
    (http://dx.doi.org/10.1115/1.4031953)
  80. Xie R, Chen Y, Gattas J M*. Parametrisation and application of cube and eggbox-type folded geometries. International Journal of Space Structures, 2015, 30(2), 99-110.
    (http://dx.doi.org/10.1260/0266-3511.30.2.99)
  81. Chen Y, Peng R, You Z*. Origami of thick panels. Science, 2015, 349(6246), 396-400.
    (http://dx.doi.org/10.1126/science.aab2870)
  82. Song C Y, Feng H, Chen Y*, Chen I-M, Kang R. Reconfigurable mechanism generated from the network of Bennett linkages. Mechanism and Machine Theory, 2015, 88, 49-62.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2015.02.003)
  83. Liu S C, Lu G X*, Chen Y, Leong Y W. Deformation of the Miura-Ori Patterned Sheet. International Journal of Mechanical Sciences, 2015, 99, 130-142.
    (http://dx.doi.org/10.1016/j.ijmecsci.2015.05.009)
  84. Song C Y, Chen Y*, Chen I-M. Kinematic Study of the Original and Revised General Line-symmetric Bricard 6R Linkages. Trans. ASME. Journal of Mechanisms and Robotics, 2014, 6(3), 031002.
    (http://dx.doi.org/10.1115/1.4026339 )
  85. Song C Y, Chen Y*,Chen I-M. A 6R Linkage Reconfigurable between the Line-symmetric Bricard Linkage and the Bennett Linkage. Mechanism and Machine Theory, 2013, 70, 278-292.
    ( http://dx.doi.org/10.1016/j.mechmachtheory.2013.07.013 )
  86. Song J, Chen Y*, Lu G. Light-Weight Thin-Walled Structures with Patterned Windows under Axial Crushing. International Journal of Mechanical Sciences, 2013, 66, 239-248.
    (http://dx.doi.org/10.1016/j.ijmecsci.2012.11.014 )
  87. Zhang Y, Chen Y*, Fan H. Spreading of giant liposomes on anisotropically patterned substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 1–6.
    (http://dx.doi.org/10.1016/j.colsurfa.2012.11.036 )
  88. Song C Y, Chen Y*. Multiple Linkage Forms and Bifurcation Behaviours of the Double-subtractive-Goldberg 6R Linkage. Mechanism and Machine Theory, 2012, 57, 95–110.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2012.07.002 )
  89. Song J, Chen Y*, Lu G. Axial crushing of thin-walled structures with origami patterns. Thin-Walled Structures, 2012, 54, 65–71.
    (http://dx.doi.org/10.1016/j.tws.2012.02.007 )
  90. Song C Y, Chen Y*. A family of mixed double-Goldberg 6R linkages. Proceedings of the Royal Society A-Mathematical, Physical and Engineering Sciences, 2012, 468, 871-890. 
    (http://dx.doi.org/10.1098/rspa.2011.0345)
  91. Zhang Y, Chen Y*, Fan H. Giant liposome spreading on a silicon wall. Journal of Applied Physics, 2011, 110, 034904.
    (http://dx.doi.org/10.1063/1.3614497 )
  92. Song C Y, Chen Y*. A spatial 6R linkage derived from subtractive Goldberg 5R linkages. Mechanism and Machine Theory, 2011, 46(8), 1097-1106.
    ( http://dx.doi.org/10.1016/j.mechmachtheory.2011.03.006 )
  93. Chen Y*, Chai W H. Bifurcation of a special line and plane symmetric Bricard linkage. Mechanism and Machine Theory, 2011, 46(4), 515-533.
    ( http://dx.doi.org/10.1016/j.mechmachtheory.2010.11.015 )
  94. Yan L, Chen I*, Yeo S, Chen Y, Yang G. A high-dexterity low-degree-of-freedom hybrid manipulator structure for robotic lion dance. Journal of Zhejiang University - Science A, 2010, 11(4), 240-249.
    (http://dx.doi.org/10.1631/jzus.A1000028 )
  95. Zhang Y, Fan H, Huang H, Chen Y*. Droplets atop a wrinkled substrate. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 2010, 224(11), 2459-2467.
    (http://dx.doi.org/10.1243/09544062JMES2069 )
  96. Chai W H, Chen Y*. The line-symmetric octahedral Bricard linkage and its structural closure. Mechanism and Machine Theory, 2010, 45, 772-779.
    ( http://dx.doi.org/10.1016/j.mechmachtheory.2009.12.007  )
  97. Chen Y, You Z*. Two-fold Symmetrical 6R Foldable Frame and its Bifurcations. International Journal of Solids and Structures, 2009, 46(25-26), 4504-4514.
    (http://dx.doi.org/10.1016/j.ijsolstr.2009.09.012 )
  98. Liu S Y, Chen Y*. Myard linkage and its mobile assemblies. Mechanism and Machine Theory, 2009, 44(10), 1950-1963.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2009.05.001 )
  99. Fan H*, Chen Y, Sze K Y. Phenomenological modeling for pore opening, closure and rupture of the GUV membrane. International Journal of Applied Mechanics, 2009, 1(02), 327-338.
    (http://dx.doi.org/10.1142/S1758825109000149 )
  100. Chen Y, You Z*. An extended Myard linkage and its derived 6R linkage. Trans. ASME. Journal of Mechanical Design, 2008, 130(5).
    (http://dx.doi.org/10.1115/1.2885506 )
  101. Chen Y, You Z*. On mobile assemblies of Bennett linkages. Proceedings of the Royal Society A (Mathematical, Physical and Engineering Sciences), 2008, 464(2093) 1275-1293.
    (http://dx.doi.org/10.1098/rspa.2007.0188 )
  102. Chen Y, You Z*. Spatial 6R linkages based on the combination of two Goldberg 5R linkages. Mechanism and Machine Theory 2007, 42(11), 1484-1498.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2006.12.008 )
  103. Chen Y, You Z*. Square deployable frame for space application: Part II: Realization. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221(1), 37-45.
    (http://dx.doi.org/10.1243/09544100JAERO100)
  104. Chen Y, You Z*. Square deployable frame for space application: Part I: Theory. Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, 2006, 220(4), 347–354.
    (http://dx.doi.org/10.1243/09544100JAERO68)
  105. Chen Y, You Z*. Mobile assemblies based on the Bennett linkage. Proceedings of the Royal Society A (Mathematical, Physical and Engineering Sciences), 2005, 461, 1229 – 1245.
    (http://dx.doi.org/10.1098/rspa.2004.1383)
  106. Chen Y, You Z, Tarnai T*. Threefold-symmetric Bricard linkages for Deployable Structures. International Journal of Solids and Structures, 2005, 42 (8) 2287-2301.
    (http://dx.doi.org/10.1016/j.ijsolstr.2004.09.014 )
  107. Chen Y, Baker J E*. Using a Bennett linkage as a connector between other Bennett loops. Proceeding of Institution of Mechanical Engineers, Journal of Multi-body Dynamics, 2005, 219 (2), 177-185.
    (http://dx.doi.org/10.1243/146441905X9935)

