1. Ma J, Dai H, Chai S, Chen Y*. Energy Absorption of Sandwich Structures with A Kirigami-Inspired Pyramid Foldcore under Quasi-Static Compression and Shear. Materials & Design, 2021, 206(3): 109808.
    (https://doi.org/10.1016/j.matdes.2021.109808)[PDF]
  2. Gu Y, Wei G, Chen Y*.Thick-panel origami cube. Mechanism and Machine Theory, 2021, 164: 104411.
    (https://doi.org/10.1016/j.mechmachtheory.2021.104411)[PDF]
  3. Wang S, Yang X, Chen Y, Ma J*.A theoretical design of a bellow-shaped statically balanced compliant mechanism. Mechanism and Machine Theory, 2021, 161(3): 104295.
    (https://doi.org/10.1016/j.mechmachtheory.2021.104295)[PDF]
  4. Ma J, Zang S, Feng H, Chen Y*, You Z. Theoretical characterization of a non-rigid-foldable square-twist origami for property programmability. International Journal of Mechanical Sciences, 2020, 189: 105981.
    (https://doi.org/10.1016/j.ijmecsci.2020.105981)[PDF]
  5. Gu Y, Chen Y*. Origami cubes with one-dof rigid and flat foldability. International Journal of Solids and Structures, 207 (2020) 250-261.
    (https://doi.org/10.1016/j.ijsolstr.2020.09.008)[PDF]
  6. Liu W, Chen Y*. A double spherical 6R linkage with spatial crank-rocker characteristics inspired by kirigami. Mechanism and Machine Theory, 2020, 153: 103995.
    (https://doi.org/10.1016/j.mechmachtheory.2020.103995)[PDF]
  7. Feng H, Peng R, Zang S, Ma J, Chen Y*. Rigid foldability and mountain-valley crease assignments of square-twist origami pattern. Mechanism and Machine Theory, 2020, 152: 103947.
    (https://doi.org/10.1016/j.mechmachtheory.2020.103947)[PDF]
  8. Feng H, Lv W, Ma J, Chang W, Chen Y*, Wang J. Helical structures with switchable and hierarchical chirality. Applied Physics Letters, 2020, 116(19): 194102.
    (https://doi.org/10.1063/5.0005336)[PDF]
  9. Ma J, Feng H, Chen Y*, Hou D, You Z*. Folding of Tubular Waterbomb. Research, 2020, 2020, 1735081.
    (https://doi.org/10.34133/2020/1735081)[PDF]
  10. Yuan L, Dai H, Song J, Ma J*, Chen Y. The behavior of a functionally graded origami structure subjected to quasi-static compression. Materials & Design, 2020, 189, 108494.
    (https://doi.org/10.1016/j.matdes.2020.108494)[PDF]
  11. Mukhopadhyay T, Ma J, Feng H, Hou D, Gattas J, Chen Y*, You Z. Programmable stiffness and shape modulation in origami materials: Emergence of a distant actuation feature. Applied Materials Today, 2020, 19, 100537.
    (https://doi.org/10.1016/j.apmt.2019.100537)[PDF]
  12. Yang F, You Z, Chen Y*. Mobile assembly of two Bennett linkages and its application to transformation between cuboctahedron and octahedron. Mechanism and Machine Theory, 2020, 145: 103698.
    (https://doi.org/10.1016/j.mechmachtheory.2019.103698)[PDF]
  13. Shang Z, Ma J*, You Z, Wang S. Lateral indentation of a reinforced braided tube with tunable stiffness. Thin-walled Structures, 2020, 149, 106608.
    (https://doi.org/10.1016/j.tws.2020.106608)[PDF]
  14. Yang F, You Z, Chen Y*. Foldable Hexagonal Structures based on Threefold-Symmetric Bricard Linkage. Journal of Mechanisms and Robotics, 2020, 12(1), 011012.
    (https://doi.org/10.1115/1.4045039)[PDF]
  15. Shang Z, Ma J*, You Z, Wang S. A foldable manipulator with tunable stiffness based on braided structure. J Biomed Mater Res Part B, 2020, 108(2), 316-325.
    (https://doi.org/10.1002/jbm.b.34390)[PDF]
  16. Ye H, Zhou X, Ma J, Wang H, You Z. Axial crushing behaviors of composite pre-folded tubes made of KFRP/CFRP hybrid laminates. Thin-walled Structures, 2020, 149, 106649.
    (https://doi.org/10.1016/j.tws.2020.106649)[PDF]
  17. Chen Y, Lv W, Peng R, Wei G*. Mobile assemblies of four-spherical-4R-integrated linkages and the associated four-crease-integrated rigid origami patterns. Mechanism and Machine Theory, 2019, 142, 103613.
    (https://doi.org/10.1016/j.mechmachtheory.2019.103613)[PDF]
  18. Chen X, Feng H, Ma J, Chen Y*. A plane linkage and its tessellation for deployable structure. Mechanism and Machine Theory, 2019, 142, 103605.
    (https://doi.org/10.1016/j.mechmachtheory.2019.103605)[PDF]
  19. Yuan L, Ma J*, You Z. Energy absorption capability of origami automobile bumper system. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(18), 6577–6587.
    (https://doi.org/10.1177/0954406219862307)[PDF]
  20. Ye H, Ma J, Zhou X, Wang H, You Z. Energy absorption behaviors of pre-folded composite tubes with the full-diamond origami patterns. Composite Structures, 2019, 221, 110904.
    (https://doi.org/10.1016/j.compstruct.2019.110904)[PDF]
  21. Yuan L, Shi H, Ma J*, You Z. Quasi-Static Impact of Origami Crash Boxes with Various Profiles. Thin-walled Structures, 2019, 141, 435-446.
    (https://doi.org/10.1016/j.tws.2019.04.028)[PDF]
  22. Shang Z, Ma J*, Li J, Zhang Z, Zhang G, Wang S*. Self-forcing Mechanism of the Braided Tube as a Robotic Gripper. Journal of Mechanisms and Robotics, 2019, 11(5), 051002.
    (https://doi.org/10.1115/1.4043686)[PDF]
  23. Ma J, Dai H, Shi M, Yuan L*, Chen Y, You Z. Quasi-static axial crushing of hexagonal origami crash boxes as energy absorption devices. Mechanical Sciences, 2019, 10, 133-143.
    (https://www.mech-sci.net/10/133/2019/) [PDF]
  24. Zhang X, Chen Y*. Vertex-Splitting on a Diamond Origami Pattern. Journal of Mechanisms and Robotics, 2019,11(3), 031014.
    (https://doi.org/10.1115/1.4043214)[PDF]
  25. Lee, T.U, Yang X, Ma J*, Chen Y, Gattas, J. Elastic buckling shape control of thin-walled cylinder using pre-embedded curved-crease origami patterns, International Journal of Mechanical Sciences, 2019, 151, 322-330.
    (https://doi.org/10.1016/j.ijmecsci.2018.11.005)[PDF]
  26. Shang Z, Wang S, You Z, Ma J*. A Hybrid Tubular Braid with Improved Longitudinal Stiffness for Medical Catheter. Journal of Mechanics in Medicine and Biology, 2019, 19(3), 1950003.
    (https://doi.org/10.1142/S0219519419500039)[PDF]
  27. Zhang X, Chen Y*. The diamond thick-panel origami and the corresponding mobile assemblies of plane-symmetric Bricard linkages. Mechanism and Machine Theory, 2018, 130, 585-604.
    (https://doi.org/10.1016/j.mechmachtheory.2018.09.005)[PDF]
  28. Feng H, Peng R, Ma J, Chen Y*. Rigid foldability of generalized triangle twist origami pattern and its derived 6R linkages. Journal of Mechanisms and Robotics, 2018, 10(5), 051003-051003-13.
    (https://doi.org/10.1115/1.4040439)[PDF]
  29. Feng H, Ma J, Chen Y*, You Z. Twist of tubular mechanical metamaterials based on waterbomb origami. Scientific Reports, 2018, 8(1), 9522.
    (https://doi.org/10.1038/s41598-018-27877-1)[PDF]
  30. Peng R, Ma J, Chen Y*. The Effect of Mountain-Valley Folds on the Rigid Foldability of Double Corrugated Pattern. Mechanism and Machine Theory, 2018, 128, 461-474.
    (https://doi.org/10.1016/j.mechmachtheory.2018.06.012)[PDF]
  31. Chen Y*, Yang F, You Z. Transformation of polyhedrons. International Journal of Solids and Structures, 2018, 138, 193-204.
    (https://doi.org/10.1016/j.ijsolstr.2018.01.012)[PDF]
  32. Zhang X, Chen Y*. Mobile assemblies of Bennett linkages from four-crease origami patterns. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2018, 474(2210), 20170621.