中文论文

  1. 陈焱, 顾元庆. 折纸运动学综述. 力学进展, 2023, 53(1): 1-44.
    (https://lxjz.cstam.org.cn/cn/article/doi/10.6052/1000-0992-22-040)
  2. 张霄,李明,崔琦峰,陈学松,马家耀,陈焱.基于正六边形折纸的单自由度可展结构.机械工程学报, 2021, 57: 1-12
    (https://kns.cnki.net/kcms/detail/11.2187.TH.20210420.1435.078.html)
  3. 陈焱. 基于机构运动的大变形超材料. 机械工程学报, 56(19), 2-13, 2020. DOI:10.3901/JME.2020.19.002
    (http://www.cjmenet.com.cn/CN/10.3901/JME.2020.19.002)
  4. 冯慧娟,马家耀,陈焱. 广义Waterbomb折纸管的刚性折叠运动特性研究. 机械工程学报, 56(19), 143-159, 2020. DOI: 10.3901/JME.2020.19.143
    (http://www.cjmenet.com.cn/CN/10.3901/JME.2020.19.143)
  5. 冯慧娟,杨名远,姚国强,陈焱,戴建生.折纸机器人.中国科学:技术科学,2018,48(12):1259-1274. DOI: 10.1360/N092018-00213
    (https://doi.org/10.1360/N092018-00213)
  6. 张国凯,马家耀,尚祖峰,陈焱,由衷,易波,王树新.具有折展与变刚度特征的NOTES手术器械臂.机械工程学报,2018,54(17):28-35. DOI: 10.3901/JME.2018.17.028
    (http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2018.17.028)
  7. 杨名远, 马家耀, 李建民, 陈焱, 王树新. 基于厚板折纸理论的微创手术钳. 机械工程学报, 2018, 54(17): 36-45.  DOI: 10.3901/JME.2018.17.036
    (http://www.cjmenet.com.cn/CN/10.3901/JME.2018.17.036)
  8. 康荣杰, 杨铖浩, 杨名远, 陈焱. 会思考的机器——机械智能. 机械工程学报, 2018, 54(13): 15-24. DOI: 10.3901/JME.2018.13.015
    (http://www.cjmenet.com.cn/CN/10.3901/JME.2018.13.015)
  9. 会议论文