    (http://dx.doi.org/10.1098/rspa.2017.0621)[PDF]
  33. Ma J, Song J, Chen Y*. An Origami-inspired Structure with Graded Stiffness. International Journal of Mechanical Sciences, 2018, 136, 134–142.
    (http://dx.doi.org/10.1016/j.ijmecsci.2017.12.026)[PDF]
  34. Ma J, Hou D, Chen Y*, You Z. Peak stress relief of cross folding origami. Thin-Walled Structures, 2018, 123, 155-161.
    (http://dx.doi.org/10.1016/j.tws.2017.11.025)[PDF]
  35. Yang F, Chen Y*. One-DOF Transformation between Tetrahedron and Truncated Tetrahedron. Mechanism and Machine Theory, 2018, 121, 169-183.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2017.10.018)[PDF]
  36. Shang H, Wei D, Kang R*, Chen Y*. Gait Analysis and Control of a Deployable Robot. Mechanism and Machine Theory, 2018, 120, 107-119.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2017.09.020)[PDF]
  37. Chen Y, Lv W, Li J, You Z*. An extended family of rigidly foldable origami tubes. Journal of Mechanisms and Robotics, 2017, 9(2), 021002.
    (http://dx.doi.org/10.1115/1.4035559) [PDF]
  38. Feng H, Chen Y*, Dai Jian S, Gogu G. Kinematic study of the general plane-symmetric Bricard linkage and its bifurcation variations. Mechanism and Machine Theory, 2017, 116, 89–104.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2017.05.019) [PDF]
  39. Gattas J M, Lv W, Chen Y*. Rigid-foldable tubular arches. Engineering Structures, 2017, 145, 246–253.
    (http://dx.doi.org/10.1016/j.engstruct.2017.04.037) [PDF]
  40. Liu X, Gattas J M, Chen Y*. One-DOF Superimposed Rigid Origami with Multiple States. Scientific Reports, 2016, 6, 36883.
    (http://dx.doi.org/10.1038/srep36883) [PDF]
  41. Chen Y, Feng H, Ma J, Peng R, You Z*. Symmetric waterbomb origami. Proc. R. Soc. A , 2016, 472, 20150846.
    (http://dx.doi.org/10.1098/rspa.2015.0846) (Journal cover paper) [PDF]
  42. Yang F, Chen Y*, Kang R, Ma J. Truss transformation method to obtain the non-overconstrained forms of 3D overconstrained linkages. Mechanism and Machine Theory, 2016, 102, 149–166.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2016.04.005) [PDF]
  43. Ma J, Hou D, Chen Y*, You Z. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: numerical simulation. Thin-Walled Structures, 2016, 100, 38-47.
    (http://dx.doi.org/10.1016/j.tws.2015.11.023) [PDF]
  44. Liu S, Lv W, Chen Y*, Lu G X. Deployable prismatic structures with rigid origami patterns. Trans. ASME. Journal of Mechanisms and Robotics, 2015, 8(3), 031002.
    (http://dx.doi.org/10.1115/1.4031953) [PDF]
  45. Xie R, Chen Y, Gattas J M*. Parametrisation and application of cube and eggbox-type folded geometries. International Journal of Space Structures, 2015, 30(2), 99-110.
    (http://dx.doi.org/10.1260/0266-3511.30.2.99) [PDF]
  46. Chen Y, Peng R, You Z*. Origami of thick panels. Science, 2015, 349(6246), 396-400.
    (http://dx.doi.org/10.1126/science.aab2870) [PDF]
  47. Song C Y, Feng H, Chen Y*, Chen I-M, Kang R. Reconfigurable mechanism generated from the network of Bennett linkages. Mechanism and Machine Theory, 2015, 88, 49-62.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2015.02.003) [PDF]
  48. Liu S C, Lu G X*, Chen Y, Leong Y W. Deformation of the Miura-Ori Patterned Sheet. International Journal of Mechanical Sciences, 2015, 99, 130-142.
    (http://dx.doi.org/10.1016/j.ijmecsci.2015.05.009) [PDF]
  49. Song C Y, Chen Y*, Chen I-M. Kinematic Study of the Original and Revised General Line-symmetric Bricard 6R Linkages. Trans. ASME. Journal of Mechanisms and Robotics, 2014, 6(3), 031002.
    (http://dx.doi.org/10.1115/1.4026339 ) [PDF]
  50. Song C Y, Chen Y*. A 6R Linkage Reconfigurable between the Line-symmetric Bricard Linkage and the Bennett Linkage. Mechanism and Machine Theory, 2013, 70, 278-292.