    1. Chai S, Ma J, Xi K and Chen Y*, Design and kinematic analysis of a single-degree-of-freedom rigidly foldable winding origami pattern, Proceedings of the IFToMM CCMMS 2022, Yantai, China, July 30-August 1, 2023: 1431-1443.
      (https://doi.org/10.1007/978-981-19-9398-5_88)
    2. Liu W, Chen Y*, Origami/kirigami-inspired reconfigurable 6R linkages and tessellations, Proceedings of the IFToMM CCMMS 2022, Yantai, China, July 30-August 1, 2023: 1333-1357.
      (https://doi.org/10.1007/978-981-19-9398-5_82)
    3. Liu P, Ma J*, Chen Y, Lin Yuan, Zhao H, and Wang K. The kinematic analysis and bistable characteristics of the winding origami structure, DETC2021-67410, Proceedings of the ASME 2021 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Online, August 17-19, 2021, 85451: V08BT08A032.
      (https://doi.org/10.1115/DETC2021-67410)
    4. Gu Y, Chen Y*, One-DOF origami boxes with rigid and flat foldability, Proceedings of IFToMM Asian MMS 2021, Hanoi, Vietnam, December 16-18, 2021: 80-88.
      (https://doi.org/10.1007/978-3-030-91892-7_8)
    5. Shang Z, Ma J*, You Z and Wang S*. A braided skeleton surgical manipulator with tunable diameter, 2020 8th IEEE International Conference for Biomedical Robotics and Biomechatronics (BioRob). November 29-December 1, 2020: 223-228.
      (https://doi.org/10.1109/BioRob49111.2020.9224312)
    6. Shi M, Ma J, Chen Y*, and You Z, Energy absorption of origami crash box: numerical simulation and theoretical analysis, DETC2018-86261, Proceedings of the ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Quebec City, Canada, August 26-29, 2018, 51814: V05BT07A065.
      (https://doi.org/10.1115/DETC2018-86261)
    7. Xu R, Zhang X, Ma J, Chen Y, Cao Y, and You Z*, Folding a rigid flat surface around a square hub, DETC2018-85791, Proceedings of the ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Quebec City, Canada, August 26-29, 2018, 51814: V05BT07A060.
      (https://doi.org/10.1115/DETC2018-85791)
    8. Zhang M, Yang F, Ma J, Chen Y*, and You Z, Design of one-DOF triangular Resch pattern with thick-panel origami, DETC2018-86312, Proceedings of the ASME 2018 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Quebec City, Canada, August 26-29, 2018, 51814: V05BT07A067.
      (https://doi.org/10.1115/DETC2018-86312)
    9. Hou D, Ma J, Chen Y*, and You Z, Analysis of cross folding an elastic sheet, ETC2017-67388, Proceedings of the ASME 2017 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Cleveland, Ohio, USA, August 6-9, 2017, 58189: V05BT08A039.
      (https://doi.org/10.1115/DETC2017-67388)
    10. Peng R, Ma J, and Chen Y*, Rigid foldability of triangle-twist origami pattern and its derived 6R linkage, DETC2017-68063, Proceedings of the ASME 2017 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Cleveland, Ohio, USA, August 6-9, 2017, 10(5): 051003.
      (https://doi.org/10.1115/DETC2017-68063)
    11. Hao Shang, Rongjie Kang*, and Yan Chen, A deployable robot based on the Bricard linkage, Proceeding of the 4th IFToMM Asian Conference on Mechanism and Machine Science, Guangzhou, China, December 15-17, 2016: 737-747.
      (https://link.springer.com/chapter/10.1007/978-981-10-2875-5_61)
    12. Binbin Gao, Rongjie Kang*, and Yan Chen, Deployable mechanism design for span morphing wing aircraft, Proceeding of the 4th IFToMM Asian Conference on Mechanism and Machine Science, Guangzhou, China, December 15-17, 2016: 801-813.
      (https://link.springer.com/chapter/10.1007/978-981-10-2875-5_66)
    13. Xie R, Hou D, Ma J*, Chen Y, and You Z, Geometrically graded origami tubes, DETC2016-59487, Proceedings of the ASME 2016 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Charlotte, NC, USA, August 21-24, 2016, 50169: V05BT07A010.
      (https://doi.org/10.1115/DETC2016-59487)
    14. Lv W, Ma J*, Chen Y, and You Z, Rigidly deployable origami tubes based on kite-shape pattern, DETC2016-59506, Proceedings of the ASME 2016 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Charlotte, NC, USA, August 21-24, 2016, 50169: V05BT07A011.
      (https://doi.org/10.1115/DETC2016-59506)
    15. Fufu Yang, Jianmin Li, Yan Chen*, Zhong You, A deployable bennett network in saddle surface, 14th World Congress in Mechanism and Machine Science, Taipei, Taiwan, October 25-30, 2015.
      (https://doi.org/10.6567/IFToMM.14TH.WC.OS8.015)
    16. Xie R, Li J, and Chen Y*, The graded origami structures, DETC2015-46081, Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference& Computers and Information in Engineering Conference, Boston, MA, USA, August 2-5, 2015, 57137: V05BT08A026.
      (https://doi.org/10.1115/DETC2015-46081)
    17. Hou D, Chen Y*, Ma J, You Z, Axial crushing of thin-walled tubes with kite-shape pattern, DETC2015-46671, Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Boston, MA, USA, August 2-5 2015, 57137: V05BT08A037.
      (https://doi.org/10.1115/DETC2015-46671)
    18. Feng H, Kang R, and Chen Y*, Workspace analysis of a reconfigurable mechanism generated from the network of Bennett linkages, Proceedings of the 3rd IEEE/IFToMM International Conference on Reconfigurable Mechanisms and Robots, Beijing, China, July 20-22, 2015: 153-163.
      (https://doi.org/10.1007/978-3-319-23327-7_14)
    19. Liu SC, Chen Y* and Lu GX, Deployable prismatic structures with rigid origami patterns, DETC2014-34567, Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Buffalo, New York, USA, August 17-21, 2014, 46377: V05BT08A037.
      (https://doi.org/10.1115/1.4031953)
    20. Ma J, Peach T, You Z, Rizkallah R and Byrne J. A novel flow fiverter for direct treatment of cerebral aneurysms, DETC2014-35699, Proceedings of the ASME 2014 International Design Engineering Technical Conferences& Computers and Information in Engineering Conference, Buffalo, New York, USA, August 17-20 2014, 46346: V003T12A007.
      (https://doi.org/10.1115/DETC2014-35699)