    ( http://dx.doi.org/10.1016/j.mechmachtheory.2013.07.013 ) [PDF]
  51. Song J, Chen Y*, Lu G. Light-Weight Thin-Walled Structures with Patterned Windows under Axial Crushing. International Journal of Mechanical Sciences, 2013, 66, 239-248.
    (http://dx.doi.org/10.1016/j.ijmecsci.2012.11.014 ) [PDF]
  52. Zhang Y, Chen Y*, Fan H. Spreading of giant liposomes on anisotropically patterned substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 1–6.
    (http://dx.doi.org/10.1016/j.colsurfa.2012.11.036 ) [PDF]
  53. Song C Y, Chen Y*. Multiple Linkage Forms and Bifurcation Behaviours of the Double-subtractive-Goldberg 6R Linkage. Mechanism and Machine Theory, 2012, 57, 95–110.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2012.07.002 ) [PDF]
  54. Song J, Chen Y*, Lu G. Axial crushing of thin-walled structures with origami patterns. Thin-Walled Structures, 2012, 54, 65–71.
    (http://dx.doi.org/10.1016/j.tws.2012.02.007 ) [PDF]
  55. Song C Y, Chen Y*. A family of mixed double-Goldberg 6R linkages. Proceedings of the Royal Society A-Mathematical, Physical and Engineering Sciences, 2012, 468, 871-890. 
    (http://dx.doi.org/10.1098/rspa.2011.0345) [PDF]
  56. Zhang Y, Chen Y*, Fan H. Giant liposome spreading on a silicon wall. Journal of Applied Physics, 2011, 110, 034904.
    (http://dx.doi.org/10.1063/1.3614497 ) [PDF]
  57. Song C Y, Chen Y*. A spatial 6R linkage derived from subtractive Goldberg 5R linkages. Mechanism and Machine Theory, 2011, 46(8), 1097-1106.
    ( http://dx.doi.org/10.1016/j.mechmachtheory.2011.03.006 ) [PDF]
  58. Chen Y*, Chai W H. Bifurcation of a special line and plane symmetric Bricard linkage. Mechanism and Machine Theory, 2011, 46(4), 515-533.
    ( http://dx.doi.org/10.1016/j.mechmachtheory.2010.11.015 ) [PDF]
  59. Yan L, Chen I*, Yeo S, Chen Y, Yang G. A high-dexterity low-degree-of-freedom hybrid manipulator structure for robotic lion dance. Journal of Zhejiang University - Science A, 2010, 11(4), 240-249.
    (http://dx.doi.org/10.1631/jzus.A1000028 ) [PDF]
  60. Zhang Y, Fan H, Huang H, Chen Y*. Droplets atop a wrinkled substrate. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 2010, 224(11), 2459-2467.
    (http://dx.doi.org/10.1243/09544062JMES2069 ) [PDF]
  61. Chai W H, Chen Y*. The line-symmetric octahedral Bricard linkage and its structural closure. Mechanism and Machine Theory, 2010, 45, 772-779.
    ( http://dx.doi.org/10.1016/j.mechmachtheory.2009.12.007  ) [PDF]
  62. Chen Y, You Z*. Two-fold Symmetrical 6R Foldable Frame and its Bifurcations. International Journal of Solids and Structures, 2009, 46(25-26), 4504-4514.
    (http://dx.doi.org/10.1016/j.ijsolstr.2009.09.012 ) [PDF]
  63. Liu S Y, Chen Y*. Myard linkage and its mobile assemblies. Mechanism and Machine Theory, 2009, 44(10), 1950-1963.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2009.05.001 ) [PDF]
  64. Fan H*, Chen Y, Sze K Y. Phenomenological modeling for pore opening, closure and rupture of the GUV membrane. International Journal of Applied Mechanics, 2009, 1(02), 327-338.
    (http://dx.doi.org/10.1142/S1758825109000149 ) [PDF]
  65. Chen Y, You Z*. An extended Myard linkage and its derived 6R linkage. Trans. ASME. Journal of Mechanical Design, 2008, 130(5).
    (http://dx.doi.org/10.1115/1.2885506 ) [PDF]
  66. Chen Y, You Z*. On mobile assemblies of Bennett linkages. Proceedings of the Royal Society A (Mathematical, Physical and Engineering Sciences), 2008, 464(2093) 1275-1293.
    (http://dx.doi.org/10.1098/rspa.2007.0188 ) [PDF]
  67. Chen Y, You Z*. Spatial 6R linkages based on the combination of two Goldberg 5R linkages. Mechanism and Machine Theory 2007, 42(11), 1484-1498.