    专著

    1. You Z and Chen Y, Motion Structures: Deployable Structural Assemblies of Mechanisms, Taylor and Francis, ISBN: 978-0-415-55489-3, 2011. [PDF]

    博士毕业论文

    1. Liu W, Structural Design and Property Tunability of Reconfigurable Origami Metamaterials, 2024, 6.[PDF]
    2. Gu Y, Design of Deployable Polyhedral Mechanisms and Analysis of Constraint Reduction, 2023, 12.[PDF]
    3. Zang S, Design and Analysis of Programmable Non-rigid Square-twist Origami Metamaterials, 2022, 4.[PDF]
    4. Shang Z, Study on Rigid-flexible Transformation Mechanism and Design Method of a Deployable Manipulator Based on Braided Structure, 2021, 4.[PDF]
    5. Lv W, Rigid Origami and Networks of Spherical Mechanisms, 2021, 3.[PDF]
    6. Lee U, Elastic Energy Behaviours of Curved-crease Origami, 2019, 11.[PDF]
    7. Zhang X, Study on the Relationship between Mobile Assemblies of Spatial Linkages and Rigid Origami, 2018, 12.[PDF]
    8. Feng H, Kinematics of Spatial Linkages and Its Applications to Rigid Origami, 2018, 6.[PDF]
    9. Peng R, Analysis of Mobile Network of Spherical 4R Linkages and Kinematics of Rigid Origami, 2018, 4.[PDF]
    10. Yang F, Truss Method for Kinematic Analysis of 3D Overconstrained Linkages and Design of Transformable Polyhedrons, 2017, 12.[PDF]