    (http://dx.doi.org/10.1016/j.mechmachtheory.2006.12.008 ) [PDF]
  68. Chen Y, You Z*. Square deployable frame for space application: Part II: Realization. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221(1), 37-45.
    (http://dx.doi.org/10.1243/09544100JAERO100) [PDF]
  69. Chen Y, You Z*. Square deployable frame for space application: Part I: Theory. Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, 2006, 220(4), 347–354.
    (http://dx.doi.org/10.1243/09544100JAERO68) [PDF]
  70. Chen Y, You Z*. Mobile assemblies based on the Bennett linkage. Proceedings of the Royal Society A (Mathematical, Physical and Engineering Sciences), 2005, 461, 1229 – 1245.
    (http://dx.doi.org/10.1098/rspa.2004.1383) [PDF]
  71. Chen Y, You Z, Tarnai T*. Threefold-symmetric Bricard linkages for Deployable Structures. International Journal of Solids and Structures, 2005, 42 (8) 2287-2301.
    (http://dx.doi.org/10.1016/j.ijsolstr.2004.09.014 ) [PDF]
  72. Chen Y, Baker J E*. Using a Bennett linkage as a connector between other Bennett loops. Proceeding of Institution of Mechanical Engineers, Journal of Multi-body Dynamics, 2005, 219 (2), 177-185.
    (http://dx.doi.org/10.1243/146441905X9935) [PDF]

中文论文

  1. 张霄,李明,崔琦峰,陈学松,马家耀,陈焱.基于正六边形折纸的单自由度可展结构.机械工程学报, 2021, 57: 1-12
    (https://kns.cnki.net/kcms/detail/11.2187.TH.20210420.1435.078.html)[PDF]
  2. 陈焱. 基于机构运动的大变形超材料. 机械工程学报, 56(19), 2-13, 2020. DOI:10.3901/JME.2020.19.002
    (http://www.cjmenet.com.cn/CN/10.3901/JME.2020.19.002)[PDF]
  3. 冯慧娟,马家耀,陈焱. 广义Waterbomb折纸管的刚性折叠运动特性研究. 机械工程学报, 56(19), 143-159, 2020. DOI: 10.3901/JME.2020.19.143
    (http://www.cjmenet.com.cn/CN/10.3901/JME.2020.19.143)[PDF]
  4. 冯慧娟,杨名远,姚国强,陈焱,戴建生.折纸机器人.中国科学:技术科学,2018,48(12):1259-1274. DOI: 10.1360/N092018-00213
    (https://doi.org/10.1360/N092018-00213)[PDF]
  5. 张国凯,马家耀,尚祖峰,陈焱,由衷,易波,王树新.具有折展与变刚度特征的NOTES手术器械臂.机械工程学报,2018,54(17):28-35. DOI: 10.3901/JME.2018.17.028
    (http://qikan.cmes.org/jxgcxb/CN/10.3901/JME.2018.17.028)[PDF]
  6. 杨名远, 马家耀, 李建民, 陈焱, 王树新. 基于厚板折纸理论的微创手术钳. 机械工程学报, 2018, 54(17): 36-45.  DOI: 10.3901/JME.2018.17.036
    (http://www.cjmenet.com.cn/CN/10.3901/JME.2018.17.036)[PDF]
  7. 康荣杰, 杨铖浩, 杨名远, 陈焱. 会思考的机器——机械智能. 机械工程学报, 2018, 54(13): 15-24. DOI: 10.3901/JME.2018.13.015
    (http://www.cjmenet.com.cn/CN/10.3901/JME.2018.13.015)[PDF]
  8. 专著

    1. You Z and Chen Y, Motion Structures: Deployable Structural Assemblies of Mechanisms, Taylor and Francis, ISBN: 978-0-415-55489-3, 2011.

    博士毕业论文

    1. Zhang X, Study on the Relationship between Mobile Assemblies of Spatial Linkages and Rigid Origami, 2018, 12.[PDF]
    2. Feng H, Kinematics of Spatial Linkages and Its Applications to Rigid Origami, 2018, 6.[PDF]
    3. Peng R, Analysis of Mobile Network of Spherical 4R Linkages and Kinematics of Rigid Origami, 2018, 4.[PDF]
    4. Yang F, Truss Method for Kinematic Analysis of 3D Overconstrained Linkages and Design of Transformable Polyhedrons, 2017, 12.[PDF]